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Ice Manual

Distributed Programming with Ice
The Internet Communications Engine (Ice) is a modern object-oriented toolkit that enables you to build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented middleware platform suitable for use in heterogeneous environments.
Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.
Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.
Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier."

The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice
If you have a question and you cannot find an answer in this manual, you can visit our  to see if another developer hasdeveloper forums
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing .commercial support

Feedback about the Manual
We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at .icebook@zeroc.com

Legal Notices
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License
This manual is provided under one of two licenses, whichever you prefer:

Creative Commons Attribution-No Derivative Works 3.0 Unported License.
This license does not permit you to make modifications.

Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
This license permits you to make modifications. If you distribute this manual under this license, you must prominently include the
following text:

http://www.zeroc.com/forums
http://www.zeroc.com/support.html
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
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This document is derived from ZeroC's , Copyright © ZeroC, Inc. 2003-2011.Ice Manual
You can find the latest version of this document at:
http://doc.zeroc.com/display/Ice/Ice+Manual

Copyright
Copyright © 2003-2011 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

http://doc.zeroc.com/display/Ice/Ice+Manual
http://www.zeroc.com
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Ice Overview
The following topics provide a high-level overview of Ice:

Ice Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.
Ice Services briefly presents the object services provided by Ice.
Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

Ice Architecture
Ice Services
Architectural Benefits of Ice
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Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology
Slice (Specification Language for Ice)
Language Mappings
Client and Server Structure
Overview of the Ice Protocol

See Also

Ice Services
Architectural Benefits of Ice
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Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice  differ from the corresponding terms used by other middleware.)do

On this page:

Clients and Servers
Ice Objects
Proxies
Stringified Proxies
Direct Proxies
Indirect Proxies
Direct Versus Indirect Binding
Fixed Proxies
Routed Proxies
Replication
Replica Groups
Servants
At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations
Batched Datagram Invocations
Run-Time Exceptions
User Exceptions
Properties

Clients and Servers

The terms  and  are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts ofclient server
an application for the duration of a request:

Clients are active entities. They issue requests for service to servers.
Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure" servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a  to the server that is used by the server to notify the client when the operation is complete. In that case, the clientcallback object
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer
systems.

Ice Objects

An  is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:Ice object

An Ice object is an entity in the local or a remote address space that can respond to client requests.
A single Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.
Each Ice object has one or more . An interface is a collection of named  that are supported by an object. Clientsinterfaces operations
issue requests by invoking operations.
An operation has zero or more  as well as a . Parameters and return values have a specific . Parametersparameters return value type
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)
An Ice object has a distinguished interface, known as its . In addition, an Ice object can provide zero or more alternatemain interface
interfaces, known as . Clients can select among the facets of an object to choose the interface they want to work with.facets
Each Ice object has a unique . An object's identity is an identifying value that distinguishes the object from all otherobject identity
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1.  
2.  
3.  
4.  
5.  
6.  

objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity. 

In practice, you need not use object identities that are globally unique, such as , only identities that do not clash with anyUUIDs
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of .object life cycle

Proxies

For a client to be able to contact an Ice object, the client must hold a  for the Ice object. A  is an artifact that is local to the client'sproxy proxy
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

Locates the Ice object
Activates the Ice object's server if it is not running
Activates the Ice object within the server
Transmits any in-parameters to the Ice object
Waits for the operation to complete
Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:

Addressing information that allows the client-side run time to contact the correct server
An object identity that identifies which particular object in the server is the target of a request
An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying
that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A  is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completelydirect proxy
specified by:

a protocol identifier (such TCP/IP or UDP)
a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An  has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapterindirect proxy
identifier. An object that is accessible using only its identity is called a well-known object. For example, the string:

SimplePrinter

is a valid proxy for a well-known object with the identity .SimplePrinter

An indirect proxy that includes an object adapter identifier has the stringified form

SimplePrinter@PrinterAdapter

http://www.wikipedia.org/Uuid
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Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a . In turn, the location service uses the object identity or the object adapter identifier as the key in a lookuplocation service
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as , to look up a web page, the host name is first resolved to an IP address behind the scenes and,www.zeroc.com
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as . Not surprisingly,  is used forbinding direct binding
direct proxies, and  is used for indirect proxies.indirect binding

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or ) a server.migrate

Fixed Proxies

A  is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxyfixed proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow , so a server can make callbacks to a clientbidirectional communication
without having to open a new connection.

Routed Proxies

A  is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.routed proxy
Routed proxies are useful for implementing services such as , which enables clients to communicate with servers that are behind aGlacier2
firewall.

Replication

In Ice,  involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually toreplication
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its  and tries all of them in the case of a failure. For example, consider this proxy:initial connection attempt

SimplePrinter:tcp -h server1 -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity  is available using TCP at two addresses, one on the host  andSimplePrinter server1
another on the host . The burden falls to users or system administrators to ensure that the servers are actually running on theseserver2
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as  thatreplica groups
requires the use of a .location service

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a .replicated object adapter

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as  can be used in a proxy as shown below:PrinterAdapters
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SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a "virtual object adapter." The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an  is a conceptual entity that has a type, identity, and addressing information. However, client requestsIce Object
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a . A servant provides substance for (or servant
) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that isincarnates

registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have  semantics: the Ice run time does its best to deliver a request to the correct destination and, depending onat-most-once
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not  can be used safely. An idempotentidempotent
operation is an operation that, if executed twice, has the same effect as if executed once. For example,  is an idempotent operation:x = 1;
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand,  is not idempotent: if wex++;
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less
robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports : clients can invoke operations , that is, the client uses a proxy asasynchronous method invocation (AMI) asynchronously
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usual to invoke an operation but, in addition to passing the normal parameters, also passes a  and the client invocationcallback object
returns immediately. Once the operation completes, the client-side run time invokes a method on the callback object passed initially, passing
the results of the operation to the callback object (or, in case of failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
so, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a  operation that returns data from an external, asynchronous data source and that blocksget
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Another way to use asynchronous method dispatch is to complete an operation, so the results of the operation are returned to the client, but
to keep the execution thread of the operation beyond the duration of the operation invocation. This allows you to continue processing after
results have been returned to the client, for example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a  operation. A oneway invocation has "best effort" semantics. For a oneway invocation, theoneway
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on  that do not have a return value, do not have out-parameters, and do not throw useroperations
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are  in the order in which theinitiated
invocations arrive at the server, this does not mean that they will be  in that order — the vagaries of thread scheduling can result inprocessed
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.
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The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as , and for fine-grained interfaces that offer IceStorm set
operations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

Individual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

Individual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations,  allow you to accumulate a number of invocations in a buffer and thenbatched datagram invocations
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations
are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a . Run-time exceptions are pre-defined by the Ice run time and cover common errorrun-time exception
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising  to clients. User exceptions can carry an arbitrary amount ofuser exceptions
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via . Properties are name-value pairs, such as .properties Ice.Default.Protocol=tcp
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.
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See Also

The Slice Language
Proxies
Locators
Object Life Cycle
Bidirectional Connections
Glacier2
IceStorm
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Slice (Specification Language for Ice)

Each  has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged betweenIce object
client and server are defined using the . Slice allows you to define the client-server contract in a way that is independent of aSlice language
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

The Slice Language
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Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as . Forlanguage mappings
example, for the , a Slice sequence appears as an STL vector, whereas, for the , a Slice sequence appears as aC++ mapping Java mapping
Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of
the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objective-C, and, for the client side, PHP and Ruby.

See Also

C++ Mapping
Java Mapping
C# Mapping
Objective-C Mapping
Python Mapping
Ruby Mapping
PHP Mapping
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Client and Server Structure

Ice clients and servers have the logical internal structure:

Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with
the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice API is identical for clients and servers (although servers use a larger part of the API than clients).

The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:

It provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.
It provides  and  code. Marshaling is the process of serializing a complex data structure, such as amarshaling unmarshaling
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:

The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.
The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.
The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about
the type, identity, and transport details of each of its objects and embeds the correct details when the server-side
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application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support
for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a
third process, , is required to resolve proxies to transport endpoints.)IceGrid

See Also

Hello World Application
IceGrid
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Overview of the Ice Protocol

Ice provides an  that can use either TCP/IP or UDP as an underlying transport. In addition, Ice also allows you to use  as aRPC protocol SSL
transport, so all communication between client and server is encrypted.

The Ice protocol defines:

a number of message types, such as request and reply message types,
a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,
encoding rules that determine how each type of data is represented on the wire,
a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports : if a server wants to send a message to a callback object provided by the client, thebidirectional operation
callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also

The Ice Protocol
IceSSL
Bidirectional Connections
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Ice Services

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

Freeze and FreezeScript
IceGrid Service
IceBox Server
IceStorm
IcePatch2
Glacier2

Freeze and FreezeScript

Ice has a built-in object persistence service, known as . Freeze makes it easy to store object state in a database: you define the stateFreeze
stored by your objects in Slice, and the Freeze compiler generates code that stores and retrieves object state to and from a database.
Freeze uses  as its database.Berkeley DB

Ice also offers a tool set collectively called  that makes it easier to maintain databases and to migrate the contents of existingFreezeScript
databases to a new schema if the type definitions of objects change.

IceGrid Service

IceGrid is an implementation of an Ice  that resolves the symbolic information in an indirect proxy to a protocol-address pairlocation service
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.
provides tools that make it easy to configure complex applications containing several servers.
supports replication and load-balancing.
automates the distribution and patching of server executables and dependent files.
provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IceBox Server

IceBox is a simple application server that can orchestrate the starting and stopping of a number of application components. Application
components can be deployed as a dynamic library instead of as a process. This reduces overall system load, for example, by allowing you to
run several application components in a single Java virtual machine instead of having multiple processes, each with its own virtual machine.

IceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, IceStorm can be run as a  service, that is, multiple instances of thefederated
service can be run on different machines to spread the processing load over a number of CPUs.

http://www.oracle.com/technology/products/berkeley-db
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IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

IcePatch2 supersedes IcePatch, which was a previous version of this service.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising
security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

Glacier2 supersedes Glacier, which was a previous version of this service

See Also

IceGrid
Freeze
FreezeScript
Glacier2
IceBox
IceStorm
IcePatch2
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Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging
Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice currently offers both TCP/IP and UDP as transport protocols. Neither client nor server code are aware of the underlying
transport. (The desired transport can be chosen by a configuration parameter.)

Location and server transparency
The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via IceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security
Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice comes with built-in support for , which is aBerkeley DB
high-performance database.

Source code availability
The source code for Ice is available. While it is not necessary to have access to the source code to use the platform, it allows you to
see how things are implemented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment for distributed computing that is more complete than any
other platform we are aware of.

See Also

Ice Architecture
Ice Services

http://www.oracle.com/technology/products/berkeley-db
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1.  
2.  
3.  

Hello World Application
This section presents a very simple (but complete) client and server.

Writing an Ice application involves the following steps:

Write a Slice definition and compile it.
Write a server and compile it.
Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and
give you a feel for what the development environment looks like; we will provide all the detail throughout the remainder of
this manual.

Topics

Writing a Slice Definition
Writing an Ice Application with C++
Writing an Ice Application with Java
Writing an Ice Application with C-Sharp
Writing an Ice Application with Visual Basic
Writing an Ice Application with Objective-C
Writing an Ice Application with Python
Writing an Ice Application with Ruby
Writing an Ice Application with PHP
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Writing a Slice Definition

The first step in writing any Ice application is to write a  definition containing the interfaces that are used by the application. For ourSlice
minimal printing application, we write the following Slice definition:

Slice

module Demo {
    interface Printer {
        void printString(string s);
    };
};

We save this text in a file called .Printer.ice

Our Slice definitions consist of the module  containing a single interface called . For now, the interface is very simple andDemo Printer
provides only a single operation, called . The  operation accepts a string as its sole input parameter; the text ofprintString printString
that string is what appears on the (possibly remote) printer.

See Also

The Slice Language
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Writing an Ice Application with C++

This page shows how to create an Ice application with C++.

On this page:

Compiling a Slice Definition for C++
Writing and Compiling a Server in C++
Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our  to generate C++ proxies and skeletons. Under Unix, you canSlice definition
compile the definition as follows:

$ slice2cpp Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  compiler produces two C++ source files from this definition,  and .slice2cpp Printer.h Printer.cpp

Printer.h
The  header file contains C++ type definitions that correspond to the Slice definitions for our  interface. ThisPrinter.h Printer
header file must be included in both the client and the server source code.

Printer.cpp
The  file contains the source code for our  interface. The generated source contains type-specific run-timePrinter.cpp Printer
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the 

 operation) on the client side and unmarshals that data on the server side.printString
The  file must be compiled and linked into both client and server.Printer.cpp

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:
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C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer {
public:
    virtual void printString(const string& s, const Ice::Current&);
};

void 
PrinterI::
printString(const string& s, const Ice::Current&)
{
    cout << s << endl;
}

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectAdapterPtr adapter =
            ic->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
        Ice::ObjectPtr object = new PrinterI;
        adapter->add(object, ic->stringToIdentity("SimplePrinter"));
        adapter->activate();
        ic->waitForShutdown();
    } catch (const Ice::Exception& e) {
        cerr << e << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const Ice::Exception& e) {
            cerr << e << endl;
            status = 1;
        }
    }
    return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for , which contains the definitions for the Ice run time. We also include Ice.h
, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import thePrinter.h

contents of the  and  namespaces for brevity in the code that follows:std Demo



Ice 3.4.2 Documentation

34 Copyright © 2011, ZeroC, Inc.

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type . Looking at the generated code in , we find the followingPrinterI Printer.h
(tidied up a little to get rid of irrelevant detail):

C++

namespace Demo {
    class Printer : virtual public Ice::Object {
    public:
        virtual void printString(const std::string&, const Ice::Current& = Ice::Current()) = 0;
    };
};

The  skeleton class definition is generated by the Slice compiler. (Note that the  method is pure virtual so thePrinter printString
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual 

 method. (By convention, we use an -suffix to indicate that the class implements an interface.)printString I

C++

class PrinterI : public Printer {
public:
    virtual void printString(const string& s, const Ice::Current&);
};

The implementation of the  method is trivial: it simply writes its string argument to :printString stdout

C++

void 
PrinterI::
printString(const string& s, const Ice::Current&)
{
    cout << s << endl;
}

Note that  has a second parameter of type . As you can see from the definition of ,printString Ice::Current Printer::printString
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the  parameter later.)Ice::Current

What follows is the server main program. Note the general structure of the code:
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1.  

C++

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {

        // Server implementation here...

    } catch (const Ice::Exception& e) {
        cerr << e << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const Ice::Exception& e) {
            cerr << e << endl;
            status = 1;
        }
    }
    return status;
}

The body of  contains the declaration of two variables,  and . The  variable contains the exit status of the programmain status ic status
and the  variable, of type , contains the main handle to the Ice run time.ic Ice::CommunicatorPtr

Following these declarations is a  block in which we place all the server code, followed by two  handlers. The first handler catchestry catch
all exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception
anywhere, the stack is unwound all the way back to , which prints the exception and then returns failure to the operating system. Themain
second handler catches string constants; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply
throw a string literal with an error message. Again, this unwinds the stack all the way back to , which prints the error message and thenmain
returns failure to the operating system.

Following the  block, we see a bit of cleanup code that calls the  method on the communicator (provided that the communicatortry destroy
was initialized). The cleanup call is outside the first  block for a reason: we must ensure that the Ice run time is finalized whether thetry
code terminates normally or terminates due to an exception.

Failure to call  on the communicator before the program exits results in undefined behavior.destroy

The body of the first  block contains the actual server code:try

C++

        ic = Ice::initialize(argc, argv);
        Ice::ObjectAdapterPtr adapter =
            ic->createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
        Ice::ObjectPtr object = new PrinterI;
        adapter->add(object, ic->stringToIdentity("SimplePrinter"));
        adapter->activate();
        ic->waitForShutdown();

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  and  to this call because the server may haveIce::initialize argc argv
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns a smart pointer to an  object, which is the main object in the Iceinitialize Ice::Communicator
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1.  

2.  

3.  

4.  

5.  

6.  

run time.
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actualIce::Application
application code is concerned, the server contains only a few lines: six lines for the definition of the  class, plus three lines toPrinterI
instantiate a  object and register it with the object adapter.PrinterI

Assuming that we have the server code in a file called , we can compile it as follows:Server.cpp

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the  environmentICE_HOME
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set  to/opt/Ice ICE_HOME
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -o server Printer.o Server.o -L$ICE_HOME/lib -lIce -lIceUtil

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail. The important point to note here is that the Ice run time is shipped in two libraries,  and .libIce libIceUtil

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:
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1.  
2.  

3.  

4.  
5.  

C++

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy("SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same  block and  handlers to deal with errors.try catch

The code in the  block does the following:try

As for the server, we initialize the Ice run time by calling .Ice::initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice::ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, we need toPrinter Object
do a down-cast by calling . A checked cast sends a message to the server, effectively asking "is thisPrinterPrx::checkedCast
a proxy for a  interface?" If so, the call returns a proxy to a ; otherwise, if the proxy denotes an interface of somePrinter Printer
other type, the call returns a null proxy.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -L$ICE_HOME/lib -lIce -lIceUtil

Running Client and Server in C++

To run client and server, we first start the server in a separate window:
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$ ./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of .)Ice::Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some platform-dependent environment variables. For example, under
Linux, you need to add the Ice library directory to your . Please have a look at the demo applications that ship with IceLD_LIBRARY_PATH
for the details for your platform.

See Also

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The  ClassIce::Application
The Current Object
IceGrid
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Writing an Ice Application with Java

This page shows how to create an Ice application with Java.

On this page:

Compiling a Slice Definition for Java
Writing and Compiling a Server in Java
Writing and Compiling a Client in Java
Running Client and Server in Java

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our  to generate Java proxies and skeletons. Under Unix, you canSlice definition
compile the definition as follows:

$ mkdir generated
$ slice2java --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  option instructs the compiler to place the generated files into the  directory. This avoids cluttering the--output-dir generated
working directory with the generated files. The  compiler produces a number of Java source files from this definition. The exactslice2java
contents of these files do not concern us for now — they contain the generated code that corresponds to the  interface we definedPrinter
in .Printer.ice

Writing and Compiling a Server in Java

To implement our  interface, we must create a servant class. By convention, a servant class uses the name of its interface with an Printer
-suffix, so our servant class is called  and placed into a source file :I PrinterI PrinterI.java

Java

public class PrinterI extends Demo._PrinterDisp {
    public void
    printString(String s, Ice.Current current)
    {
        System.out.println(s);
    }
}

The  class inherits from a base class called , which is generated by the  compiler. The base class isPrinterI _PrinterDisp slice2java
abstract and contains a  method that accepts a string for the printer to print and a parameter of type . (For nowprintString Ice.Current
we will ignore the  parameter.) Our implementation of the  method simply writes its argument to the terminal.Ice.Current printString

The remainder of the server code is in a source file called , shown in full here:Server.java
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Java

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            Ice.ObjectAdapter adapter =
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
            Ice.Object object = new PrinterI();
            adapter.add(object, ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note the general structure of the code:
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1.  

2.  

3.  

Java

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {

            // Server implementation here...

        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

The body of  contains a  block in which we place all the server code, followed by two  blocks. The first block catches allmain try catch
exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception anywhere,
the stack is unwound all the way back to , which prints the exception and then returns failure to the operating system. The second blockmain
catches  exceptions; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply throw anException
exception with an error message. Again, this unwinds the stack all the way back to , which prints the error message and then returnsmain
failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program  call  on any communicator it has created; otherwise, undefined behavior results.must destroy

The body of our  block contains the actual server code:try

Java

            ic = Ice.Util.initialize(args);
            Ice.ObjectAdapter adapter =
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
            Ice.Object object = new PrinterI();
            adapter.add(object, ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  to this call because the server may haveIce.Util.initialize args
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns an  reference, which is the main object in the Ice run time.initialize Ice.Communicator
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
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object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actualIce.Application
application code is concerned, the server contains only a few lines: seven lines for the definition of the  class, plus three lines toPrinterI
instantiate a  object and register it with the object adapter.PrinterI

We can compile the server code as follows:

$ mkdir classes
$ javac -d classes -classpath classes:$ICE_HOME/lib/Ice.jar \
Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the  environmentICE_HOME
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set  to/opt/Ice ICE_HOME
that path.) Note that Ice for Java uses the  build environment to control building of source code. (  is similar to , but more flexibleant ant make
for Java applications.) You can have a look at the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client in Java

The client code, in , looks very similar to the server. Here it is in full:Client.java
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public class Client {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            Ice.ObjectPrx base = ic.stringToProxy("SimplePrinter:default -p 10000");
            Demo.PrinterPrx printer = Demo.PrinterPrxHelper.checkedCast(base);
            if (printer == null)
                throw new Error("Invalid proxy");

            printer.printString("Hello World!");
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note that the overall code layout is the same as for the server: we use the same  and  blocks to deal with errors. The code in the try catch
 block does the following:try

As for the server, we initialize the Ice run time by calling .Ice.Util.initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice.ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, we need toPrinter Object
do a down-cast by calling . A checked cast sends a message to the server, effectively askingPrinterPrxHelper.checkedCast
"is this a proxy for a  interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes anPrinter Demo::Printer
interface of some other type, the call returns null.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICE_HOME/lib/Ice.jar \
Client.java PrinterI.java generated/Demo/*.java

Running Client and Server in Java

To run client and server, we first start the server in a separate window:
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$ java Server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ java Client
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of .)Ice.Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Ice.ConnectionRefusedException
       error = 0
    at IceInternal.ConnectRequestHandler.getConnection(ConnectRequestHandler.java:240)
    at IceInternal.ConnectRequestHandler.sendRequest(ConnectRequestHandler.java:138)
    at IceInternal.Outgoing.invoke(Outgoing.java:66)
    at Ice._ObjectDelM.ice_isA(_ObjectDelM.java:30)
    at Ice.ObjectPrxHelperBase.ice_isA(ObjectPrxHelperBase.java:111)
    at Ice.ObjectPrxHelperBase.ice_isA(ObjectPrxHelperBase.java:77)
    at Demo.HelloPrxHelper.checkedCast(HelloPrxHelper.java:228)
    at Client.run(Client.java:65)
Caused by: java.net.ConnectException: Connection refused
         ...

Note that, to successfully run client and server, your  must include the Ice library and the classes directory, for example:CLASSPATH

$ export CLASSPATH=$CLASSPATH:./classes:$ICE_HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for your platform.

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The  ClassIce.Application
The Current Object
IceGrid
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Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.

On this page:

Compiling a Slice Definition for C#
Writing and Compiling a Server in C#
Writing and Compiling a Client in C#
Running Client and Server in C#

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our  to generate C# proxies and skeletons. You can compile theSlice definition
definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  option instructs the compiler to place the generated files into the  directory. This avoids cluttering the--output-dir generated
working directory with the generated files. The  compiler produces a single source file, , from this definition. Theslice2cs Printer.cs
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the  interface we definedPrinter
in .Printer.ice

Writing and Compiling a Server in C#

To implement our  interface, we must create a servant class. By convention, a servant class uses the name of its interface with an Printer
-suffix, so our servant class is called  and placed into a source file :I PrinterI Server.cs

C#

using System;

public class PrinterI : Demo.PrinterDisp_
{
    public override void printString(string s, Ice.Current current)
    {
        Console.WriteLine(s);
    }
}

The  class inherits from a base class called , which is generated by the  compiler. The base class isPrinterI PrinterDisp_ slice2cs
abstract and contains a  method that accepts a string for the printer to print and a parameter of type . (For nowprintString Ice.Current
we will ignore the  parameter.) Our implementation of the  method simply writes its argument to the terminal.Ice.Current printString

The remainder of the server code follows in  and is shown in full here:Server.cs
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C#

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(ref args);
            Ice.ObjectAdapter adapter =
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
            Ice.Object obj = new PrinterI();
            adapter.add(obj, ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note the general structure of the code:
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C#

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {

            // Server implementation here...

        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

The body of  contains a  block in which we place all the server code, followed by a  block. The catch block catches allMain try catch
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to , which prints the exception and then returns failure to the operating system.Main

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program  call  on any communicator it has created; otherwise, undefined behavior results.must destroy

The body of our  block contains the actual server code:try

C#

            ic = Ice.Util.initialize(ref args);
            Ice.ObjectAdapter adapter =
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000");
            Ice.Object obj = new PrinterI();
            adapter.add(obj, ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  to this call because the server may haveIce.Util.initialize args
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns an  reference, which is the main object in the Ice run time.initialize Ice.Communicator
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
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instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actualIce.Application
application code is concerned, the server contains only a few lines: seven lines for the definition of the  class, plus three lines toPrinterI
instantiate a  object and register it with the object adapter.PrinterI

We can compile the server code as follows:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Server.cs generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the  environmentICE_HOME
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set  to thatC:\Ice ICE_HOME
path.)

Writing and Compiling a Client in C#

The client code, in , looks very similar to the server.Client.cs

Here it is in full:

C#

using System;
using Demo;

public class Client
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(ref args);
            Ice.ObjectPrx obj = ic.stringToProxy("SimplePrinter:default -p 10000");
            PrinterPrx printer = PrinterPrxHelper.checkedCast(obj);
            if (printer == null)
                throw new ApplicationException("Invalid proxy");

            printer.printString("Hello World!");
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note that the overall code layout is the same as for the server: we use the same  and  blocks to deal with errors. The code in the try catch
 block does the following:try
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As for the server, we initialize the Ice run time by calling .Ice.Util.initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice.ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, we need toPrinter Object
do a down-cast by calling . A checked cast sends a message to the server, effectively askingPrinterPrxHelper.checkedCast
"is this a proxy for a  interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes anPrinter Demo::Printer
interface of some other type, the call returns null.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Compiling the client looks much the same as for the server:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Client.cs generated\Printer.cs

Running Client and Server in C#

To run client and server, we first start the server in a separate window:

$ server.exe

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of .)Ice.Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Ice.ConnectionRefusedException
    error = 0
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalException ex, Reference ref, Int32 cnt)
   at Ice.ObjectPrxHelperBase.handleException__(ObjectDel_ delegate, LocalException ex, Int32 cnt)
   at Ice.ObjectPrxHelperBase.ice_isA(String id__, Dictionary`2 context__, Boolean explicitContext__)
   at Ice.ObjectPrxHelperBase.ice_isA(String id__)
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b)
   at Client.Main(String[] args)
Caused by: System.ComponentModel.Win32Exception: No connection could be made because the target machine actively refused
 it

Note that, to successfully run client and server, the C# run time must be able to locate the  library. (Under Windows, one way toIce.dll
ensure this is to copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates
libraries.)

See Also

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
The  ClassIce.Application
The Current Object
IceGrid
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Writing an Ice Application with Visual Basic

This page shows how to create an Ice application with Visual Basic.

On this page:

Visual Basic Development Process
Compiling a Slice Definition for Visual Basic
Writing and Compiling a Server in Visual Basic
Writing and Compiling a Client in Visual Basic
Running Client and Server in Visual Basic

Visual Basic Development Process

As of version 3.3, Ice no longer includes a separate compiler to create Visual Basic source code from Slice definitions. Instead, you need to
use the Slice-to-C# compiler  to create C# source code and compile the generated C# source code with a C# compiler into a DLLslice2cs
that contains the compiled generated code for your Slice definitions. Your Visual Basic application then links with this DLL and the Ice for
.NET DLL ( ).Ice.dll

This approach works not only with Visual Basic, but with any language that targets the .NET run time. However, ZeroC
does not provide support for languages other than C# and Visual Basic.

The following illustration demonstrates this development process:

Developing a Visual Basic application with Ice.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our  to generate proxies and skeletons. You can compile theSlice definition
definition as follows:

> mkdir generated
> slice2cs --output-dir generated Printer.ice

The  option instructs the compiler to place the generated files into the  directory. This avoids cluttering the--output-dir generated
working directory with the generated files. The  compiler produces a single source file, , from this definition. Theslice2cs Printer.cs
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the  interface we definedPrinter
in .Printer.ice

We now need to compile this generated code into a DLL:
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> csc /reference:Ice.dll /lib:%ICE_HOME%\bin /t:library /out:Printer.dll generated\Printer.cs

This creates a DLL called  that contains the code we generated from the Slice definitions.Printer.dll

Writing and Compiling a Server in Visual Basic

To implement our  interface, we must create a servant class. By convention, a servant class uses the name of its interface with an Printer
-suffix, so our servant class is called  and placed into a source file :I PrinterI Server.vb

Visual Basic

Imports System
Imports Demo

Public Class PrinterI
    Inherits PrinterDisp_

    Public Overloads Overrides Sub printString( _
                                ByVal s As String, _
                                ByVal current As Ice.Current)
        Console.WriteLine(s)
    End Sub

End Class

The  class inherits from a base class called , which is generated by the  compiler. The base class isPrinterI PrinterDisp_ slice2cs
abstract and contains a  method that accepts a string for the printer to print and a parameter of type . (For nowprintString Ice.Current
we will ignore the  parameter.) Our implementation of the  method simply writes its argument to the terminal.Ice.Current printString

The remainder of the server code follows in  and is shown in full here:Server.vb
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Visual Basic

Module Server

    Public Sub Main(ByVal args() As String)

        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try
            ic = Ice.Util.initialize(args)
            Dim adapter As Ice.ObjectAdapter = _
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000")
            Dim obj As Ice.Object = New PrinterI
            adapter.add(obj, ic.stringToIdentity("SimplePrinter"))
            adapter.activate()
            ic.waitForShutdown()
        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
        Environment.Exit(status)
    End Sub

End module

Note the general structure of the code:
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Visual Basic

Module Server

    Public Sub Main(ByVal args() As String)

        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try

            ' Server implementation here...

        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
        Environment.Exit(status)
    End Sub

End module

The body of  contains a  block in which we place all the server code, followed by a  block. The catch block catches allMain Try Catch
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to , which prints the exception and then returns failure to the operating system.Main

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program  call  on any communicator it has created; otherwise, undefined behavior results.must destroy

The body of our  block contains the actual server code:Try

Visual Basic

            ic = Ice.Util.initialize(args)
            Dim adapter As Ice.ObjectAdapter = _
                ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000")
            Dim obj As Ice.Object = New PrinterI
            adapter.add(obj, ic.stringToIdentity("SimplePrinter"))
            adapter.activate()
            ic.waitForShutdown()

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  to this call because the server may haveIce.Util.initialize args
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns an  reference, which is the main object in the Ice run time.initialize Ice::Communicator
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
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have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actualIce.Application
application code is concerned, the server contains only a few lines: ten lines for the definition of the  class, plus three lines toPrinterI
instantiate a  object and register it with the object adapter.PrinterI

We can compile the server code as follows:

> vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin /reference:Printer.dll /out:server.exe Server.vb

This compiles our application code and links it with the Ice run time and the DLL we generated earlier. We assume that the ICE_HOME
environment variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set C:\Ice

 to that path.)ICE_HOME

Writing and Compiling a Client in Visual Basic

The client code, in , looks very similar to the server. Here it is in full:Client.vb

Visual Basic

Imports System
Imports Demo

Module Client

    Public Sub Main(ByVal args() As String)
        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try
            ic = Ice.Util.initialize(args)
            Dim obj As Ice.ObjectPrx = ic.stringToProxy("SimplePrinter:default -p 10000")
            Dim printer As PrinterPrx = PrinterPrxHelper.checkedCast(obj)
            If printer Is Nothing Then
                Throw New ApplicationException("Invalid proxy")
            End If

            printer.printString("Hello World!")
        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
        Environment.Exit(status)
    End Sub

End Module

Note that the overall code layout is the same as for the server: we use the same  and  blocks to deal with errors. The code in the Try Catch
 block does the following:Try
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As for the server, we initialize the Ice run time by calling .Ice.Util.initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice.ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, we need toPrinter Object
do a down-cast by calling . A checked cast sends a message to the server, effectively askingPrinterPrxHelper.checkedCast
"is this a proxy for a  interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes anPrinter Demo::Printer
interface of some other type, the call returns null.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Compiling the client looks much the same as for the server:

> vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin /reference:Printer.dll /out:client.exe Client.vb

Running Client and Server in Visual Basic

To run client and server, we first start the server in a separate window:

> server.exe

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

> client.exe
>

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of .)Ice.Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Ice.ConnectionRefusedException
    error = 0
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalException ex, Reference ref, Int32 cnt)
   at Ice.ObjectPrxHelperBase.handleException__(ObjectDel_ delegate, LocalException ex, Int32 cnt)
   at Ice.ObjectPrxHelperBase.ice_isA(String id__, Dictionary`2 context__, Boolean explicitContext__)
   at Ice.ObjectPrxHelperBase.ice_isA(String id__)
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b)
   at Client.Main(String[] args)
Caused by: System.ComponentModel.Win32Exception: No connection could be made because the target machine actively refused
 it

Note that, to successfully run client and server, the VB run time must be able to locate the  library. (Under Windows, one way toIce.dll
ensure this is to copy the library into the current directory. Please consult the documentation for your VB run time to see how it locates
libraries.)

See Also

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
The  ClassIce.Application
The Current Object
IceGrid
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Writing an Ice Application with Objective-C

This page shows how to create an Ice application with Objective-C.

On this page:

Compiling a Slice Definition for Objective-C
Writing and Compiling a Server in Objective-C
Writing and Compiling a Client in Objective-C
Running Client and Server in Objective-C

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our  to generate Objective-C proxies and skeletons. UnderSlice definition
Unix, you can compile the definition as follows:

$ slice2objc Printer.ice

The  compiler produces two Objective-C source files from this definition,  and .slice2objc Printer.h Printer.m

Printer.h
The  header file contains Objective-C type definitions that correspond to the Slice definitions for our  interface.Printer.h Printer
This header file must be included in both the client and the server source code.

Printer.m
The  file contains the source code for our  interface. The generated source contains type-specific run-timePrinter.m Printer
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the 

 operation) on the client side and unmarshals that data on the server side.printString
The  file must be compiled and linked into both client and server.Printer.m

Writing and Compiling a Server in Objective-C

The source code for the server takes only a few lines and is shown in full here:
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Objective-C

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current
{
    printf("%s\n", [s UTF8String]);
}
@end

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter =
            [communicator createObjectAdapterWithEndpoints:
                                   @"SimplePrinterAdapter"
                                   endpoints:@"default -p 10000"];

        ICEObject *object = [[[PrinterI alloc] init] autorelease];
        [adapter add:object identity:[communicator stringToIdentity:@"SimplePrinter"]];
        [adapter activate];

        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for , which contains the definitions for the Ice run time. We also include Ice.h
, which was generated by the Slice compiler and contains the Objective-C definitions for our printer interface. In addition, wePrinter.h

import headers to allow us to use an autorelease pool and to produce output:
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Objective-C

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

Our server implements a single printer servant, of type . Looking at the generated code in , we find the followingPrinterI Printer.h
(tidied up a little to get rid of irrelevant detail):

Objective-C

@protocol DemoPrinter <ICEObject>
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current;
@end

@interface DemoPrinter : ICEObject
// ...
@end

The  protocol and class definitions are generated by the Slice compiler. The protocol defines the  method,DemoPrinter printString
which we must implement in our servant. The  class contains methods that are internal to the mapping, so we are notDemoPrinter
concerned with these. However, our servant must derive from this skeleton class:

Objective-C

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current
{
    printf("%s\n", [s UTF8String]);
}
@end

As you can see, the implementation of the  method is trivial: it simply writes its string argument to .printString stdout

Note that  has a second parameter of type . The Ice run time passes additional information about an incomingprintString ICECurrent
request to the servant in this parameter. For now, we will ignore it.

What follows is the server main program. Note the general structure of the code:
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1.  

Objective-C

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        // Server implementation here...

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

The body of  instantiates an autorelease pool, which it releases before returning to ensure that the program does not leak memory. main
 contains the declaration of two variables,  and . The  variable contains the exit status of the programmain status communicator status

and the  variable, of type , contains the main handle to the Ice run time.communicator id<ICECommunicator>

Following these declarations is a  block in which we place all the server code, followed by a  handler that logs any unhandledtry catch
exceptions.

Before returning,  executes a bit of cleanup code that calls the  method on the communicator. The cleanup call is outside themain destroy
first  block for a reason: we must ensure that the Ice run time is finalized whether the code terminates normally or terminates due to antry
exception.

Failure to call  on the communicator before the program exits results in undefined behavior.destroy

The body of the first  block contains the actual server code:try

Objective-C

        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter =
            [communicator createObjectAdapterWithEndpoints:
                                   @"SimplePrinterAdapter"
                                   endpoints:@"default -p 10000"];

        ICEObject *object = [[[PrinterI alloc] init] autorelease];
        [adapter add:object identity:[communicator stringToIdentity:@"SimplePrinter"]];
        [adapter activate];

        [communicator waitForShutdown];

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  and  to this call because the server may havecreateCommunicator argc argv
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1.  

2.  

3.  

4.  

5.  

6.  

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns a value of type , which is the main object in thecreateCommunicator id<ICECommunicator>
Ice run time.
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. As far as actual application code is concerned, the server contains only a few lines:
nine lines for the definition of the  class, plus three lines to instantiate a  object and register it with the object adapter.PrinterI PrinterI

Assuming that we have the server code in a file called , we can compile it as follows:Server.m

$ cc -c -I. -I$ICE_HOME/include Printer.m Server.m

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the  environmentICE_HOME
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set  to/opt/Ice ICE_HOME
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ Printer.o Server.o -o server -L$ICE_HOME/lib -lIceObjC -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in Objective-C

The client code looks very similar to the server. Here it is in full:
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2.  

3.  

4.  
5.  

Objective-C

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];
        id<ICEObjectPrx> base = [communicator stringToProxy:@"SimplePrinter:default -p 10000"];
        id<DemoPrinterPrx> printer = [DemoPrinterPrx checkedCast:base];
        if(!printer)
            [NSException raise:@"Invalid proxy" format:nil];

        [printer printString:@"Hello World!"];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same  block and  handlers to deal with errors.try catch

The code in the  block does the following:try

As for the server, we initialize the Ice run time by calling .createCommunicator
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfacesstringToProxy id<ICEObjectPrx>
and classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, wePrinter Object
need to do a down-cast by calling the  class method on the  class. A checked cast sends acheckedCast DemoPrinterPrx
message to the server, effectively asking "is this a proxy for a  interface?" If so, the call returns a proxy to a ;Printer Printer
otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Compiling and linking the client looks much the same as for the server:

$ cc -c -I. -I$ICE_HOME/include Printer.m Client.m
$ c++ Printer.o Client.o -o client -L$ICE_HOME/lib -lIceObjC -framework Foundation



Ice 3.4.2 Documentation

62 Copyright © 2011, ZeroC, Inc.

Running Client and Server in Objective-C

To run client and server, we first start the server in a separate window:

$ ./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Network.cpp:1218: Ice::ConnectionRefusedException:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set  to include the Ice library directory. Please seeDYLD_LIBRARY_PATH
the installation instructions and the demo applications that ship with Ice Touch for details.

See Also

Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping
The Current Object
IceGrid
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Writing an Ice Application with Python

This page shows how to create an Ice application with Python.

On this page:

Compiling a Slice Definition for Python
Writing a Server in Python
Writing a Client in Python
Running Client and Server in Python

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our  to generate Python proxies and skeletons. You can compileSlice definition
the definition as follows:

$ slice2py Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  compiler produces a single source file, , from this definition. The compiler also creates a Python packageslice2py Printer_ice.py
for the  module, resulting in a subdirectory named . The exact contents of the source file do not concern us for now — it containsDemo Demo
the generated code that corresponds to the  interface we defined in .Printer Printer.ice

Writing a Server in Python

To implement our  interface, we must create a servant class. By convention, a servant class uses the name of its interface with an Printer
-suffix, so our servant class is called :I PrinterI

Python

class PrinterI(Demo.Printer):
    def printString(self, s, current=None):
        print s

The  class inherits from a base class called , which is generated by the  compiler. The base class isPrinterI Demo.Printer slice2py
abstract and contains a  method that accepts a string for the printer to print and a parameter of type . (For nowprintString Ice.Current
we will ignore the  parameter.) Our implementation of the  method simply writes its argument to the terminal.Ice.Current printString

The remainder of the server code, in , follows our servant class and is shown in full here:Server.py
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Python

import sys, traceback, Ice
import Demo

class PrinterI(Demo.Printer):
    def printString(self, s, current=None):
        print s

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    adapter = ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000")
    object = PrinterI()
    adapter.add(object, ic.stringToIdentity("SimplePrinter"))
    adapter.activate()
    ic.waitForShutdown()
except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note the general structure of the code:

Python

status = 0
ic = None
try:

    # Server implementation here...

except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

The body of the main program contains a  block in which we place all the server code, followed by an  block. The  blocktry except except
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program  call  on any communicator it has created; otherwise, undefined behavior results.must destroy

The body of our  block contains the actual server code:try
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Python

ic = Ice.initialize(sys.argv)
adapter = ic.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000")
object = PrinterI()
adapter.add(object, ic.stringToIdentity("SimplePrinter"))
adapter.activate()
ic.waitForShutdown()

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass  to this call because the server may haveIce.initialize sys.argv
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to  returns an  reference, which is the main object in the Ice run time.initialize Ice.Communicator
We create an object adapter by calling  on the  instance. The argumentscreateObjectAdapterWithEndpoints Communicator
we pass are  (which is the name of the adapter) and , which instructs the"SimplePrinterAdapter" "default -p 10000"
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our  interface by instantiating a Printer PrinterI
object.
We inform the object adapter of the presence of a new servant by calling  on the adapter; the arguments to  are the servantadd add
we have just instantiated, plus an identifier. In this case, the string  is the name of the servant. (If we had"SimplePrinter"
multiple printers, each would have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its  method. (The adapter is initially created in a holding state; this is useful if weactivate
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either bywaitForShutdown
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actualIce.Application
application code is concerned, the server contains only a few lines: three lines for the definition of the  class, plus two lines toPrinterI
instantiate a  object and register it with the object adapter.PrinterI

Writing a Client in Python

The client code, in , looks very similar to the server. Here it is in full:Client.py
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Python

import sys, traceback, Ice
import Demo

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    base = ic.stringToProxy("SimplePrinter:default -p 10000")
    printer = Demo.PrinterPrx.checkedCast(base)
    if not printer:
        raise RuntimeError("Invalid proxy")

    printer.printString("Hello World!")
except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note that the overall code layout is the same as for the server: we use the same  and  blocks to deal with errors. The code in thetry except
 block does the following:try

As for the server, we initialize the Ice run time by calling .Ice.initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice.ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, weDemo::Printer Object
need to do a down-cast by calling . A checked cast sends a message to the server, effectivelyDemo.PrinterPrx.checkedCast
asking "is this a proxy for a  interface?" If so, the call returns a proxy of type ; otherwise, if theDemo::Printer Demo.PrinterPrx
proxy denotes an interface of some other type, the call returns .None
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Running Client and Server in Python

To run client and server, we first start the server in a separate window:

$ python Server.py

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of .)Ice.Application
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If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Traceback (most recent call last):
  File "Client.py", line 10, in ?
    printer = Demo.PrinterPrx.checkedCast(base)
  File "Printer_ice.py", line 43, in checkedCast
    return Demo.PrinterPrx.ice_checkedCast(proxy, '::Demo::Printer', facet)
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for
Python installation instructions for more information.

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
The  ClassIce.Application
The Current Object
IceGrid
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Writing an Ice Application with Ruby

This page shows how to create an Ice client application with Ruby.

On this page:

Compiling a Slice Definition for Ruby
Writing a Client in Ruby
Running the Client in Ruby

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our  to generate Ruby proxies. You can compile the definition asSlice definition
follows:

$ slice2rb Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  compiler produces a single source file, , from this definition. The exact contents of the source file do notslice2rb Printer.rb
concern us for now — it contains the generated code that corresponds to the  interface we defined in .Printer Printer.ice

Writing a Client in Ruby

The client code, in , is shown below in full:Client.rb
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Ruby

require 'Printer.rb'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    base = ic.stringToProxy("SimplePrinter:default -p 10000")
    printer = Demo::PrinterPrx::checkedCast(base)
    if not printer
        raise "Invalid proxy"
    end

    printer.printString("Hello World!")
rescue
    puts $!
    puts $!.backtrace.join("\n")
    status = 1
end

if ic
    # Clean up
    begin
        ic.destroy()
    rescue
        puts $!
        puts $!.backtrace.join("\n")
        status = 1
    end
end

exit(status)

The program begins with a  statement, which loads the Ruby code we generated from our Slice definition in the previous section. Itrequire
is not necessary for the client to explicitly load the  module because  does that for you.Ice Printer.rb

The body of the main program contains a  block in which we place all the client code, followed by a  block. The  blockbegin rescue rescue
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our  block goes through the following steps:begin

We initialize the Ice run time by calling . (We pass  to this call because the client may have command-lineIce::initialize ARGV
arguments that are of interest to the run time; for this example, the client does not require any command-line arguments.) The call to

 returns an  reference, which is the main object in the Ice run time.initialize Ice::Communicator
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice::ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, weDemo::Printer Object
need to do a down-cast by calling . A checked cast sends a message to the server,Demo::PrinterPrx::checkedCast
effectively asking "is this a proxy for a  interface?" If so, the call returns a proxy of type ;Demo::Printer Demo::PrinterPrx
otherwise, if the proxy denotes an interface of some other type, the call returns .nil
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program  call  on any communicator it has created; otherwise, undefined behavior results.must destroy

Running the Client in Ruby

The server must be started before the client. Since Ice for Ruby does not support server-side behavior, we need to use a server from
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another language mapping. In this case, we will use the :C++ server

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ruby Client.rb
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::Ice::ConnectionRefusedException
{
    error = 111
}

Note that, to successfully run the client, the Ruby interpreter must be able to locate the Ice extension for Ruby. See the Ice for Ruby
installation instructions for more information.

See Also

Client-Side Slice-to-Ruby Mapping
IceGrid
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Writing an Ice Application with PHP

This page shows how to create an Ice client application with PHP.

On this page:

Compiling a Slice Definition for PHP
Writing a Client in PHP
Running the Client in PHP

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our  to generate PHP code. You can compile the definition asSlice definition
follows:

$ slice2php Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The  compiler produces a single source file, , from this definition. The exact contents of the source file do notslice2php Printer.php
concern us for now — it contains the generated code that corresponds to the  interface we defined in .Printer Printer.ice

Writing a Client in PHP

The client code, in , is shown below in full:Client.php
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PHP

<?php
require 'Ice.php';
require 'Printer.php';

$ic = null;
try
{
    $ic = Ice_initialize();
    $base = $ic->stringToProxy("SimplePrinter:default -p 10000");
    $printer = Demo_PrinterPrxHelper::checkedCast($base);
    if(!$printer)
        throw new RuntimeException("Invalid proxy");

    $printer->printString("Hello World!");
}
catch(Exception $ex)
{
    echo $ex;
}

if($ic)
{
    // Clean up
    try
    {
        $ic->destroy();
    }
    catch(Exception $ex)
    {
        echo $ex;
    }
}
?>

The program begins with  statements to load the Ice run-time definitions ( ) and the code we generated from our Slicerequire Ice.php
definition in the previous section ( ).Printer.php

The body of the main program contains a  block in which we place all the client code, followed by a  block. The  blocktry catch catch
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our  block goes through the following steps:try

We initialize the Ice run time by calling . The call to  returns an  reference,Ice_initialize initialize Ice_Communicator
which is the main object in the Ice run time.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling  on the communicator, withstringToProxy
the string . Note that the string contains the object identity and the port number that were"SimplePrinter:default -p 10000"
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by  is of type , which is at the root of the inheritance tree for interfaces andstringToProxy Ice_ObjectPrx
classes. But to actually talk to our printer, we need a proxy for a  interface, not an  interface. To do this, weDemo::Printer Object
need to do a down-cast by calling . A checked cast sends a message to the server,Demo_PrinterPrxHelper::checkedCast
effectively asking "is this a proxy for a  interface?" If so, the call returns a proxy narrowed to the Demo::Printer Printer
interface; otherwise, if the proxy denotes an interface of some other type, the call returns .null
We test that the down-cast succeeded and, if not, throw an exception that terminates the client.
We now have a live proxy in our address space and can call the  method, passing it the time-honored printString "Hello

 string. The server prints that string on its terminal.World!"

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP
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The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the :C++ server

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using
PHP's command-line interpreter:

$ php -f Client.php
$

The client runs and exits without producing any output; however, in the server window, we see the  that is produced by"Hello World!"
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::Ice::ConnectionRefusedException
{
    error = 111
}

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP
installation instructions for more information.

See Also

Client-Side Slice-to-PHP Mapping
IceGrid
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The Slice Language
Here, we present the Slice language. Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object
interfaces from their implementations. Slice establishes a contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation language, so it does not matter whether the client is written in
the same language as the server.

Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

Slice definitions are compiled for a particular implementation language by a compiler. The compiler translates the language-independent
definitions into language-specific type definitions and APIs. These types and APIs are used by the developer to provide application
functionality and to interact with Ice. The translation algorithms for various implementation languages are known as .language mappings
Currently, Ice defines language mappings for C++, Java, C#, Python, Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write
executable statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by operations.
In addition, Slice offers features for . This requires quite a bit of supporting machinery; in particular, much of Slice isobject persistence
concerned with the definition of data types. This is because data can be exchanged between client and server only if their types are defined
in Slice. You cannot exchange arbitrary C++ data between client and server because it would destroy the language independence of Ice.
However, you can always create a Slice type definition that corresponds to the C++ data you want to send, and then you can transmit the
Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where
Slice differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and
Java are mentioned mostly by example.

Topics

Slice Compilation
Slice Source Files
Lexical Rules
Modules
Basic Types
User-Defined Types
Interfaces, Operations, and Exceptions
Classes
Forward Declarations
Type IDs
Operations on Object
Local Types
Names and Scoping
Metadata
Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums
Generating Slice Documentation
Slice Keywords
Slice Metadata Directives
Slice for a Simple File System
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Slice Compilation

On this page:

Compilation
Single Development Environment for Client and Server
Different Development Environments for Client and Server

Compilation

A Slice compiler produces source files that must be combined with application code to produce client and server executables.

The outcome of the development process is a client executable and a server executable. These executables can be deployed anywhere,
whether the target environments use the same or different operating systems and whether the executables are implemented using the same
or different languages. The only constraint is that the host machines must provide the necessary run-time environment, such as any required
dynamic libraries, and that connectivity can be established between them.

Single Development Environment for Client and Server

The figure below shows the situation when both client and server are developed in C++. The Slice compiler generates two files from a Slice
definition in a source file : a header file ( ) and a source file ( )Printer.ice Printer.h Printer.cpp

. 
Development process if client and server share the same development environment.

The  header file contains definitions that correspond to the types used in the Slice definition. It is included in the sourcePrinter.h
code of both client and server to ensure that client and server agree about the types and interfaces used by the application.
The  source file provides an API to the client for sending messages to remote objects. The client source code (Printer.cpp

, written by the client developer) contains the client-side application logic. The generated source code and the clientClient.cpp
code are compiled and linked into the client executable.

The  source file also contains source code that provides an up-call interface from the Ice run time into the server code writtenPrinter.cpp
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by the developer and provides the connection between the networking layer of Ice and the application code. The server implementation file (
, written by the server developer) contains the server-side application logic (the object implementations, properly termed Server.cpp

). The generated source code and the implementation source code are compiled and linked into the server executable.servants

Both client and server also link with an Ice library that provides the necessary run-time support.

You are not limited to a single implementation of a client or server. For example, you can build multiple servers, each of which implements
the same interfaces but uses different implementations (for example, with different performance characteristics). Multiple such server
implementations can coexist in the same system. This arrangement provides one fundamental scalability mechanism in Ice: if you find that a
server process starts to bog down as the number of objects increases, you can run an additional server for the same interfaces on a different
machine. Such  servers provide a single logical service that is distributed over a number of processes on different machines. Eachfederated
server in the federation implements the same interfaces but hosts different object instances. (Of course, federated servers must somehow
ensure consistency of any databases they share across the federation.)

Ice also provides support for  servers. Replication permits multiple servers to each implement the same set of object instances.replicated
This improves performance and scalability (because client load can be shared over a number of servers) as well as redundancy (because
each object is implemented in more than one server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are developed in different languages. For example, a client written in
Java cannot include a C++ header file.

This figure shows the situation when a client written in Java and the corresponding server is written in C++. In this case, the client and server
developers are completely independent, and each uses his or her own development environment and language mapping. The only link
between client and server developers is the Slice definition each one uses.

Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on the names of various Slice constructs. (These files are
collectively referred to as  in the above figure.)*.java

See Also

Using the Slice Compilers
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Slice Source Files

Slice defines a number of rules for the naming and contents of Slice source files.

On this page:

File Naming
File Format
Preprocessing
Definition Order

File Naming

Files containing Slice definitions must end in a  file extension, for example,  is a valid file name. Other file extensions are.ice Clock.ice
rejected by the compilers.

For case-insensitive file systems (such as DOS), the file extension may be written as uppercase or lowercase, so  is legal. ForClock.ICE
case-sensitive file systems (such as Unix),  is illegal. (The extension must be in lowercase.)Clock.ICE

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You
may wish to follow the style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a byte order marker (BOM) at the beginning of each file.
However, Slice identifiers are limited to ASCII letters and digits; non-ASCII letters can appear only in comments.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual preprocessor directives, such as  and macro definitions.#include
However, Slice permits  directives only at the beginning of a file, before any Slice definitions.#include

If you use  directives, it is a good idea to protect them with guards to prevent double inclusion of a file:#include

Slice

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

#include directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a
source file, including the code in subordinate  files. However, the compilers generate code only for the top-level file(s) nominated#include
on the command line. You must separately compile subordinate  files to obtain generated code for all the files that make up your#include
Slice definition.

Note that you should avoid  with double quotes:#include

Slice

#include "Clock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so
the included file may not always be found where you expect it. Instead, use angle brackets ( ); you can control which directories are<>
searched for the file with the  of the Slice compiler. option-I
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Also note that, if you include a path separator in a  directive, you must use a forward slash:#include

Slice

#include <SliceDefs/Clock.ice>  // OK

You cannot use a backslash in  directives:#include

Slice

#include <SliceDefs\Clock.ice>  // Illegal

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared
before they can be used.

See Also

Using the Slice Compilers
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Lexical Rules

Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.

On this page:

Comments
Keywords
Identifiers

Case Sensitivity
Identifiers That Are Keywords
Escaped Identifiers
Reserved Identifiers

Comments

Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
 * C-style comment.
 */

// C++-style comment extending to the end of this line.

Keywords

Slice uses a number of , which must be spelled in lowercase. For example,  and  are keywords and must bekeywords class dictionary
spelled as shown. There are two exceptions to this lowercase rule:  and  are keywords and must be capitalized asObject LocalObject
shown.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in
identifiers with the following limitations:

an identifier cannot begin or end with an underscore
an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier  is legal but not , , or .get_account_name _account account_ get__account

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as Å. (Supporting
non-ASCII identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example,  and  are considered the sameTimeOfDay TIMEOFDAY
identifier within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must
capitalize it consistently throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages
that ignore case in identifiers as well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example,  is a perfectly good Sliceswitch
identifier but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically
involves using a prefix to map away from the keyword. For example, the Slice identifier  is mapped to  in C++ and switch _cpp_switch

 in Java._switch

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as , , or  will clash withnative throw export
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C++ or Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language
keywords. Keep in mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to
compile a list of all keywords in all popular programming languages, you should make an attempt to avoid at least common keywords. Slice
identifiers such as , , and  are definitely not a good idea.self import while

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice

struct dictionary {     // Error!
    // ...
};

struct \dictionary {    // OK
    // ...
};

struct \foo {           // Legal, same as "struct foo"
    // ...
};

he backslash escapes the usual meaning of a keyword; in the preceding example,  is treated as the identifier .\dictionary dictionary
The escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing
specifications: if a pre-existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply
prepending a backslash to the new keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even
though the backslash escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier  and all identifiers beginning with  (in any capitalization) for the Ice implementation. For example, if youIce Ice
try to define a type named , the Slice compiler will issue an error message.Icecream

You can suppress this behavior by using the  compiler option, which enables definition of identifiers beginning with --ice
. However, do not use this option unless you are compiling the Slice definitions for the Ice run time itself.Ice

Slice identifiers ending in any of the suffixes , , , and  are also reserved. These endings are used by the variousHelper Holder Prx Ptr
language mappings and are reserved to prevent name clashes in the generated code.

See Also

Slice Keywords
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Modules

On this page:

Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping
The Ice Module

Modules Reduce Clutter

A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes
become quite likely. Slice provides the  construct to alleviate this problem:module

Slice

module ZeroC {
    module Client {
        // Definitions here...
    };
    module Server {
        // Definitions here...
    };
};

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together
avoids polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a
company or product name, as the name of the outermost module.)

Modules are Mandatory

Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For
example, the following is illegal:

Slice

interface I {   // Error: only modules can appear at global scope
    // ...
};

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does
not have a true global scope).

Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep
the examples short and free of clutter. Whenever you see such a definition, assume that it is nested in a module.

Reopening Modules

Modules can be reopened:
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Slice

module ZeroC {
    // Definitions here...
};

// Possibly in a different source file:

module ZeroC {  // OK, reopened module
    // More definitions here...
};

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different . Thesource files
advantage of doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need
be recompiled (instead of having to recompile all files that use the module).

Module Mapping

Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to
namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++  or Java  declaration tousing import
avoid excessively long identifiers in your source code.

The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the Ice
module. In other words, most of the Ice API is actually expressed as Slice definitions. The advantage of doing this is that a single Slice
definition is sufficient to define the API for the Ice run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the  module throughout this manual.Ice

See Also

Slice Source Files
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Basic Types

On this page:
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Integer Types
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Booleans
Bytes

Built-In Basic Types

Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped Type

bool  or false true ? 1bit

byte -128-127 or 0-255 a ? 8 bits

short -2  to 2  -115 15 ? 16 bits

int -2  to 2  -131 31 ? 32 bits

long -2  to 2  -163 63 ? 64 bits

float IEEE single-precision ? 32 bits

double IEEE double-precision ? 64 bits

string All Unicode characters, excluding

the character with all bits zero.

Variable-length

a The range depends on whether  maps to a signed or an unsigned type.byte

All the basic types (except ) are subject to changes in representation as they are transmitted between clients and servers. For example,byte
a  value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representationlong
if they are sent, for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all
architectures use 8-bit characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types

Slice provides integer types , , and , with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures,short int long
any of these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made
because unsigned types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers
add little value to a language. (See  for a good treatment of the topic.)[1]

Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point representation . If an implementation cannot[2]
support IEEE format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of
precision or even magnitude, depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.
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1.  
2.  

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with
embedded zero characters using standard library routines, such as  or .strlen strcat

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null
strings are difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a
null string to indicate "not there" semantics. If you need the notion of an optional string, use a , a  of strings, or use an emptyclass sequence
string to represent the idea of a null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string
value by your application.)

Booleans

Boolean values can have only the values  and . Language mappings use the corresponding native boolean type if one isfalse true
available.

Bytes

The Slice type  is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted betweenbyte
address spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject
to changes in representation during transmission.

See Also

Sequences
Classes
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User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define complex types: enumerations, structures, sequences, and
dictionaries.

Topics

Enumerations
Structures
Sequences
Dictionaries
Constants and Literals
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Enumerations

A Slice enumerated type definition looks like the C++ version:

Slice

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named  that becomes a new type in its own right. Slice does not define how ordinal values areFruit
assigned to enumerators. For example, you cannot assume that the enumerator  will have the value 2 in different implementationOrange
languages. Slice guarantees only that the ordinal values of enumerators increase from left to right, so  compares less than  in allApple Pear
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of enumerators (because many implementation languages do not support
such a feature):

Slice

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you do not transmit the  of an enumeratorordinal value
between address spaces. For example, sending the value 0 to a server to mean  can cause problems because the server may notApple
use 0 to represent . Instead, simply send the value  itself. If  is represented by a different ordinal value in the receivingApple Apple Apple
address space, that value will be appropriately translated by the Ice run time.

As with C++, Slice enumerators enter the enclosing namespace, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP };    // Apple redefined

Slice does not permit empty enumerations.

See Also

Structures
Sequences
Dictionaries
Constants and Literals
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Structures

Slice supports structures containing one or more named members of arbitrary type, including user-defined complex types. For example:

Slice

struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

As in C++, this definition introduces a new type called . Structure definitions form a namespace, so the names of the structureTimeOfDay
members need to be unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can appear inside a structure. It is impossible to, for example, define
a structure inside a structure:

Slice

struct TwoPoints {
    struct Point {      // Illegal!
                short x;
                short y;
    };
    Point       coord1;
    Point       coord2;
};

This rule applies to Slice in general: type definitions cannot be nested (except for , which do support nesting). The reason for thismodules
rule is that nested type definitions can be difficult to implement for some target languages and, even if implementable, greatly complicate the
scope resolution rules. For a specification language, such as Slice, nested type definitions are unnecessary – you can always write the
above definitions as follows (which is stylistically cleaner as well):

Slice

struct Point {
    short x;
    short y;
};

struct TwoPoints {      // Legal (and cleaner!)
    Point coord1;
    Point coord2;
};

You can specify a default value for a data member that has one of the following types:

An  type ( , , , )integral byte short int long
A  type (  or )floating point float double
string
bool
enum

For example:



Ice 3.4.2 Documentation

88 Copyright © 2011, ZeroC, Inc.

Slice

struct Location {
    string name;
    Point pt;
    bool display = true;
    string source = "GPS";
};

The legal syntax for literal values is the same as for Slice , and you may also use a constant as a default value. The languageconstants
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also

Modules
Basic Types
Enumerations
Sequences
Dictionaries
Constants and Literals
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Sequences

On this page:

Sequence Syntax and Semantics
Using Sequences for Optional Values

Sequence Syntax and Semantics

Sequences are variable-length collections of elements:

Slice

sequence<Fruit> FruitPlatter;

A sequence can be empty?—?that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your
platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide
whether or not order is important; by discarding order, a sequence serves as a set or bag.)

Using Sequences for Optional Values

One particular use of sequences has become idiomatic, namely, the use of a sequence to indicate an optional value. For example, we might
have a  structure that records the details of the parts that go into a car. The structure could record things such as the name of the part,Part
a description, weight, price, and other details. Spare parts commonly have a serial number, which we can model as a  value. However,long
some parts, such as simple screws, often do not have a serial number, so what are we supposed to put into the serial number field of a
screw? There are a number of options for dealing with this situation:

Use a sentinel value, such as zero, to indicate the "no serial number" condition.
This approach is workable, provided that a sentinel value is actually available. While it may seem unlikely that anyone would use a
serial number of zero for a part, it is not impossible. And, for other values, such as a temperature value, all values in the range of
their type can be legal, so no sentinel value is available.

Change the type of the serial number from  to .long string
Strings come with their own built-in sentinel value, namely the empty string, so we can use an empty string to indicate the "no serial
number" case. This is workable but not ideal: we should not have to change the natural data type of something to  just so westring
get a sentinel value.

Add an indicator as to whether the contents of the serial number are valid:

Slice

struct Part {
    string name;
    string description;
    // ...
    bool   serialIsValid;  // true if part has serial number
    long   serialNumber;
};

This is guaranteed to get you into trouble eventually: sooner or later, some programmer will forget to check whether the serial
number is valid before using it and create havoc.

Use a sequence to model the optional field.
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This technique uses the following convention:

Slice

sequence<long> SerialOpt;

struct Part {
    string    name;
    string    description;
    // ...
    SerialOpt serialNumber; // optional: zero or one element
};

By convention, the  suffix is used to indicate that the sequence is used to model an optional value. If the sequence is empty, theOpt
value is obviously not there; if it contains a single element, that element is the value. The obvious drawback of this scheme is that
someone could put more than one element into the sequence. This could be rectified by adding a special-purpose Slice construct for
optional values. However, optional values are not used frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in , you can also use class hierarchies to model optional fields.)Classes

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes
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Dictionaries

On this page:

Dictionary Syntax and Semantics
Allowable Types for Dictionary Keys and Values

Dictionary Syntax and Semantics

A dictionary is a mapping from a key type to a value type.

For example:

Slice

struct Employee {
    long   number;
    string firstName;
    string lastName;
};

dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named  that maps from an employee number to a structure containing the details for anEmployeeMap
employee. Whether or not the key type (the employee number, of type  in this example) is also part of the value type (the long Employee
structure in this example) is up to you — as far as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data structure with non-integral key type. Even though a sequence of
structures containing key-value pairs could be used to model the same thing, a dictionary is more appropriate:

A dictionary clearly signals the intent of the designer, namely, to provide a mapping from a domain of values to a range of values. (A
sequence of structures of key-value pairs does not signal that same intent as clearly.)

At the programming language level, sequences are implemented as vectors (or possibly lists), that is, they are not well suited to
model sparsely populated domains and require a linear search to locate an element with a particular value. On the other hand,
dictionaries are implemented as a data structure (typically a hash table or red-black tree) that supports efficient searching in (log )O n
average time or better.

Allowable Types for Dictionary Keys and Values

The key type of a dictionary need not be an integral type. For example, we could use the following definition to translate the names of the
days of the week:

Slice

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key-value pairs , , and soMonday-Montag Tuesday-Dienstag
on.

The value type of a dictionary can be any Slice type. However, the key type of a dictionary is limited to one of the following types:

Integral types ( , , , , )byte short int long bool
string
enum
Structures containing only data members of integral type or string

Complex nested types, such as nested structures, sequences, or dictionaries, and floating-point types (  and ) cannot be usedfloat double
as the key type. Complex nested types are disallowed because they complicate the language mappings for dictionaries, and floating-point
types are disallowed because representational changes of values as they cross machine boundaries can lead to ill-defined semantics for
equality.
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See Also

Basic Types
Enumerations
Structures
Sequences
Constants and Literals
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Constants and Literals

On this page:

Allowable Types for Constants
Boolean constants
Integer literals
Floating-point literals
String literals

Allowable Types for Constants

Slice allows you to define constants for the following types:

An  type ( , , , , )integral bool byte short int long
A  type (  or )floating point float double
string
enum

Here are a few examples:

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).

Boolean constants

Boolean constants can only be initialized with the keywords  and . (You cannot use  and  to represent  and .)false true 0 1 false true

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:

Slice

const byte TheAnswer = 42;
const byte TheAnswerInOctal = 052;
const byte TheAnswerInHex = 0x2A;       // or 0x2a

Be aware that, if you interpret  as a number instead of a bit pattern, you may get different results in different languages. For example,byte
for C++,  maps to  whereas, for Java,  maps to , which is a signed type.byte unsigned char byte byte

Note that suffixes to indicate long and unsigned constants ( , , , , used by C++) are illegal:l L u U

Slice

const long Wrong = 0u;          // Syntax error
const long WrongToo = 1000000L; // Syntax error
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The value of an integer literal must be within the range of its constant type, as shown in the ; otherwise theBuilt-In Basic Types table
compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an  or  suffix to indicate an extended floating-point constant; however, l L f
and  are legal (but are ignored).F

Here are a few examples:

Slice

const float P1 = -3.14f;    // Integer & fraction, with suffix
const float P2 = +3.1e-3;   // Integer, fraction, and exponent
const float P3 = .1;        // Fraction part only
const float P4 = 1.;        // Integer part only
const float P5 = .9E5;      // Fraction part and exponent
const float P6 = 5e2;       // Integer part and exponent

Floating-point literals must be within the range of the constant type (  or ); otherwise, the compiler will issue a diagnostic.float double

String literals

String literals support the same escape sequences as C++.

Here are some examples:

Slice

const string AnOrdinaryString = "Hello World!";

const string DoubleQuote =      "\"";
const string TwoSingleQuotes =  "'\'";     // ' and \' are OK
const string Newline =          "\n";
const string CarriageReturn =   "\r";
const string HorizontalTab =    "\t";
const string VerticalTab =      "\v";
const string FormFeed =         "\f";
const string Alert =            "\a";
const string Backspace =        "\b";
const string QuestionMark =     "\?";
const string Backslash =        "\\";

const string OctalEscape =      "\007";    // Same as \a
const string HexEscape =        "\x07";    // Ditto

Note that Slice has no concept of a null string:

Slice

const string nullString = 0;    // Illegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for
this decision is that null strings do not exist in many programming languages.

Many languages other than C and C++ use a byte array as the internal string representation. Null strings do not exist (and
would be very difficult to map) in such languages.

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of
the existing constant must be compatible with the type of the constant being defined.
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Consider the examples below:

Slice

const int SIZE = 500;

const int DEFAULT_SIZE = SIZE; // OK
const short SHORT_SIZE = SIZE; // OK
const byte BYTE_SIZE = SIZE;   // ERROR

The  constant is legal because it has the same type as , and  is legal because the value of  ( ) isDEFAULT_SIZE SIZE SHORT_SIZE SIZE 500
within the range of the Slice  type. However,  is illegal because the value of  is outside the range of the  type.short BYTE_SIZE SIZE byte

See Also

Enumerations
Structures
Sequences
Dictionaries
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Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

Slice

struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

interface Clock {
    TimeOfDay getTime();
    void setTime(TimeOfDay time);
};

This definition defines an interface type called . The interface supports two operations:  and . Clients access anClock getTime setTime
object supporting the  interface by invoking an operation on the proxy for the object: to read the current time, the client invokes the Clock

 operation; to set the current time, the client invokes the  operation, passing an argument of type .getTime setTime TimeOfDay

Invoking an operation on a proxy instructs the Ice run time to send a message to the target object. The target object can be in another
address space or can be collocated (in the same process) as the caller — the location of the target object is transparent to the client. If the
target object is in another (possibly remote) address space, the Ice run time invokes the operation via a remote procedure call; if the target is
collocated with the client, the Ice run time uses an ordinary function call instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a C++ class definition or as the equivalent of a Java interface,
and of operation definitions as (virtual) member functions. Note that nothing but operation definitions are allowed to appear inside an
interface definition. In particular, you cannot define a type, an exception, or a data member inside an interface. This does not mean that your
object implementation cannot contain state — it can, but how that state is implemented (in the form of data members or otherwise) is hidden
from the client and, therefore, need not appear in the object's interface definition.

An Ice object has exactly one (most derived) Slice interface type (or ). Of course, you can create multiple Ice objects that have theclass type
same type; to draw the analogy with C++, a Slice interface corresponds to a C++ class definition, whereas an Ice object corresponds to a
C++ class instance (but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called .facets

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a unique identity (encapsulated in its proxy) that
distinguishes it from all other Ice objects; for communication to take place, you must invoke operations on an object's proxy. There is no
other notion of an addressable entity in Ice. You cannot, for example, instantiate a Slice structure and have clients manipulate that structure
remotely. To make the structure accessible, you must create an interface that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence on the overall architecture. Distribution boundaries must follow
interface (or class) boundaries; you can spread the implementation of interfaces over multiple address spaces (and you can implement
multiple interfaces in the same address space), but you cannot implement parts of interfaces in different address spaces.

Topics

Operations
User Exceptions
Run-Time Exceptions
Proxies
Interface Inheritance

See Also

Classes
Facets and Versioning



Ice 3.4.2 Documentation

97 Copyright © 2011, ZeroC, Inc.

Operations

On this page:

Parameters and Return Values
Style of Operation Definition
Overloading Operations
Idempotent Operations

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter definitions. For example, in the  interface, the Clock getTime
operation has a return type of  and the  operation has a return type of . You must use  to indicate that anTimeOfDay setTime void void
operation returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example,  accepts a single input parameter of type  called setTime TimeOfDay
. Of course, you can use multiple input parameters:time

Slice

interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
    // ...
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay, TimeOfDay);  // Error!
    // ...
};

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client,
you can use an output parameter, indicated by the  keyword. For example, an alternative way to define the  operation in the out getTime

 interface would be:Clock

Slice

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple
output parameters:

Slice

interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
    void getSleepPeriod(out TimeOfDay startTime, out TimeOfDay stopTime);
    // ...
};

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:
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Slice

void changeSleepPeriod(    TimeOfDay startTime,         TimeOfDay stopTime,     // OK
                       out TimeOfDay prevStartTime, out TimeOfDay prevStopTime);

void changeSleepPeriod(out TimeOfDay prevStartTime, out TimeOfDay prevStopTime, // Error
                           TimeOfDay startTime,         TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls,
reference parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs
to be copied in both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in
more complex language mappings, with concomitant increases in code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming
language return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This
style maps naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the
client: most programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output
parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of . However, thevoid
rule is not all that clear-cut because operations with multiple output values can have one particular value that is considered more "important"
than the remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next(out RecordType r);

The  operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the returnnext
value is , the end of the collection has been reached and the parameter  has an undefined value.) This style of definition can befalse r
useful because it naturally fits into the way programmers write control structures. For example:

while (next(record))
    // Process record...

if (next(record))
    // Got a valid record...

Overloading Operations

Slice does not support any form of overloading of operations. For example:

Slice

interface CircadianRhythm {
    void modify(TimeOfDay startTime, TimeOfDay endTime);
    void modify(    TimeOfDay startTime,        // Error
                    TimeOfDay endTime,
                out timeOfDay prevStartTime,
                out TimeOfDay prevEndTime);
};

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction
exists because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.
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Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

Idempotent Operations

Some operations, such as  in the  interface, do not modify the state of the object they operate on. They are the conceptualgetTime Clock
equivalent of C++  member functions. Similary,  does modify the state of the object, but is idempotent. You can indicate thisconst setTime
in Slice as follows:

Slice

interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

This marks the  and  operations as idempotent. An operation is idempotent if two successive invocations of the operationgetTime setTime
have the same effect as a single invocation. For example,  is an idempotent operation because it does not matter whether it isx = 1;
executed once or twice — either way,  ends up with the value 1. On the other hand,  is not an idempotent operation becausex x += 1;
executing it twice results in a different value for  than executing it once. Obviously, any read-only operation is idempotent.x

The  keyword is useful because it allows the Ice run time to be more aggressive when performing  to recoveridempotent automatic retries
from errors. Specifically, Ice guarantees  semantics for operation invocations:at-most-once

For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a
client sends an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out
whether the request it sent actually made it to the server. This means that the run time cannot attempt to recover from the error by
re-establishing a connection and sending the request a second time because that could cause the operation to be invoked a second
time and violate at-most-once semantics; the run time has no option but to report the error to the application.

For  operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server andidempotent
safely send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the
application never notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration parameter.)

See Also

Interfaces, Operations, and Exceptions
User Exceptions
Run-Time Exceptions
Proxies
Interface Inheritance
Automatic Retries
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User Exceptions

On this page:

User Exception Syntax and Semantics
Default Values for User Exception Members
Declaring User Exceptions in Operations
Restrictions for User Exceptions

User Exception Inheritance

User Exception Syntax and Semantics

Looking at the  operation in the  interface, we find a potential problem: given that the  structure uses  assetTime Clock TimeOfDay short
the type of each field, what will happen if a client invokes the  operation and passes a  value with meaningless fieldsetTime TimeOfDay
values, such as  for the minute field, or  for the hour? Obviously, it would be nice to provide some indication to the caller that this is-199 42
meaningless. Slice allows you to define user exceptions to indicate error conditions to the client. For example:

Slice

exception Error {}; // Empty exceptions are legal

exception RangeError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
};

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero
data members, that is, be empty.

Default Values for User Exception Members

You can specify a default value for an exception data member that has one of the following types:

An  type ( , , , )integral byte short int long
A  type (  or )floating point float double
string
bool
enum

For example:

Slice

exception RangeError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
    string reason = "out of range";
};

The legal syntax for literal values is the same as for , and you may also use a constant as a default value. The languageSlice constants
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions that may be returned to the client:
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Slice

interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time)
        throws RangeError, Error;
};

This definition indicates that the  operation may throw either a  or an  user exception (and no other type ofsetTime RangeError Error
exception). If the client receives a  exception, the exception contains the  value that was passed to  andRangeError TimeOfDay setTime
caused the error (in the  member), as well as the minimum and maximum time values that can be used (in the  and errorTime minTime

 members). If  failed because of an error not caused by an illegal parameter value, it throws . Obviously, because maxTime setTime Error
 does not have data members, the client will have no idea what exactly it was that went wrong — it simply knows that the operationError

did not work.

An operation can throw only those user exceptions that are listed in its exception specification. If, at run time, the implementation of an
operation throws an exception that is not listed in its exception specification, the client receives a ) to indicate that therun-time exception
operation did something illegal. To indicate that an operation does not throw any user exception, simply omit the exception specification.
(There is no empty exception specification in Slice.)

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

You cannot pass an exception as a parameter value.
You cannot use an exception as the type of a data member.
You cannot use an exception as the element type of a sequence.
You cannot use an exception as the key or value type of a dictionary.
You cannot throw a value of non-exception type (such as a value of type  or ).int string

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as
Slice does). For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat
unusual among programming languages by allowing arbitrary types to be used as exceptions.)

User Exception Inheritance

Exceptions support inheritance. For example:

Slice

exception ErrorBase {
    string reason;
};

enum RTError {
    DivideByZero, NegativeRoot, IllegalNull /* ... */
};

exception RuntimeError extends ErrorBase {
    RTError err;
};

enum LError { ValueOutOfRange, ValuesInconsistent, /* ... */ };

exception LogicError extends ErrorBase {
    LError err;
};

exception RangeError extends LogicError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
};
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These definitions set up a simple exception hierarchy:

ErrorBase is at the root of the tree and contains a string explaining the cause of the error.
Derived from  are  and . Each of these exceptions contains an enumerated value thatErrorBase RuntimeError LogicError
further categorizes the error.
Finally,  is derived from  and reports the details of the specific error.RangeError LogicError

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also
can be used at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can
catch exceptions generically as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as 
, or if it will also throw base exceptions, such as , , and . If you want to indicate that aRangeError LogicError RuntimeError ErrorBase

base exception, interface, or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation
may also throw more derived exceptions. For example:

Slice

exception Base {
    // ...
};

exception Derived extends Base {
    // ...
};

interface Example {
    void op() throws Base;      // May throw Base or Derived
};

In this example,  may throw a  or a  exception, that is, any exception that is compatible with the exception types listed in theop Base Derived
exception specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct
clients and server with the following definitions:

Slice

exception Error {
    // ...
};

interface Application {
    void doSomething() throws Error;
};

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the
clients. As the application evolves, a new exception is added to the system and the server is redeployed with the new definition:

Slice

exception Error {
    // ...
};

exception FatalApplicationError extends Error {
    // ...
};

interface Application {
    void doSomething() throws Error;
};
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This raises the question of what should happen if the server throws a  from . The answerFatalApplicationError doSomething
depends whether the client was built using the old or the updated definition:

If the client was built using the same definition as the server, it simply receives a .FatalApplicationError
If the client was built with the original definition, that client has no knowledge that  even exists. In thisFatalApplicationError
case, the Ice run time automatically slices the exception to the most-derived type that is understood by the receiver ( , in thisError
case) and discards the information that is specific to the derived part of the exception. (This is exactly analogous to catching C++
exceptions by value — the exception is sliced to the type used in the -clause.)catch

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)

See Also

Constants and Literals
Operations
Run-Time Exceptions
Proxies
Interface Inheritance



Ice 3.4.2 Documentation

104 Copyright © 2011, ZeroC, Inc.

Run-Time Exceptions

In addition to any  that are listed in an operation's exception specification, an operation can also throw Ice user exceptions run-time
. Run-time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking errorexceptions

interrupts communication between client and server, the client is informed of this by a run-time exception, such as 
 or .ConnectTimeoutException SocketException

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time
exceptions and you are not allowed to restate that.)

On this page:

Inheritance Hierarchy for Exceptions
Local Versus Remote Exceptions

Common Exceptions
ObjectNotExistException
FacetNotExistException
OperationNotExistException

Unknown Exceptions
UnknownUserException
UnknownLocalException
UnknownException

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are the (abstract) types  and Ice::LocalException
. In turn, all run-time exceptions are derived from , and all user exceptions are derivedIce::UserException Ice::LocalException

from .Ice::UserException

This figures shows the complete hierarchy of the Ice run-time exceptions:
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Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

We use the Unified Modeling Language (UML) for the object model diagrams (see  and  for details).[1] [2]

Note that  groups several exceptions into a single box to save space (which, strictly, is incorrect UMLIce run-time exception hierarchy
syntax). Also note that some run-time exceptions have data members, which, for brevity, we have omitted in the Ice run-time exception

. These data members provide additional information about the precise cause of an error.hierarchy

Many of the run-time exceptions have self-explanatory names, such as . Others indicate problems in the Ice runMemoryLimitException
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time, such as . Still others can arise only through application programming errors, such as EncapsulationException
. In practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions youTwowayOnlyException

will encounter and whose meaning you should know.

Local Versus Remote Exceptions

Common Exceptions

Most error conditions are detected on the client side. For example, if an attempt to contact a server fails, the client-side run time raises a 
. However, there are three specific error conditions (shown as shaded in the ConnectTimeoutException Ice run-time exception hierarchy

diagram) that are detected by the server and made known explicitly to the client-side run time via the Ice protocol: 
, , and .ObjectNotExistException FacetNotExistException OperationNotExistException

ObjectNotExistException

This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is
embedded in the proxy. In other words, the server could not find an object to dispatch the request to.

An  is a death certificate: it indicates that the target object in the server does not exist.ObjectNotExistException

The Ice run time raises  only if there are no  in existence with a matching identity;ObjectNotExistException facets
otherwise, it raises .FacetNotExistException

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also
raised if a client uses a proxy with the identity of an object that has never been created. If you receive this exception, you are expected to
clean up whatever resources you might have allocated that relate to the specific object for which you receive this exception.

FacetNotExistException

The client attempted to contact a non-existent  of an object, that is, the server has at least one servant with the given identity, but nofacets
servant with a matching facet name.

OperationNotExistException

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation
invocation, the server found that the target object does not have such an operation. You will see this exception in only two cases:

You have used an unchecked down-cast on a proxy of the incorrect type.
Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with
an interface definition for the object that indicates that an operation exists, but the server was built with a different version of the
interface definition in which the operation is absent.

Unknown Exceptions

Any error condition on the server side that is not described by one of the three preceding exceptions is made known to the client as one of
three generic exceptions (shown as shaded in the  diagram): , Ice run-time exception hierarchy figure UnknownUserException

, or .UnknownLocalException UnknownException

UnknownUserException

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception
specification (and is not derived from one of the exceptions in the operation's exception specification).

UnknownLocalException

If an operation implementation raises a run-time exception other than , , or ObjectNotExistException FacetNotExistException
 (such as a ), the client receives an . In otherOperationNotExistException NotRegisteredException UnknownLocalException

words, the Ice protocol does not transmit the exact exception that was encountered in the server, but simply returns a bit to the client in the
reply to indicate that the server encountered a run-time exception.

A common cause for a client receiving an  is failure to catch and handle all exceptions in the server. ForUnknownLocalException
example, if the implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call
stack until the stack is unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that
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1.  
2.  

"escape" from an operation invocation and returns them to the client as an .UnknownLocalException

UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a , or achar*
Java exception, such as a , the client receives an .ClassCastException UnknownException

All other run-time exceptions (not shaded in the ) are detected by the client-side run time and are raisedIce run-time exception hierarchy
locally.

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client
holds a proxy to an object that no longer exists in the server, your server application code is required to throw an 

. If you do throw run-time exceptions from your application code, you should take care to throw a run-timeObjectNotExistException
exception only if appropriate, that is, do not use run-time exceptions to indicate something that really should be a user exception. Doing so
can be very confusing to the client: if the application "hijacks" some run-time exceptions for its own purposes, the client can no longer decide
whether the exception was thrown by the Ice run time or by the server application code. This can make debugging very difficult.

See Also

User Exceptions
Interfaces, Operations, and Exceptions
Operations
Proxies
Interface Inheritance
Facets and Versioning
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Proxies

Building on the  example, we can create definitions for a world-time server:Clock

Slice

exception GenericError {
    string reason;
};

struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

exception BadTimeVal extends GenericError {};

interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time) throws BadTimeVal;
};

dictionary<string, Clock*> TimeMap; // Time zone name to clock map

exception BadZoneName extends GenericError {};

interface WorldTime {
    idempotent void addZone(string zoneName, Clock* zoneClock);
    void removeZone(string zoneName) throws BadZoneName;
    idempotent Clock* findZone(string zoneName) throws BadZoneName;
    idempotent TimeMap listZones();
    idempotent void setZones(TimeMap zones);
};

The  interface acts as a collection manager for clocks, one for each time zone. In other words, the  interfaceWorldTime WorldTime
manages a collection of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides
the time for that zone. The interface contains operations that permit you to add or remove a clock from the map (  and addZone removeZone
), to search for a particular time zone by name ( ), and to read or write the entire map (  and ).findZone listZones setZones

The  example illustrates an important Slice concept: note that  accepts a parameter of type  and WorldTime addZone Clock* findZone
returns a parameter of type . In other words, interfaces are types in their own right and can be passed as parameters. The  operatorClock* *
is known as the . Its left-hand argument must be an interface (or ) and its return type is a proxy. A proxy is like a pointerproxy operator class
that can denote an object. The semantics of proxies are very much like those of C++ class instance pointers:

A proxy can be .null
A proxy can dangle (point at an object that is no longer there).
Operations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived
than the proxy's type, the implementation of the most-derived interface will be invoked.

When a client passes a  proxy to the  operation, the proxy denotes an actual  object in a server. The  Clock addZone Clock Clock Ice object
denoted by that proxy may be implemented in the same server process as the  interface, or in a different server process. WhereWorldTime
the  object is physically implemented matters neither to the client nor to the server implementing the  interface; if eitherClock WorldTime
invokes an operation on a particular clock, such as , an RPC call is sent to whatever server implements that particular clock. IngetTime
other words, a proxy acts as a local "ambassador" for the remote object; invoking an operation on the proxy forwards the invocation to the
actual object implementation. If the object implementation is in a different address space, this results in a remote procedure call; if the object
implementation is collocated in the same address space, the Ice run time uses an ordinary local function call from the proxy to the object
implementation.

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change
made by one client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other
than a  proxy to the  operation; attempts to do so are rejected at compile time.Clock addZone
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See Also

Classes
Interfaces, Operations, and Exceptions
User Exceptions
Run-Time Exceptions
Interface Inheritance
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Interface Inheritance

On this page:

Interface Inheritance
Interface Inheritance Limitations
Implicit Inheritance from Object
Null Proxies
Self-Referential Interfaces
Empty Interfaces
Interface Versus Implementation Inheritance

Interface Inheritance

Interfaces support inheritance. For example, we could extend our  to support the concept of an alarm clock:world-time server

Slice

interface AlarmClock extends Clock {
    idempotent TimeOfDay getAlarmTime();
    idempotent void setAlarmTime(TimeOfDay alarmTime)
        throws BadTimeVal;
};

The semantics of this are the same as for C++ or Java:  is a subtype of  and an  proxy can be substitutedAlarmClock Clock AlarmClock
wherever a  proxy is expected. Obviously, an  supports the same  and  operations as a  butClock AlarmClock getTime setTime Clock
also supports the  and  operations.getAlarmTime setAlarmTime

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice

interface Radio {
    void setFrequency(long hertz) throws GenericError;
    void setVolume(long dB) throws GenericError;
};

enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
    void setMode(AlarmMode mode);
    AlarmMode getMode();
};

RadioClock extends both  and  and can therefore be passed where a , an , or a  isRadio AlarmClock Radio AlarmClock Clock
expected. The inheritance diagram for this definition looks as follows:
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Inheritance diagram for .RadioClock

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice

interface B { /* ... */ };
interface I1 extends B { /* ... */ };
interface I2 extends B { /* ... */ };
interface D extends I1, I2 { /* ... */ };

This definition results in the familiar diamond shape:

Diamond-shaped inheritance.

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the
following definition is illegal:
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Slice

interface Clock {
    void set(TimeOfDay time);                   // set time
};

interface Radio {
    void set(long hertz);                       // set frequency
};

interface RadioClock extends Radio, Clock {     // Illegal!
    // ...
};

This definition is illegal because  inherits two  operations,  and . The Slice compiler makes thisRadioClock set Radio::set Clock::set
illegal because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice,
the simple rule is that all inherited operations must have unique names. (In practice, this is rarely a problem because inheritance is rarely
added to an interface hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as 

 and . This makes accidental name clashes less likely.)setTime setFrequency

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from . For example, the  would be shown more correctly as:Object inheritance hierarchy

Implicit inheritance from .Object

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:

Slice

interface ProxyStore {
    idempotent void putProxy(string name, Object* o);
    idempotent Object* getProxy(string name);
};

Object is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The  interface is aProxyStore
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generic proxy storage facility: the client can call  to add a proxy of any type under a given name and later retrieve that proxy againputProxy
by calling  and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purposegetProxy
facilities, such as a  that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-codingnaming service
proxy details into clients and servers.

Inheritance from type  is always implicit. For example, the following Slice definition is illegal:Object

Slice

interface MyInterface extends Object { /* ... */ }; // Error!

It is understood that all interfaces inherit from type ; you are not allowed to restate that.Object

Type  is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.Object

Null Proxies

Looking at the  interface once more, we notice that  does not have an exception specification. The question then isProxyStore getProxy
what should happen if a client calls  with a name under which no proxy is stored? Obviously, we could add an exception togetProxy
indicate this condition to . However, another option is to return a . Ice has the built-in notion of a null proxy, which is agetProxy null proxy
proxy that "points nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether
it is null or denotes a valid object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends
on the expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call  with agetProxy
non-existent name, it is better to throw an exception. (This is probably the case for our  interface: the fact that there is no ProxyStore list
operation makes it clear that clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The
reason is that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you
should throw exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result
set is wrong; it is expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to
understand. Not only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems
later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For example:

Slice

interface Link {
    idempotent SomeType getValue();
    idempotent Link* next();
};

The  interface contains a  operation that returns a proxy to a  interface. Obviously, this can be used to create a chain ofLink next Link
interfaces; the final link in the chain returns a null proxy from its  operation.next

Empty Interfaces

The following Slice definition is legal:

Slice

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting question is: "why would I need an empty interface?" In most
cases, empty interfaces are an indication of design errors. Here is one example:



Ice 3.4.2 Documentation

114 Copyright © 2011, ZeroC, Inc.

1.  
2.  

Slice

interface ThingBase {};

interface Thing1 extends ThingBase {
    // Operations here...
};

interface Thing2 extends ThingBase {
    // Operations here...
};

Looking at this definition, we can make two observations:

Thing1 and  have a common base and are therefore related.Thing2
Whatever is common to  and  can be found in interface .Thing1 Thing2 ThingBase

Of course, looking at , we find that  and  do not share any operations at all because  is empty. GivenThingBase Thing1 Thing2 ThingBase
that we are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the  way to communicate with anonly
object is to send a message to the object. But, to send a message, we need an operation. Given that  has no operations, weThingBase
cannot send a message to it, and it follows that  and  are  related because they have no common operations. But ofThing1 Thing2 not
course, seeing that  and  have a common base, we conclude that they  related, otherwise the common base would notThing1 Thing2 are
exist. At this point, most programmers begin to scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat  and  polymorphically. For example, we might continue theThing1 Thing2
previous definition as follows:

Slice

interface ThingUser {
    void putThing(ThingBase* thing);
};

Now the purpose of having the common base becomes clear: we want to be able to pass both  and  proxies to .Thing1 Thing2 putThing
Does this justify the empty base interface? To answer this question, we need to think about what happens in the implementation of 

. Obviously,  cannot possibly invoke an operation on a  because there are no operations. This means that putThing putThing ThingBase
 can do one of two things:putThing

putThing can simply remember the value of .thing
putThing can try to down-cast to either  or  and then invoke an operation. The pseudo-code for the implementationThing1 Thing2
of  would look something like this:putThing

void putThing(ThingBase thing)
{
    if (is_a(Thing1, thing)) {
        // Do something with Thing1...
    } else if (is_a(Thing2, thing)) {
        // Do something with Thing2...
    } else {
        // Might be a ThingBase?
        // ...
    }
}

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the
argument. Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to
maintenance problems.

If you find yourself writing operations such as  that rely on artificial base interfaces, ask yourself whether you really need to doputThing
things this way. For example, a more appropriate design might be:
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Slice

interface Thing1 {
    // Operations here...
};

interface Thing2 {
    // Operations here...
};

interface ThingUser {
    void putThing1(Thing1* thing);
    void putThing2(Thing2* thing);
};

With this design,  and  are not related, and  offers a separate operation for each type of proxy. TheThing1 Thing2 ThingUser
implementation of these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

interface PersistentObject {};

interface Thing1 extends PersistentObject {
    // Operations here...
};

interface Thing2 extends PersistentObject {
    // Operations here...
};

Clearly, the intent of this design is to place persistence functionality into the  base  and require objectsPersistentObject implementation
that want to have persistent state to inherit from . On the face of things, this is reasonable: after all, using inheritance inPersistentObject
this way is a well-established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are
wrong with this design:

The above inheritance hierarchy is used to add  to  and . However, in a strict OO model, behavior can bebehavior Thing1 Thing2
invoked only by sending messages. But, because  has no operations, no messages can be sent.PersistentObject
This raises the question of how the implementation of  actually goes about doing its job; presumably, it knowsPersistentObject
something about the implementation (that is, the internal state) of  and , so it can write that state into a database.Thing1 Thing2
But, if so, , , and  can no longer be implemented in different address spaces because, in thatPersistentObject Thing1 Thing2
case,  can no longer get at the state of  and .PersistentObject Thing1 Thing2
Alternatively,  and  use some functionality provided by  in order to make their internal stateThing1 Thing2 PersistentObject
persistent. But  does not have any operations, so how would  and  actually go about achievingPersistentObject Thing1 Thing2
this? Again, the only way that can work is if , , and  are implemented in a single address spacePersistentObject Thing1 Thing2
and share implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.

The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent
ones. This has far-reaching ramifications:

Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over
time and you find that you now would like to make some of your objects persistent. With the above design, you cannot do
this unless you change the type of your objects because they now must inherit from . Of course, this isPersistentObject
extremely bad news: not only do you have to change the implementation of your objects in the server, you also need to
locate and update all the clients that are currently using your objects because they suddenly have a completely new type.
What is worse, there is no way to keep things backward compatible: either all clients change with the server, or none of
them do. It is impossible for some clients to remain "unupgraded".
The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can
inherit, such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end
up in a mess of multiple inheritance. What is worse, each possible combination of features creates a completely separate
type hierarchy. This means that you can no longer write operations that generically operate on a number of object types.
For example, you cannot pass a persistent object to something that expects a non-persistent object, even if the receiver of

. This quickly leads to fragmented and hard-to-maintainthe object does not care about the persistence aspects of the object
type systems. Before long, you will either find yourself rewriting your application or end up with something that is both
difficult to use and difficult to maintain.



Ice 3.4.2 Documentation

116 Copyright © 2011, ZeroC, Inc.

The foregoing discussion will hopefully serve as a warning: Slice is an  definition language that has nothing to do with interface
 (but empty interfaces almost always indicate that implementation state is shared via mechanisms other than definedimplementation

interfaces). If you find yourself writing an empty interface definition, at least step back and think about the problem at hand; there may be a
more appropriate design that expresses your intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware
that, almost certainly, you will lose the ability to later change the distribution of the object model over physical server processes because you
cannot place an address space boundary between interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to . In particular, if two interfaces are in an inheritance relationship, this ininterfaces
no way implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation
inheritance when you implement your interfaces, but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation inheritance by default, and interface inheritance requires
extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore,
keeps implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations
User Exceptions
Run-Time Exceptions
Proxies
IceGrid
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Classes

In addition to , Slice permits the definition of classes. Classes are like interfaces in that they can have operations and are likeinterfaces
structures in that they can have data members. This leads to hybrid objects that can be treated as interfaces and passed by reference, or
can be treated as values and passed by value. Classes provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be implemented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you can pass a class instance to an operation as long as the actual
class type is derived from the formal parameter type in the operation's signature. This also permits classes to be used as type-safe unions,
similarly to Pascal's discriminated variant records.

Topics

Simple Classes
Class Inheritance
Class Inheritance Semantics
Classes as Unions
Self-Referential Classes
Classes Versus Structures
Classes with Operations
Architectural Implications of Classes
Classes Implementing Interfaces
Class Inheritance Limitations
Pass-by-Value Versus Pass-by-Reference
Passing Interfaces by Value
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Simple Classes

A Slice class definition is similar to a structure definition, but uses the  keyword. For example:class

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

Apart from the keyword , this definition is identical to the  example. You can use a Slice class wherever you can use a Sliceclass structure
structure (but, as we will see shortly, for performance reasons, you should not use a class where a structure is sufficient). Unlike structures,
classes can be empty:

Slice

class EmptyClass {};    // OK
struct EmptyStruct {};  // Error

Much the same design considerations as for  apply to empty classes: you should at least stop and rethink your approachempty interfaces
before committing yourself to an empty class.

You can specify a default value for a class data member that has one of the following types:

An  type ( , , , )integral byte short int long
A  type (  or )floating point float double
string
bool
enum

For example:

Slice

class Location {
    string name;
    Point pt;
    bool display = true;
    string source = "GPS";
};

The legal syntax for literal values is the same as for , and you may also use a constant as a default value. The languageSlice constants
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also

Structures
Constants and Literals
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Class Inheritance

Unlike , classes support inheritance. For example:structures

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

This example illustrates one major reason for using a class: a class can be extended by inheritance, whereas a structure is not extensible.
The previous example defines  to extend the  class with a date.DateTime TimeOfDay

If you are puzzled by the comment about the year 1753, search the Web for "1752 date change". The intricacies of
calendars for various countries prior to that year can keep you occupied for months...

Classes only support single inheritance. The following is illegal:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class Date {
    short day;
    short month;
    short year;
};

class DateTime extends TimeOfDay, Date {   // Error!
    // ...
};

A derived class also cannot redefine a data member of its base class:

Slice

class Base {
    int integer;
};

class Derived extends Base {
    int integer;                // Error, integer redefined
};

See Also

Structures
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Class Inheritance Semantics

Classes use the same pass-by-value semantics as . If you pass a class instance to an operation, the class and all its members arestructures
passed. The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has
static type knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type
knowledge of the derived type, the instance is sliced to the base type. For an example, suppose we have the following definitions:

Slice

// In file Clock.ice:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

interface Clock {
    TimeOfDay getTime();
    void setTime(TimeOfDay time);
};

// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

Because  is a sub-class of , the server can return a  instance from , and the client can pass a DateTime TimeOfDay DateTime getTime
 instance to . In this case, if both client and server are linked to include the code generated for both  and DateTime setTime Clock.ice

, they each receive the actual derived  instance, that is, the actual run-time type of the instance is preserved.DateTime.ice DateTime

Contrast this with the case where the server is linked to include the code generated for both  and , but the clientClock.ice DateTime.ice
is linked only with the code generated for . In other words, the server understands the type  and can return a Clock.ice DateTime

 instance from , but the client only understands . In this case, the derived  instance returned byDateTime getTime TimeOfDay DateTime
the server is sliced to its  base type in the client. (The information in the derived part of the instance is simply lost to the client.)TimeOfDay

Class hierarchies are useful if you need polymorphic  (instead of polymorphic ). For example:values interfaces

Slice

class Shape {
    // Definitions for shapes, such as size, center, etc.
};

class Circle extends Shape {
    // Definitions for circles, such as radius...
};

class Rectangle extends Shape {
    // Definitions for rectangles, such as width and length...
};

sequence<Shape> ShapeSeq;

interface ShapeProcessor {
    void processShapes(ShapeSeq ss);
};
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Note the definition of  and its use as a parameter to the  operation: the class hierarchy allows us to pass aShapeSeq processShapes
polymorphic sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a  can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (TheShapeSeq
receiver can also ask each element for its  to determine its type.)type ID

See Also

Structures
Type IDs
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Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the
same effect as with a union:

Slice

interface ShapeShifter {
    Shape translate(Shape s, long xDistance, long yDistance);
};

The parameter  of the  operation can be viewed as a union of two members: a  and a . The receiver of a s translate Circle Rectangle
 instance can use the  of the instance to decide whether it received a  or a . Alternatively, if you wantShape type ID Circle Rectangle

something more along the lines of a conventional discriminated union, you can use the following approach:

Slice

class UnionDiscriminator {
    int d;
};

class Member1 extends UnionDiscriminator {
    // d == 1
    string s;
    float f;
};

class Member2 extends UnionDiscriminator {
    // d == 2
    byte b;
    int i;
};

With this approach, the  class provides a discriminator value. The "members" of the union are the classes that areUnionDiscriminator
derived from . For each derived class, the discriminator takes on a distinct value. The receiver of such a union usesUnionDiscriminator
the discriminator value in a  statement to select the active union member.switch

See Also

Type IDs
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Self-Referential Classes

Classes can be self-referential.

For example:

Slice

class Link {
    SomeType value;
    Link next;
};

This looks very similar to the , but the semantics are very different. Note that  and  are dataself-referential interface example value next
members, not operations, and that the type of  is  (  ). As you would expect, this forms the same linked list arrangementnext Link not Link*
as the  interface in : each instance of a  class contains a  member that points at the next link in theLink Self-Referential Interfaces Link next
chain; the final link's  member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the next

 data member contains a pointer to the next link in the chain.next

You may be wondering at this point what the difference is then between the  interface in  and the  classLink Self-Referential Interfaces Link
shown above. The difference is that classes have  semantics, whereas proxies have  semantics. To illustrate this, considervalue reference
the   from  once more:Link interface Self-Referential Interfaces

Slice

interface Link {
    idempotent SomeType getValue();
    idempotent Link*    next();
};

Here,  and  are both operations and the return value of  is , that is, next returns a . A proxy has getValue next next Link* proxy reference
semantics, that is, it denotes an object somewhere. If you invoke the  operation on a  proxy, a message is sent to thegetValue Link
(possibly remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the
object via remote procedure calls. Compare this with the definition of our  :Link class

Slice

class Link {
    SomeType value;
    Link next;
};

Here,  and  are data members and the type of next is , which has  semantics. In particular, while  looks and feelsvalue next Link value next
like a pointer, . This means that if we have a chain of  instances, all of theit cannot denote an instance in a different address space Link
instances are in our local address space and, when we read or write a value data member, we are performing local address space
operations. This means that an operation that returns a  instance, such as , does not just return the head of the chain, Link getHead but the

, as shown:entire chain
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Class version of  before and after calling .Link getHead

On the other hand, for the interface version of , we do not know where all the links are physically implemented. For example, a chain ofLink
four links could have each object instance in its own physical server process; those server processes could be each in a different continent. If
you have a proxy to the head of this four-link chain and traverse the chain by invoking the  operation on each link, you will be sendingnext
four remote procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following
lines:

Slice

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand extends Node {
    long val;
};

The expression tree consists of leaf nodes of type , and interior nodes of type  and , with oneOperand UnaryOperator BinaryOperator
or two descendants, respectively. All three of these classes are derived from a common base class . Note that  is an empty class.Node Node
This is one of the few cases where an empty base class is justified. (See the discussion on ; once we add  to thisempty interfaces operations
class hierarchy, the base class is no longer empty.)

If we write an operation that, for example, accepts a  parameter, passing that parameter results in transmission of the entire tree to theNode
server:

Slice

interface Evaluator {
    long eval(Node expression); // Send entire tree for evaluation
};
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Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that
infinite loops are avoided during marshaling.

See Also

Classes with Operations
Self-Referential Interfaces
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Classes Versus Structures

One obvious question to ask is: why does Ice provide  as well as classes, when classes obviously can be used to modelstructures
structures? The answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

Classes support inheritance.
Classes can be self-referential.
Classes can have .operations
Classes can .implement interfaces

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and
the amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values ("plain old
structs") and are implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance
and smaller memory footprint than if you would use classes (especially for languages with direct support for "plain old structures", such as
C++ and C#). Use a class only if you need at least one of its more powerful features.

See Also

Structures
Classes with Operations
Classes Implementing Interfaces
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Classes with Operations

Classes, in addition to data members, can have operations. The syntax for operation definitions in classes is identical to the syntax for
operations in interfaces. For example, we can modify the expression tree from  as follows:Self-Referential Classes

Slice

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
    idempotent long eval();
};

class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand {
    long val;
};

The only change compared to the version in  is that the  class now has an  operation. The semantics ofSelf-Referential Classes Node eval
this are as for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the
operation's definition. For our expression tree, the  class provides an implementation that simply returns the value of its Operand val
member, and the  and  classes provide implementations that compute the value of their respectiveUnaryOperator BinaryOperator
subtrees. If we call  on the root node of an expression tree, it returns the value of that tree, regardless of whether we have a complexeval
expression or a tree that consists of only a single  node.Operand

Operations on classes are normally executed in the caller's address space, that is, operations on classes are  operations that do notlocal
result in a remote procedure call.

It is also possible to invoke an operation on a .remote class instance

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server,
but client and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of
the class. The Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a
class factory that can instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of
the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's
operations. No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and
languages is infeasible).

See Also

Self-Referential Classes
Pass-by-Value Versus Pass-by-Reference
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Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in some detail.

On this page:

Classes without Operations
Classes with Operations
Classes for Persistence

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-referential or not) pose no architectural problems: they simply
are values that are marshaled like any other value, such as a sequence, structure, or dictionary. Classes using derivation also pose no
problems: if the receiver of a derived instance has knowledge of the derived type, it simply receives the derived type; otherwise, the instance
is sliced to the most-derived type that is understood by the receiver. This makes class inheritance useful as a system is extended over time:
you can create derived class without having to upgrade all parts of the system at once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose that you are creating an Ice application. Also assume that
the Slice definitions use quite a few classes with operations. You sell your clients and servers (both written in Java) and end up with
thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients written in C++.

For commercial reasons, you would like to leave the development of C++ clients to customers or a third party but, at this point, you discover
a glitch: your application has lots of classes with operations along the following lines:

Slice

class ComplexThingForExpertsOnly {
    // Lots of arcane data members here...
    MysteriousThing mysteriousOperation(/* parameters */);
    ArcaneThing arcaneOperation(/* parameters */);
    ComplexThing complexOperation(/* parameters */);
    // etc...
};

It does not matter what exactly these operations do. (Presumably, you decided to off-load some of the processing for your application onto
the client side for performance reasons.) Now that you would like other developers to write C++ clients, it turns out that your application will
work only if these developers provide implementations of all the client-side operations and, moreover, if the semantics of these operations
exactly match the semantics of your Java implementations. Depending on what these operations do, providing exact semantic equivalents in
a different language may not be trivial, so you decide to supply the C++ implementations yourself.

But now, you discover another problem: the C++ clients need to be supported for a variety of operating systems that use a variety of different
C++ compilers. Suddenly, your task has become quite daunting: you really need to supply implementations for all the combinations of
operating systems and compiler versions that are used by clients. Given the different state of compliance with the ISO C++ standard of the
various compilers, and the idiosyncrasies of different operating systems, you may find yourself facing a development task that is much larger
than anticipated. And, of course, the same scenario will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; they can provide significant performance gains and are not
necessarily bad. But, keep in mind that, once you use classes with operations, you are, in effect, using client-side native code and, therefore,
you can no longer enjoy the implementation transparencies that are provided by interfaces. This means that classes with operations should
be used only if you can tightly control the deployment environment of clients. If not, you are better off using interfaces and classes without
operations. That way, all the processing stays on the server and the contract between client and server is provided solely by the Slice
definitions, not by the semantics of the additional client-side code that is required for classes with operations.

Classes for Persistence

Ice also provides a built-in  that allows you to store the state of a class in a database with very little implementationpersistence mechanism
effort. To get access to these persistence features, you must define a Slice class whose members store the state of the class.

See Also
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Freeze
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Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class can be used to provide the behavior for an interface,
for example:

Slice

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
    TimeOfDay time;
};

The  keyword indicates that the class  provides an  of the  interface. The class can provide dataimplements Clock implementation Time
members and operations of its own; in the preceding example, the  class stores the current time that is accessed via the Clock Time
interface. A class can implement several interfaces, for example:

Slice

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

interface Radio {
    idempotent void setFrequency(long hertz);
    idempotent void setVolume(long dB);
};

class RadioClock implements Time, Radio {
    TimeOfDay time;
    long hertz;
};

The class  implements both  and  interfaces.RadioClock Time Radio

A class, in addition to implementing an interface, can also extend another class:
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Slice

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
    TimeOfDay time;
};

interface AlarmClock extends Time {
    idempotent TimeOfDay getAlarmTime();
    idempotent void setAlarmTime(TimeOfDay alarmTime);
};

interface Radio {
    idempotent void setFrequency(long hertz);
    idempotent void setVolume(long dB);
};

class RadioAlarmClock extends Clock
                      implements AlarmClock, Radio {
    TimeOfDay alarmTime;
    long hertz;
};

These definitions result in the following inheritance graph:

A Class using implementation and interface inheritance.

For this definition,  and  are abstract interfaces, and  and  are concrete classes. As for Java,Radio AlarmClock Clock RadioAlarmClock
a class can implement multiple interfaces, but can extend at most one class.

See Also

Architectural Implications of Classes
Class Inheritance Limitations
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Class Inheritance Limitations

As for , a class cannot redefine an operation or data member that it inherits from a base interface or class. For example:interface inheritance

Slice

interface BaseInterface {
    void op();
};

class BaseClass {
    int member;
};

class DerivedClass extends BaseClass implements BaseInterface {
    void someOperation();       // OK
    int op();                   // Error!
    int  someMember;            // OK
    long member;                // Error!
};

See Also

Interface Inheritance
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Pass-by-Value Versus Pass-by-Reference

As we saw in , classes naturally support pass-by-value semantics: passing a class transmits the data members ofSelf-Referential Classes
the class to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data
members of the sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For example:

Slice

class TimeOfDay {
    short hour;
    short minute;
    short second;
    string format();
};

interface Example {
     TimeOfDay* get();  // Note: returns a proxy!
};

Note that the  operation returns a  to a  class and not a  instance itself. The semantics of this are asget proxy TimeOfDay TimeOfDay
follows:

When the client receives a  proxy from the  call, it holds a proxy that differs in no way from an ordinary proxy for anTimeOfDay get
interface.
The client can invoke operations via the proxy, but  access the data members. This is because proxies do not have thecannot
concept of data members, but represent interfaces: even though the  class has data members, only its  canTimeOfDay operations
be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the  class. A proxy for that instance was passedTimeOfDay
to the client. The only thing the client can do with this proxy is to invoke the  operation. The implementation of that operation isformat
provided by the server and, when the client invokes , it sends an RPC message to the server just as it does when it invokes anformat
operation on an interface. The implementation of the  operation is entirely up to the server. (Presumably, the server will use the dataformat
members of the  instance it holds to return a string containing the time to the client.)TimeOfDay

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of
your application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances
as remote interfaces.

For example:

Slice

interface Time {
    string format();
    // ...
};

class TimeOfDay implements Time {
    short hour;
    short minute;
    short second;
};

interface I1 {
     TimeOfDay get();           // Pass by value
     void put(TimeOfDay time);  // Pass by value
};

interface I2 {
    Time* get();                // Pass by reference
};
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In this example, clients dealing with interface  are aware of the  class and pass it by value whereas clients dealing withI1 TimeOfDay
interface  deal only with the  interface. However, the actual implementation of the  interface in the server uses I2 Time Time TimeOfDay
instances.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what
parts of the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with
something that is more confusing than helpful.

A good example of putting this feature to use can be found in , which allows you to add classes to an existing interface to implementFreeze
persistence.

See Also

Self-Referential Classes
Freeze
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Passing Interfaces by Value

Consider the following definitions:

Slice

interface Time {
    idempotent TimeOfDay getTime();
    // ...
};

interface Record {
    void addTimeStamp(Time t); // Note: Time t, not Time* t
    // ...
};

Note that  accepts a parameter of type , not of type . The question is, what does it mean to pass an interface addTimeStamp Time Time* by
? Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot bevalue

instantiated. Neither can we pass a proxy to a  object to  because a proxy cannot be passed where an interface isTime addTimeStamp
expected.

However, what we  pass to  is something that is not abstract and derives from the  interface. For example, at runcan addTimeStamp Time
time, we could pass an instance of the  class we saw . Because the  class derives from the  interface,TimeOfDay earlier TimeOfDay Time
the class type is compatible with the formal parameter type  and, at run time, what is sent over the wire to the server is the Time TimeOfDay
class instance.

See Also

Pass-by-Value Versus Pass-by-Reference
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Forward Declarations

Both  and  can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:interfaces classes

Slice

module Family {
    interface Child;            // Forward declaration

    sequence<Child*> Children;  // OK

    interface Parent {
        Children getChildren(); // OK
    };

    interface Child {           // Definition
        Parent* getMother();
        Parent* getFather();
    };
};

Without the forward declaration of , the definition obviously could not compile because  and  are mutually dependentChild Child Parent
interfaces. You can use forward-declared interfaces and classes to define types (such as the  sequence in the previous example).Children
Forward-declared interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a
dictionary, and as the parameter and return type of an operation. However, you cannot inherit from a forward-declared interface or class until
after its definition has been seen by the compiler:

Slice

interface Base;                         // Forward declaration

interface Derived1 extends Base {};     // Error!

interface Base {};                      // Definition

interface Derived2 extends Base {};     // OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could
not enforce that derived interfaces must not redefine operations that appear in base interfaces.

A multi-pass compiler could be used, but the added complexity is not worth it.

See Also

Interfaces, Operations, and Exceptions
Classes
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Type IDs

Each user-defined Slice type has an internal type identifier, known as its . The type ID is simply the fully-qualified name of each type.type ID
For example, the type ID of the  interface in the  is . All type IDs for user-definedChild preceding example ::Family::Children::Child
types start with a leading , so the type ID of the  module is  (not ). In general, a type ID is formed by starting:: Family ::Family Family
with the global scope ( ) and forming the fully-qualified name of a type by appending each module name in which the type is nested, and::
ending with the name of the type itself; the components of the type ID are separated by .::

The type ID of a proxy is formed by appending a  to the type ID of an interface or class. For example, the type ID of a  proxy is * Child
.::Family::Children::Child*

The type ID of the Slice  type is  and the type ID of an  proxy is .Object ::Ice::Object Object ::Ice::Object*

The type IDs for the remaining built-in types, such as , , and so on, are the same as the corresponding keyword. For example, theint bool
type ID of  is , and the type ID of  is .int int string string

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the
marshaled form of the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the
type ID and, based on that, unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the . operationice_isA

See Also

ice_isA
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Operations on Object

The  interface has a number of operations. We cannot define type  in Slice because  is a keyword; regardless, hereObject Object Object
is what (part of) the definition of  would look like if it were legal:Object

Slice

sequence<string> StrSeq;

interface Object {                      // "Pseudo" Slice!
    idempotent void   ice_ping();
    idempotent bool   ice_isA(string typeID);
    idempotent string ice_id();
    idempotent StrSeq ice_ids();
    // ...
};

Note that, apart from the illegal use of the keyword  as the interface name, the operation names all contain the  prefix. ThisObject ice_
prefix is reserved for use by Ice and cannot clash with a user-defined operation. This means that all Slice interfaces can inherit from Object
without name clashes. We discuss these built-in operations below.

On this page:

ice_ping
ice_isA
ice_id
ice_ids

ice_ping

All interfaces support the  operation. That operation is useful for debugging because it provides a basic reachability test for anice_ping
object: if the object exists and a message can successfully be dispatched to the object,  simply returns without error. If the objectice_ping
cannot be reached or does not exist,  throws a run-time exception that provides the reason for the failure.ice_ping

ice_isA

The  operation accepts a type identifier (such as the identifier returned by ) and tests whether the target object supports theice_isA ice_id
specified type, returning  if it does. You can use this operation to check whether a target object supports a particular type. For example,true
referring to the diagram  once more, assume that you are holding a proxy to a target object of type Implicit Inheritance from Object

. The table below illustrates the result of calling  on that proxy with various arguments. (We assume that all types inAlarmClock ice_isA
the  diagram are defined in a module ):Implicit inheritance from Object Times

Argument Result

::Ice::Object true

::Times::Clock true

::Times::AlarmClock true

::Times::Radio false

::Times::RadioClock false

Calling  on a proxy denoting an object of type AlarmClock.ice_isA

As expected,  returns true for  and  and also returns true for ice_isA ::Times::Clock ::Times::AlarmClock ::Ice::Object
(because all interfaces support that type). Obviously, an  supports neither the  nor the  interfaces, so AlarmClock Radio RadioClock

 returns false for these types.ice_isA
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ice_id

The  operation returns the  of the most-derived type of an interface.ice_id type ID

ice_ids

The  operation returns a sequence of  that contains all of the type IDs supported by an interface. For example, for theice_ids type IDs
RadioClock interface in ,  returns a sequence containing the type IDs , Implicit inheritance from Object ice_ids ::Ice::Object

, , , and .::Times::Clock ::Times::AlarmClock ::Times::Radio ::Times::RadioClock

See Also

Type IDs
Interface Inheritance
Implicit inheritance from Object
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Local Types

In order to access certain features of the Ice run time, you must use APIs that are provided by libraries. However, instead of defining an API
that is specific to each implementation language, Ice defines its APIs in Slice using the  keyword. The advantage of defining APIs inlocal
Slice is that a single definition suffices to define the API for all possible implementation languages. The actual language-specific API is then
generated by the Slice compiler for each implementation language. Types that are provided by Ice libraries are defined using the Slice 

 keyword.local

For example:

Slice

module Ice {
    local interface ObjectAdapter {
        // ...
    };
};

Any Slice definition (not just interfaces) can have a  modifier. If the  modifier is present, the Slice compiler does not generatelocal local
marshaling code for the corresponding type. This means that a local type can  be accessed remotely because it cannot be transmittednever
between client and server. (The Slice compiler prevents use of  types in non-  contexts.)local local

In addition, local interfaces and local classes do  inherit from . Instead, local interfaces and classes have their own,not Ice::Object
completely separate inheritance hierarchy. At the root of this hierarchy is the type , as shown:Ice::LocalObject

Inheritance from .LocalObject

Because local interfaces form a completely separate inheritance hierarchy, you cannot pass a local interface where a non-local interface is
expected, and vice-versa.

You rarely need to define local types for your own applications — the  keyword exists mainly to allow definition of APIs for the Ice runlocal
time. (Because local objects cannot be invoked remotely, there is little point for an application to define local objects; it might as well define
ordinary programming-language objects instead.) However, there is one exception to this rule:  must be implemented asservant locators
local objects.

See Also

Servant Locators
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Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good
to know how Slice uses naming scopes and resolves identifiers.

On this page:

Naming Scope
Case Sensitivity
Qualified Names
Names in Nested Scopes
Introduced Identifiers
Name Lookup Rules

Naming Scope

The following Slice constructs establish a naming scope:

the global (file) scope
modules
interfaces
classes
structures
exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad {
    void op(int p, string p);   // Error!
};

Because a parameter list forms a naming scope, it is illegal to use the same identifier  for different parameters. Similarly, data members,p
operation names, interface and class names, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming
scope. For example:

Slice

struct Bad {
    int    m;
    string M;   // Error!
};

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same
capitalization for that identifier thereafter. For example, the following is in error:

Slice

sequence<string> StringSeq;

interface Bad {
    stringSeq op();     // Error!
};
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Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice

interface Module {      // Error, "module" is a keyword
    // ...
};

Qualified Names

The scope-qualification operator  allows you to refer to a type in a non-local scope. For example:::

Slice

module Types {
    sequence<long> LongSeq;
};

module MyApp {
    sequence<Types::LongSeq> NumberTree;
};

Here, the qualified name  refers to  defined in module . The global scope is denoted by a leading , soTypes::LongSeq LongSeq Types ::
we could also refer to  as .LongSeq ::Types::LongSeq

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious
attempt to do this fails:

Slice

module Parents {
    interface Children::Child;  // Syntax error!
    interface Mother {
        Children::Child* getChild();
    };
    interface Father {
        Children::Child* getChild();
    };
};

module Children {
    interface Child {
        Parents::Mother* getMother();
        Parents::Father* getFather();
    };
};

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened
module:



Ice 3.4.2 Documentation

144 Copyright © 2011, ZeroC, Inc.

Slice

module Children {
    interface Child;                    // Forward declaration
};

module Parents {
    interface Mother {
        Children::Child* getChild();    // OK
    };
    interface Father {
        Children::Child* getChild();    // OK
    };
};

module Children {                       // Reopen module
    interface Child {                   // Define Child
        Parents::Mother* getMother();
        Parents::Father* getFather();
    };
};

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other
hand, modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of
course, this begs the question: if the interfaces are so closely related that they depend on each other, why are they defined in different
modules? In the interest of clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

module Outer {
    sequence<string> Seq;

    module Inner {
        sequence<short> Seq;
    };
};

Within module , the name  refers to a sequence of  values and hides the definition of . You can still refer toInner Seq short Outer::Seq
the other definition by using explicit scope qualification, for example:

Slice

module Outer {
    sequence<string> Seq;

    module Inner {
        sequence<short> Seq;

        struct Confusing {
            Seq          a;     // Sequence of short
            ::Outer::Seq b;     // Sequence of string
        };
    };
};

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a module named  cannot (recursively) contain any constructM
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also named . The same is true for interfaces, classes, structures, exceptions, and operations. For example, the following examples are all inM
error:

Slice

module M {
    interface M { /* ... */ };  // Error!

    interface I {
        void I();               // Error!
        void op(string op);     // Error!
    };

    struct S {
        long s;                 // Error, even if case differs!
    };

};

module Outer {
    module Inner {
        interface Outer {       // Error!
            // ...
        };
    };
};

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and
Java reserve the name of a class as the name of the constructor, so an interface  could not contain an operation named  without artificialI I
rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested
module or type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in
some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type to be the same as the name of one of its enclosing modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change
meaning.

For example:

Slice

module M {
    sequence<string> Seq;

    interface Bad {
        Seq op1();      // Seq and op1 introduced here
        int Seq();      // Error, Seq has changed meaning
    };
};

The declaration of  uses  as its return type, thereby introducing  into the scope of interface . Thereafter,  can only beop1 Seq Seq Bad Seq
used as a type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:
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Slice

module M {
    sequence<string> Seq;

    interface Bad {
        ::M::Seq op1(); // Only op1 introduced here
        int Seq();      // OK
    };
};

In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a  scope resolution operator) does::
not introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only
the first component of the name:

Slice

module M {
    sequence<string> Seq;

    interface Bad {
        M::Seq op1();   // M and op1 introduced here, but not Seq
        int Seq();      // OK
    };
};

Name Lookup Rules

When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current
scope of a definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively
searches enclosing scopes for the name until it reaches the global scope. Here is an example to illustrate this:

Slice

module M1 {
    sequence<double> Seq;

    module M2 {
        sequence<string> Seq;   // OK, hides ::M1::Seq

        interface Base {
            Seq op1();          // Returns sequence of string
        };
    };

    module M3 {
        interface Derived extends M2::Base {
            Seq op2();          // Returns sequence of double
        };

        sequence<bool> Seq;     // OK, hides ::M1::Seq

        interface I {
            Seq op();           // Returns sequence of bool
        };
    };

    interface I {
        Seq op();               // Returns sequence of double
    };
};
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Note that  returns a sequence of , even though  returns a sequence of . That is, theM2::Derived::op2 double M1::Base::op1 string
meaning of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a
definition only in the current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

See Also

Lexical Rules
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Metadata

Slice has the concept of a  directive. For example:metadata

Slice

["java:type:java.util.LinkedList"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata directives appear in a pair of square brackets and contain one
or more string literals separated by commas. For example, the following is a syntactically valid metadata directive containing two strings:

Slice

["a", "b"] interface Example {};

Metadata directives are not part of the Slice language per se: the presence of a metadata directive has no effect on the client-server
contract, that is, metadata directives do not change the Slice type system in any way. Instead, metadata directives are targeted at specific
back-ends, such as the code generator for a particular language mapping. In the preceding example, the  prefix indicates that thejava:
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that does not change the Slice types being defined, but somehow
influences how the compiler will generate code for these definitions. For example, a metadata directive 

 instructs the Java code generator to map a sequence to a linked list instead of an array (which isjava:type:java.util.LinkedList
the default).

Metadata directives are also used to create skeletons that support .Asynchronous Method Dispatch (AMD)

Apart from metadata directives that are attached to a specific definition, there are also global metadata directives. For example:

Slice

[["java:package:com.acme"]]

Note that a global metadata directive is enclosed by double square brackets, whereas a local metadata directive (one that is attached to a
specific definition) is enclosed by single square brackets. Global metadata directives are used to pass instructions that affect the entire
compilation unit. For example, the preceding metadata directive instructs the Java code generator to generate the contents of the source file
into the Java package . Global metadata directives must precede any definitions in a file (but can appear following any com.acme #include
directives).

We discuss specific metadata directives in the relevant chapters to which they apply.

You can find a summary of all metadata directives in .Slice Metadata Directives

See Also

Slice Metadata Directives
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Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically
serializes and deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not
have a corresponding Slice definition.

On this page:

The  Metadata Directiveserializable
Architectural Implications

The  Metadata Directiveserializable

To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;

interface JavaExample {
    void sendJavaObj(JavaObj o);
};

["clr:serializable:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;

interface CLRExample {
    void sendCLRObj(CLRObj o);
};

The  metadata indicates that the corresponding byte sequence holds a  named java:serializable Java serializable type
. Your program must provide an implementation of this class; the class must be derived from SomePackage.JavaClass

.java.io.Serializable

Similarly, the  metadata indicates that the corresponding byte sequences holds a  named clr:serializable CLR serializable type
. Your program must provide an implementation of this class; the class must be marked with the SomeNamespace.CLRClass

 attribute.Serializable

Architectural Implications

The  metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need toserializable
define corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary
Slice byte sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at
the receiving end. The  metadata conveniently takes care of these chores for you and so is simpler to use.serializable

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java
object is useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence.
(Of course, if that receiving process is a Java process, it can deserialize the byte sequence.)

Further, similar to Slice , a serialized object can be deserialized only if client and server agree on the definition of theclasses with methods
serialized class. In Java, this is enforced by the  field of each instance; in the CLR, client and server must referenceserialVersionUID
identical assembly versions. This creates much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to
add C++ or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them
around as a blob of bytes.

So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library
versioning and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also
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Serializable Objects in Java
Serializable Objects in C#
Architectural Implications of Classes
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Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a Slice definition. For example:

Slice

interface Example {
    ["deprecated:someOperation() has been deprecated, use alternativeOperation() instead."]
    void someOperation();

    void alternativeOperation();
};

The  metadata directive causes the compiler to emit code that generates a warning if you compile application code that["deprecated"]
uses a deprecated feature. This is useful if you want to remove a feature from a Slice definition but do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and use , the Slice compilers insert a default["deprecated"]
message into the generated code.

You can apply the  metadata directive to Slice constructs other than operations (for example, a structure or sequence["deprecated"]
definition).

See Also

Generating Slice Documentation
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Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown below:

Language Compiler

C++ slice2cpp

Java slice2java

C# slice2cs

Objective-C slice2objc

Python slice2py

Ruby slice2rb

PHP slice2php

The Slice compilers.

The compilers share a similar command-line syntax:

<compiler-name> [options] file...

Regardless of which compiler you use, a number of command-line options are common to the compilers for any language mapping. (See the
appropriate language mapping chapter for options that are specific to a particular language mapping.) The common command-line options
are:

-h, --help
Displays a help message.

-v, --version
Displays the compiler version.

-DNAME
Defines the preprocessor symbol .NAME

-D =NAME DEF
Defines the preprocessor symbol  with the value .NAME DEF

-UNAME
Undefines the preprocessor symbol { .NAME

-IDIR
Add the directory  to the search path for  directives.DIR #include

-E
Print the preprocessor output on .stdout

--output-dir DIR
Place the generated files into directory .DIR

-d, --debug
Print debug information showing the operation of the Slice parser.

--ice
Permit use of the normally reserved prefix  for identifiers. Use this option only when compiling the source code for the Ice runIce
time.

--underscore
Permit use of underscores in Slice identifiers.

The Slice compilers permit you to compile more than a single source file, so you can compile several Slice definitions at once, for example:
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slice2cpp -I. file1.ice file2.ice file3.ice

See Also

Slice Compilation
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Slice Checksums

As distributed applications evolve, developers and system administrators must be careful to ensure that deployed components are using the
same client-server contract. Unfortunately, mistakes do happen, and it is not always readily apparent when they do.

To minimize the chances of this situation, the Slice compilers support an option that generates checksums for Slice definitions, thereby
enabling two peers to verify that they share an identical client-server contract. The checksum for a Slice definition includes details such as
parameter and member names and the order in which operations are defined, but ignores information that is not relevant to the client-server
contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice type identifiers to checksums. A server typically supplies an
operation that returns its checksum dictionary for the client to compare with its local version, at which point the client can take action if it
discovers a mismatch.

The dictionary type is defined in the file  as follows:Ice/SliceChecksumDict.ice

Slice

module Ice {
    dictionary<string, string> SliceChecksumDict;
};

This type can be incorporated into an application's Slice definitions like this:

Slice

#include <Ice/SliceChecksumDict.ice>

interface MyServer {
    idempotent Ice::SliceChecksumDict getSliceChecksums();
    // ...
};

The key of each element in the dictionary is a Slice , and the value is the checksum of that type.type ID

For more information on generating and using Slice checksums, see the appropriate language mapping chapter.

See Also

Type IDs
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Generating Slice Documentation

On this page:

Generating Slice Documentation
Documentation Comments

Hyperlinks
Explicit Cross-References
Markup for Operations
General HTML Markup

Using slice2html

Generating Slice Documentation

If you look at the online , you will find reference documentation for all the Slice definitions used by Ice and its services. InSlice API reference
the binary distributions of Ice, you will also find HTML documentation that contains the same information. The HTML documentation is
generated from special comments in the Slice definitions using , a tool that scans Slice definitions for special comments andslice2html
generates HTML pages for those comments.

As an example of documentation comments, here is the definition of :Ice::Current

http://www.zeroc.com/doc/Ice-3.4.1/reference
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Slice

/**
 *
 * Information about the current method invocation for servers.
 * Each operation on the server has a [Current] as its implicit
 * final parameter. [Current] is mostly used for Ice services.
 * Most applications ignore this parameter.
 *
 **/
local struct Current {
    /**
     * The object adapter.
     **/
    ObjectAdapter adapter;
    
    /**
     * Information about the connection over which the current
     * method invocation was received. If the invocation is direct
     * due to collocation optimization, this value is set to null.
     **/
    Connection con;

    /**
     * The Ice object identity.
     **/
    Identity id;

    /**
     * The facet.
     ***/
    string facet;

    /**
     * The operation name.
     **/
    string operation;

    /**
     * The mode of the operation.
     **/
    OperationMode mode;

    /**
     * The request context, as received from the client.
     **/
    Context ctx;

    /**
     * The request id unless oneway (0) or collocated (-1).
     **/
    int requestId;
};

If you look at the comments, you will see these reflected in the documentation for  in the online .Ice::Current Slice API Reference

Documentation Comments

A documentation comment:

starts with /**
ends with **/

Such a comment can precede any Slice construct, such as a module, interface, structure, operation, and so on. Within a documentation

http://www.zeroc.com/doc/Ice-3.4.2/reference
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comment, you can either start each line with a , or you can leave the beginning of the line blank —  can handle either* slice2html
convention:

Slice

/**
 *
 * This is a documentation comment for which every line
 * starts with a '*' character.
 **/

/**

 This is a documentation comment without a leading '*'
 for each line. Either style of comment is fine.

 **/

The first sentence of the documentation comment for a Slice construct should be a summary sentence.  generates an index ofslice2html
all Slice constructs; the first sentence of the comments for each Slice construct is ued as a summary in that index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code font. For example:

Slice

/**
 * An empty [name] denotes a null object.
 **/

This generates a hyperlink for the  markup that points at the definition of the corresponding Slice symbol. (The symbol can denote anyname
Slice construct, such as a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive  is recognized by . Where it appears, the generated HTML contains a separate section titled "See Also",@see slice2html
followed by a list of Slice identifiers. For example:

Slice

/**
 * The object adapter, which is responsible for receiving requests
 * from endpoints, and for mapping between servants, identities,
 * and proxies.
 *
 * @see Communicator
 * @see ServantLocator
 **/

The Slice identifiers are listed in the corresponding "See Also" section as hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: , , and . For example:@param @return @throws
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Slice

/**
 * Look for an item with the specified
 * primary and secondary key.
 *
 * @param p The primary search key.
 *
 * @param s The secondary search key.
 *
 * @return The item that matches the specified keys.
 *
 * @throws NotFound Raised if no item matches the specified keys.
 **/

Item findItem(Key p, Key s) throws NotFound;

slice2html generates separate "Parameters", "Return Value", and "Exceptions" sections for these directives. Parameters are listed in the
same order as they appear in the comments. (For clarity, that order should match the order of declaration of parameters for the
corresponding operation.)

General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in that place. For example, you can create separate
paragraphs with  and  elements:<P> </P>

Slice

/**
 * This is a comment for some Slice construct.</p>
 *
 * <p>This comment appears in a separate paragraph.
 **/

Note that you must neither begin a documentation comment with a  element nor end it with a  element because, in the generated<p> </p>
HTML, documentation comments are already surrounded by  and  elements.<p> </p>

There are various other ways to create markup — for example, you can use  or  elements. Please see the <table> <ul> HTML specification
for details.

Using slice2html

slice2html uses the following syntax:

slice2html [options] slice_file...

If you have cross-references that span Slice files, you must compile all of the Slice files with a single invocation of .slice2html

The command supports the following options:

-h, --help
Displays a help message.

-v, --version
Displays the compiler version.

-DNAME
Defines the preprocessor symbol .NAME

-D =NAME DEF
Defines the preprocessor symbol  with the value .NAME DEF

http://www.w3.org/TR/html401
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-UNAME
Undefines the preprocessor symbol { .NAME

-IDIR
Add the directory  to the search path for  directives.DIR #include

-E
Print the preprocessor output on .stdout

--output-dir DIR
Place the generated files into directory .DIR

-d, --debug
Print debug information showing the operation of the Slice parser.

--ice
Permit use of the normally reserved prefix  for identifiers. Use this option only when compiling the source code for the Ice runIce
time.

--underscore
Permit use of underscores in Slice identifiers.

--hdr FILE
Prepend  to each generated HTML file (except for ). This allows you to replace the HTML header and otherFILE _sindex.html
preamble information with a custom version, so you can connect style sheets to the generated pages. The specified file must include
the  tag (but need not end with a  tag).  is expected to contain the string  on a line by itself, starting in<body> <body> FILE TITLE
column one. slice2html replaces the  string with the fully-scoped name of the Slice symbol that is documented on theTITLE
corresponding page.

--ftr FILE
Append  to each generated HTML file (except for ). This allows you to add, for example, a custom footer toFILE _sindex.html
each generated page.  must end with a  tag.FILE </body>

--indexhdr FILE
 generates a file  that contains a table of contents of all Slice symbols that hyperlink to theslice2html _sindex.html

corresponding page. This option allows you to replace the standard header with a custom header, for example, to attach a
JavaScript. The specified file must include the  tag (but need not end with a  tag). The default value is the setting of <body> <body>

 (if any).--hdr

--indexftr FILE
Append  to the generated FILE sindex.html page. This allows you to add, for example, a custom footer to the table of contents,

 is must end with a  tag. The default value is the setting of  (if any).or to invoke a JavaScript. _FILE </body> --ftr

--image-dir DIR
With this option,  looks in the specified directory for images to use for the generated navigation hyperlinks. (Withoutslice2html
this option, text links are used instead.) Please see the generated HTML for the names of the various image files. (They can easily
be found by looking for  elements.)img

--logo-url URL
Use the specified URL as a hyperlink for the company logo that is added to each page (if  is specified). The company--image-dir
logo is expected to be in ./logo.gif<image_dir>

--search ACTION
If this option is specified, the generated pages contain a search box that allows you to connect the generated pages to a search
engine. On pressing the "Search" button, the specified  is carried out.ACTION

--index NUM
 generates sub-indexes for various Slice symbols. This option controls how many entries must be present before aslice2html

sub-index is generated. For example, if  is set to 3, a sub-index will be generated only if there are three or more symbols thatNUM
appear in that index. The default settings is 1, meaning that a sub-index is always generated. To disable sub-indexes entirely, set 

 to 0.NUM

--summary NUM
If this option is set, summary sentences that exceed  characters generate a warning.NUM

See Also

Slice API reference
HTML specification

http://www.zeroc.com/doc/Ice-3.4.2/reference
http://www.w3.org/TR/html401
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Slice Keywords

The following identifiers are Slice keywords:

bool exception interface sequence

byte extends local short

class false LocalObject string

const float long struct

dictionary idempotent module throws

double implements Object true

enum int out void

Keywords must be capitalized as shown.

See Also

Lexical Rules
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Slice Metadata Directives

On this page:

General Metadata Directives
Metadata Directives for C++
Metadata Directives for Java
Metadata Directives for C#
Metadata Directives for .NET and Mono
Metadata Directives for Objective-C
Metadata Directives for Python
Metadata Directives for Freeze

General Metadata Directives

ami

This directive applies to interfaces, classes, and individual operations. It enable code generation for asynchronous method invocation.

This directive applies to the . For the new AMI mapping there is no need for this directive.deprecated AMI mapping

amd

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See
the relevant language mapping chapter for details.)

deprecated

This directive allows you to emit a  .deprecation warning for Slice constructs

protected

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of
the relevant language mapping chapter for more information.

UserException

This directive applies only to operations on local interfaces. The metadata directive indicates that the operation can throw any user
exception, regardless of its specific definition. (This directive is used for the  and  operations on servant locators, whichlocate finished
can throw any user exception.)

Metadata Directives for C++

cpp:array and cpp:range:array

These directives apply to sequences. They direct the code generator to create zerocopy APIs for .passing sequences as parameters

cpp:class

This directive applies to . It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slicestructures
structure.

cpp:const

This directive applies to operations. It directs the code generator to create a  pure virtual member function for the .const skeleton class

cpp:type:wstring
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This directive applies to data members of type string as well as to containers, such as structures, classes, and exceptions. It changes the 
 from  to .default mapping for strings std::string std::wstring

cpp:header-ext

This global directive allows you to use a  other than the default   extension.file extension for C++ header files .h

cpp:include

This global directive allows you inject additional #include directives into the generated code. This is useful for .custom types

cpp:virtual

This directive applies to classes. If the directive is present and a class has base classes, the generated C++ class derives virtually from its
bases; without this directive, slice2cpp generates the class so it derives non-virtually from its bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the
derived class. For example:

Slice

class Base {
    int baseOp();
};

["cpp:virtual"]
class Derived extends Base {
    string derivedOp();
};

The metadata directive causes slice2cpp to generate the class definition for  using virtual inheritance:Derived

C++

class Base : virtual public Ice::Object {
    // ...
};

class Derived : virtual public Base {
    // ...
};

This allows you to reuse the implementation of  in the servant for  using ladder inheritance:baseOp Derived

C++

class BaseI : public virtual Base {
    Ice::Int baseOp(const Ice::Current&);
    // ...
};

class DerivedI : public virtual Derived, public virtual BaseI {
    // Re-use inherited baseOp()
};

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if
you implement your own one-shot constructor. For example:
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Slice

class Base {
    int baseInt;
};

class Derived extends Base {
    int derivedInt;
};

The generated one-shot constructor for  initializes both  and :Derived baseInt derivedInt

C++

Derived::Derived(Ice::Int __ice_baseInt, Ice::Int __ice_derivedInt)
    : M::Base(__ice_baseInt),
      derivedInt(__ice_derivedInt)
{
}

If you derive your own class from  and add a one-shot constructor to your class, you must explicitly call the constructor of all theDerived
base classes, including . Failure to call the  constructor will result in  being default-constructed instead of getting a definedBase Base Base
value. For example:

C++

class DerivedI : public virtual Derived {
public:
    DerivedI(int baseInt, int derivedInt, const string& s)
        : Base(baseInt), Derived(baseInt, derivedInt), _s(s)
    {
    }

private:
    string _s;
};

This code correctly initializes the  member of the  part of the class. Note that the following does not work as intended andbaseInt Base
leaves the  part default-constructed (meaning that  is not initialized):Base baseInt

C++

class DerivedI : public virtual Derived {
public:
    DerivedI(int baseInt, int derivedInt, const string& s)
        : Derived(baseInt, derivedInt), _s(s)
    {
        // WRONG: Base::baseInt is not initialized.
    }

private:
    string _s;
};

Metadata Directives for Java

java:package
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This global directive instructs the code generator to place the generated classes into a .specific package

java:getset

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods ( )JavaBean methods
for data members.

java:serializable

This directive allows you to use Ice to transmit  as native objects, without having to define corresponding Sliceserializable Java classes
definitions for these classes.

java:type

This directive allows to use  for sequences and dictionaries.custom types

Metadata Directives for C#

Note that C# (and other Common Language Runtime languages) are also affected by metadata with a  prefix. (See clr: Metadata Directives
.)for .NET and Mono

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the
generated code. (See .)C-Sharp Specific Metadata Directives

Metadata Directives for .NET and Mono

clr:class

This directive applies to Slice structures. It directs the code generator to emit a  instead of a structure.C# class

clr:collection

This directive applies to  and  and maps them to types that are derived from  and sequences dictionaries CollectionBase
, respectively.DictionaryBase

clr:generic:List, ,  and clr:generic:LinkedList clr:generic:Queue clr:generic:Stack

These directives apply to  and map them to the specified sequence type.sequences

clr:generic:SortedDictionary

This directive applies to  and maps them to .dictionaries SortedDictionary

clr:generic

This directive applies to  and allows you map them to custom types.sequences

clr:property

This directive applies to Slice structures and classes. It directs the code generator to create  for data members.C# property definitions

clr:serializable

This directive allows you to use Ice to transmit , without having to define corresponding Sliceserializable CLR classes as native objects
definitions for these classes.

Metadata Directives for Objective-C
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objc:prefix

This directive applies to modules and changes the  to use a specified prefix.default mapping for modules

Metadata Directives for Python

python:package

This global directive instructs the code generator to place the generated code into a .specified Python package

python:seq:default,  and python:seq:list python:seq:tuple

These directives allow you to change the .mapping for Slice sequences

Metadata Directives for Freeze

freeze:read and freeze:write

These directives inform a Freeze evictor whether an operation  of an object, so the evictor knows whether it must save anupdates the state
object before evicting it.

See Also

Metadata
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Slice for a Simple File System

For this manual, we use a file system application to illustrate various aspects of Ice. Throughout, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates the architectural and coding aspects of Ice. This allows us to
explore the capabilities of the platform to a realistic degree of complexity without overwhelming you with an inordinate amount of detail early
on.

In this section:

File System Application outlines the file system functionality
Slice Definitions for the File System develops the data types and interfaces that are required for the file system
Complete Definition presents the complete Slice definition for the application.

File System Application

Our file system application implements a simple hierarchical file system, similar to the file systems we find in Windows or Unix. To keep code
examples to manageable size, we ignore many aspects of a real file system, such as ownership, permissions, symbolic links, and a number
of other features. However, we build enough functionality to illustrate how you could implement a fully-featured file system, and we pay
attention to things such as performance and scalability. In this way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that can contain either directories or files, meaning that the file
system is hierarchical. A dedicated directory is at the root of the file system. Each directory and file has a name. Files and directories with a
common parent directory must have different names (but files and directories with different parent directories can have the same name). In
other words, directories form a naming scope, and entries with a single directory must have unique names. Directories allow you to list their
contents.

For now, we do not have a concept of pathnames, or the creation and destruction of files and directories. Instead, the server provides a fixed
number of directories and files. (We will address the creation and destruction of files and directories in .)Object Life Cycle

Files can be read and written but, for now, reading and writing always replace the entire contents of a file; it is impossible to read or write
only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing interfaces for the system. Files and directories have something
in common: they have a name and both files and directories can be contained in directories. This suggests a design that uses a base type
that provides the common functionality, and derived types that provide the functionality specific to directories and files, as shown:

Inheritance Diagram of the File System.

The Slice definitions for this look as follows:
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Slice

interface Node { 
    // ...
}; 

interface File extends Node { 
    // ...
}; 

interface Directory extends Node { 
    // ...
}; 

Next, we need to think about what operations should be provided by each interface. Seeing that directories and files have names, we can
add an operation to obtain the name of a directory or file to the  base interface:Node

Slice

interface Node { 
    idempotent string name();
}; 

The  interface provides operations to read and write a file. For simplicity, we limit ourselves to text files and we assume that File read
operations never fail and that only  operations can encounter error conditions. This leads to the following definitions:write

Slice

exception GenericError {
    string reason;
};

sequence<string> Lines;

interface File extends Node { 
    idempotent Lines read();
    idempotent void write (Lines text) throws GenericError;
}; 

Note that  and  are marked idempotent because either operation can safely be invoked with the same parameter value twice in aread write
row: the net result of doing so is the same has having (successfully) called the operation only once.

The  operation can raise an exception of type . The exception contains a single  data member, of type write GenericError reason
. If a  operation fails for some reason (such as running out of file system space), the operation throws a string write GenericError

exception, with an explanation of the cause of the failure provided in the  data member.reason

Directories provide an operation to list their contents. Because directories can contain both directories and files, we take advantage of the
polymorphism provided by the  base interface:Node

Slice

sequence<Node*> NodeSeq; 

interface Directory extends Node { 
    idempotent NodeSeq list(); 
}; 

The  sequence contains elements of type . Because  is a base interface of both  and , the NodeSeq Node* Node Directory File NodeSeq
sequence can contain proxies of either type. (Obviously, the receiver of a  must down-cast each element to either  or NodeSeq File

 in order to get at the operations provided by the derived interfaces; only the  operation in the  base interface can beDirectory name Node
invoked directly, without doing a down-cast first. Note that, because the elements of  are of type  (not ), we are usingNodeSeq Node* Node
pass-by-reference semantics: the values returned by the  operation are proxies that each point to a remote node on the server.list
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These definitions are sufficient to build a simple (but functional) file system. Obviously, there are still some unanswered questions, such as
how a client obtains the proxy for the root directory. We will address these questions in the relevant implementation chapter.

Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

See Also

Object Life Cycle
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C++ Mapping

Topics

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The C++ Utility Library
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Client-Side Slice-to-C++ Mapping

The client-side Slice-to-C++ mapping defines how Slice data types are translated to C++ types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C++ mapping is intuitive. For example, Slice sequences map to STL vectors, so there is
essentially nothing new you have to learn in order to use Slice sequences in C++.

The rules that make up the C++ mapping are simple and regular. In particular, the mapping is free from the potential pitfalls of memory
management: all types are self-managed and automatically clean up when instances go out of scope. This means that you cannot
accidentally introduce a memory leak by, for example, ignoring the return value of an operation invocation or forgetting to deallocate memory
that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the  for classes is interlocked against parallel access, soreference counting mechanism
reference counts cannot be corrupted if a class instance is shared among a number of threads. Obviously, you must still synchronize access
to data from different threads. For example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only need to concern yourself with concurrent access to your
own data — the Ice run time itself is fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely
can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the C++ mapping, you should need no more than the Slice definition of your application and knowledge of
the C++ mapping rules. In particular, looking through the generated header files in order to discern how to use the C++
mapping is likely to be confusing because the header files are not necessarily meant for human consumption and,
occasionally, contain various cryptic constructs to deal with operating system and compiler idiosyncrasies. Of course,
occasionally, you may want to refer to a header file to confirm a detail of the mapping, but we recommend that you
otherwise use the material presented here to see how to write your client-side code.

The  Ice Namespace
All of the APIs for the Ice run time are nested in the  namespace, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  namespace are generated from Slice definitions; other parts of the Ice Ice
namespace provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally
cover the contents of the  namespace throughout the remainder of the manual.Ice

Topics

C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions
C++ Mapping for Interfaces
C++ Mapping for Operations
C++ Mapping for Classes
Smart Pointers for Classes
Asynchronous Method Invocation (AMI) in C++
slice2cpp Command-Line Options
Using Slice Checksums in C++
Example of a File System Client in C++



Ice 3.4.2 Documentation

172 Copyright © 2011, ZeroC, Inc.

C++ Mapping for Identifiers

A Slice  maps to an identical C++ identifier. For example, the Slice identifier  becomes the C++ identifier . There is oneidentifier Clock Clock
exception to this rule: if a Slice identifier is the same as a C++ keyword, the corresponding C++ identifier is prefixed with . For_cpp_
example, the Slice identifier  is mapped as .while _cpp_while

A single Slice identifier often results in several C++ identifiers. For example, for a Slice interface named , the generated C++ code usesFoo
the identifiers  and  (among others). If the interface has the name , the generated identifiers are  and Foo FooPrx while _cpp_while

 (  ), that is, the prefix is applied only to those generated identifiers that actually require it.whilePrx not _cpp_whilePrx

You should try to  as much as possible.avoid such identifiers

See Also

Lexical Rules
C++ Mapping for Modules
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions
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C++ Mapping for Modules

A Slice  maps to a C++ namespace. The mapping preserves the nesting of the Slice definitions. For example:module

Slice

module M1 {
    module M2 {
        // ...
    };
    // ...
};

// ...

module M1 {     // Reopen M1
    // ...
};

This definition maps to the corresponding C++ definition:

C++

namespace M1 {
    namespace M2 {
        // ...
    }
    // ...
}

// ...

namespace M1 {  // Reopen M1
    // ...
}

If a Slice module is reopened, the corresponding C++ namespace is reopened as well.

See Also

Modules
C++ Mapping for Identifiers
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions
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C++ Mapping for Built-In Types

On this page:

Mapping of Slice Built-In Types to C++ Types
Alternative String Mapping for C++

Mapping of Slice Built-In Types to C++ Types

The Slice  are mapped to C++ types as shown in this table:built-in types

Slice C++

bool bool

byte Ice::Byte

short Ice::Short

int Ice::Int

long Ice::Long

float Ice::Float

double Ice::Double

string std::string

Slice  and  map to C++  and . The remaining built-in Slice types map to C++ type definitions instead of C++bool string bool std::string
native types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example,  mightIce::Int
be defined as  on one architecture and as  on another.)long int

Note that  is a typedef for . This guarantees that byte values are always in the range 0..255.Ice::Byte unsigned char

All the basic types are guaranteed to be distinct C++ types, that is, you can safely overload functions that differ in only the types listed in the
table above.

Alternative String Mapping for C++

You can use a metadata directive, , to map strings to C++ . This is useful for applications that use["cpp:type:wstring"] std::wstring
languages with alphabets that cannot be represented in 8?bit characters. The metadata directive can be applied to any Slice construct. For
containers (such as modules, interfaces, or structures), the metadata directive applies to all strings within the container. A corresponding
metadata directive, , can be used to selectively override the mapping defined by the enclosing container. For["cpp:type:string"]
example:
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Slice

["cpp:type:wstring"]
struct S1 {
    string x;             // Maps to std::wstring
    ["cpp:type:wstring"]
    string y;             // Maps to std::wstring
    ["cpp:type:string"]
    string z;             // Maps to std::string
};

struct S2 {
    string x;             // Maps to std::string
    ["cpp:type:string"]
    string y;             // Maps to std::string
    ["cpp:type:wstring"]
    string z;             // Maps to std::wstring
};

With these metadata directives, the strings are mapped as indicated by the comments. By default, narrow strings are encoded as UTF?8,
and wide strings use Unicode in an encoding that is appropriate for the platform on which the application executes. You can override the
encoding for narrow and wide strings by registering a  with the Ice run time.string converter

See Also

Basic Types
C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions
C++ Strings and Character Encoding
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C++ Mapping for Enumerations

A Slice  maps to the corresponding enumeration in C++. For example:enumeration

Slice

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C++ definition is identical:

C++

enum Fruit { Apple, Pear, Orange };

See Also

Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
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C++ Mapping for Structures

A Slice  maps to a C++ structure by default. In addition, you can use a metadata directive to map structures to C++ .structure classes

On this page:

Default Mapping for Structures in C++
Class Mapping for Structures in C++
Default Constructors for Structures in C++

Default Mapping for Structures in C++

Slice structures map to C++ structures with the same name. For each Slice data member, the C++ structure contains a public data member.
For example, here is our  structure once more:Employee

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-C++ compiler generates the following definition for this structure:

C++

struct Employee {
    Ice::Long   number;
    std::string firstName;
    std::string lastName;
    bool operator==(const Employee&) const;
    bool operator!=(const Employee&) const;
    bool operator<(const Employee&) const;
    bool operator<=(const Employee&) const;
    bool operator>(const Employee&) const;
    bool operator>=(const Employee&) const;
};

For each data member in the Slice definition, the C++ structure contains a corresponding public data member of the same name.
Constructors are intentionally omitted so that the C++ structure qualifies as a  (POD).plain old datatype

Note that the structure also contains comparison operators. These operators have the following behavior:

operator==
Two structures are equal if (recursively), all its members are equal.

operator!=
Two structures are not equal if (recursively), one or more of its members are not equal.

operator<
operator<=
operator>
operator>=
The comparison operators treat the members of a structure as sort order criteria: the first member is considered the first criterion,
the second member the second criterion, and so on. Assuming that we have two  structures,  and , this means thatEmployee s1 s2
the generated code uses the following algorithm to compare  and :s1 s2
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C++

bool Employee::operator<(const Employee& rhs) const
{
    if (this == &rhs)   // Short?cut self?comparison
        return false;

    // Compare first members
    //
    if (number < rhs.number)
        return true;
    else if (rhs.number < number)
        return false;

    // First members are equal, compare second members
    //
    if (firstName < rhs.firstName)
        return true;
    else if (rhs.firstName < firstName)
        return false;

    // Second members are equal, compare third members
    //
    if (lastName < rhs.lastName)
        return true;
    else if (rhs.lastName < lastName)
        return false;

    // All members are equal, so return false
    return false;
}

The comparison operators are provided to allow the use of structures as the key type of , which are mapped to Slice dictionaries
 in C++.std::map

Note that copy construction and assignment always have deep-copy semantics. You can freely assign structures or structure members to
each other without having to worry about memory management. The following code fragment illustrates both comparison and deep-copy
semantics:

C++

Employee e1, e2;
e1.firstName = "Bjarne";
e1.lastName = "Stroustrup";
e2 = e1;                        // Deep copy
assert(e1 == e2);
e2.firstName = "Andrew";        // Deep copy
e2.lastName = "Koenig";         // Deep copy
assert(e2 < e1);

Because strings are mapped to , there are no memory management issues in this code and structure assignment and copyingstd::string
work as expected. (The default member-wise copy constructor and assignment operator generated by the C++ compiler do the right thing.)

Class Mapping for Structures in C++

Occasionally, the mapping of Slice structures to C++ structures can be inefficient. For example, you may need to pass structures around in
your application, but want to avoid having to make expensive copies of the structures. (This overhead becomes noticeable for structures with
many complex data members, such as sequences or strings.) Of course, you could pass the structures by const reference, but that can
create its own share of problems, such as tracking the life time of the structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice structures to C++ classes. Classes (as opposed to structures) are
reference-counted. Because the Ice C++ mapping provides , you can keep references to a class instance in manysmart pointers for classes
places in the code without having to worry about either expensive copying or life time issues.
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The alternate mapping is enabled by a metadata directive, . Here is our Employee structure once again, but this time with["cpp:class"]
the additional metadata directive:

Slice

["cpp:class"] struct Employee {
    long number;
    string firstName;
    string lastName;
};

Here is the generated class:

C++

class Employee : public IceUtil::Shared {
public:
    Employee() {}
    Employee(::Ice::Long,
             const ::std::string&,
             const ::std::string&);
    ::Ice::Long number;
    ::std::string firstName;
    ::std::string lastName;

    bool operator==(const Employee&) const;
    bool operator!=(const Employee&) const;
    bool operator<(const Employee&) const;
    bool operator<=(const Employee&) const;
    bool operator>(const Employee&) const;
    bool operator>=(const Employee&) const;
};

Note that the generated class, apart from a default constructor, has a constructor that accepts one argument for each member of the
structure. This allows you to instantiate and initialize the class in a single statement (instead of having to first instantiate the class and then
assign to its members).

As for the default structure mapping, the class contains one public data member for each data member of the corresponding Slice structure.

The comparison operators behave as for the default structure mapping.

You can learn how to , and how to access them via , in the sections describing the mapping for Sliceinstantiate classes smart pointers
classes — the API described there applies equally to Slice structures that are mapped to classes.

Default Constructors for Structures in C++

Structures have an implicit default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built?in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to
assume that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be
outside the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a
legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your .Slice definition
The default constructor initializes each of these data members to its declared value.

If you declare a default value for at least one member of a structure, or use the class mapping for the structure, the Slice compiler also
generates a second constructor. This  constructor has one parameter for each data member, allowing you to construct and initializeone-shot
an instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also

Structures
C++ Mapping for Enumerations
C++ Mapping for Sequences
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C++ Mapping for Dictionaries
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C++ Mapping for Sequences

On this page:

Default Sequence Mapping in C++
Custom Sequence Mapping in C++

STL Container Mapping for Sequences
Array Mapping for Sequences in C++
Range Mapping for Sequences in C++

Default Sequence Mapping in C++

Here is the definition of our  sequence once more:FruitPlatter

Slice

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following definition for the  sequence:FruitPlatter

C++

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector, so you can use the sequence like any other STL vector. For example:

C++

// Make a small platter with one Apple and one Orange
//
FruitPlatter p;
p.push_back(Apple);
p.push_back(Orange);

As you would expect, you can use all the usual STL iterators and algorithms with this vector.

Custom Sequence Mapping in C++

In addition to the default mapping of sequences to vectors, Ice supports three additional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a metadata directive, for example:

Slice

[["cpp:include:list"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:std::list< ::Food::Fruit>"]
    sequence<Fruit> FruitPlatter;

};

With this metadata directive, the sequence now maps to a C++ :std::list
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C++

#include <list>

namespace Food {

    typedef std::list< Food::Fruit> FruitPlatter;

    // ...
}

The  metadata directive must be applied to a sequence definition; anything following the  prefix is taken to be thecpp:type cpp:type:
name of the type. For example, we could use . In that case, the compiler would use a["cpp:type:::std::list< ::Food::Fruit>"]
fully-qualified name to define the type:

C++

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the  prefix literally into the generated code. Thiscpp:type:
means that, to avoid C++ compilation failures due to unknown symbols, you should use a qualified name for the type.

Also note that, to avoid compilation errors in the generated code, you must instruct the compiler to generate an appropriate include directive
with the  global metadata directive. This causes the compiler to add the linecpp:include

C++

#include <list>

to the generated header file.

Instead of , you can specify a type of your own as the sequence type, for example:std::list

Slice

[["cpp:include:FruitBowl.h"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:FruitBowl"]
    sequence<Fruit> FruitPlatter;

};

With these metadata directives, the compiler will use a C++ type  as the sequence type, and add an include directive for theFruitBowl
header file  to the generated code.FruitBowl.h

You can use any class of your choice as a sequence type, but the class must meet certain requirements. ( , , and vector list deque
happen to meet these requirements.)

The class must have a default constructor and a single-argument constructor that takes the size of the sequence as an argument of
unsigned integral type.
The class must have a copy constructor.
The class must provide a member function  that returns the number elements in the sequence as an unsigned integral type.size
The class must provide a member function  that swaps the contents of the sequence with another sequence of the same type.swap
The class must define  and  types and must provide  and  member functions with the usualiterator const_iterator begin end
semantics; the iterators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a , , or  with respect to these points, you can use it as a customvector list deque
sequence implementation.
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In addition to modifying the type of a sequence itself, you can also modify the mapping for particular . Forreturn values or parameters
example:

Slice

[["cpp:include:list"]]
[["cpp:include:deque"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    sequence<Fruit> FruitPlatter;

    interface Market {
        ["cpp:type:list< ::Food::Fruit>"]
        FruitPlatter barter(["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer);
    };

};

With this definition, the default mapping of  to a C++  still applies but the return value of  is mapped as a FruitPlatter vector barter
, and the  parameter is mapped as a .list offer deque

Array Mapping for Sequences in C++

The array mapping for sequences applies to  and to  and  operations. For example:input parameters out parameters of AMI AMD

Slice

interface File {
    void write(["cpp:array"] Ice::ByteSeq contents);
};

The  metadata directive instructs the compiler to map the  parameter to a pair of pointers. With this directive, the cpp:array contents
 method on the proxy has the following signature:write

C++

void write(const std::pair<const Ice::Byte*, const Ice::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer points at the beginning of the sequence, and the second
pointer points one element past the end of the sequence.

Similarly, for the server side, the  method on the skeleton has the following signature:write

C++

virtual void write(const ::std::pair<const ::Ice::Byte*, const ::Ice::Byte*>&,
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range   (that is, they use the usual STL semantics[first, last)
for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The pointers point directly into the server-side transport buffer; this
allows the server-side run time to avoid creating a  to pass to the operation implementation, thereby avoiding both allocating memoryvector
for the sequence and copying its contents into that memory.
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You can use the array mapping for any sequence type. However, it provides a performance advantage only for byte
sequences (on all platforms) and for sequences of integral or floating point types (x86 platforms only).

The called operation in the server must not store a pointer into the passed sequence because the transport buffer into
which the pointer points is deallocated as soon as the operation completes.

Range Mapping for Sequences in C++

The range mapping for sequences is similar to the array mapping and exists for the same purpose, namely, to enable zero-copy of sequence
parameters:

Slice

interface File {
    void write(["cpp:range"] Ice::ByteSeq contents);
};

The  metadata directive instructs the compiler to map the  parameter to a pair of . With thiscpp:range contents const_iterator
directive, the  method on the proxy has the following signature:write

C++

void write(const std::pair<Ice::ByteSeq::const_iterator, Ice::ByteSeq::const_iterator>& contents);

Similarly, for the server side, the  method on the skeleton has the following signature:write

C++

virtual void write(
    const ::std::pair<::Ice::ByteSeq::const_iterator, ::Ice::ByteSeq::const_iterator>&,
    const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range   (that is, they use the usual STL semantics[first, last)
for iterators).

The motivation for the range mapping is the same as for the array mapping: the passed iterators point directly into the server-side transport
buffer and so avoid the need to create a temporary  to pass to the operation.vector

As for the array mapping, the range mapping can be used with any sequence type, but offers a performance advantage
only for byte sequences (on all platforms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the transport buffer into which the iterator
points is deallocated as soon as the operation completes.

You can optionally add a type name to the  metadata directive, for example:cpp:range

Slice

interface File {
    void write(["cpp:range:std::deque<Ice::Byte>"] Ice::ByteSeq contents);
};

This instructs the compiler to generate a pair of  for the specified type:const_iterator
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C++

virtual void write(
    const ::std::pair<std::deque<Ice::Byte>::const_iterator,
                      std::deque<Ice::Byte>::const_iterator>&,
    const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence type that behaves like an STL container.

See Also

Sequences
Asynchronous Method Dispatch (AMD) in C++
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Dictionaries
C++ Mapping for Operations
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C++ Mapping for Dictionaries

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

C++

typedef std::map<Ice::Long, Employee> EmployeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to an STL . As a result, you can use the dictionary like any other STL map
, for example:map

C++

EmployeeMap em;
Employee e;

e.number = 42;
e.firstName = "Stan";
e.lastName = "Lippman";
em[e.number] = e;

e.number = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
em[e.number] = e;

All the usual STL iterators and algorithms work with this map just as well as with any other STL container.

See Also

Dictionaries
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
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C++ Mapping for Constants

Slice  definitions map to corresponding C++ constant definitions. For example:constant

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

C++

const bool          AppendByDefault = true;
const Ice::Byte     LowerNibble =     15;
const std::string   Advice =          "Don't Panic!";
const Ice::Short    TheAnswer =       42;
const Ice::Double   PI =              3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit         FavoriteFruit =   Pear;

All constants are initialized directly in the header file, so they are compile-time constants and can be used in contexts where a compile-time
constant expression is required, such as to dimension an array or as the  label of a  statement.case switch

See Also

Constants and Literals
C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Exceptions
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C++ Mapping for Exceptions

On this page:

C++ Mapping for User Exceptions
C++ Default Constructors for Exceptions
C++ Mapping for Run-Time Exceptions

C++ Mapping for User Exceptions

Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

C++

class GenericError: public Ice::UserException {
public:
    std::string reason;

    GenericError() {}
    explicit GenericError(const string&);

    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
    // Other member functions here...
};

class BadTimeVal: public GenericError {
public:
    BadTimeVal() {}
    explicit BadTimeVal(const string&);

    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
    // Other member functions here...
};

class BadZoneName: public GenericError {
public:
    BadZoneName() {}
    explicit BadZoneName(const string&);

    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
};

Each Slice exception is mapped to a C++ class with the same name. For each exception member, the corresponding class contains a public
data member. (Since  and  do not have members, the generated classes for these exceptions also do not haveBadTimeVal BadZoneName
members.)
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The inheritance structure of the Slice exceptions is preserved for the generated classes, so  and  inherit from BadTimeVal BadZoneName
.GenericError

Each exception has three additional member functions:

ice_name
As the name suggests, this member function returns the name of the exception. For example, if you call the  memberice_name
function of a  exception, it (not surprisingly) returns the string . The  member function isBadZoneName "BadZoneName" ice_name
useful if you catch exceptions generically and want to produce a more meaningful diagnostic, for example:

C++

try {
    // ...
} catch (const GenericError& e) {
    cerr << "Caught an exception: " << e.ice_name() << endl;
}

If an exception is raised, this code prints the name of the actual exception (  or ) because the exceptionBadTimeVal BadZoneName
is being caught by reference (to avoid slicing).

ice_clone
This member function allows you to polymorphically clone an exception. For example:

C++

try {
    // ...
} catch (const Ice::UserException& e) {
   Ice::UserException* copy = e.clone();
} 

ice_clone is useful if you need to make a copy of an exception without knowing its precise run-time type. This allows you to
remember the exception and throw it later by calling .ice_throw

ice_throw
 allows you to throw an exception without knowing its precise run-time type. It is implemented as:ice_throw

C++

void
GenericError::ice_throw() const
{
    throw *this;
}

You can call  to throw an exception that you previously cloned with .ice_throw ice_clone

Each exception has a default constructor. This constructor performs memberwise initialization; for simple built?in types, such as integers, the
constructor performs no initialization, whereas complex types such as strings, sequences, and dictionaries are initialized by their respective
default constructors.

An exception also has a second constructor that accepts one argument for each exception member. This constructor allows you to
instantiate and initialize an exception in a single statement, instead of having to first instantiate the exception and then assign to its
members. For derived exceptions, the constructor accepts one argument for each base exception member, plus one argument for each
derived exception member, in base-to-derived order.

Note that the generated exception classes contain other member functions that are not shown here. However, those member functions are
internal to the C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from . In turn,  inherits from  (whichIce::UserException Ice::UserException Ice::Exception
is an alias for ):IceUtil::Exception
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C++

namespace IceUtil {
    class Exception {
        virtual const std::string& ice_name() const;
        Exception*                 ice_clone() const;
        void                       ice_throw() const;
        virtual void               ice_print(std::ostream&) const;
        // ...
    };
    std::ostream& operator<<(std::ostream&, const Exception&);
    // ...
}

namespace Ice {
    typedef IceUtil::Exception Exception;

    class UserException: public Exception {
    public:
        virtual const std::string& ice_name() const = 0;
        // ...
    };
}

Ice::Exception forms the root of the exception inheritance tree. Apart from the usual , , and  memberice_name ice_clone ice_throw
functions, it contains the  member functions.  prints the name of the exception. For example, calling  onice_print ice_print ice_print
a  exception prints:BadTimeVal

BadTimeVal

To make printing more convenient,  is overloaded for , so you can also write:operator<< Ice::Exception

C++

try {
    // ...
} catch (const Ice::Exception& e) {
    cerr << e << endl;
}

This produces the same output because  calls  internally.operator<< ice_print

For Ice run time exceptions,  also shows the file name and line number at which the exception was thrown.ice_print

C++ Default Constructors for Exceptions

Exceptions have a default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume
that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside
the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal
value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare  in your Slice definition.default values
The default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this
constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members,
in base-to-derived order.

C++ Mapping for Run-Time Exceptions
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The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from  (which, in turn, derives from ).  has the usual member functions: Ice::LocalException Ice::Exception Ice::LocalException

, , , and (inherited from ), , , and .ice_name ice_clone ice_throw Ice::Exception ice_print ice_file ice_line

Recall the  for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you caninheritance diagram
handle exceptions according to the category of error they indicate:

Ice::Exception
This is the root of the complete inheritance tree. Catching  catches both user and run-time exceptions.Ice::Exception

Ice::UserException
This is the root exception for all user exceptions. Catching  catches all user exceptions (but not run-timeIce::UserException
exceptions).

Ice::LocalException
This is the root exception for all run-time exceptions. Catching  catches all run-time exceptions (but notIce::LocalException
user exceptions).

Ice::TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice::ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a  can be handled as , , ConnectTimeoutException ConnectTimeoutException TimeoutException
, or .LocalException Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; theLocalException
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.FacetNotExistException ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
Facets and Versioning
Object Life Cycle
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C++ Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Classes and Proxy Handles
Inheritance from Ice::Object
Proxy Handles

 and ProxyType PointerType
Methods on Proxy Handles

Default constructor
Copy constructor
Assignment operator
Checked cast
Unchecked cast
Stream insertion and stringification

Using Proxy Methods in C++
Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles

On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the
following simple interface:

Slice

module M {
    interface Simple {
        void op();
    };
};

The Slice compiler generates the following definitions for use by the client:
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C++

namespace IceProxy {
    namespace M {
        class Simple;
    }
}

namespace M {
    class Simple;
    typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple> SimplePrx;
    typedef IceInternal::Handle< ::M::Simple> SimplePtr;
}

namespace IceProxy {
    namespace M {
        class Simple : public virtual IceProxy::Ice::Object {
        public:
            typedef ::M::SimplePrx ProxyType;
            typedef ::M::SimplePtr PointerType;

            void op();
            void op(const Ice::Context&);
            // ...
        };
    };
}

As you can see, the compiler generates a   in the  namespace, as well as a  handle .proxy class Simple IceProxy::M proxy M::SimplePrx
In general, for a module , the generated names are  and .M ::IceProxy::M::<interface?name> ::M::<interface?name>Prx

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interfaceIceProxy::M::Simple Simple
in a server and is known as a . All the details about the server-side object, such as its address, what protocol to use, andproxy class instance
its object identity are encapsulated in that instance.

Inheritance from Ice::Object

Simple inherits from , reflecting the fact that all Ice interfaces implicitly inherit from . For eachIceProxy::Ice::Object Ice::Object
operation in the interface, the proxy class has two overloaded member functions of the same name. For the preceding example, we find that
the operation  has been mapped to two member functions .op op

One of the overloaded member functions has a trailing parameter of type . This parameter is for use by the Ice run time toIce::Context
store information about how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing
parameter does not exist. (The parameter is also used by .)IceStorm

Proxy Handles

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly.
The following code will not compile because  is an abstract base class with a protected constructor and destructor:Ice::Object

C++

IceProxy::M::Simple s;  // Compile?time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly. When the client receives a proxy from the run time, it is given a  to the proxy, of type  (proxy handle <interface-name>Prx

 for the preceding example). The client accesses the proxy via its proxy handle; the handle takes care of forwarding operationSimplePrx
invocations to its underlying proxy, as well as reference-counting the proxy. This means that no memory-management issues can arise:
deallocation of a proxy is automatic and happens once the last handle to the proxy disappears (goes out of scope).

Because the application code always uses proxy handles and never touches the proxy class directly, we usually use the term proxy to
denote both proxy handle and proxy class. This reflects the fact that, in actual use, the proxy handle looks and feels like the underlying proxy
class instance. If the distinction is important, we use the terms , , and .proxy class proxy class instance proxy handle
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ProxyType and PointerType

The generated proxy class contains type definitions for  and . These are provided so you can refer to the proxyProxyType PointerType
type and  in template definitions without having to resort to preprocessor trickery, for example:smart pointer type

C++

template<typename T>
class ProxyWrapper {
public:
    T::ProxyType proxy() const;
    // ...
};

Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type  that takes the proxy classIceInternal::ProxyHandle
as the template parameter. This template has the usual default constructor, copy constructor, and assignment operator.

Default constructor

You can default-construct a proxy handle. The default constructor creates a proxy that points nowhere (that is, points at no object at all). If
you invoke an operation on such a null proxy, you get an :IceUtil::NullHandleException

C++

try {
    SimplePrx s;        // Default?constructed proxy
    s?>op();            // Call via nil proxy
    assert(0);          // Can't get here
} catch (const IceUtil::NullHandleException&) {
    cout << "As expected, got a NullHandleException" << endl;
}

Copy constructor

The copy constructor ensures that you can construct a proxy handle from another proxy handle. Internally, this increments a reference count
on the proxy; the destructor decrements the reference count again and, once the count drops to zero, deallocates the underlying proxy class
instance. That way, memory leaks are avoided:

C++

{                               // Enter new scope
    SimplePrx s1 = ...;         // Get a proxy from somewhere
    SimplePrx s2(s1);           // Copy?construct s2
    assert(s1 == s2);           // Assertion passes
}                               // Leave scope; s1, s2, and the
                                // underlying proxy instance
                                // are deallocated

Note the assertion in this example: .proxy handles support comparison

Assignment operator

You can freely assign proxy handles to each other. The handle implementation ensures that the appropriate memory-management activities
take place. Self-assignment is safe and you do not have to guard against it:
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C++

SimplePrx s1 = ...;     // Get a proxy from somewhere
SimplePrx s2;           // s2 is nil
s2 = s1;                // both point at the same object
s1 = 0;                 // s1 is nil
s2 = 0;                 // s2 is nil

Widening assignments work implicitly. For example, if we have two interfaces,  and , we can widen a  to a Base Derived DerivedPrx
 implicitly:BasePrx

C++

BasePrx base;
DerivedPrx derived;
base = derived;         // Fine, no problem
derived = base;         // Compile?time error

Implicit narrowing conversions result in a compile error, so the usual C++ semantics are preserved: you can always assign a derived type to
a base type, but not vice versa.

Checked cast

Proxy handles provide a  method:checkedCast

C++

namespace IceInternal {
    template<typename T>
    class ProxyHandle : public IceUtil::HandleBase<T> {
    public:
        template<class Y>
        static ProxyHandle checkedCast(const ProxyHandle<Y>& r);

        template<class Y>
        static ProxyHandle checkedCast(const ProxyHandle<Y>& r, const ::Ice::Context& c);

        // ...
    };
}

A checked cast has the same function for proxies as a C++  has for pointers: it allows you to assign a base proxy to adynamic_cast
derived proxy. If the base proxy's actual run-time type is compatible with the derived proxy's static type, the assignment succeeds and, after
the assignment, the derived proxy denotes the same object as the base proxy. Otherwise, if the base proxy's run-time type is incompatible
with the derived proxy's static type, the derived proxy is set to null. Here is an example to illustrate this:

C++

BasePrx base = ...;     // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast(base);
if (derived) {
        // Base has run?time type Derived,
        // use derived...
} else {
        // Base has some other, unrelated type
}

The expression  tests whether  points at an object of type  (or an object with a typeDerivedPrx::checkedCast(base) base Derived
that is derived from ). If so, the cast succeeds and  is set to point at the same object as . Otherwise, the cast failsDerived derived base
and  is set to the null proxy.derived
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Note that  is a static member function so, to do a down-cast, you always use the syntax checkedCast <interface-name>
.Prx::checkedCast

Also note that you can use proxies in boolean contexts. For example,  returns true if the .if (proxy) proxy is not null

A  typically results in a remote message to the server.The message effectively asks the server "is the object denoted by thischeckedCast
reference of typeDerived?"

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies
only in narrowly-defined circumstances, so you cannot rely on a  not sending a message.checkedCast

The reply from the server is communicated to the application code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of a proxy is without
confirmation from the server. (For example, the server may replace the implementation of the object for an existing proxy with a more
derived one.) This means that you have to be prepared for a  to fail. For example, if the server is not running, you will receivecheckedCast
a  if the server is running, but the object denoted by the proxy no longer exists, you will receive an ConnectFailedException;

.ObjectNotExistException

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

C++

namespace IceInternal {
    template<typename T>
    class ProxyHandle : public IceUtil::HandleBase<T> {
    public:
        template<class Y>
        static ProxyHandle uncheckedCast(const ProxyHandle<Y>& r);
        // ...
  };
}

An  provides a down-cast  consulting the server as to the actual run-time type of the object, for example:uncheckedCast without

C++

BasePrx base = ...;     // Initialize to point at a Derived
DerivedPrx derived;
derived = DerivedPrx::uncheckedCast(base);
// Use derived...

You should use an  only if you are certain that the proxy indeed supports the more derived type: an , asuncheckedCast uncheckedCast
the name implies, is not checked in any way; it does not contact the object in the server and, if it fails, it does not return null. (An unchecked
cast is implemented internally like a C++ , no checks of any kind are made). If you use the proxy resulting from an incorrect static_cast

 to invoke an operation, the behavior is undefined. Most likely, you will receive an , but,uncheckedCast OperationNotExistException
depending on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently
return garbage results.

Despite its dangers,  is still useful because it avoids the cost of sending a message to the server. And, particularly during uncheckedCast
, it is common to receive a proxy of static type , but with a known run-time type. In such cases, an initialization Ice::Object

 saves the overhead of sending a remote message.uncheckedCast

Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a stream, for example:
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C++

Ice::ObjectPrx p = ...;
cout << p << endl;

This code is equivalent to writing:

C++

Ice::ObjectPrx p = ...;
cout << p?>ice_toString() << endl;

Either code prints the . You could also achieve the same thing by writing:stringified proxy

C++

Ice::ObjectPrx p = ...;
cout << communicator?>proxyToString(p) << endl;

The advantage of using the  member function instead of  is that you do not need to have the communicatorice_toString proxyToString
available at the point of call.

Using Proxy Methods in C++

The base proxy class  supports a variety of . Since proxies are immutable, each of theseObjectPrx methods for customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy(...);
proxy = proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

C++

Ice::ObjectPrx base = communicator->stringToProxy(...);
HelloPrx hello = HelloPrx::checkedCast(base);
hello = hello->ice_timeout(10000); // Type is preserved
hello->sayHello();

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C++

Proxy handles support comparison using the following operators:

operator==
operator!=
These operators permit you to compare proxies for equality and inequality. To test whether a proxy is null, use a comparison with
the literal , for example:0
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C++

if (proxy == 0)
    // It's a nil proxy
else
    // It's a non?nil proxy

operator<
operator<=
operator>
operator>=
Proxies support comparison. This allows you to place proxies into STL containers such as maps or sorted lists.

Boolean comparison
Proxies have a conversion operator to . The operator returns true if a proxy is not null, and false otherwise. This allows you tobool
write:

C++

BasePrx base = ...;
if (base)
        // It's a non?nil proxy
else
        // It's a nil proxy

Note that proxy comparison uses  of the information in a proxy for the comparison. This means that not only the object identity must matchall
for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other
words, comparison with  and  tests for  identity,  object identity. A common mistake is to write code along the following lines:== != proxy not

C++

Ice::ObjectPrx p1 = ...;        // Get a proxy...
Ice::ObjectPrx p2 = ...;        // Get another proxy...

if (p1 != p2) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with , we know that the two proxies denote the same object (because they are identical in all respects); however, if two==
proxies compare unequal with , we know absolutely nothing: the proxies may or may not denote the same object.==

To compare the object identities of two proxies, you can use helper functions in the  namespace:Ice

C++

namespace Ice {

    bool proxyIdentityLess(const ObjectPrx&, const ObjectPrx&);
    bool proxyIdentityEqual(const ObjectPrx&, const ObjectPrx&);
    bool proxyIdentityAndFacetLess(const ObjectPrx&, const ObjectPrx&);
    bool proxyIdentityAndFacetEqual(const ObjectPrx&, const ObjectPrx&);

}

The  function returns true if the object identities embedded in two proxies are the same and ignores otherproxyIdentityEqual
information in the proxies, such as facet and transport information. To include the  in the comparison, use facet name
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 instead.proxyIdentityAndFacetEqual

The  function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparisonproxyIdentityLess
with STL sorted containers. (The function uses  as the major ordering criterion, and  as the minor ordering criterion.) The name category

 function behaves similarly to , except that it also compares the facet names of theproxyIdentityAndFacetLess proxyIdentityLess
proxies when their identities are equal.

proxyIdentityEqual and  allow you to correctly compare proxies for object identity. The exampleproxyIdentityAndFacetLess
below demonstrates how to use :proxyIdentityEqual

C++

Ice::ObjectPrx p1 = ...;        // Get a proxy...
Ice::ObjectPrx p2 = ...;        // Get another proxy...

if (!Ice::proxyIdentityEqual(p1, p2) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

See Also

Interfaces, Operations, and Exceptions
Proxies
C++ Mapping for Operations
Example of a File System Client in C++
Using Proxies
Facets and Versioning
IceStorm
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C++ Mapping for Operations
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Basic C++ Mapping for Operations

As we saw in the , for each  on an interface, the proxy class contains a corresponding member functionC++ mapping for interfaces operation
with the same name. To invoke an operation, you call it via the proxy handle. For example, here is part of the definitions for our :file system

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
    // ...
}; 

The proxy class for the  interface, tidied up to remove irrelevant detail, is as follows:Node

C++

namespace IceProxy {
    namespace Filesystem {
        class Node : virtual public IceProxy::Ice::Object {
        public:
            std::string name();
            // ...
        };
        typedef IceInternal::ProxyHandle<Node> NodePrx;
        // ...
    }
    // ...
}

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

C++

NodePrx node = ...;             // Initialize proxy
string name = node?>name();     // Get name via RPC

The proxy handle overloads  to forward method calls to the underlying proxy class instance which, in turn, sends the operationoperator?>
invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to the caller.

Because the return value is of type , it is safe to ignore the return value. For example, the following code contains no memory leak:string
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C++

NodePrx node = ...;             // Initialize proxy
node?>name();                   // Useless, but no leak

This is true for all mapped Slice types: you can safely ignore the return value of an operation, no matter what its type — return values are
always returned by value. If you ignore the return value, no memory leak occurs because the destructor of the returned value takes care of
deallocating memory as needed.

Normal and  Operations in C++idempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy methods is concerned, idempotent
 has no effect. For example, consider the following interface:idempotent

Slice

interface Example {
               string op1();
    idempotent string op2();
    idempotent void op3(string s);
};

The proxy class for this interface looks like this:

C++

namespace IceProxy {
    class Example : virtual public IceProxy::Ice::Object {
    public:
        std::string op1();
        std::string op2();              // idempotent
        void op3(const std::string&);   // idempotent
        // ...
    };
}

Because  affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the idempotent idempotent
keyword.

Passing Parameters in C++

In-Parameters in C++

The parameter passing rules for the C++ mapping are very simple: parameters are passed either by value (for small values) or by const
reference (for values that are larger than a machine word). Semantically, the two ways of passing parameters are identical: it is guaranteed
that the value of a parameter will not be changed by the invocation (with some caveats — see  below and Out-Parameters Location

).Transparency

Here is an interface with operations that pass parameters of various types from client to server:
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Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

C++

struct NumberAndString {
    Ice::Int x;
    std::string str;
    // ...
};

typedef std::vector<std::string> StringSeq;

typedef std::map<Ice::Long, StringSeq> StringTable;

namespace IceProxy {
    class ClientToServer : virtual public IceProxy::Ice::Object {
    public:
        void op1(Ice::Int, Ice::Float, bool, const std::string&);
        void op2(const NumberAndString&, const StringSeq&, const StringTable&);
        void op3(const ClientToServerPrx&);
        // ...
    };
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer
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C++

ClientToServerPrx p = ...;              // Get proxy...

p?>op1(42, 3.14, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14;
bool b = true;
string s = "Hello world!";
p?>op1(i, f, b, s);                     // Pass simple variables

NumberAndString ns = { 42, "The Answer" };
StringSeq ss;
ss.push_back("Hello world!");
StringTable st;
st[0] = ss;
p?>op2(ns, ss, st);                     // Pass complex variables

p?>op3(p);                              // Pass proxy

You can pass either literals or variables to the various operations. Because everything is passed by value or  reference, there are noconst
memory-management issues to consider.

Out-Parameters in C++

The C++ mapping passes out-parameters by reference. Here is the  once more, modified to pass all parameters in the Slice definition out
direction:

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns, out StringSeq ss, out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for this definition:

C++

namespace IceProxy {
    class ServerToClient : virtual public IceProxy::Ice::Object {
    public:
       void op1(Ice::Int&, Ice::Float&, bool&, std::string&);
       void op2(NumberAndString&, StringSeq&, StringTable&);
       void op3(ServerToClientPrx&);
       // ...
    };
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ServerToClient
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C++

ServerToClientPrx p = ...;      // Get proxy...

int i;
float f;
bool b;
string s;

p?>op1(i, f, b, s);
// i, f, b, and s contain updated values now

NumberAndString ns;
StringSeq ss;
StringTable st;

p?>op2(ns, ss, st);
// ns, ss, and st contain updated values now

p?>op3(p);
// p has changed now!

Again, there are no surprises in this code: the caller simply passes variables to an operation; once the operation completes, the values of
those variables will be set by the server.

It is worth having another look at the final call:

C++

p?>op3(p);      // Weird, but well?defined

Here,  is the proxy that is used to dispatch the call. That same variable  is also passed as an out-parameter to the call, meaning that thep p
server will set its value. In general, passing the same parameter as both an input and output parameter is safe: the Ice run time will correctly
handle all locking and memory-management activities.

Another, somewhat pathological example is the following:

Slice

sequence<int> Row;
sequence<Row> Matrix;

interface MatrixArithmetic {
    void multiply(Matrix m1, Matrix m2, out Matrix result);
};

Given a proxy to a  interface, the client code could do the following:MatrixArithmetic

C++

MatrixArithmeticPrx ma = ...;      // Get proxy...
Matrix m1 = ...;                   // Initialize one matrix
Matrix m2 = ...;                   // Initialize second matrix
ma?>squareAndCubeRoot(m1, m2, m1); // !!!

This code is technically legal, in the sense that no memory corruption or locking issues will arise, but it has surprising behavior: because the
same variable  is passed as an input parameter as well as an output parameter, the final value of  is indeterminate — in particular, ifm1 m1
client and server are collocated in the same address space, the implementation of the operation will overwrite parts of the input matrix  inm1
the process of computing the result because the result is written to the same physical memory location as one of the inputs. In general, you
should take care when passing the same variable as both an input and output parameter and only do so if the called operation guarantees to
be well-behaved in this case.
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Chained Invocations in C++

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

interface Name {
    string getName();
    void setName(string name);
};

Suppose we have two proxies to interfaces of type ,  and , and chain invocations as follows:Name p1 p2

C++

p2?>setName(p1?>getName());

This works exactly as intended: the value returned by  is transferred to . There are no memory-management or exception safety issuesp1 p2
with this code.

Exception Handling in C++

Any operation invocation may throw  and, if the operation has an exception specification, may also throw a run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or more operation invocations in a  block:try-catch

C++

ChildPrx child = ...;           // Get proxy...
try {
    child?>askToCleanUp();      // Give it a try...
} catch (const Tantrum& t) {
    cout << "The child says: " << t.reason << endl;
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:
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1.  

C++

void run()
{
    ChildPrx child = ...;       // Get proxy...
    try {
        child?>askToCleanUp();  // Give it a try...
    } catch (const Tantrum& t) {
        cout << "The child says: " << t.reason << endl;

        child?>scold();         // Recover from error...
    }
    child?>praise();            // Give positive feedback...
}

int
main(int argc, char* argv[])
{
    int status = 1;
    try {
        // ...
        run();
        // ...
        status = 0;
    } catch (const Ice::Exception& e) {
        cerr << "Unexpected run?time error: " << e << endl;
    }
    // ...
    return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our .)first simple application

For efficiency reasons, you should always catch exceptions by  reference. This permits the compiler to avoid calling the exception'sconst
copy constructor (and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters in C++

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may have
still have its original value or may have been changed by the operation's implementation in the target object. In other words, for
out-parameters, Ice provides the weak exception guarantee  but does not provide the strong exception guarantee.[1]

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.

Exceptions and Return Values in C++

For return values, C++ provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an exception
is thrown. (Of course, this guarantee holds only if you do not use the same variable as both an out-parameter and to receive the return value

).of an invocation

See Also

Operations
Slice for a Simple File System
C++ Mapping for Interfaces
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Basic C++ Mapping for Classes

A Slice  is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice dataclass
member (just as for  and ), and a virtual member function for each operation. Consider the following class definition:structures exceptions

Slice

class TimeOfDay {
    short hour;         // 0 ? 23
    short minute;       // 0 ? 59
    short second;       // 0 ? 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

C++

class TimeOfDay;

typedef IceInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx;
typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr;

class TimeOfDay : virtual public Ice::Object {
public:
    Ice::Short hour;
    Ice::Short minute;
    Ice::Short second;

    virtual std::string format() = 0;

    TimeOfDay() {};
    TimeOfDay(Ice::Short, Ice::Short, Ice::Short);

    virtual bool ice_isA(const std::string&);
    virtual const std::string& ice_id();
    static const std::string& ice_staticId();

    typedef TimeOfDayPrx ProxyType;
    typedef TimeOfDayPtr PointerType;

    // ...
};

The  definitions are for template programming.ProxyType and PointerType

There are a number of things to note about the generated code:

The generated class  inherits from . This means that all classes implicitly inherit from ,TimeOfDay Ice::Object Ice::Object
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1.  

2.  
3.  
4.  
5.  
6.  

which is the ultimate ancestor of all classes. Note that  is  the same as . In otherIce::Object not IceProxy::Ice::Object
words, you  pass a class where a proxy is expected and vice versa.cannot
The generated class contains a public member for each Slice data member.
The generated class has a constructor that takes one argument for each data member, as well as a default constructor.
The generated class contains a pure virtual member function for each Slice operation.
The generated class contains additional member functions: , , , and .ice_isA ice_id ice_staticId ice_factory
The compiler generates a type definition . This type implements a smart pointer that wraps dynamically-allocatedTimeOfDayPtr
instances of the class. In general, the name of this type is . Do not confuse this with  — thatPtr<class-name> Prx<class-name>
type exists as well, but is the proxy handle for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from  in C++Ice::Object

Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the figure below, classesIce::Object
inherited from  instead of  (which is at the base of the inheritance hierarchy for proxies). As a result, youIce::Object Ice::ObjectPrx
cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from  and .Ice::ObjectPrx Ice::Object

Ice::Object contains a number of member functions:

C++

namespace Ice {
    class Object : public virtual IceInternal::GCShared {
    public:
        virtual bool ice_isA(const std::string&, const Current& = Current()) const;
        virtual void ice_ping(const Current&  = Current()) const;
        virtual std::vector<std::string> ice_ids(const Current& = Current()) const;
        virtual const std::string& ice_id(const Current& = Current()) const;
        static const std::string& ice_staticId();
        virtual Ice::Int ice_getHash() const;
        virtual ObjectPtr ice_clone() const;

        virtual void ice_preMarshal();
        virtual void ice_postUnmarshal();

        virtual DispatchStatus ice_dispatch(
            Ice::Request&,
            const DispatchInterceptorAsyncCallbackPtr& = 0);

        virtual bool operator==(const Object&) const;
        virtual bool operator!=(const Object&) const;
        virtual bool operator<(const Object&) const;
        virtual bool operator<=(const Object&) const;
        virtual bool operator>(const Object&) const;
        virtual bool operator>=(const Object&) const;
    };
}



Ice 3.4.2 Documentation

210 Copyright © 2011, ZeroC, Inc.

The member functions of  behave as follows:Ice::Object

ice_isA
This function returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the class. Note that  is normally only invoked on theice_ping ice_ping
proxy for a class that might be remote because a class instance that is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time  for a class. If you call  through a smart pointer to a base instance, thetype ID ice_id
returned type id is the actual (possibly more derived) type ID of the instance.

ice_staticId
This function returns the static type ID of a class.

ice_getHash
This method returns a hash value for the class, allowing you to easily place classes into hash tables.

ice_clone
This function makes a .polymorphic shallow copy of a class

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

operator==
operator!=
operator<
operator<=
operator>
operator>=
The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for structures
, is based on the memory address of the class, not on the contents of its data members of the class.

Class Data Members in C++

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of thisprotected
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the  class shown below has the  metadata directive appliedTimeOfDay protected
to each of its data members:

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 ? 23
    ["protected"] short minute; // 0 ? 59
    ["protected"] short second; // 0 ? 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:
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C++

class TimeOfDay : virtual public Ice::Object {
public:

    virtual std::string format() = 0;

    // ...

protected:

    Ice::Short hour;
    Ice::Short minute;
    Ice::Short second;
};

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
    short hour;         // 0 ? 23
    short minute;       // 0 ? 59
    short second;       // 0 ? 59
    string format();    // Return time as hh:mm:ss
};

Class Constructors in C++

Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences,
and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members
having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the
member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside the legal
range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your .Slice definition
The default constructor initializes each of these data members to its declared value.

Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members).

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order. For example:

Slice

class Base {
    int i;
};

class Derived extends Base {
    string s;
};

This generates:
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C++

class Base : virtual public ::Ice::Object
{
public:
    ::Ice::Int i;

    Base() {};
    explicit Base(::Ice::Int);

    // ...
};

class Derived : public Base
{
public:
    ::std::string s;

    Derived() {};
    Derived(::Ice::Int, const ::std::string&);

    // ...
};

Note that single-parameter constructors are defined as , to prevent implicit argument conversions.explicit
By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the 

 metadata directive.["cpp:virtual"]

Class Operations in C++

Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations
(such as the  operation of our  class), you must provide an implementation of the operation in a class that is derived fromformat TimeOfDay
the generated class. For example:

C++

class TimeOfDayI : virtual public TimeOfDay {
public:
    virtual std::string format() {
        std::ostringstream s;
        s << setw(2) << setfill('0') << hour << ":";
        s << setw(2) << setfill('0') << minute << ":";
        s << setw(2) << setfill('0') << second;
        return s.c_str();
    }

protected:
    virtual ~TimeOfDayI() {}  // Optional
};

We discuss the motivation for the protected destructor in .Preventing Stack-Allocation of Class Instances

Class Factories in C++

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:
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Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However, get TimeOfDay
 is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a TimeOfDay

 class that implements the abstract  operation of the  abstract class. In other words, we must provide theTimeOfDayI format TimeOfDay
Ice run time with a factory that knows that the  abstract class has a  concrete implementation. The TimeOfDay TimeOfDayI

 interface provides us with the necessary operations:Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };
};

The object factory's  operation is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
operation is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

C++

class ObjectFactory : public Ice::ObjectFactory {
public:
    virtual Ice::ObjectPtr create(const std::string& type) {
        assert(type == M::TimeOfDay::ice_staticId());
        return new TimeOfDayI;
    }
    virtual void destroy() {}
};

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover at compile time if a Slice class or module has been renamed.
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Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

C++

Ice::CommunicatorPtr ic = ...;
ic?>addObjectFactory(new ObjectFactory, M::TimeOfDay::ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the"::M::TimeOfDay" create
registered  instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, calls to  can be made concurrently.create destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes
Smart Pointers for Classes
C++ Mapping for Operations
Asynchronous Method Invocation (AMI) in C++
Dispatch Interceptors
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Smart Pointers for Classes

On this page:

Automatic Memory Management with Smart Pointers
Copying and Assignment of Classes
Polymorphic Copying of Classes
Null Smart Pointers
Preventing Stack-Allocation of Class Instances
Smart Pointers and Constructors
Smart Pointers and Exception Safety
Smart Pointers and Cycles
Garbage Collection of Class Instances
Smart Pointer Comparison

Automatic Memory Management with Smart Pointers

A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their programs. The difficulty of
doing so is well known: in the face of exceptions, multiple return paths from functions, and callee-allocated memory that must be deallocated
by the caller, it can be extremely difficult to ensure that a program does not leak resources. This is particularly important in multi-threaded
programs: if you do not rigorously track ownership of dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart pointers use reference counting to keep track of each class
instance and, when the last reference to a class instance disappears, automatically delete the instance.

Smart pointer classes are an example of the  ( ) idiom .RAII Resource Acquisition Is Initialization [1]

Smart pointers are generated by the Slice compiler for each class type. For a Slice class , the compiler generates a C++<class-name>
smart pointer called . Rather than showing all the details of the generated class, here is the basic usage pattern:Ptr<class-name>
whenever you allocate a class instance on the heap, you simply assign the pointer returned from  to a smart pointer for the class.new
Thereafter, memory management is automatic and the class instance is deleted once the last smart pointer for it goes out of scope:

C++

{                                       // Open scope
    TimeOfDayPtr tod = new TimeOfDayI;  // Allocate instance
    // Initialize...
    tod->hour = 18;
    tod->minute = 11;
    tod->second = 15;
    // ...
}                                       // No memory leak here!

As you can see, you use  to access the members of the class via its smart pointer. When the  smart pointer goes out ofoperator-> tod
scope, its destructor runs and, in turn, the destructor takes care of calling  on the underlying class instance, so no memory is leaked.delete

A smart pointer performs reference counting of its underlying class instance:

The constructor of a class sets its reference count to zero.
Initializing a smart pointer with a dynamically-allocated class instance causes the smart pointer to increment the reference count of
the instance by one.
Copy-constructing a smart pointer increments the reference count of the instance by one.
Assigning one smart pointer to another increments the target's reference count and decrements the source's reference count.
(Self-assignment is safe.)
The destructor of a smart pointer decrements the reference count by one and calls  on its class instance if the referencedelete
count drops to zero.

Suppose that we default-construct a smart pointer as follows:



Ice 3.4.2 Documentation

216 Copyright © 2011, ZeroC, Inc.

C++

TimeOfDayPtr tod;

This creates a smart pointer with an internal null pointer.

Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; the assignment to the smart pointer causes the smart
pointer to increment the instance's reference count:

C++

tod = new TimeOfDayI;   // Refcount == 1

The resulting situation is shown below:

Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the smart pointer (not the underlying instance) and increments
the reference count of the instance:

C++

TimeOfDayPtr tod2(tod); // Copy-construct tod2
TimeOfDayPtr tod3;
tod3 = tod;             // Assign to tod3

Here is the situation after executing these statements:

Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to one of the original smart pointers, :tod2

C++

tod2 = new TimeOfDayI;

This decrements the reference count of the instance originally denoted by  and increments the reference count of the instance that istod2
assigned to . The resulting situation becomes the following:tod2
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Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

C++

tod = 0;        // Clear handle

As you would expect, this decrements the reference count of the instance, as shown here:

Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to it, the smart pointer decrements the reference count of its
instance; if the reference count drops to zero, the smart pointer calls  to deallocate the instance. The following code snippetdelete
deallocates the instance on the right by assigning  to :tod2 tod3

C++

tod3 = tod2;

This results in the following situation:

Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so you can copy and assign class instances:
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C++

TimeOfDayPtr tod = new TimeOfDayI(2, 3, 4); // Create instance
TimeOfDayPtr tod2 = new TimeOfDayI(*tod);   // Copy instance

TimeOfDayPtr tod3 = new TimeOfDayI;
*tod3 = *tod;                               // Assign instance

Copying and assignment in this manner performs a memberwise shallow copy or assignment, that is, the source members are copied into
the target members; if a class contains class members (which are mapped as smart pointers), what is copied or assigned is the smart
pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

Slice

class Node {
    int i;
    Node next;
};

Assume that we initialize two instances of type  as follows:Node

C++

NodePtr p1 = new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

// ...

*p2 = *p1; // Assignment

After executing the first two statements, we have the situation shown below:

Class instances prior to assignment.

After executing the assignment statement, we end up with this result:
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Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract classes, such as our  class, for example:TimeOfDayI

C++

class TimeOfDayI;

typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr;

class TimeOfDayI : virtual public TimeOfDay {
    // As before...
};

The default copy constructor and assignment operator will perform a memberwise copy or assignment of your implementation class:

C++

TimeOfDayIPtr tod1 = new TimeOfDayI;
TimeOfDayIPtr tod2 = new TimeOfDayI(*tod1);     // Make copy

Of course, if your implementation class contains raw pointers (for which a memberwise copy would almost certainly be inappropriate), you
must implement your own copy constructor and assignment operator that take the appropriate action (and probably call the base copy
constructor or assignment operator to take care of the base part).

Note that the preceding code uses  as a typedef for . This class is a template thatTimeOfDayIPtr IceUtil::Handle<TimeOfDayI>
contains the smart pointer implementation. If you want smart pointers for the implementation of an abstract class, you must define a smart
pointer type as illustrated by this type definition.

Copying and assignment of classes also works correctly for derived classes: you can assign a derived class to a base class, but not
vice-versa; during such an assignment, the derived part of the source class is sliced, as per the usual C++ assignment semantics.

Polymorphic Copying of Classes

As shown in , the C++ mapping generates an  member function for every class:Inheritance from Ice::Object ice_clone

C++

class TimeOfDay : virtual public Ice::Object {
public:
    // ...

    virtual Ice::ObjectPtr ice_clone() const;
};
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This member function makes a polymorphic shallow copy of a class: members that are not class members are deep copied; all members that
are class members are shallow copied. To illustrate, consider the following class definition:

Slice

class Node {
    Node n1;
    Node n2;
};

Assume that we have an instance of this class, with the  and  members initialized to point at separate instances, as shown below:n1 n2

A class instance pointing at two other instances.

If we call  on the instance on the left, we end up with this situation:ice_clone

  Resulting graph after calling ice_clone on the left-most instance.

As you can see, class members are shallow copied, that is,  makes a copy of the class instance on which it is invoked, but doesice_clone
not copy any class instances that are pointed at by the copied instance.

Note that  returns a value of type , to avoid problems with compilers that do not support covariant returnice_clone Ice::ObjectPtr
types. The generated  classes contain a  member that allows you to safely down-cast the return value of . ForPtr dynamicCast ice_clone
example, the code to achieve the situation shown in the illustration above, looks as follows:

C++

NodePtr p1 = new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynamicCast(p1->ice_clone());

ice_clone is generated by the Slice compiler for concrete classes (that is, classes that do not have operations). However, because classes
with operations are abstract, the generated  for abstract classes cannot know how to instantiate an instance of the derivedice_clone
concrete class (because the name of the derived class is not known). This means that, for abstract classes, the generated ice_clone
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throws a .CloneNotImplementedException

If you want to clone the implementation of an abstract class, you must override the virtual  member in your concreteice_clone
implementation class. For example:

C++

class TimeOfDayI : public TimeOfDay {
public:
    virtual Ice::ObjectPtr ice_clone() const
    {
        return new TimeOfDayI(*this);
    }
};

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This means that if you attempt to dereference a null smart pointer,
you get an :IceUtil::NullHandleException

C++

TimeOfDayPtr tod;               // Construct null handle

try {
    tod->minute = 0;            // Dereference null handle
    assert(false);              // Cannot get here
} catch (const IceUtil::NullHandleException&) {
    ; // OK, expected
} catch (...) {
    assert(false);              // Must get NullHandleException
}

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allocating class instances on the stack or in static variables is
pragmatically useless because all the Ice APIs expect parameters that are smart pointers, not class instances. This means that, to do
anything with a stack-allocated class instance, you must initialize a smart pointer for the instance. However, doing so does not work because
it inevitably leads to a crash:

C++

{                               // Enter scope
    TimeOfDayI t;               // Stack-allocated class instance
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance

    todp = &t;                  // Legal, but dangerous
    // ...
}                               // Leave scope, looming crash!

This goes badly wrong because, when  goes out of scope, it decrements the reference count of the class to zero, which then calls todp
 on itself. However, the instance is stack-allocated and cannot be deleted, and we end up with undefined behavior (typically, a coredelete

dump).

The following attempt to fix this is also doomed to failure:
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C++

{                               // Enter scope
    TimeOfDayI t;               // Stack-allocated class instance
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance

    todp = &t;                  // Legal, but dangerous
    // ...
    todp = 0;                   // Crash imminent!
}

This code attempts to circumvent the problem by clearing the smart pointer explicitly. However, doing so also causes the smart pointer to
drop the reference count on the class to zero, so this code ends up with the same call to  on the stack-allocated instance as thedelete
previous example.

The upshot of all this is: . The C++ mapping assumes that all classnever allocate a class instance on the stack or in a static variable
instances are allocated on the heap and no amount of coding trickery will change this.

You could abuse the  member to disable deallocation, but we strongly discourage you from doing this.__setNoDelete

You can prevent allocation of class instances on the stack or in static variables by adding a protected destructor to your implementation of
the class: if a class has a protected destructor, allocation must be made with , and static or stack allocation causes a compile-time error.new
In addition, explicit calls to  on a heap-allocated instance also are flagged at compile time.delete

Tip
You may want to habitually add a protected destructor to your implementation of abstract Slice classes to protect yourself
from accidental heap allocation, as shown in . (For Slice classes that do not have operations, the SliceClass Operations
compiler automatically adds a protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the  class, which ensures that reference counts are managedIceUtil::Shared
in a thread-safe manner. When a stack-allocated smart pointer goes out of scope, the smart pointer invokes the  function on the__decRef
reference-counted object. Ignoring thread-safety issues,  is implemented like this:__decRef

C++

void
IceUtil::Shared::__decRef()
{
    if (--_ref == 0 && !_noDelete)
        delete this;
}

In other words, when the smart pointer calls  on the pointed-at instance and the reference count reaches zero (which happens__decRef
when the last smart pointer for a class instance goes out of scope), the instance self-destructs by calling .delete this

However, as you can see, the instance self-destructs only if  is false (which it is by default, because the constructor initializes it_noDelete
to false). You can call  to prevent this self-destruction and, later, call  to enable it again.__setNoDelete(true) __setNoDelete(false)
This is necessary if, for example, a class in its constructor needs to pass  to another function:this
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C++

void someFunction(const TimeOfDayPtr& t)
{
    // ...
}

TimeOfDayI::TimeOfDayI()
{
    someFunction(this); // Trouble looming here!
}

At first glance, this code looks innocuous enough. While  is being constructed, it passes  to , whichTimeOfDayI this someFunction
expects a smart pointer. The compiler constructs a temporary smart pointer at the point of call (because the smart pointer template has a
single-argument constructor that accepts a pointer to a heap-allocated instance, so the constructor acts as a conversion function). However,
this code fails badly. The  instance is constructed with a statement such as:TimeOfDayI

C++

TimeOfDayPtr tod = new TimeOfDayI;

The constructor of  is called by  and, when the constructor starts executing, the reference count of the instanceTimeOfDayI operator new
is zero (because that is what the reference count is initialized to by the  base class of ). When the constructor calls Shared TimeOfDayI

, the compiler creates a temporary smart pointer, which increments the reference count of the instance and, once someFunction
 completes, the compiler dutifully destroys that temporary smart pointer again. But, of course, that drops the reference countsomeFunction

back to zero and causes the  instance to self-destruct by calling . The net effect is that the call to TimeOfDayI delete this new
 returns a pointer to an already deleted object, which is likely to cause the program to crash.TimeOfDayI

To get around the problem, you can call :__setNoDelete

C++

TimeOfDayI::TimeOfDayI()
{
    __setNoDelete(true);
    someFunction(this);
    __setNoDelete(false);
}

The code disables self-destruction while  uses its temporary smart pointer by calling . By doingsomeFunction __setNoDelete(true)
this, the reference count of the instance is incremented before  is called and decremented back to zero when someFunction

 completes without causing the object to self-destruct. The constructor then re-enables self-destruction by calling someFunction
 before returning, so the statement__setNoDelete(false)

C++

TimeOfDayPtr tod = new TimeOfDayI;

does the usual thing, namely to increment the reference count of the object to 1, despite the fact that a temporary smart pointer existed while
the constructor ran.

In general, whenever a class constructor passes  to a function or another class that accepts a smart pointer, youthis
must temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to leave a scope containing a stack-allocated smart
pointer, the C++ run time ensures that the smart pointer's destructor is called, so no resource leaks can occur:
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C++

{ // Enter scope...

    TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance

    someFuncThatMightThrow();          // Might throw...

    // ...

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of  runs and ensures that it deallocates the underlying class instance.tod

There is one potential pitfall you must be aware of though: if a constructor of a base class throws an exception, and another class instance
holds a smart pointer to the instance being constructed, you can end up with a double deallocation. You can use the __setNoDelete
mechanism to temporarily disable self-destruction in this case, as described .above

Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal with cyclic dependencies. For example, consider the following
simple self-referential class:

Slice

class Node {
    int val;
    Node next;
};

Intuitively, this class implements a linked list of nodes. As long as there are no cycles in the list of nodes, everything is fine, and our smart
pointers will correctly deallocate the class instances. However, if we introduce a cycle, we have a problem:

C++

{                          // Open scope...

    NodePtr n1 = new Node; // N1 refcount == 1
    NodePtr n2 = new Node; // N2 refcount == 1
    n1->next = n2;         // N2 refcount == 2
    n2->next = n1;         // N1 refcount == 2

} // Destructors run:      // N2 refcount == 1,
                           // N1 refcount == 1, memory leak!

The nodes pointed to by  and  do not have names but, for the sake of illustration, let us assume that 's node is called N1, and 'sn1 n2 n1 n2
node is called N2. When we allocate the N1 instance and assign it to , the smart pointer  increments N1's reference count to 1.n1 n1
Similarly, N2's reference count is 1 after allocating the node and assigning it to . The next two statements set up a cyclic dependencyn2
between  and  by making their  pointers point at each other. This sets the reference count of both N1 and N2 to 2. When then1 n2 next
enclosing scope closes, the destructor of  is called first and decrements N2's reference count to 1, followed by the destructor of , whichn2 n1
decrements N1's reference count to 1. The net effect is that neither reference count ever drops to zero, so both N1 and N2 are leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference counts for deallocation: if a cyclic dependency exists anywhere
in a graph (possibly via many intermediate nodes), all nodes in the cycle are leaked.

To avoid memory leaks due to such cycles, Ice for C++ contains a garbage collector. The collector identifies class instances that are part of
one or more cycles but are no longer reachable from the program and deletes such instances:

By default, garbage is collected whenever you destroy a communicator. This means that no memory is leaked when your program
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exits. (Of course, this assumes that you correctly .)destroy your communicators
You can also explicitly run the garbage collector by calling . For example, the leak caused by theIce::collectGarbage
preceding example can be avoided as follows:

C++

{                          // Open scope...

    NodePtr n1 = new Node; // N1 refcount == 1
    NodePtr n2 = new Node; // N2 refcount == 1
    n1->next = n2;         // N1 refcount == 2
    n2->next = n1;         // N2 refcount == 2

} // Destructors run:      // N2 refcount == 1,
                           // N1 refcount == 1

Ice::collectGarbage();     // Deletes N1 and N2

The call to  deletes the no longer reachable instances N1 and N2 (as well as any other non-reachableIce::collectGarbage
instances that may have accumulated earlier).

Deleting leaked memory with explicit calls to the garbage collector can be inconvenient because it requires polluting the code with
calls to the collector. You can ask the Ice run time to run a garbage collection thread that periodically cleans up leaked memory by
setting the property  to a non-zero value. For example, setting  to 5 causes the collectorIce.GC.Interval Ice.GC.Interval
thread to run the garbage collector once every five seconds. You can trace the execution of the collector by setting Ice.Trace.GC
to a non-zero value.

Note that the garbage collector is useful only if your program actually creates cyclic class graphs. There is no point in running the garbage
collector in programs that do not create such cycles. (For this reason, the collector thread is disabled by default and runs only if you explicitly
set  to a non-zero value.)Ice.GC.Interval

Smart Pointer Comparison

As for , class handles support the comparison operators , , and . This allows you to use class handles in STL sortedproxy handles == != <
containers. Be aware that, for smart pointers, object identity is not used for the comparison, because class instances do not have identity.
Instead, these operators simply compare the memory address of the classes they point to. This means that  returns true only ifoperator==
two smart pointers point at the same physical class instance:

C++

// Create a class instance and initialize
//
TimeOfDayIPtr p1 = new TimeOfDayI;
p1->hour = 23;
p1->minute = 10;
p1->second = 18;

// Create another class instance with
// the same member values
//
TimeOfDayIPtr p2 = new TimeOfDayI;
p2->hour = 23;
p2->minute = 10;
p2->second = 18;

assert(p1 != p2);       // The two do not compare equal

TimeOfDayIPtr p3 = p1;  // Point at first class again

assert(p1 == p3);       // Now they compare equal

See Also

Classes
C++ Mapping for Classes



Ice 3.4.2 Documentation

226 Copyright © 2011, ZeroC, Inc.

1.  

Asynchronous Method Invocation (AMI) in C++
The Server-Side main Function in C++
Properties and Configuration
The C++ Shared and SimpleShared Classes
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Asynchronous Method Invocation (AMI) in C++

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the  is deprecated and will be removed in a future release.old API

On this page:

Basic Asynchronous API in C++
Asynchronous Proxy Methods in C++
Asynchronous Exception Semantics in C++

 Class in C++AsyncResult
Polling for Completion in C++
Generic Completion Callbacks in C++

Using Cookies for Generic Completion Callbacks in C++
Type-Safe Completion Callbacks in C++

Using Cookies for Type-Safe Completion Callbacks in C++
Asynchronous Oneway Invocations in C++
Flow Control in C++
Asynchronous Batch Requests in C++
Concurrency Semantics for AMI in C++
AMI Limitations in C++

Basic Asynchronous API in C++

Consider the following simple Slice definition:

Slice

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Asynchronous Proxy Methods in C++

Besides the synchronous proxy methods,  generates the following asynchronous proxy methods:slice2cpp

C++

Ice::AsyncResultPtr begin_getName(Ice::Int number);
Ice::AsyncResultPtr begin_getName(Ice::Int number, const Ice::Context& __ctx)

std::string end_getName(const Ice::AsyncResultPtr&);

Four additional overloads of  are generated for use with  and .begin_getName generic callbacks type-safe callbacks

As you can see, the single  operation results in  and  methods. (The  method is overloadedgetName begin_getName end_getName begin_
so you can pass a .)per-invocation context

The  method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
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The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls ,end_getName end_getName
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

C++

EmployeesPrx e = ...;
Ice::AsyncResultPtr r = e->begin_getName(99);

// Continue to do other things here...

string name = e->end_getName(r);

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . The  associated with this smart pointer contains thebegin_getName AsyncResultPtr AsyncResult
state that the Ice run time requires to keep track of the asynchronous invocation. You must pass the  that is returned byAsyncResultPtr
the  method to the corresponding  method.begin_ end_

The  method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the  method has onebegin_ end_
out-parameter for each out-parameter of the corresponding Slice operation (plus the  parameter). For example, considerAsyncResultPtr
the following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op

C++

Ice::AsyncResultPtr begin_op(Ice::Int inp1, const ::std::string& inp2)

Ice::Double end_op(bool& outp1, Ice::Long& outp2, const Ice::AsyncResultPtr&);

Asynchronous Exception Semantics in C++

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception wasend_
encountered during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with thebegin_
code that calls the  method (instead of being present twice, once where the  method is called, and again where the end_ begin_ end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  methodbegin_
throws . This is necessary because, once the run time is finalized, it can no longer throw anCommunicatorDestroyedException
exception from the  method.end_

The only other exception that is thrown by the  and  methods is . This exceptionbegin_ end_ IceUtil::IllegalArgumentException
indicates that you have used the API incorrectly. For example, the  method throws this exception if you call an operation that has abegin_
return value or out-parameters on a oneway proxy. Similarly, the  method throws this exception if you use a different proxy to call the end_

 method than the proxy you used to call the  method, or if the  you pass to the  method was obtained byend_ begin_ AsyncResult end_
calling the  method for a different operation.begin_

AsyncResult Class in C++

The  that is returned by the  method encapsulates the state of the asynchronous invocation:AsyncResult begin_
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C++

class AsyncResult : virtual public IceUtil::Shared, private IceUtil::noncopyable {
public:
    virtual bool operator==(const AsyncResult&) const;
    virtual bool operator<(const AsyncResult&) const;

    virtual Int getHash() const;

    virtual CommunicatorPtr getCommunicator() const;
    virtual ConnectionPtr getConnection() const;
    virtual ObjectPrx getProxy() const;
    const string& getOperation() const;
    LocalObjectPtr getCookie() const;

    bool isCompleted() const;
    void waitForCompleted();

    bool isSent() const;
    void waitForSent();

    void throwLocalException() const;

    bool sentSynchronously() const;
};

The methods have the following semantics:

bool operator==(const AsyncResult&) const
bool operator<(const AsyncResult&) const
Int getHash() const
These methods allow you to create ordered or hashed collections of pending asynchronous invocations. This is useful, for example,
if you can have a number of outstanding requests, and need to pass state between the  and the  methods. In this case,begin_ end_
you can use the returned {{AsyncResult}}s as keys into a map that stores the state for each call.

CommunicatorPtr getCommunicator() const
This method returns the communicator that sent the invocation.

virtual ConnectionPtr getConnection() const
This method returns the connection that was used for the invocation.

virtual ObjectPrx getProxy() const
This method returns the proxy that was used to call the  method.begin_

const string& getOperation() const
This method returns the name of the operation.

LocalObjectPtr getCookie() const
This method returns the  that was passed to the  method. If you did not pass a cookie to the  method, thecookie begin_ begin_
return value is null.

bool isCompleted() const
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the  methodend_
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

void waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

bool isSent() const
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If thebegin_
transport cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time itisSent
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent,  returns false.isSent

void waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After 

 returns,  returns true if the request was successfully written to the client-side transport, or false if anwaitForSent isSent
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exception occurred. In the case of a failure, you can call the corresponding  method or  to obtain theend_ throwLocalException
exception.

void throwLocalException() const
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, throwLocalException
does nothing.

bool sentSynchronously() const
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued,  returns false (independent of whether the request is still in the queue or has since been written tosentSynchronously
the client-side transport).

Polling for Completion in C++

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider theAsyncResult
following simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit asend
file would be along the following lines:

C++

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;

Ice::Int offset = 0;
while (!file.eof()) {
    ByteSeq bs;
    bs = file.read(chunkSize); // Read a chunk
    ft->send(offset, bs);      // Send the chunk
    offset += bs.size();
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:
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C++

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
Ice::Int offset = 0;

list<Ice::AsyncResultPtr> results;
const int numRequests = 5;

while (!file.eof()) {
    ByteSeq bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice::AsyncResultPtr r = ft->begin_send(offset, bs);
    offset += bs.size();

    // Wait until this request has been passed to the transport.
    r->waitForSent();
    results.push_back(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.size() > numRequests) {
        Ice::AsyncResultPtr r = results.front();
        results.pop_front();
        r->waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (!results.empty()) {
    Ice::AsyncResultPtr r = results.front();
    results.pop_front();
    r->waitForCompleted();
}

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. InnumRequests + 1
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . InnumRequests
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time takennumRequests
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in C++

The  method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the begin_ getName
operation:



Ice 3.4.2 Documentation

232 Copyright © 2011, ZeroC, Inc.

C++

Ice::AsyncResultPtr begin_getName(
                        Ice::Int number,
                        const Ice::CallbackPtr& __del,
                        const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_getName(
                        Ice::Int number,
                        const Ice::Context& __ctx,
                        const Ice::CallbackPtr& __del,
                        const Ice::LocalObjectPtr& __cookie = 0);

The second version of  lets you override the default context. (We discuss the purpose of the  parameter in the nextbegin_getName cookie
section.) Following the in-parameters, the  method accepts a parameter of type . This is a smart pointer to abegin_ Ice::CallbackPtr
callback class that is provided by the Ice run time. This class stores an instance of a callback class that you implement. The Ice run time
invokes a method on your callback instance when an asynchronous operation completes. Your callback class must provide a method that
returns  and accepts a single parameter of type , for example:void const AsyncResultPtr&

C++

class MyCallback : public IceUtil::Shared {
public:
    void finished(const Ice::AsyncResultPtr& r) {
        EmployeesPrx e = EmployeesPrx::uncheckedCast(r->getProxy());
        try {
            string name = e->end_getName(r);
            cout << "Name is: " << name << endl;
        } catch (const Ice::Exception& ex) {
            cerr << "Exception is: " << ex << endl;
        }
    }
};
typedef IceUtil::Handle<MyCallback> MyCallbackPtr;

Note that your callback class must derive from . The callback method can have any name you prefer but its signatureIceUtil::Shared
must match the preceding example.

The implementation of your callback method must call the  method. The proxy for the call is available via the  method on the end_ getProxy
 that is passed by the Ice run time. The return type of  is , so you must down-cast the proxy toAsyncResult getProxy Ice::ObjectPrx

its correct type. (You should always use an  to do this, otherwise you will send an additional message to the server to verifyuncheckedCast
the proxy type.)

Your callback method should catch and handle any exceptions that may be thrown by the  method. If you allow an exception to escapeend_
from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by
setting the property  to zero.)Ice.Warn.AMICallback

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to
the  method:begin_

C++

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;
Ice::CallbackPtr d = Ice::newCallback(cb, &MyCallback::finished);

e->begin_getName(99, d); 

Note the call to  in this example. This helper function expects a smart pointer to your callback instance and a memberIce::newCallback
function pointer that specifies your callback method.
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Using Cookies for Generic Completion Callbacks in C++

It is common for the  method to require access to some state that is established by the code that calls the  method. As anend_ begin_
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the  method knows which user interface element should receive thebegin_
update, and the  method needs access to that element.end_

The API allows you to pass such state by providing a cookie. A cookie is an instance of a class that you write; the class can contain
whatever data you want to pass, as well as any methods you may want to add to manipulate that data.

The only requirement on the cookie class is that it must derive from . Here is an example implementation that stores a Ice::LocalObject
. (We assume that this class provides whatever methods are needed by the  method to update the display.)WidgetHandle end_

C++

class Cookie : public Ice::LocalObject
{
public:
    Cookie(WidgetHandle h) : _h(h) {}
    WidgetHandle getWidget() { return _h; }

private:
    WidgetHandle _h;
};
typedef IceUtil::Handle<Cookie> CookiePtr;

When you call the  method, you pass the appropriate cookie instance to inform the  method how to update the display:begin_ end_

C++

// Make cookie for call to getName(99).
CookiePtr cookie1 = new Cookie(widgetHandle1);

// Make cookie for call to getName(42);
CookiePtr cookie2 = new Cookie(widgetHandle2);

// Invoke the getName operation with different cookies.
e->begin_getName(99, getNameCB, cookie1);
e->begin_getName(24, getNameCB, cookie2);

The  method can retrieve the cookie from the  by calling . For this example, we assume that widgets have a end_ AsyncResult getCookie
 method that updates the relevant UI element:writeString

C++

void
MyCallback::getName(const Ice::AsyncResultPtr& r)
{
    EmployeesPrx e = EmployeesPrx::uncheckedCast(r->getProxy());
    CookiePtr cookie = CookiePtr::dynamicCast(r->getCookie());
    try {
        string name = e->end_getName(r);
        cookie->getWidget()->writeString(name);
    } catch (const Ice::Exception& ex) {
        handleException(ex);
    }
}

The cookie provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where
its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same cookie instance to
multiple invocations.
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Type-Safe Completion Callbacks in C++

The  is not entirely type-safe:generic callback API

You must down-cast the return value of  to the correct proxy type before you can call the  method.getProxy end_
You must call the correct  method to match the operation called by the  method.end_ begin_
If you use a cookie, you must down-cast the cookie to the correct type before you can access the data inside the cookie.
You must remember to catch exceptions when you call the  method; if you forget to do this, you will not know that the operationend_
failed.

slice2cpp generates an additional type-safe API that takes care of these chores for you. The type-safe API is provided as a template that
works much like the  class of the generic API, but requires strongly-typed method signatures.Ice::Callback

To use type-safe callbacks, you must implement a callback class that provides two callback methods:

A success callback that is called if the operation succeeds
A failure callback that is called if the operation raises an exception

As for the generic API, your callback class must derive from . Here is a callback class for an invocation of the IceUtil::Shared getName
operation:

C++

class MyCallback : public IceUtil::Shared
{
public:
    void getNameCB(const string& name) {
        cout << "Name is: " << name << endl;
    }

    void failureCB(const Ice::Exception& ex) {
        cerr << "Exception is: << ex << endl;
    }
};

The callback methods can have any name you prefer and must have  return type. The failure callback always has a single parameter ofvoid
type . The success callback parameters depend on the operation signature. If the operation has non-const Ice::Exception& void
return type, the first parameter of the success callback is the return value. The return value (if any) is followed by a parameter for each
out-parameter of the corresponding Slice operation, in the order of declaration.

To receive these callbacks, you instantiate your callback instance and specify the methods you have defined before passing a smart pointer
to a callback wrapper instance to the  method:begin_

C++

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(cb, &MyCallback::getNameCB, &MyCallback::failureCB);

Callback_Employees_getNumberPtr getNumberCB =
    newCallback_Employees_getNumber(cb, &MyCallback::getNumberCB, &MyCallback::failureCB);

e->begin_getName(99, getNameCB);
e->begin_getNumber("Fred", getNumberCB);

Note how this code creates instances of two smart pointer types generated by  named slice2cpp Callback_Employees_getNamePtr
and . Each smart pointer points to a template instance that encapsulates your callback instanceCallback_Employees_getNumberPtr
and two member function pointers for the callback methods. The name of this smart pointer type is formed as follows:

::Callback_<module> <interface>_<operation>Ptr

Also note that the code uses helper functions to initialize the smart pointers. The first argument to the helper function is your callback
instance, and the two following arguments are the success and failure member function pointers, respectively. The name of this helper
function is formed as follows:
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::newCallback_ _<module> <interface> <operation>

It is legal to pass a null pointer as the success or failure callback. For the success callback, this is legal only for operations that have void
return type and no out-parameters. This is useful if you do not care when the operation completes but want to know if the call failed. If you
pass a null exception callback, the Ice run time will ignore any exception that is raised by the invocation.

The type of the success and exception member function pointers is provided as  and  typedefs by the callbackResponse Exception
template. For example, you can ignore exceptions for an invocation of  as follows:getName

C++

Callback_Employees_op::Exception nullException = 0;

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(cb, &MyCallback::getNameCB, nullException);

e->begin_getName(99, getNameCB); // Ignores exceptions

Using Cookies for Type-Safe Completion Callbacks in C++

The  method optionally accepts a cookie as a trailing parameter. As for the generic API, you can use the cookie to share statebegin_
between the  and  methods. However, with the type-safe API, there is no need to down-cast the cookie. Instead, the cookiebegin_ end_
parameter that is passed to the  method is strongly typed. Assuming that you have defined a  class and  smartend_ Cookie CookiePtr
pointer, you can pass a cookie to the  method as follows:begin_

C++

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(cb, &MyCallback::getNameCB, &MyCallback::failureCB);

CookiePtr cookie = new Cookie(widgetHandle);
e->begin_getName(99, getNameCB, cookie);

The callback methods of your callback class simply add the cookie parameter:

C++

class MyCallback : public IceUtil::Shared
{
public:
    void getNameCB(const string& name, const CookiePtr& cookie) {
        cookie->getWidget()->writeString(name);
    }

    void failureCB(const Ice::Exception& ex, const CookiePtr& cookie) {
        cookie->getWidget()->writeError(ex.what());
    }
};

Asynchronous Oneway Invocations in C++

You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have anyvoid
out-parameters, and does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns valuesbegin_
or raises a user exception, the  method throws an .begin_ IceUtil::IllegalArgumentException

For the generic API, the callback method looks exactly as for a twoway invocation. However, for oneway invocations, the Ice run time does
not call the callback method unless the invocation raised an exception during the  method ("on the way out").begin_
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For the type-safe API, the  helper for  operations is overloaded so you can omit the success callback. For example, herenewCallback void
is how you could call  asynchronously:ice_ping

C++

MyCallbackPtr cb = new MyCallback;

Ice::Callback_Object_ice_pingPtr callback =
    Ice::newCallback_Object_ice_ping(cb, &MyCallback::failureCB);

p->begin_opVoid(callback);

Flow Control in C++

Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can writebegin_
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, 

 returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept theAsyncResult::sentSynchronously
request, the Ice run time queues the request internally for later transmission in the background. (In that case, 

 returns false.)AsyncResult::sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can create an additional callback method:

C++

class MyCallback : public IceUtil::Shared {
public:
    void finished(const Ice::AsyncResultPtr&);
    void sent(const Ice::AsyncResultPtr&);
};
typedef IceUtil::Handle<MyCallback> MyCallbackPtr;

As with any other callback method, you are free to choose any name you like. For this example, the name of the callback method is .sent
You inform the Ice run time that you want to be informed when a call has been passed to the local transport by specifying the  methodsent
as an additional parameter when you create the :Ice::Callback

C++

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;
Ice::CallbackPtr d = Ice::newCallback(cb, &MyCallback::finished, &MyCallback::sent);

e->begin_getName(99, d); 

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the  method from the thread that callssent
the  method. On the other hand, if the run time has to queue the request, it calls the  method from a different thread once it hasbegin_ sent
written the request to the local transport. In addition, you can find out from the  that is returned by the  methodAsyncResult begin_
whether the request was sent synchronously or was queued, by calling .sentSynchronously

For the generic API, the  method has the following signature:sent

C++

void sent(const Ice::AsyncResult&);
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For the type-safe API, there are two versions, one without and one with a cookie:

C++

void sent(bool sentSynchronously);
void sent(bool sentSynchronously, const <CookiePtr>& cookie);

For the version with a cookie,  is replaced with the actual type of the cookie smart pointer you passed to the  method.<CookiePtr> begin_

The  methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementingsent
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C++

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests

the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued byend_ice_flushBatchRequests
that proxy.

In addition, similar methods are available on the communicator and the  object that is returned by Connection
. These methods flush batch requests sent via the same communicator and via the same connection,AsyncResult::getConnection

respectively.

Concurrency Semantics for AMI in C++

The Ice run time always invokes your callback methods from a separate thread. This means that you can safely use a non-recursive mutex
without risking deadlock. There is one exception to this rule: the run time calls the  callback from the thread calling the  methodsent begin_
if the request could be sent synchronously. In the  callback, you know which thread is calling the callback by looking at the sent

 member or parameter, so you can take appropriate action to avoid a self-deadlock.sentSynchronously

AMI Limitations in C++

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use , the Ice run time raises  if the servant happens to be collocated; thecollocation optimization CollocationOptimizationException
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

C++ Mapping for Classes
Smart Pointers for Classes
Request Contexts
Batched Invocations
Location Transparency
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slice2cpp Command-Line Options

On this page:

 Command-Line Optionsslice2cpp
 --header-ext EXT
 --source-ext EXT

--add-header [, ]HDR GUARD
--include-dir DIR
--impl
--depend
--dll-export SYMBOL
--checksum
--stream

Include Directives
Header Files
Source Files

slice2cpp Command-Line Options

The Slice-to-C++ compiler, , offers the following command-line options in addition to the .slice2cpp standard options

--header-ext EXT

Changes the file extension for the generated header files from the default  to the extension specified by .h EXT

You can also change the header file extension with a global metadata directive:

Slice

[["cpp:header-ext:hpp"]]

// ...

Only one such directive can appear in each source file. If you specify a header extension on both the command line and with a metadata
directive, the metadata directive takes precedence. This ensures that included Slice files that were compiled separately get the correct
header extension (provided that the included Slice files contain a corresponding metadata directive). For example:

Slice

// File example.ice
#include <Ice/BuiltinSequences.ice>

// ...

Compiling this file with

$ slice2cpp --header-ext=hpp -I/opt/Ice/include example.ice

generates , but the  directive in that file is for  (not )example.hpp #include Ice/BuiltinSequences.h Ice/BuiltinSequences.hpp
because  contains the metadata directive .BuiltinSequences.ice [["cpp:header-ext:h"]]

You normally will not need to use this metadata directive. The directive is necessary only if:

You  a Slice file in one of your own Slice files.#include
The included Slice file is part of a library you link against.
The library ships with the included Slice file's header.
The library header uses a different header extension than your own code.

For example, if the library uses  as the header extension, but your own code uses , the library's Slice file should contain a .hpp .h
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 directive. (If the directive is missing, you can add it to the library's Slice file.)[["cpp:header?ext:hpp"]]

--source-ext EXT

Changes the file extension for the generated source files from the default  to the extension specified by .cpp EXT

--add-header [, ]HDR GUARD

This option adds an include directive for the specified header at the beginning of the generated source file (preceding any other include
directives). If  is specified, the include directive is protected by the specified guard. For example, GUARD --add?header

 results in the following directives at the beginning of the generated source file:precompiled.h,__PRECOMPILED_H__

C++

#ifndef __PRECOMPILED_H__
#define __PRECOMPILED_H__
#include <precompiled.h>
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to integrate the generated code with a compiler's precompiled header
mechanism.

--include-dir DIR

Modifies  in source files to prepend the path name of each header file with the directory . directives#include DIR

--impl

Generate sample implementation files. This option will not overwrite an existing file.

--depend

Prints makefile dependency information to standard output. No code is generated when this option is specified. The output generally needs
to be filtered before it can be included in a makefile; the Ice build system uses the script  for this purpose.config/makedepend.py

--dll-export SYMBOL

Use  to control DLL exports or imports. This option allows you to selectively export or import global symbols in the generated code.SYMBOL
As an example, compiling a Slice definition with:

$ slice2cpp --dll-export ENABLE_DLL x.ice

results in the following additional code being generated into :x.h

C++

#ifndef ENABLE_DLL
#   ifdef ENABLE_DLL_EXPORTS
#       define ENABLE_DLL ICE_DECLSPEC_EXPORT
#   else
#       define ENABLE_DLL ICE_DECLSPEC_IMPORT
#   endif
#endif

ICE_DECLSPEC_EXPORT and  are platform-specific macros. For example, for Windows, they are defined as ICE_DECLSPEC_IMPORT
 and , respectively; for Solaris using  version 5.5 or later,  isdeclspec(dllexport) declspec(dllimport) CC ICE_DECLSPEC_EXPORT

defined as , and  is empty.global ICE_DECLSPEC_IMPORT
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Similar definitions exist for other platforms. For platforms that do not have any concept of explicit export or import of shared
library symbols, both macros are empty.

The symbol name you specify on the command line (  in this example) is used by the generated code to export or import anyENABLE_DLL
symbols that must be visible to code outside the generated compilation unit. The net effect is that, if you want to create a DLL that includes 

, but also want to use the generated types in compilation units outside the DLL, you can arrange for the relevant symbols to bex.cpp
exported by compiling  with .x.cpp -DENABLE_DLL_EXPORTS

--checksum

Generate  for Slice definitions.checksums

--stream

Generate  for Slice types.streaming helper functions

Include Directives

he  directives generated by the Slice-to-C++ compiler can be a source of confusion if the semantics governing their generation are#include
not well-understood. The generation of  directives is influenced by the command-line options  and ; these#include -I --include-dir
options are discussed in more detail below. The  option directs the translator to place all generated files in a particular--output-dir
directory, but has no impact on the contents of the generated code.

Given that the  directives in header files and source files are generated using different semantics, we describe them in separate#include
sections.

Header Files

In most cases, the compiler generates the appropriate  directives by default. As an example, suppose file  includes #include A.ice B.ice
using the following statement:

Slice

// A.ice
#include <B.ice>

Assuming both files are in the current working directory, we run the compiler as shown below:

$ slice2cpp -I. A.ice

The generated file  contains this  directive:A.h #include

C++

// A.h
#include <B.h>

If the proper include paths are specified to the C++ compiler, everything should compile correctly.

Similarly, consider the common case where  includes  from a subdirectory:A.ice B.ice

Slice

// A.ice
#include <inc/B.ice>

Assuming both files are in the  subdirectory, we run the compiler as shown below:inc
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$ slice2cpp -I. inc/A.ice

The default output of the compiler produces this  directive in :#include A.h

C++

// A.h
#include <inc/B.h>

Again, it is the user's responsibility to ensure that the C++ compiler is configured to find  during compilation.inc/B.h

Now let us consider a more complex example, in which we do not want the  directive in the header file to match that of the Slice#include
file. This can be necessary when the organizational structure of the Slice files does not match the application's C++ code. In such a case, the
user may need to relocate the generated files from the directory in which they were created, and the  directives must be aligned#include
with the new structure.

For example, let us assume that  is located in the subdirectory :B.ice slice/inc

Slice

// A.ice
#include <slice/inc/B.ice>

However, we do not want the  subdirectory to appear in the  directive generated in the header file, therefore we specify theslice #include
additional compiler option :-Islice

$ slice2cpp -I. -Islice slice/inc/A.ice

The generated code demonstrates the impact of this extra option:

C++

// A.h
#include <inc/B.h>

As you can see, the  directives generated in header files are affected by the include paths that you specify when running the#include
compiler. Specifically, the include paths are used to abbreviate the path name in generated  directives.#include

When translating an  directive from a Slice file to a header file, the compiler compares each of the include paths against the path#include
of the included file. If an include path matches the leading portion of the included file, the compiler removes that leading portion when
generating the  directive in the header file. If more than one include path matches, the compiler selects the one that results in the#include
shortest path for the included file.

For example, suppose we had used the following options when compiling :A.ice

$ slice2cpp -I. -Islice -Islice/inc slice/inc/A.ice

In this case, the compiler compares all of the include paths against the included file  and generates the followingslice/inc/B.ice
directive:

C++

// A.h
#include <B.h>

The option  produces the shortest result, therefore the default path for the included file ( ) is replaced with -Islice/inc slice/inc/B.h
.B.h
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In general, the  option plays two roles: it enables the preprocessor to locate included Slice files, and it provides you with a certain amount-I
of control over the generated  directives. In the last example above, the preprocessor locates  using the#include slice/inc/B.ice
include path specified by the  option. The remaining  options do not help the preprocessor locate included files; they are simply hints-I. -I
to the compiler.

Finally, we recommend using caution when specifying include paths. If the preprocessor is able to locate an included file via multiple include
paths, it always uses the first include path that successfully locates the file. If you intend to modify the generated  directives by#include
specifying extra  options, you must ensure that your include path hints match the include path selected by the preprocessor to locate the-I
included file. As a general rule, you should avoid specifying include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates  directives in source files using only the base name of the included file. This behavior is usually#include
appropriate when the source file and header file reside in the same directory.

For example, suppose  includes  from a subdirectory, as shown in the following snippet of :A.ice B.ice A.ice

Slice

// A.ice
#include <inc/B.ice>

We generate the source file using this command:

$ slice2cpp -I. inc/A.ice

Upon examination, we see that the source file contains the following  directive:#include

C++

// A.cpp
#include <B.h>

However, suppose that we wish to enforce a particular standard for generated  directives so that they are compatible with our C++#include
compiler's existing include path settings. In this case, we use the  option to modify the generated code. For example,--include-dir
consider the compiler command shown below:

$ slice2cpp --include-dir src -I. inc/A.ice

The source file now contains the following  directive:#include

C++

// A.cpp
#include <src/B.h>

Any leading path in the included file is discarded as usual, and the value of the  option is prepended.--include-dir

See Also

Using the Slice Compilers
Using Slice Checksums in C++
Streaming Interfaces
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Using Slice Checksums in C++

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compiler tochecksums slice2cpp --checksum
generate code in each C++ source file that accumulates checksums in a global map. A copy of this map can be obtained by calling a
function defined in the header file :Ice/SliceChecksums.h

C++

namespace Ice {
    Ice::SliceChecksumDict sliceChecksums();
}

In order to verify a server's checksums, a client could simply compare the dictionaries using the equality operator. However, this is not
feasible if it is possible that the server might be linked with more Slice definitions than the client. A more general solution is to iterate over the
local checksums as demonstrated below:

C++

Ice::SliceChecksumDict serverChecksums = ...
Ice::SliceChecksumDict localChecksums = Ice::sliceChecksums();

for (Ice::SliceChecksumDict::const_iterator p = localChecksums.begin();
     p != localChecksums.end(); ++p) {

    Ice::SliceChecksumDict::const_iterator q = serverChecksums.find(p->first);
    if (q == serverChecksums.end()) {
        // No match found for type id!
    } else if (p->second != q->second) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
slice2cpp Command-Line Options



Ice 3.4.2 Documentation

244 Copyright © 2011, ZeroC, Inc.

Example of a File System Client in C++

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The C++ code shown here hardly differs from the code you would write for an ordinary C++ program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local C++ object. This allows you to put your effort where you
should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the server

 as well, meaning that you can develop distributed applications easily and efficiently.side

We now have seen enough of the client-side C++ mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:
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1.  

C++

#include <Ice/Ice.h>
#include <Filesystem.h>
#include <iostream>
#include <iterator>

using namespace std;
using namespace Filesystem;

static void
listRecursive(const DirectoryPrx& dir, int depth = 0)
{
    // ...
}

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        // Create a communicator
        //
        ic = Ice::initialize(argc, argv);

        // Create a proxy for the root directory
        //
        Ice::ObjectPrx base = ic->stringToProxy("RootDir:default -p 10000");
        if (!base)
            throw "Could not create proxy";

        // Down-cast the proxy to a Directory proxy
        //
        DirectoryPrx rootDir = DirectoryPrx::checkedCast(base);
        if (!rootDir)
            throw "Invalid proxy";

        // Recursively list the contents of the root directory
        //
        cout << "Contents of root directory:" << endl;
        listRecursive(rootDir);
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }

    // Clean up
    //
    if (ic)
        ic->destroy();

    return status;
}

The code includes a few header files:
Ice/Ice.h:
Always included in both client and server source files, provides definitions that are necessary for accessing the Ice run time.
Filesystem.h:
The header that is generated by the Slice compiler from the Slice definitions in .Filesystem.ice
iostream:
The client uses the  library to produce its output.iostream
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1.  

2.  
3.  

4.  

1.  

2.  

3.  

iterator:
The implementation of  uses an STL iterator.listRecursive

The code adds  declarations for the  and  namespaces.using std Filesystem
The structure of the code in  follows what we saw in . After initializing the run time, the client creates amain Hello World Application
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in :listRecursive

C++

// Recursively print the contents of directory "dir" in
// tree fashion. For files, show the contents of each file.
// The "depth" parameter is the current nesting level
// (for indentation).

static void
listRecursive(const DirectoryPrx& dir, int depth = 0)
{
    string indent(++depth, '\t');

    NodeSeq contents = dir->list();

    for (NodeSeq::const_iterator i = contents.begin(); i != contents.end(); ++i) {
        DirectoryPrx dir = DirectoryPrx::checkedCast(*i);
        FilePrx file = FilePrx::uncheckedCast(*i);
        cout << indent << (*i)->name() << (dir ? " (directory):" : " (file):") << endl;
        if (dir) {
            listRecursive(dir, depth);
        } else {
            Lines text = file->read();
            for (Lines::const_iterator j = text.begin(); j != text.end(); ++j) {
                cout << indent << "\t" << *j << endl;
            }
        }
    }
}

The function is passed a proxy to a directory to list, and an indent level. (The indent level increments with each recursive call and allows the
code to print the name of each node at an indent level that corresponds to the depth of the tree at that node.)  calls the listlistRecursive
operation on the directory and iterates over the returned sequence of nodes:

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we  that the is-a Directory DirectoryPrx checkedCast checkedCast know
   and, therefore, an  is sufficient to get a .Node is-a File uncheckedCast FilePrx

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast
 because an  does not incur any network traffic.checkedCast uncheckedCast

The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"
 following the name."(file)"

The code checks the type of the node:
If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:
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A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Example of a File System Server in C++
Object Life Cycle
IceGrid
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Server-Side Slice-to-C++ Mapping

The mapping for Slice data types to C++ is identical on the client side and server side. This means that everything in Client-Side
 also applies to the server side. However, for the server side, there are a few additional things you need to know —Slice-to-C++ Mapping

specifically how to:

Initialize and finalize the server-side run time
Implement servants
Pass parameters and throw exceptions
Create servants and register them with the Ice run time.

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using , for example, to improve performance or scalability. However, these APIs are alladditional APIs
described in Slice, so, to use these APIs, you need not learn any C++ mapping rules beyond those we describe here.

Topics

The Server-Side main Function in C++
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++
Raising Exceptions in C++
Object Incarnation in C++
Asynchronous Method Dispatch (AMD) in C++
Example of a File System Server in C++
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The Server-Side main Function in C++

On this page:

A Basic  Function in C++main
The  ClassIce::Application

Using  on the Client SideIce::Application
Catching Signals in C++

 and PropertiesIce::Application
Limitations of Ice::Application

The  ClassIce::Service
 Member FunctionsIce::Service

Unix Daemons
Windows Services
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A Basic  Function in C++main

The main entry point to the Ice run time is represented by the local Slice interface . As for the client side, you mustIce::Communicator
initialize the Ice run time by calling  before you can do anything else in your server.  returns a smartIce::initialize Ice::initialize
pointer to an instance of an :Ice::Communicator

C++

int
main(int argc, char* argv[])
{
    Ice::CommunicatorPtr ic = Ice::initialize(argc, argv);
    // ...
}

Ice::initialize accepts a C++ reference to  and . The function scans the argument vector for any  thatargc argv command-line options
are relevant to the Ice run time; any such options are removed from the argument vector so, when  returns, the onlyIce::initialize
options and arguments remaining are those that concern your application. If anything goes wrong during initialization,  throwsinitialize
an exception.

Ice::initialize has  to permit other information to be passed to the Ice run time.additional overloads

Before leaving your  function, you must call . The  operation is responsible for finalizing the Icemain Communicator::destroy destroy
run time. In particular,  waits for any operation implementations that are still executing in the server to complete. In addition, destroy

 ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as filedestroy
descriptors and memory. Never allow your  function to terminate without calling  first; doing so has undefined behavior.main destroy

The general shape of our server-side  function is therefore as follows:main
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C++

#include <Ice/Ice.h>

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);

        // Server code here...

    } catch (const Ice::Exception& e) {
        cerr << e << endl;
        status = 1;
    } catch (const std::string& msg) {
        cerr << msg << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const Ice::Exception& e) {
            cerr << e << endl;
            status = 1;
        }
    }
    return status;
}

Note that the code places the call to  in to a  block and takes care to return the correct exit status to the operatingIce::initialize try
system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The  handlers for  and  are in place as a convenience feature: if we encounter a fatal errorcatch const std::string & const char *
condition anywhere in the server code, we can simply throw a string or a string literal containing an error message; this causes the stack to
be unwound back to , at which point the error message is printed and, after destroying the communicator,  terminates withmain main
non-zero exit status.

The  ClassIce::Application

The preceding structure for the  function is so common that Ice offers a class, , that encapsulates all the correctmain Ice::Application
initialization and finalization activities. The definition of the class is as follows (with some detail omitted for now):
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C++

namespace Ice {
    enum SignalPolicy { HandleSignals, NoSignalHandling };

    class Application /* ... */ {
    public:
        Application(SignalPolicy = HandleSignals);
        virtual ~Application();

        int main(int argc, char*[] argv);
        int main(int argc, char*[] argv, const char* config);
        int main(int argc, char*[] argv, const Ice::InitializationData& id);
        int main(int argc, char* const [] argv);
        int main(int argc, char* const [] argv, const char* config);
        int main(int argc, char* const [] argv, const Ice::InitializationData& id);
        int main(const Ice::StringSeq&);
        int main(const Ice::StringSeq&, const char* config);
        int main(const Ice::StringSeq&, const Ice::InitializationData& id);

#ifdef _WIN32
        int main(int argc, wchar_t*[] argv);
        int main(int argc, wchar_t*[] argv, const char* config);
        int main(int argc, wchar_t*[] argv, const Ice::InitializationData& id);
#endif

        virtual int run(int, char*[]) = 0;

        static  const char* appName();
        static  CommunicatorPtr communicator();
        // ...
    };
}

The intent of this class is that you specialize  and implement the pure virtual  method in your derived class.Ice::Application run
Whatever code you would normally place in  goes into the  method instead. Using , our program looks asmain run Ice::Application
follows:

C++

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {

        // Server code here...

        return 0;
    }
};

int
main(int argc, char* argv[])
{
    MyApplication app;
    return app.main(argc, argv);
}

Note that  is overloaded: you can pass a string sequence instead of an /  pair. This is useful if you need to Application::main argc argv
 on the command line. You also can call  with an optional file name or an parse application-specific property settings main

 structure.InitializationData

If you pass a  to , the property settings in this file are overridden by settings in a file identified by the configuration file name main
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 environment variable (if defined). Property settings supplied on the  take precedence over all other settings.ICE_CONFIG command line

The  function does the following:Application::main

It installs an exception handler for . If your code fails to handle an Ice exception,  prints theIce::Exception Application::main
exception details on  before returning with a non-zero return value.stderr
It installs exception handlers for  and . This allows you to terminate your server in responseconst std::string & const char*
to a fatal error condition by throwing a  or a string literal.  prints the string on  beforestd::string Application::main stderr
returning a non-zero return value.
It initializes (by calling ) and finalizes (by calling ) a communicator. You can getIce::initialize Communicator::destroy
access to the communicator for your server by calling the static  member function.communicator()
It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your  method therefore is free of Ice-related options and only contains options and arguments that are specificrun
to your application.
It provides the name of your application via the static  member function. The return value from this call is , so youappName argv[0]
can get at  from anywhere in your code by calling  (which is often necessary for errorargv[0] Ice::Application::appName
messages).
It installs a  that properly destroys the communicator.signal handler
It installs a  if the application has not already configured one. The per-process logger uses the value of the per-process logger

 property as a prefix for its messages and sends its output to the standard error channel. An application canIce.ProgramName
also specify an .alternate logger

Using  ensures that your program properly finalizes the Ice run time, whether your server terminates normally or inIce::Application
response to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition, 

 also provides features for signal handling and configuration that you do not have to implement yourself when you useIce::Application
this class.

Using  on the Client SideIce::Application

You can use  for your clients as well: simply implement a class that derives from  and place theIce::Application Ice::Application
client code into its  method. The advantage of this approach is the same as for the server side:  ensures that therun Ice::Application
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in C++

The simple server we developed in  had no way to shut down cleanly: we simply interrupted the server from theHello World Application
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals,  encapsulates the platform-independent  provided byIce::Application signal handling capabilities
the class . This allows you to cleanly shut down on receipt of a signal and to use the same source codeIceUtil::CtrlCHandler
regardless of the underlying operating system and threading package:

C++

namespace Ice {
    class Application : /* ... */ {
    public:
        // ...
        static void destroyOnInterrupt();
        static void shutdownOnInterrupt();
        static void ignoreInterrupt();
        static void callbackOnInterrupt();
        static void holdInterrupt();
        static void releaseInterrupt();
        static bool interrupted();

        virtual void interruptCallback(int);
    };
}

You can use  under both Windows and Unix: for Unix, the member functions control the behavior of your application forIce::Application
, , and ; for Windows, the member functions control the behavior of your application for , SIGINT SIGHUP SIGTERM CTRL_C_EVENT

, , , and .CTRL_BREAK_EVENT CTRL_CLOSE_EVENT CTRL_LOGOFF_EVENT CTRL_SHUTDOWN_EVENT

The functions behave as follows:
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destroyOnInterrupt
This function creates an  that destroys the communicator when one of the monitored signals is raised.IceUtil::CtrlCHandler
This is the default behavior.

shutdownOnInterrupt
This function creates an  that shuts down the communicator when one of the monitored signals isIceUtil::CtrlCHandler
raised.

ignoreInterrupt
This function causes signals to be ignored.

callbackOnInterrupt
This function configures  to invoke  when a signal occurs, thereby giving the subclassIce::Application interruptCallback
responsibility for handling the signal. Note that if the signal handler needs to terminate the program, you must call  (instead of _exit

). This prevents global destructors from running which, depending on the activities of other threads in the program, could causeexit
deadlock or assertion failures.

holdInterrupt
This function causes signals to be held.

releaseInterrupt
This function restores signal delivery to the previous disposition. Any signal that arrives after  was called isholdInterrupt
delivered when you call .releaseInterrupt

interrupted
This function returns  if a signal caused the communicator to shut down,  otherwise. This allows us to distinguishtrue false
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass overrides this function to respond to signals. The Ice run time may call this function concurrently with any other thread. If
the function raises an exception, the Ice run time prints a warning on  and ignores the exception.cerr

By default,  behaves as if  was invoked, therefore our server  function requires no changeIce::Application destroyOnInterrupt main
to ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of 

 by passing the enumerator  to the constructor. In that case, signals retain their default behavior,Ice::Application NoSignalHandling
that is, terminate the process.) However, we add a diagnostic to report the occurrence of a signal, so our  function now looks like:main

C++

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {

        // Server code here...

        if (interrupted())
            cerr << appName() << ": terminating" << endl;

        return 0;
    }
};

int
main(int argc, char* argv[])
{
    MyApplication app;
    return app.main(argc, argv);
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an
operation that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a subclass from  and calling Ice::Application
), the handler is invoked synchronously from a separate thread. This means that the handler can safely call into thecallbackOnInterrupt
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Ice run time or make system calls that are not async-signal-safe without fear of deadlock or data corruption. Note that Ice::Application
blocks delivery of , , and . If your application calls , this means that the child process will also ignore theseSIGINT SIGHUP SIGTERM exec
signals; if you need the default behavior of these signals in the 'd process, you must explicitly reset them to  before calling exec SIG_DFL

.exec

Ice::Application and Properties

Apart from the functionality shown in this section,  also takes care of initializing the Ice run time with property values. Ice::Application
 allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread poolProperties

size or port number for a server.

Limitations of Ice::Application

Ice::Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use 
. Instead, you must structure your code as we saw in  (taking care to always destroy theIce::Application Hello World Application

communicators).

The  ClassIce::Service

The  class is very convenient for general use by Ice client and server applications. In some cases, however, anIce::Application
application may need to run at the system level as a Unix daemon or Windows service. For these situations, Ice includes , aIce::Service
singleton class that is comparable to  but also encapsulates the low-level, platform-specific initialization and shutdownIce::Application
procedures common to system services. The  class is defined as follows:Ice::Service
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C++

namespace Ice {
    class Service {
    public:
        Service();

        virtual bool shutdown();
        virtual void interrupt();

        int main(int& argc, char* argv[],
                 const Ice::InitializationData& = Ice::InitializationData());
        int main(Ice::StringSeq& args,
                 const Ice::InitializationData& = Ice::InitializationData());

        Ice::CommunicatorPtr communicator() const;

        static Service* instance();

        bool service() const;
        std::string name() const;
        bool checkSystem() const;

        int run(int& argc, char* argv[], const Ice::InitializationData&);

#ifdef _WIN32
        int main(int& argc, wchar_t* argv[], const InitializationData& = InitializationData());

        void configureService(const std::string& name);
#else
        void configureDaemon(bool changeDir, bool closeFiles, const std::string& pidFile);
#endif

        virtual void handleInterrupt(int);

    protected:
        virtual bool start(int argc, char* argv[], int& status) = 0;
        virtual void waitForShutdown();
        virtual bool stop();
        virtual Ice::CommunicatorPtr initializeCommunicator(
            int& argc, char* argv[],
            const Ice::InitializationData&);

        virtual void syserror(const std::string& msg);
        virtual void error(const std::string& msg);
        virtual void warning(const std::string& msg);
        virtual void trace(const std::string& msg);
        virtual void print(const std::string& msg);

        void enableInterrupt();
        void disableInterrupt();

        // ...
    };
}

At a minimum, an Ice application that uses the  class must define a subclass and override the  member function,Ice::Service start
which is where the service must perform its startup activities, such as processing command-line arguments, creating an object adapter, and
registering servants. The application's  function must instantiate the subclass and typically invokes its  member function, passingmain main
the program's argument vector as parameters. The example below illustrates a minimal  subclass:Ice::Service
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C++

#include <Ice/Service.h>

class MyService : public Ice::Service {
protected:
    virtual bool start(int, char*[], int&);
private:
    Ice::ObjectAdapterPtr _adapter;
};

bool
MyService::start(int argc, char* argv[], int& status)
{
    _adapter = communicator()->createObjectAdapter("MyAdapter");
    _adapter->addWithUUID(new MyServantI);
    _adapter->activate();
    status = EXIT_SUCCESS;
    return true;
}

int
main(int argc, char* argv[])
{
    MyService svc;
    return svc.main(argc, argv);
}

The  member function performs the following sequence of tasks:Service::main

Scans the argument vector for reserved options that indicate whether the program should run as a system service and removes
these options from the argument vector (  is adjusted accordingly). Additional reserved options are supported for administrativeargc
tasks.
Configures the program for running as a system service (if necessary) by invoking  or , asconfigureService configureDaemon
appropriate for the platform.
Invokes the  member function and returns its result.run

Note that, as for ,  is overloaded to accept a string sequence instead of an /  pair. This isApplication::main Service::main argc argv
useful if you need to  on the command line.parse application-specific property settings

The  member function executes the service in the steps shown below:Service::run

Installs a .signal handler
Invokes the  member function to obtain a communicator. The communicator instance can be accessedinitializeCommunicator
using the  member function.communicator
Invokes the  member function. If  returns  to indicate failure,  destroys the communicator and returnsstart start false run
immediately using the exit status provided in .status
Invokes the  member function, which should block until  is invoked.waitForShutdown shutdown
Invokes the  member function. If  returns ,  considers the application to have terminated successfully.stop stop true run
Destroys the communicator.
Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by , a descriptive message is logged, the communicator is destroyed and the service isService::run
terminated.

Ice::Service Member Functions

The virtual member functions in  represent the points at which a subclass can intercept the service activities. All of the virtualIce::Service
member functions (except ) have default implementations.start

void handleInterrupt(int sig)
Invoked by the  when a signal occurs. The default implementation ignores the signal if it represents a logoff eventCtrlCHandler
and the  property is set to a value larger than zero, otherwise it invokes the  member function.Ice.Nohup interrupt

Ice::CommunicatorPtr initializeCommunicator(int & argc, char * argv[],



Ice 3.4.2 Documentation

257 Copyright © 2011, ZeroC, Inc.

      const Ice::InitializationData & data)
Initializes a communicator. The default implementation invokes  and passes the given arguments.Ice::initialize

void interrupt()
Invoked by the signal handler to indicate a signal was received. The default implementation invokes the  membershutdown
function.

bool shutdown()
Causes the service to begin the shutdown process. The default implementation invokes  on the communicator. Theshutdown
subclass must return  if shutdown was started successfully, and  otherwise.true false

bool start(int argc, char * argv[], int & status)
Allows the subclass to perform its startup activities, such as scanning the provided argument vector for recognized command-line
options, creating an object adapter, and registering servants. The subclass must return  if startup was successful, and true false
otherwise. The subclass can set an exit status via the  parameter. This status is returned by .status main

bool stop()
Allows the subclass to clean up prior to termination. The default implementation does nothing but return . The subclass musttrue
return  if the service has stopped successfully, and  otherwise.true false

void syserror(const std::string & msg)
void error(const std::string & msg)
void warning(const std::string & msg)
void trace(const std::string & msg)
void print(const std::string & msg)
Convenience functions for logging messages to the communicator's . The  member function includes a descriptionlogger syserror
of the system's current error code.

void waitForShutdown()
Waits indefinitely for the service to shut down. The default implementation invokes  on the communicator.waitForShutdown

The non-virtual member functions shown in the class definition are described below:

bool checkSystem() const
Returns true if the operating system supports Windows services or Unix daemons. This function returns false on Windows
95/98/ME.

Ice::CommunicatorPtr communicator() const
Returns the communicator used by the service, as created by .initializeCommunicator

void configureDaemon(bool chdir, bool close, const std::string & pidFile)
Configures the program to run as a Unix daemon. The  parameter determines whether the daemon changes its workingchdir
directory to the root directory. The  parameter determines whether the daemon closes unnecessary file descriptors (i.e., stdin,close
stdout, etc.). If a non-empty string is provided in the  parameter, the daemon writes its process ID to the given file.pidFile

void configureService(const std::string & name)
Configures the program to run as a Windows service with the given name.

void disableInterrupt()
Disables the signal handling behavior in . When disabled, signals are ignored.Ice::Service

void enableInterrupt()
Enables the signal handling behavior in . When enabled, the occurrence of a signal causes the Ice::Service handleInterrupt
member function to be invoked.

static Service * instance()
Returns the singleton  instance.Ice::Service

int main(int & argc, char * argv[],
       const Ice::InitializationData & data = Ice::InitializationData())
int main(Ice::StringSeq& args,
       const Ice::InitializationData& = Ice::InitializationData());
int main(int & argc, wchar_t * argv[],
       const Ice::InitializationData & data = Ice::InitializationData())
The primary entry point of the  class. The tasks performed by this function are described earlier in this section. TheIce::Service
function returns  for success,  for failure. For Windows, this function is overloaded to allow you toEXIT_SUCCESS EXIT_FAILURE
pass a  argument vector.wchar_t

std::string name() const
Returns the name of the service. If the program is running as a Windows service, the return value is the Windows service name,
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otherwise it returns the value of .argv[0]

int run(int & argc, char * argv[], const Ice::InitializationData & data)
Alternative entry point for applications that prefer a different style of service configuration. The program must invoke 

 (Windows) or  (Unix) in order to run as a service. The tasks performed by this functionconfigureService configureDaemon
were described . The function normally returns  or , but the  method can also supply aearlier EXIT_SUCCESS EXIT_FAILURE start
different value via its  argument.status

bool service() const
Returns true if the program is running as a Windows service or Unix daemon, or false otherwise.

Unix Daemons

On Unix platforms,  recognizes the following command-line options:Ice::Service

--daemon
Indicates that the program should run as a daemon. This involves the creation of a background child process in which 

 performs its tasks. The parent process does not terminate until the child process has successfully invoked the Service::main
 member function.start

This behavior avoids the uncertainty often associated with starting a daemon from a shell script, because it
ensures that the command invocation does not complete until the daemon is ready to receive requests.

Unless instructed otherwise,  changes the current working directory of the child process to the root directory, andIce::Service
closes all unnecessary file descriptors. Note that the file descriptors are not closed until after the communicator is initialized,
meaning standard input, standard output, and standard error are available for use during this time. For example, the IceSSL plug-in
may need to prompt for a passphrase on standard input, or Ice may print the child's process id on standard output if the property 

 is set.Ice.PrintProcessId

--pidfile FILE
This option writes the process ID of the service into the specified . (This option requires .)FILE --daemon

--noclose
Prevents  from closing unnecessary file descriptors. This can be useful during debugging and diagnosis because itIce::Service
provides access to the output from the daemon's standard output and standard error.

--nochdir
Prevents  from changing the current working directory.Ice::Service

The  and  options can only be specified in conjunction with . These options are removed from the--noclose --nochdir --daemon
argument vector that is passed to the  member function.start

Windows Services

On Windows,  recognizes the following command-line options:Ice::Service

--service NAME
Run as a Windows service named , which must already be installed. This option is removed from the argument vector that isNAME
passed to the  member function.start

Installing and configuring a Windows service is outside the scope of the  class. Ice includes a  for installing its servicesIce::Service utility
which you can use as a model for your own applications.

The  class supports the Windows service control codes  and Ice::Service SERVICE_CONTROL_INTERROGATE SERVICE_CONTROL_STOP
. Upon receipt of ,  invokes the  member function.SERVICE_CONTROL_STOP Ice::Service shutdown

Ice::Service Logging Considerations

A service that uses a  has several ways of configuring it:custom logger

as a ,process-wide logger
in the  argument that is passed to ,InitializationData main
by overriding the  member function.initializeCommunicator

On Windows,  installs its own logger that uses the Windows  event log if no custom logger is defined. TheIce::Service Application
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source name for the event log is the service's name unless a different value is specified using the property .Ice.EventLog.Source

On Unix, the default Ice logger (which logs to the standard error output) is used when no other logger is configured. For daemons, this is not
appropriate because the output will be lost. To change this, you can either implement a custom logger or set the  property,Ice.UseSyslog
which selects a logger implementation that logs to the  facility. Alternatively, you can set the  property to write logsyslog Ice.LogFile
messages to a file.

Note that  may encounter errors before the communicator is initialized. In this situation,  uses its defaultIce::Service Ice::Service
logger unless a process-wide logger is configured. Therefore, even if a failing service is configured to use a different logger implementation,
you may find useful diagnostic information in the  event log (on Windows) or sent to standard error (on Unix).Application

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
Portable Signal Handling in C++
Windows Services
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Server-Side C++ Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing virtual functions in a servant class, you
provide the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in C++
Servant Classes in C++

Normal and  Operations in C++idempotent

Skeleton Classes in C++

On the client side, interfaces map to . On the server side, interfaces map to  classes. A skeleton is a class that has aproxy classes skeleton
pure virtual member function for each operation on the corresponding interface. For example, consider our  for the Slice definition Node
interface:

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

C++

namespace Filesystem {

    class Node : virtual public Ice::Object {
    public:
        virtual std::string name(const Ice::Current& = Ice::Current()) = 0;
        // ...
    };
    // ...
}

For the moment, we will ignore a number of other member functions of this class. The important points to note are:

As for the client side, Slice modules are mapped to C++ namespaces with the same name, so the skeleton class definition is nested
in the namespace .Filesystem
The name of the skeleton class is the same as the name of the Slice interface ( ).Node
The skeleton class contains a pure virtual member function for each operation in the Slice interface.
The skeleton class is an abstract base class because its member functions are pure virtual.
The skeleton class inherits from  (which forms the root of the Ice object hierarchy).Ice::Object

Servant Classes in C++

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the  interface, you could write:Node
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C++

#include <Filesystem.h> // Slice-generated header

class NodeI : public virtual Filesystem::Node {
public:
    NodeI(const std::string&);
    virtual std::string name(const Ice::Current&);
private:
    std::string _name;
};

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called .I Node NodeI
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.)

Note that  inherits from , that is, it derives from its skeleton class. It is a good idea to always use virtualNodeI Filesystem::Node
inheritance when defining servant classes. Strictly speaking, virtual inheritance is necessary only for servants that implement interfaces that
use multiple inheritance; however, the  keyword does no harm and, if you add multiple inheritance to an interface hierarchyvirtual
half-way through development, you do not have to go back and add a  keyword to all your servant classes.virtual

As far as Ice is concerned, the  class must implement only a single member function: the pure virtual  function that it inheritsNodeI name
from its skeleton. This makes the servant class a concrete class that can be instantiated. You can add other member functions and data
members as you see fit to support your implementation. For example, in the preceding definition, we added a  member and a_name
constructor. Obviously, the constructor initializes the  member and the  function returns its value:_name name

C++

NodeI::NodeI(const std::string& name) : _name(name)
{
}

std::string
NodeI::name(const Ice::Current&) const
{
    return _name;
}

Normal and  Operations in C++idempotent

The  member function of the  skeleton is not a  member function. However, given that the operation does not modify thename NodeI const
state of its object, it really should be a  member function. We can achieve this by adding the  metadata directive. Forconst ["cpp:const"]
example:

Slice

interface Example {
                void normalOp();

    idempotent  void idempotentOp();

    ["cpp:const"]
    idempotent  void readonlyOp();
};

The skeleton class for this interface looks like this:
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C++

class Example : virtual public Ice::Object {
public:
    virtual void normalOp(const Ice::Current& = Ice::Current()) = 0;
    virtual void idempotentOp(const Ice::Current& = Ice::Current()) = 0;
    virtual void readonlyOp(const Ice::Current& = Ice::Current()) const = 0;
    // ...
};

Note that  is mapped as a  member function due to the  metadata directive; normal and readonlyOp const ["cpp:const"] idempotent
operations (without the metadata directive) are mapped as ordinary, non-  member functions.const

See Also

Slice for a Simple File System
C++ Mapping for Interfaces
Parameter Passing in C++
Raising Exceptions in C++
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Parameter Passing in C++

For each parameter of a Slice operation, the C++ mapping generates a corresponding parameter for the virtual member function in the
skeleton. In addition, every operation has an additional, trailing parameter of type . For example, the  operation of the Ice::Current name

 interface has no parameters, but the  member function of the  skeleton class has a single parameter of type Node name Node
. We will ignore this parameter for now.Ice::Current

Parameter passing on the server side follows the rules for the client side:

in-parameters are passed by value or  reference.const
out-parameters are passed by reference.
return values are passed by value

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice

module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated skeleton class for this interface looks as follows:

C++

namespace M {
    class Example : virtual public ::Ice::Object {
    public:
        virtual std::string op(const std::string&, std::string&,
                               const Ice::Current& = Ice::Current()) = 0;
        // ...
    };
}

As you can see, there are no surprises here. For example, we could implement  as follows:op

C++

std::string
ExampleI::op(const std::string& sin, std::string& sout, const Ice::Current&)
{
    cout << sin << endl;        // In parameters are initialized
    sout = "Hello World!";      // Assign out parameter
    return "Done";              // Return a string
}

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies,
classes, or dictionaries: the parameter passing conventions follow normal C++ rules and do not require special-purpose API calls or memory
management.

See Also

Server-Side C++ Mapping for Interfaces
Raising Exceptions in C++
The Current Object
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1.  

Raising Exceptions in C++

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

C++

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice::Current&)
{
    // Try to write the file contents here...
    // Assume we are out of space...
    if (error) {
        Filesystem::GenericError e;
        e.reason = "file too large";
        throw e;
    }
};

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for operations, regardless of whether the corresponding Slice operation
definition has an exception specification or not. This is deliberate: C++ exception specifications do not add any value and are therefore not
used by the Ice C++ mapping .[1]

If you throw an arbitrary C++ exception (such as an  or other unexpected type), the Ice run time catches the exception and then returnsint
an  to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in theUnknownException
exception specification of the operation), the client receives an .UnknownUserException

If you throw a run-time exception, such as , the client receives an . For that reason,MemoryLimitException UnknownLocalException
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocalException
, which does not tell the client anything useful.

Three run-time exceptions are  and not changed to  when returned to thetreated specially UnknownLocalException
client: , , and .ObjectNotExistException OperationNotExistException FacetNotExistException

See Also

Run-Time Exceptions
C++ Mapping for Exceptions
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++
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4.  

Object Incarnation in C++

Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can classNodeI
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must follow the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a C++ Servant
Creating an Identity in C++
Activating a C++ Servant

Servant Life Time and Reference Counts
UUIDs as Identities in C++
Creating Proxies in C++

Proxies and Servant Activation in C++
Direct Proxy Creation in C++

Instantiating a C++ Servant

Instantiating a servant means to allocate an instance on the heap:

C++

NodePtr servant = new NodeI("Fred");

This code creates a new  instance  and assigns its address to a smart pointer of type . This works because NodeI on the heap NodePtr
 is derived from , so a smart pointer of type  can also look after an instance of type . However, if we want toNodeI Node NodePtr NodeI

invoke a member function of the derived  class at this point, we have a problem: we cannot access member functions of the derived NodeI
 class through a  smart pointer, only member functions of  base class. (The C++ type rules prevent us from accessing aNodeI NodePtr Node

member of a derived class through a pointer to a base class.) To get around this, we can modify the code as follows:

C++

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI("Fred");

This code makes use of the  by defining  as a smart pointer to  instances. Whether you use a smartsmart pointer template NodeIPtr NodeI
pointer of type  or  depends solely on whether you want to invoke a member function of the  derived class; if youNodePtr NodeIPtr NodeI
only want to invoke member functions that are defined in the  skeleton base class, it is sufficient to use a  and you need notNode NodePtr
define the  type.NodeIPtr

Whether you use  or , the advantages of using a smart pointer class should be obvious from the NodePtr NodeIPtr smart pointer
: they make it impossible to accidentally leak memory.discussion

Creating an Identity in C++

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

An Ice object identity is a structure with the following Slice definition:
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Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the  and  fields of the  structure. For now, we will leave the name category Identity
 field as the empty string and simply use the  field. (The  field is most often used in conjunction with category name category servant

.)locators

To create an identity, we simply assign a key that identifies the servant to the  field of the  structure:name Identity

C++

Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

Activating a C++ Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the  operation on the object adapter. Assuming that we haveadd
access to the object adapter in the  variable, we can write:_adapter

C++

_adapter->add(servant, id);

Note the two arguments to : the smart pointer to the servant and the object identity. Calling  on the object adapter adds the servantadd add
pointer and the servant's identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the
server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant pointer from the servant map and dispatches the
incoming request into the correct member function on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instantiates and activates one of our  servants. For thisNodeI
example, we use a simple helper function called  that creates and activates a servant with a given identity:activateServant

C++

void
activateServant(const string& name)
{
    NodePtr servant = new NodeI(name);          // Refcount == 1
    Ice::Identity id;
    id.name = name;
    _adapter->add(servant, id);                 // Refcount == 2
}                                               // Refcount == 1
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Note that we create the servant on the heap and that, once  returns, we lose the last remaining handle to the servantactivateServant
(because the  variable goes out of scope). The question is, what happens to the heap-allocated servant instance? The answer liesservant
in the smart pointer semantics:

When the new servant is instantiated, its reference count is initialized to 0.
Assigning the servant's address to the  smart pointer increments the servant's reference count to 1.servant
Calling  passes the  smart pointer to the object adapter which keeps a copy of the handle internally. This incrementsadd servant
the reference count of the servant to 2.
When  returns, the destructor of the  variable decrements the reference count of the servant to 1.activateServant servant

The net effect is that the servant is retained on the heap with a reference count of 1 for as long as the servant is in the servant map of its
object adapter. (If we deactivate the servant, that is, remove it from the servant map, the reference count drops to zero and the memory
occupied by the servant is reclaimed; we discuss these life cycle issues in .)Object Life Cycle

UUIDs as Identities in C++

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. The  namespace contains a  to create such identities:IceUtil helper function

C++

#include <IceUtil/UUID.h>
#include <iostream>

using namespace std;

int
main()
{
    cout << IceUtil::generateUUID() << endl;
}

When executed, this program prints a unique string such as . Each call to 5029a22c-e333-4f87-86b1-cd5e0fcce509 generateUUID
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation  thataddWithUUID
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can rewrite the code shown  likeearlier
this:

C++

void
activateServant(const string& name)
{
    NodePtr servant = new NodeI(name);
    _adapter->addWithUUID(servant);
}

Creating Proxies in C++

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in . However, creation of proxies by the client in thisHello World Application
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in C++
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The  and  servant activation operations on the object adapter return a proxy for the corresponding Ice object. This meansadd addWithUUID
we can write:

C++

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI(name);
NodePrx proxy = NodePrx::uncheckedCast(_adapter->addWithUUID(servant));

// Pass proxy to client...

Here,  both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an  here because  returns a proxy of type .uncheckedCast addWithUUID Ice::ObjectPrx

Direct Proxy Creation in C++

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that  creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxiescreateProxy
have a life cycle that is quite independent from the life cycle of servants:

C++

Ice::Identity id;
id.name = IceUtil::generateUUID();
ObjectPrx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if wegenerateUUID
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an . (WeObjectNotExistException
examine these life cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Object Adapter States
Servant Locators
Object Life Cycle
The C++ generateUUID Function
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Asynchronous Method Dispatch (AMD) in C++

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's 
. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests andthread pool

therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receiveAMI
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

Enabling AMD with Metadata in C++
AMD Mapping in C++
AMD Exceptions in C++
AMD Example in C++

Enabling AMD with Metadata in C++

To enable asynchronous dispatch, you must add an  metadata directive to your Slice definitions. The directive applies at the["amd"]
interface and the operation level. If you specify  at the interface level, all operations in that interface use asynchronous dispatch; if["amd"]
you specify  for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive ["amd"]

 synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannotreplaces
use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
    bool isValid();
    float computeRate();
};

interface J {
    ["amd"] void startProcess();
    int endProcess();
};

In this example, both operations of interface  use asynchronous dispatch, whereas, for interface ,  uses asynchronousI J startProcess
dispatch and  uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in
your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in C++

The C++ mapping emits the following code for each AMD operation:

A callback class used by the implementation to notify the Ice run time about the completion of an operation. The name of this class
is formed using the pattern _ . For example, an operation named  defined in interface  results in a class named AMD_class op foo I

. The class is generated in the same scope as the interface or class containing the operation. Several methods areAMD_I_foo
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provided:
void ice_response(<params>);
The  method allows the server to report the successful completion of the operation. If the operation has aice_response
non-  return type, the first parameter to  is the return value. Parameters corresponding to thevoid ice_response
operation's  parameters follow the return value, in the order of declaration.out
void ice_exception(const std::exception &);
This version of  allows the server to raise any standard exception, Ice run-time exception, or Ice userice_exception
exception.
void ice_exception();
This version of  allows the server to report an .ice_exception UnknownException

Neither  nor  throw any exceptions to the caller.ice_response ice_exception

The dispatch method, whose name has the suffix . This method has a  return type. The first parameter is a smart_async void
pointer to an instance of the callback class described above. The remaining parameters comprise the in-parameters of the
operation, in the order of declaration.

For example, suppose we have defined the following operation:

Slice

interface I {
    ["amd"] int foo(short s, out long l);
};

The callback class generated for operation  is shown below:foo

C++

class AMD_I_foo : public ... {
public:
    void ice_response(Ice::Int, Ice::Long);
    void ice_exception(const std::exception&);
    void ice_exception();
};

The dispatch method for asynchronous invocation of operation  is generated as follows:foo

C++

void foo_async(const AMD_I_fooPtr&, Ice::Short);

AMD Exceptions in C++

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).

These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run-time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are  and local exceptions may undergo validated
.translation

AMD Example in C++
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To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the  operation returns a new grid of the same size with theinterpolate
values interpolated in some interesting (but unspecified) way.

Our servant class derives from  and supplies a definition for the  method:Demo::Model interpolate_async

C++

class ModelI : virtual public Demo::Model, virtual public IceUtil::Mutex {
public:
    virtual void interpolate_async(
        const Demo::AMD_Model_interpolatePtr&,
        const Demo::Grid&,
        Ice::Float,
        const Ice::Current&);

private:
  std::list<JobPtr> _jobs;
};

The implementation of  uses synchronization to safely record the callback object and arguments in a  that isinterpolate_async Job
added to a queue:

C++

void ModelI::interpolate_async(
    const Demo::AMD_Model_interpolatePtr& cb,
    const Demo::Grid& data,
    Ice::Float factor,
    const Ice::Current& current)
{
    IceUtil::Mutex::Lock sync(*this);
    JobPtr job = new Job(cb, data, factor);
    _jobs.push_back(job);
}

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next  from the queue and invokes  to perform the interpolation.  is defined asJob execute Job
follows:
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C++

class Job : public IceUtil::Shared {
public:
    Job(const Demo::AMD_Model_interpolatePtr&, const Demo::Grid&, Ice::Float);
    void execute();

private:
    bool interpolateGrid();

    Demo::AMD_Model_interpolatePtr _cb;
    Demo::Grid _grid;
    Ice::Float _factor;
};
typedef IceUtil::Handle<Job> JobPtr;

The implementation of  uses  (not shown) to perform the computational work:execute interpolateGrid

C++

Job::Job(const Demo::AMD_Model_interpolatePtr& cb, const Demo::Grid& grid, Ice::Float factor) :
    _cb(cb), _grid(grid), _factor(factor)
{
}

void Job::execute()
{
    if (!interpolateGrid()) {
        _cb?>ice_exception(Demo::RangeError());
        return;
    }
    _cb?>ice_response(_grid);
}

If  returns , then  is invoked to indicate that a range error has occurred. The  statementinterpolateGrid false ice_exception return
following the call to  is necessary because  does not throw an exception; it only marshals the exceptionice_exception ice_exception
argument and sends it to the client.

If interpolation was successful,  is called to send the modified grid back to the client.ice_response

See Also

Asynchronous Method Invocation (AMI) in C++
The Ice Threading Model
User Exceptions
Run-Time Exceptions
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Example of a File System Server in C++

This page presents the source code for a C++ server that implements our  and communicates with the  we wrote earlier. Thefile system client
code is fully functional, apart from the required .interlocking for threads

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just
the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application
code so that you can concentrate on developing application logic instead of networking infrastructure.

The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the  data member while another thread updates it. Obviously, if that_lines
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the  and read write
operations thread-safe: a single data member and two lines of source code are sufficient to achieve this. We discuss how
to write thread-safe servant implementations in .Threads and Concurrency with C++

On this page:

Implementing a File System Server in C++
Server  Program in C++main
Servant Class Definitions in C++
The Servant Implementation in C++

Implementing FileI
Implementing DirectoryI
Implementing NodeI

Implementing a File System Server in C++

We have now seen enough of the server-side C++ mapping to implement a server for our . (You may find it useful to review thesefile system
Slice definitions before studying the source code.)

Our server is composed of two source files:

Server.cpp
This file contains the server main program.

FilesystemI.cpp
This file contains the implementation for the file system servants.

Server  Program in C++main

Our server main program, in the file , uses the  class. The  method installs a signal handler, createsServer.cpp Ice::Application run
an object adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a 

 program as follows:main

C++

#include <Ice/Ice.h>
#include <FilesystemI.h>

using namespace std;
using namespace Filesystem;

class FilesystemApp : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {
        // Terminate cleanly on receipt of a signal
        //
        shutdownOnInterrupt();

        // Create an object adapter.
        //
        Ice::ObjectAdapterPtr adapter = communicator()->createObjectAdapterWithEndpoints(
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            "SimpleFilesystem", "default -p 10000");

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root = new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains a collection of poetry.");
        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge = new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

        // All objects are created, allow client requests now
        //
        adapter->activate();

        // Wait until we are done
        //
        communicator()->waitForShutdown();
        if (interrupted()) {
            cerr << appName() << ": received signal, shutting down" << endl;
        }

        return 0;
    };
};

int
main(int argc, char* argv[])
{
    FilesystemApp app;
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    return app.main(argc, argv);
}

There is quite a bit of code here, so let us examine each section in detail:

C++

#include <FilesystemI.h>
#include <Ice/Application.h>

using namespace std;
using namespace Filesystem;

The code includes the header file . That file includes  as well as the header file that is generated by the SliceFilesystemI.h Ice/Ice.h
compiler, . Because we are using , we need to include  as well.Filesystem.h Ice::Application Ice/Application.h

Two  declarations, for the namespaces  and , permit us to be a little less verbose in the source code.using std Filesystem

The next part of the source code is the definition of , which derives from  and contains the mainFilesystemApp Ice::Application
application logic in its  method:run
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C++

class FilesystemApp : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {
        // Terminate cleanly on receipt of a signal
        //
        shutdownOnInterrupt();

        // Create an object adapter.
        //
        Ice::ObjectAdapterPtr adapter = communicator()->createObjectAdapterWithEndpoints(
            "SimpleFilesystem", "default -p 10000");

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root = new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains a collection of poetry.");
        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge = new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

        // All objects are created, allow client requests now
        //
        adapter->activate();

        // Wait until we are done
        //
        communicator()->waitForShutdown();
        if (interrupted()) {
            cerr << appName() << ": received signal, shutting down" << endl;
        }

        return 0;
    };
};

Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object adapter and
call .waitForShutdown

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
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structure shown below:

A small file system.

As we will see shortly, the servants for our directories and files are of type  and , respectively. The constructor for eitherDirectoryI FileI
type of servant accepts three parameters: the communicator, the name of the directory or file to be created, and a handle to the servant for
the parent directory. (For the root directory, which has no parent, we pass a null parent handle.) Thus, the statement

C++

DirectoryIPtr root = new DirectoryI(communicator(), "/", 0);

creates the root directory, with the name  and no parent directory. Note that we use the  to hold the return value from "/" smart pointer class
; that way, we avoid any memory management issues. The types  and  are defined as follows in a headernew DirectoryIPtr FileIPtr

file :FilesystemI.h

C++

typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;
typedef IceUtil::Handle<FileI> FileIPtr;

Here is the code that establishes the structure in the illustration above.
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C++

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root = new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains a collection of poetry.");
        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge = new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

We first create the root directory and a file  within the root directory. (Note that we pass the handle to the root directory as the parentREADME
pointer when we create the new node of type .)FileI

After creating each servant, the code calls  on the servant. (We will see the definition of this member function shortly.) The activate
 member function adds the servant to the ASM.activate

The next step is to fill the file with text:

C++

        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains a collection of poetry.");
        file->write(text);
        file->activate(adapter);

Recall that  map to STL vectors. The Slice type  is a sequence of strings, so the C++ type  is a vector ofSlice sequences Lines Lines
strings; we add a line of text to our  file by calling  on that vector.README push_back

Finally, we call the Slice  operation on our  servant by simply writing:write FileI

C++

        file->write(text);

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a smart class
pointer (of type ) and not via a proxy (of type ), the Ice run time does not know that this call is even taking place — such aFilePtr FilePrx
direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary C++ function call.



Ice 3.4.2 Documentation

279 Copyright © 2011, ZeroC, Inc.

In similar fashion, the remainder of the code creates a subdirectory called  and, within that directory, a file called  toColeridge Kubla_Khan
complete the structure in the above illustration.

Servant Class Definitions in C++

We must provide servants for the concrete interfaces in our Slice specification, that is, we must provide servants for the  and File
 interfaces in the C++ classes  and . This means that our servant classes might look as follows:Directory FileI DirectoryI

C++

namespace Filesystem {
  class FileI : virtual public File {
    // ...
  };

  class DirectoryI : virtual public Directory {
     // ...
  };
}

This leads to the C++ class structure as shown:

File system servants using interface inheritance.

The shaded classes in the illustration above are skeleton classes and the unshaded classes are our servant implementations. If we
implement our servants like this,  must implement the pure virtual operations it inherits from the  skeleton (  and ), asFileI File read write
well as the operation it inherits from the  skeleton ( ). Similarly,  must implement the pure virtual function it inheritsNode name DirectoryI
from the  skeleton ( ), as well as the operation it inherits from the  skeleton ( ). Implementing the servants in thisDirectory list Node name
way uses interface inheritance from  because no implementation code is inherited from that class.Node

Alternatively, we can implement our servants using the following definitions:

C++

namespace Filesystem {
  class NodeI : virtual public Node {
    // ...
  };

  class FileI : virtual public File, virtual public NodeI {
    // ...
  };

  class DirectoryI : virtual public Directory, virtual public NodeI {
    // ...
  };
}

This leads to the C++ class structure shown:
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File system servants using implementation inheritance.

In this implementation,  is a concrete base class that implements the  operation it inherits from the  skeleton.  and NodeI name Node FileI
 use multiple inheritance from  and their respective skeletons, that is,  and  use implementationDirectoryI NodeI FileI DirectoryI

inheritance from their  base class.NodeI

Either implementation approach is equally valid. Which one to choose simply depends on whether we want to re-use common code provided
by . For the implementation that follows, we have chosen the second approach, using implementation inheritance.NodeI

Given the structure in the above illustration and the operations we have defined in the Slice definition for our file system, we can add these
operations to the class definition for our servants:

C++

namespace Filesystem {
  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
  };
  
  class FileI : virtual public File, virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&, const Ice::Current&);
  };
  
  class DirectoryI : virtual public Directory, virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&);
  };
}

This simply adds signatures for the operation implementations to each class. Note that the signatures must exactly match the operation
signatures in the generated skeleton classes — if they do not match exactly, you end up overloading the pure virtual function in the base
class instead of overriding it, meaning that the servant class cannot be instantiated because it will still be abstract. To avoid signature
mismatches, you can copy the signatures from the generated header file ( ), or you can use the  option with Filesystem.h --impl

 to generate header and implementation files that you can add your application code to.slice2cpp

Now that we have the basic structure in place, we need to think about other methods and data members we need to support our servant
implementation. Typically, each servant class hides the copy constructor and assignment operator, and has a constructor to provide initial
state for its data members. Given that all nodes in our file system have both a name and a parent directory, this suggests that the NodeI
class should implement the functionality relating to tracking the name of each node, as well as the parent-child relationships:
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C++

namespace Filesystem {
  class DirectoryI;
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
    NodeI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
    void activate(const Ice::ObjectAdapterPtr&);
  private:
    std::string _name;
    Ice::Identity _id;
    DirectoryIPtr _parent;
    NodeI(const NodeI&);                // Copy forbidden
    void operator=(const NodeI&);       // Assignment forbidden
  };
}

The  class has a private data member to store its name (of type ) and its parent directory (of type ).NodeI std::string DirectoryIPtr
The constructor accepts parameters that set the value of these data members. For the root directory, by convention, we pass a null handle to
the constructor to indicate that the root directory has no parent. The constructor also requires the communicator to be passed to it. This is
necessary because the constructor creates the identity for the servant, which requires access to the communicator. The  memberactivate
function adds the servant to the ASM (which requires access to the object adapter) and connects the child to its parent.

The  servant class must store the contents of its file, so it requires a data member for this. We can conveniently use the generated FileI
 type (which is a ) to hold the file contents, one string for each line. Because  inherits from Lines std::vector<std::string> FileI
, it also requires a constructor that accepts the communicator, file name, and parent directory, leading to the following class definition:NodeI

C++

namespace Filesystem {
  class FileI : virtual public File, virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&, const Ice::Current&);
    FileI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
  private:
    Lines _lines;
  };
}

For directories, each directory must store its list of child notes. We can conveniently use the generated  type (which is a NodeSeq
) to do this. Because  inherits from , we need to add a constructor to initialize the directory namevector<NodePrx> DirectoryI NodeI

and its parent directory. As we will see shortly, we also need a private helper function, , to make it easier to connect a newlyaddChild
created directory to its parent. This leads to the following class definition:

C++

namespace Filesystem {
  class DirectoryI : virtual public Directory, virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&) const;
    DirectoryI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
    void addChild(NodePrx child);
  private:
    NodeSeq _contents;
  };
}

Servant Header File Example
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Putting all this together, we end up with a servant header file, , as follows:FilesystemI.h

C++

#include <Ice/Ice.h>
#include <Filesystem.h>

namespace Filesystem {
  class DirectoryI;
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;
  
  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
    NodeI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
    void activate(const Ice::ObjectAdapterPtr&);
  private:
    std::string _name;
    Ice::Identity _id;
    DirectoryIPtr _parent;
    NodeI(const NodeI&);            // Copy forbidden
    void operator=(const NodeI&);   // Assignment forbidden
  };
  
  typedef IceUtil::Handle<NodeI> NodeIPtr;

  class FileI : virtual public File, virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&, const Ice::Current& = Ice::Current());
    FileI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
  private:
    Lines _lines;
  };
  
  typedef IceUtil::Handle<FileI> FileIPtr;

  class DirectoryI : virtual public Directory, virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&);
    DirectoryI(const Ice::CommunicatorPtr&, const std::string&, const DirectoryIPtr&);
    void addChild(const Filesystem::NodePrx&);
  private:
    Filesystem::NodeSeq _contents;
  };
}

The Servant Implementation in C++

The implementation of our servants is mostly trivial, following from the class definitions in our  header file.FilesystemI.h

Implementing FileI

The implementation of the  and  operations for files is trivial: we simply store the passed file contents in the  dataread write _lines
member. The constructor is equally trivial, simply passing its arguments through to the  base class constructor:NodeI
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C++

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&)
{
    return _lines;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice::Current&)
{
    _lines = text;
}

Filesystem::FileI::FileI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : NodeI(communicator, name, parent)
{
}

Implementing DirectoryI

The implementation of  is equally trivial: the  operation simply returns the  data member and the constructorDirectoryI list _contents
passes its arguments through to the  base class constructor:NodeI

C++

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current&)
{
    return _contents;
}

Filesystem::DirectoryI::DirectoryI(const Ice::CommunicatorPtr& communicator,
                                   const string& name,
                                   const DirectoryIPtr& parent)
    : NodeI(name, parent)
{
}

void
Filesystem::DirectoryI::addChild(const NodePrx child)
{
    _contents.push_back(child);
}

The only noteworthy thing is the implementation of : when a new directory or file is created, the constructor of the  baseaddChild NodeI
class calls  on its own parent, passing it the proxy to the newly-created child. The implementation of  appends theaddChild addChild
passed reference to the contents list of the directory it is invoked on (which is the parent directory).

Implementing NodeI

The name operation of our  class is again trivial: it simply returns the  data member:NodeI _name
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C++

std::string
Filesystem::NodeI::name(const Ice::Current&)
{
    return _name;
}

The  constructor creates an identity for the servant:NodeI

C++

Filesystem::NodeI::NodeI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : _name(name), _parent(parent)
{
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

For the root directory, we use the fixed identity . This allows the  to create a proxy for the root directory. For directories"RootDir" client
other than the root directory, we use a .UUID as the identity

Finally,  provides the  member function that adds the servant to the ASM and connects the child node to its parentNodeI activate
directory:

C++

void
Filesystem::NodeI::activate(const Ice::ObjectAdapterPtr& a)
{
    NodePrx thisNode = NodePrx::uncheckedCast(a?>add(this, _id));
    if(_parent)
    {
        _parent?>addChild(thisNode);
    }
}

This completes our servant implementation. The complete source code is shown here once more:

C++

#include <IceUtil/IceUtil.h>
#include <FilesystemI.h>

using namespace std;

// Slice Node::name() operation

std::string
Filesystem::NodeI::name(const Ice::Current&)
{
    return _name;
}

// NodeI constructor

Filesystem::NodeI::NodeI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : _name(name), _parent(parent)
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{
    // Create an identity. The root directory has the fixed identity "RootDir"
    //
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

// NodeI activate() member function

void
Filesystem::NodeI::activate(const Ice::ObjectAdapterPtr& a)
{
    NodePrx thisNode = NodePrx::uncheckedCast(a->add(this, _id));
    if(_parent)
    {
        _parent->addChild(thisNode);
    }
}

// Slice File::read() operation

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&)
{
    return _lines;
}

// Slice File::write() operation

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice::Current&)
{
    _lines = text;
}

// FileI constructor

Filesystem::FileI::FileI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : NodeI(communicator, name, parent)
{
}

// Slice Directory::list() operation

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c)
{
    return _contents;
}

// DirectoryI constructor

Filesystem::DirectoryI::DirectoryI(const Ice::CommunicatorPtr& communicator,
                                   const string& name,
                                   const DirectoryIPtr& parent)
    : NodeI(communicator, name, parent)
{
}

// addChild is called by the child in order to add
// itself to the _contents member of the parent

void
Filesystem::DirectoryI::addChild(const NodePrx& child)
{
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    _contents.push_back(child);
}

See Also

Slice for a Simple File System
Example of a File System Client in C++
The  ClassIce::Application
C++ Mapping for Sequences
slice2cpp Command-Line Options
UUIDs as Identities in C++
Threads and Concurrency with C++
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The C++ Utility Library

Ice for C++ includes a number of utility classes and functions in the  namespace, which we summarize here for your reference.IceUtil
Many of the classes and functions in  are documented elsewhere in this manual so, where appropriate, the sections here simplyIceUtil
reference the relevant pages.

Topics

The C++ AbstractMutex Class
The C++ Cache Template
The C++ Exception Class
The C++ generateUUID Function
The C++ Handle Template
The C++ Handle Template Adaptors
The C++ ScopedArray Template
The C++ Shared and SimpleShared Classes
The C++ Time Class
The C++ Timer and TimerTask Classes
Unicode and UTF-8 Conversion Functions in C++
Version Information in C++
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The C++ AbstractMutex Class

AbstractMutex defines a mutex base interface used by the Freeze . The interface allows the evictor tobackground save evictor
synchronize with servants that are stored in a Freeze database. The class has the following definition:

C++

class AbstractMutex {
public:
    typedef LockT<AbstractMutex> Lock;
    typedef TryLockT<AbstractMutex> TryLock;

    virtual ~AbstractMutex();

    virtual void lock() const = 0;
    virtual void unlock() const = 0;
    virtual bool tryLock() const = 0;
};

This class definition is provided in . The same header file also defines a few template implementation classesIceUtil/AbstractMutex.h
that specialize , as described below.AbstractMutex

AbstractMutexI

This template class implements  by forwarding all member functions to its template argument:AbstractMutex

C++

template <typename T>
class AbstractMutexI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexI> Lock;
    typedef TryLockT<AbstractMutexI> TryLock;

    virtual void lock() const {
        T::lock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryLock();
    }

    virtual ~AbstractMutexI() {}
};

AbstractMutexReadI

This template class implements a read lock by forwarding the  and  functions to the  and  functionslock tryLock readLock tryReadLock
of its template argument:
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C++

template <typename T>
class AbstractMutexReadI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexReadI> Lock;
    typedef TryLockT<AbstractMutexReadI> TryLock;

    virtual void lock() const {
        T::readLock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryReadLock();
    }

    virtual ~AbstractMutexReadI() {}
};

AbstractMutexWriteI

This template class implements a write lock by forwarding the  and  functions to the  and lock tryLock writeLock tryWriteLock
functions of its template argument:

C++

template <typename T>
class AbstractMutexWriteI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexWriteI> Lock;
    typedef TryLockT<AbstractMutexWriteI> TryLock;

    virtual void lock() const {
        T::writeLock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryWriteLock();
    }

    virtual ~AbstractMutexWriteI() {}
};

Apart from use with Freeze servants, these templates are also useful if, for example, you want to implement your own evictor.

See Also

Background Save Evictor
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The C++ Cache Template

This class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, without holding a
lock on the entire cache while values are being loaded from the database. If you want to create  for servants that store their state in aevictors
database, the  class can simplify your evictor implementation considerably.Cache

You may also want to examine the implementation of the  in the source distribution; it usesFreeze background save evictor
 for its implementation.IceUtil::Cache

The  class has the following interface:Cache

C++

template<typename Key, typename Value>
class Cache {
public:
    typedef typename std::map</* ... */, /* ... */>::iterator Position;

    bool pin(const Key& k, const Handle<Value>& v);
    Handle<Value> pin(const Key& k);
    void unpin(Position p);

    Handle<Value> putIfAbsent(const Key& k, const Handle<Value>& v);

    Handle<Value> getIfPinned(const Key&, bool = false) const;

    void clear();
    size_t size() const;

protected:
    virtual Handle<Value> load(const Key& k) = 0;
    virtual void pinned(const Handle<Value>& v, Position p);

    virtual ~Cache();
};

Note that  is an abstract base class — you must derive a concrete implementation from  and provide an implementation of the Cache Cache
 and, optionally, of the  member function.load pinned

Internally, a  maintains a map of name-value pairs. The key and value type of the map are supplied by the  and  templateCache Key Value
arguments, respectively. The implementation of  takes care of maintaining the map; in particular, it ensures that concurrent lookups byCache
callers are possible without blocking even if some of the callers are currently loading values from the backing store. In turn, this is useful for
evictor implementations, such as the Freeze . The  class does not limit the number of entries in the cache —background save evictor Cache
it is the job of the evictor implementation to limit the map size by calling  on elements of the map that it wants to evict.unpin

Your concrete implementation class must implement the  function, whose job it is to load the value for the key   from the backing storeload k
and to return a handle to that value. Note that  returns a value of type , that is, the value must be heap-allocatedload IceUtil::Handle
and support the usual reference-counting functions for smart pointers. (The easiest way to achieve this is to derive the value from 

.)IceUtil::Shared

If  cannot locate a record for the given key because no such record exists, it must return a null handle. If  fails for some otherload load
reason, it can throw an exception, which is propagated back to the application code.

Your concrete implementation class typically will also override the  function (unless you want to have a cache that does not limit thepinned
number of entries; the provided default implementation of  is a no-op). The  implementation calls  whenever it haspinned Cache pinned
added a value to the map as a result of a call to ; the  function is therefore a callback that allows the derived class to find outpin pinned
when a value has been added to the cache and informs the derived class of the value and its position in the cache.

The  parameter is a  into the cache's internal map that records the position of the corresponding map entry.Position std::iterator
(Note that the element type of map is opaque, so you should not rely on knowledge of the cache's internal key and value types.) Your
implementation of  must remember the position of the entry because that position is necessary to remove the corresponding entrypinned
from the cache again.
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The public member functions of  behave as follows:Cache

bool pin(const Key& k, const Handle<Value>& v);

To add a key-value pair to the cache, your evictor can call . The return value is true if the key and value were added; a false return valuepin
indicates that the map already contained an entry with the given key and the original value for that key is unchanged.

pin calls  if it adds an entry.pinned

This version of  does  call  to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add apin not load
newly-created object to the cache.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to .unpin

Handle<Value> pin(const Key& k);

A second version of  looks for the entry with the given key in the cache. If the entry is already in the cache,  returns the entry's value.pin pin
If no entry with the given key is in the cache,  calls  to retrieve the corresponding entry. If  returns an entry,  adds it to thepin load load pin
cache and returns the entry's value. If the entry cannot be retrieved from the backing store,  returns null.pin

pin calls  if it adds an entry.pinned

The function is thread-safe, that is, it calls  only once all other threads have unpinned the entry.load

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to .unpin

Handle<Value> putIfAbsent(const Key& k, const Handle<Value>& v);

This function adds a key-value pair to the cache and returns a smart pointer to the value. If the map already contains an entry with the given
key, that entry's value remains unchanged and  returns its value. If no entry with the given key is in the cache, putIfAbsent putIfAbsent
calls  to retrieve the corresponding entry. If  returns an entry,  adds it to the cache and returns the entry's value. Ifload load putIfAbsent
the entry cannot be retrieved from the backing store,  returns null.putIfAbsent

putIfAbsent calls  if it adds an entry.pinned

The function is thread-safe, that is, it calls  only once all other threads have unpinned the entry.load

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to .unpin

Handle<Value> getIfPinned(const Key& k, bool wait = false) const;

This function returns the value stored for the key  .k

If an entry for the given key is in the map, the function returns the value immediately, regardless of the value of .wait
If no entry for the given key is in the map and the  parameter is false, the function returns a null handle.wait
If no entry for the given key is in the map and the  parameter is true, the function blocks the calling thread if another thread iswait
currently attempting to load the same entry; once the other thread completes,  completes and returns the valuegetIfPinned
added by the other thread.

void unpin(Position p);

This function removes an entry from the map. The iterator   determines which entry to remove. (It must be an iterator that previously wasp
passed to .) The iterator   is invalidated by this operation, so you must not use it again once  returns. (Note that the pinned p unpin Cache
implementation ensures that updates to the map never invalidate iterators to existing entries in the map;  invalidates only the iteratorunpin
for the removed entry.)

void clear();

This function removes all entries in the map.

size_t size() const;

This function returns the number of entries in the map.

See Also
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Servant Evictors
The C++ Handle Template
The C++ Shared and SimpleShared Classes
Background Save Evictor
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The C++ Exception Class

This class is at the root of the derivation tree for  and encapsulates functionality that is common to all  and Ice exceptions Ice IceUtil
exceptions:

C++

class Exception : public std::exception {
public:
    Exception();
    Exception(const char* file, int line);
    virtual ~Exception() throw();

    virtual std::string ice_name() const;
    virtual void ice_print(std::ostream&) const;
    virtual const char* what() const throw();
    virtual Exception* ice_clone() const;
    virtual void ice_throw() const;
    const char* ice_file() const;
    int ice_line() const;
};

The second constructor stores a file name and line number in the exception that are returned by the  and  memberice_file ice_line
functions, respectively. This allows you to identify the source of an exception by passing the  and  preprocessor macros__FILE__ __LINE__
to the constructor.

The  member function is a synonym for . The default implementation of  prints the file name, line number, andwhat ice_print ice_print
the name of the exception.

The remaining member functions are described in the .C++ Mapping for Exceptions

See Also

C++ Mapping for Exceptions



Ice 3.4.2 Documentation

294 Copyright © 2011, ZeroC, Inc.

The C++ generateUUID Function

Universally-unique identifiers (UUIDs) are often used in the  of Ice objects. The C++ standard does not include a function foridentities
generating UUIDs, therefore Ice provides the  function for use in portable applications. The signature of IceUtil::generateUUID

 is:generateUUID

C++

std::string generateUUID();

The function returns a string like the following:

02b066f5-c762-431c-8dd3-9b1941355e41

Each invocation returns a new identifier that differs from all previous ones.

See Also

Object Identity
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The C++ Handle Template

IceUtil::Handle implements a smart reference-counted pointer type.  are used to guarantee automatic deletion ofSmart pointers
heap-allocated class instances.

Handle is a template class with the following interface:
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C++

template<typename T>
class Handle : /* ... */ {
public:

    typedef T element_type;

    T* _ptr;

    T* operator->() const;
    T& operator*() const;
    T* get() const;

    operator bool() const;

    void swap(HandleBase& other);

    Handle(T* p = 0);

    template<typename Y>
    Handle(const Handle<Y>& r);

    Handle(const Handle& r);

    ~Handle();

    Handle& operator=(T* p);

    template<typename Y>
    Handle& operator=(const Handle<Y>& r);

    Handle& operator=(const Handle& r);

    template<class Y>
    static Handle dynamicCast(const HandleBase<Y>& r);

    template<class Y>
    static Handle dynamicCast(Y* p);
};

template<typename T, typename U>
bool operator==(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator!=(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator<(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator<=(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator>(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator>=(const Handle<T>& lhs, const Handle<U>& rhs);

Note that the actual implementation is split into a base and a derived class. For simplicity, we show the combined interface
here. If you want to see the full implementation detail, it can be found in .IceUtil/Handle.h

The template argument must be a class that derives from  or  (or that implements reference counting with the sameShared SimpleShared
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interface as these classes).

This is quite a large interface, but all it really does is to faithfully mimic the behavior of ordinary C++ class instance pointers. Rather than
discussing each member function in detail, we provide a simple overview here that outlines the most important points. Please see the
discussion of  for more examples of using smart pointers.Ice objects

element_type

This type definition follows the STL convention of defining the element type with the fixed name  so you can use it forelement_type
template programming or the definition of generic containers.

_ptr

This data member stores the pointer to the underlying heap-allocated class instance.

Constructors, copy constructor, and assignment operators

These member functions allow you to construct, copy, and assign smart pointers as if they were ordinary pointers. In particular, the
constructor and assignment operator are overloaded to work with raw C++ class instance pointers, which results in the "adoption" of the raw
pointer by the smart pointer. For example, the following code works correctly and does not cause a memory leak:

C++

typedef Handle<MyClass> MyClassPtr;

void foo(const MyClassPtr&);

// ...

foo(new MyClass); // OK, no leak here.

, , and operator-> operator* get

The arrow and indirection operators allow you to apply the usual pointer syntax to smart pointers to use the target of a smart pointer. The 
 member function returns the class instance pointer to the underlying reference-counted class instance; the return value is the value of get

._ptr

dynamicCast

This member function works exactly like a C++ : it tests whether the argument supports the specified type and, if so, returnsdynamic_cast
a non-null pointer; if the target does not support the specified type, it returns null.

The reason for not using an actual  and using a  function instead is that dynamic_cast dynamicCast dynamic_cast
only operates on pointer types, but  is a class.IceUtil::Handle

For example:

C++

MyClassPtr p = ...;
MyOtherClassPtr o = ...;

o = MyOtherClassPtr::dynamicCast(p);
if (o)
{
    // o points at an instance of type MyOtherClass.
}
else
{
    // p points at something that is
    // not compatible with MyOtherClass.
}

Note that this example also illustrates the use of : when used in a boolean context, a smart pointer returns true if it isoperator bool
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non-null and false otherwise.

Comparison operators: ==, !=, <, <=, >, >=

The comparison operators compare the value of the underlying class instance pointer, that is, they compare the value returned by . Inget
other words,  returns true if two smart pointers point at the same underlying class instance, and the ordering operators compare the==
memory addresses of the underlying class instances.

See Also

Smart Pointers for Classes
The C++ Shared and SimpleShared Classes
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The C++ Handle Template Adaptors

IceUtil provides adaptors that support use of  with STL algorithms. Each template function returns a corresponding functionsmart pointers
object that is for use by an STL algorithm. The adaptors are defined in the header .IceUtil/Functional.h

Here is a list of the adaptors:

memFun
memFun1
voidMemFun
voidMemFun1

secondMemFun
secondMemFun1
secondVoidMemFun
secondVoidMemFun1

constMemFun
constMemFun1
constVoidMemFun
constVoidMemFun1

secondConstMemFun
secondConstMemFun1
secondConstVoidMemFun
secondConstVoidMemFun1

As you can see, the adaptors are in two groups. The first group operates on non-const smart pointers, whereas the second group operates
on  smart pointers (for example, on smart pointers declared as ).const const MyClassPtr

Each group is further divided into two sub-groups. The adaptors in the first group operate on the target of a smart pointer, whereas the 
 adapters operate on the second element of a pair, where that element is a smart pointer.second<name>

Each of the four sub-groups contains four adaptors:

memFun

This adaptor is used for member functions that return a value and do not accept an argument. For example:

C++

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    int getVal() { return _i; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(42));
mcp.push_back(new MyClass(99));

transform(mcp.begin(), mcp.end(),
          ostream_iterator<int>(cout, " "),
          IceUtil::memFun(&MyClass::getVal));
cout << endl;

This code invokes the member function  on each instance that is pointed at by smart pointers in the vector  and prints the returngetVal mcp
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value of  on , separated by spaces. The output from this code is:getVal cout

42 99

memFun1

This adaptor is used for member functions that return a value and accept a single argument. For example:

C++

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    int plus(int v) { return _i + v; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

int A[3] = { 5, 7, 9 };
transform(mcp.begin(), mcp.end(), A,
          ostream_iterator<int>(cout, " "),
          IceUtil::memFun1(&MyClass::plus));
cout << endl;

This code invokes the member function  on each instance that is pointed at by smart pointers in the vector  and prints the returnplus mcp
value of a call to  on , separated by spaces. The calls to  are successively passed the values stored in the array  . Theplus cout plus A
output from this code is:

7 11 15

voidMemFun

This adaptor is used for member functions that do not return a value and do not accept an argument. For example:
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C++

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    void print() { cout << _i << endl; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

for_each(mcp.begin(), mcp.end(), IceUtil::voidMemFun(&MyClass::print));

This code invokes the member function  on each instance that is pointed at by smart pointers in the vector . The output from thisprint mcp
code is:

2
4
6

voidMemFun1

This adaptor is used for member functions that do not return a value and accept a single argument. For example:

C++

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    void printPlus(int v) { cout << _i + v << endl; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

for_each(
    mcp.begin(), mcp.end(),
    bind2nd(IceUtil::voidMemFun1(&MyClass::printPlus), 3));

This code invokes the member function  on each instance that is pointed at by smart pointers in the vector . The output fromprintPlus mcp
this code is:

5
7
9

As mentioned earlier, the  versions of the adaptors operate on the second element of a , where second<name> std::pair<T1, T2> T2
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must be a smart pointer. Most commonly, these adaptors are used to apply an algorithm to each lookup value of a map or multi-map. Here is
an example:

C++

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    int plus(int v) { return _i + v; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

map<string, MyClassPtr> m;
m["two"] = new MyClass(2);
m["four"] = new MyClass(4);
m["six"] = new MyClass(6);

int A[3] = { 5, 7, 9 };
transform(
    m.begin(), m.end(), A,
    ostream_iterator<int>(cout, " "),
    IceUtil::secondMemFun1<int, string, MyClass>(&MyClass::plus));

This code invokes the  member function on the class instance denoted by the  smart pointer member of each pair in theplus second
dictionary  . The output from this code is:m

9 13 11

Note that  is a template that requires three arguments: the return type of the member function to be invoked, the key type ofsecondMemFun1
the dictionary, and the type of the class that is pointed at by the smart pointer.

In general, the  adaptors require the following template arguments:second<name>

C++

secondMemFun<R, K, T>
secondMemFun1<R, K, T>
secondVoidMemFun<K, T>
secondVoidMemFun<K, T>

where  is the return type of the member function,  is the type of the first member of the pair, and  is the class that contains the memberR K T
function.

See Also

The C++ Handle Template
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The C++ ScopedArray Template

IceUtil::ScopedArray is a smart pointer class similar to . However, instead of managing the memory for class instances, Handle
 manages memory for an array. This class is provided mainly for use with the . However, you can use it with arraysScopedArray stream API

for other purposes.

Here is the definition of the template in full:

C++

template<typename T>
class ScopedArray : private IceUtil::noncopyable
{
public:
    explicit ScopedArray(T* ptr = 0)
        : _ptr(ptr) { }

    ScopedArray(const ScopedArray& other) {
        _ptr = other._ptr;
        const_cast<ScopedArray&>(other)._ptr = 0;
    }

    ~ScopedArray() {
        if (_ptr != 0)
            delete[] _ptr;
    }

    void reset(T* ptr = 0) {
        assert(ptr == 0 || ptr != _ptr);
        if (_ptr != 0)
            delete[] _ptr;
        _ptr = ptr;
    }

    T& operator[](size_t i) const {
        assert(_ptr != 0);
        assert(i >= 0);
        return _ptr[i];
    }

    T* get() const {
        return _ptr;
    }

    void swap(ScopedArray& a) {
        T* tmp = a._ptr;
        a._ptr = _ptr;
        _ptr = tmp;
    }

private:
    T* _ptr;
};

The class allows you to allocate an array on the heap and assign its pointer to a  instance. When the instance goes out ofScopedArray
scope, it calls  on the array, so you do not need to deallocate the array explicitly yourself. This greatly reduces the risk of adelete[]
memory leak due to an early return or uncaught exception.

See Also

C++ Streaming Interfaces
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The C++ Shared and SimpleShared Classes

IceUtil::Shared and  are base classes that implement the reference-counting mechanism for IceUtil::SimpleShared smart pointers
. The two classes provide identical interfaces; the difference between  and  is that  is not thread-safeShared SimpleShared SimpleShared
and, therefore, can only be used if the corresponding class instances are accessed only by a single thread. (  is marginallySimpleShared
faster than  because it avoids the locking overhead that is incurred by .)Shared Shared

The interface of  looks as follows. (Because  has the same interface, we do not show it separately here.)Shared SimpleShared

C++

class Shared {
public:
    Shared();
    Shared(const Shared&);
    virtual ~Shared();

    Shared& operator=(const Shared&);

    virtual void __incRef();
    virtual void __decRef();
    virtual int __getRef() const;
    virtual void __setNoDelete(bool);
};

The class maintains a reference that is initialized to zero by the constructor.  increments the reference count and __incRef __decRef
decrements it. If, during a call to , after decrementing the reference count, the reference count drops to zero,  calls __decRef __decRef

, which causes the corresponding class instance to delete itself. The copy constructor increments the reference count of thedelete this
copied instance, and the assignment operator increments the reference count of the source and decrements the reference count of the
target.

The  member function returns the value of the reference count and is useful mainly for debugging.__getRef

The  member function can be used to temporarily disable self-deletion and re-enable it again. This provides __setNoDelete exception
 when you initialize a smart pointer with the  pointer of a class instance during construction.safety this

To create a class that is reference-counted, you simply derive the class from  and define a smart pointer type for the class, forShared
example:

C++

class MyClass : public IceUtil::Shared {
    // ...
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

See Also

The C++ Handle Template
Smart Pointers for Classes
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The C++ Time Class

The  class provides basic facilities for getting the current time, constructing time intervals, adding and subtracting times, and comparingTime
times:

C++
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namespace IceUtil {

    typedef ... Int64;

    class Time {
    public:
        enum Clock { Realtime, Monotonic };
        Time(Clock = Realtime);
        static Time now();
        static Time seconds(Int64);
        static Time milliSeconds(Int64);
        static Time microSeconds(Int64);

        Int64 toSeconds() const;
        Int64 toMilliSeconds() const;
        Int64 toMicroSeconds() const;

        double toSecondsDouble() const;
        double toMilliSecondsDouble() const;
        double toMicroSecondsDouble() const;

        std::string toDateTime() const;
        std::string toDuration() const;

        Time operator-() const;

        Time operator-(const Time&) const;
        Time operator+(const Time&) const;

        Time operator*(int) const;
        Time operator*(Int64) const;
        Time operator*(double) const;

        double operator/(const Time&) const;
        Time operator/(int) const;
        Time operator/(Int64) const;
        Time operator/(double) const;

        Time& operator-=(const Time&);
        Time& operator+=(const Time&);

        Time& operator*=(int);
        Time& operator*=(Int64);
        Time& operator*=(double);

        Time& operator/=(int);
        Time& operator/=(Int64);
        Time& operator/=(double);

        bool operator<(const Time&) const;
        bool operator<=(const Time&) const;
        bool operator>(const Time&) const;
        bool operator>=(const Time&) const;
        bool operator==(const Time&) const;
        bool operator!=(const Time&) const;

#ifndef _WIN32
        operator timeval() const;
#endif
    };

    std::ostream& operator<<(std::ostream&, const Time&);
}

The member functions behave as follows:
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Time

Internally, the  class stores ticks in microsecond units. For absolute time, this is the number of microseconds since the Unix epochTime
(00:00:00 UTC on 1 Jan. 1970). For durations, this is the number of microseconds in the duration. The default constructor initializes the tick
count to zero and selects the real-time clock. Constructing  with an argument of  selects the monotonic clock on platformsTime Monotonic
that support it; the real-time clock is used on other platforms.

now

This function constructs a  object that is initialized to the current time of day.Time

seconds, milliSeconds, microSeconds

These functions construct  objects from the argument in the specified units. For example, the following statement creates a timeTime
duration of one minute:

C++

IceUtil::Time t = IceUtil::Time::seconds(60);

toSeconds, toMilliSeconds, toMicroSeconds

The member functions provide explicit conversion of a duration to seconds, milliseconds, and microseconds, respectively. The return value is
a 64-bit signed integer ( ). For example:IceUtil::Int64

C++

IceUtil::Time t = IceUtil::Time::milliSeconds(2000);
IceUtil::Int64 secs = t.toSeconds(); // Returns 2

toSecondsDouble, toMilliSecondsDouble, toMicroSecondsDouble

The member functions provide explicit conversion of a duration to seconds, milliseconds, and microseconds, respectively. The return value is
of type .double

toDateTime

This function returns a human-readable representation of a  value as a date and time.Time

toDuration

This function returns a human-readable representation of a  value as a duration.Time

Operators

Time provides operators that allow you to add, subtract, multiply, and divide times. For example:

C++

IceUtil::Time oneMinute = IceUtil::Time::seconds(60);
IceUtil::Time oneMinuteAgo = IceUtil::Time::now() - oneMinute;

The multiplication and division operators permit you to multiply and divide a duration. Note that these operators provide overloads for , int
  , and .long long double

The comparison operators allow you to compare times and time intervals with each other, for example:

IceUtil::Time oneMinute  = IceUtil::Time::seconds(60);
IceUtil::Time twoMinutes = IceUtil::Time::seconds(120);
assert(oneMinute < twoMinutes);

The  operator converts a  object to a   , defined as follows:timeval Time struct timeval



Ice 3.4.2 Documentation

308 Copyright © 2011, ZeroC, Inc.

C++

struct timeval {
    long tv_sec;
    long tv_usec;
};

The conversion is useful for API calls that require a    argument, such as . To convert a duration into a struct timeval select timeval
structure, simply assign a  object to a :Time struct timeval

C++

IceUtil::Time oneMinute = IceUtil::Time::seconds(60);
struct timeval tv;
tv = t;

Note that this member function is not available under Windows.

std::ostream& operator<<(std::ostream&, Time&);

This operator prints the number of whole seconds since the epoch.

See Also

The C++ Timer and TimerTask Classes
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The C++ Timer and TimerTask Classes

The  class allows you to schedule some code for once-only or repeated execution after some time interval elapses. The code to beTimer
executed resides in a class you derive from :TimerTask

C++

class Timer;
typedef IceUtil::Handle<Timer> TimerPtr;

class TimerTask : virtual public IceUtil::Shared {
public:
    virtual ~TimerTask() { }
    virtual void runTimerTask() = 0;
};

typedef IceUtil::Handle<TimerTask> TimerTaskPtr;

Your derived class must override the  member function; the code in this method is executed by the timer. If the code yourunTimerTask
want to run requires access to some program state, you can pass that state into the constructor of your class or, alternatively, set that state
via member functions of your class before scheduling it with a timer.

The  class invokes the  member function to run your code. The class has the following definition:Timer runTimerTask

C++

class Timer : /* ... */ {
public:
    Timer();
    Timer(int priority);

    void schedule(const TimerTaskPtr& task, const IceUtil::Time& interval);

    void scheduleRepeated(const TimerTaskPtr& task, const IceUtil::Time& interval);

    bool cancel(const TimerTaskPtr& task);

    void destroy();
};

typedef IceUtil::Handle<Timer> TimerPtr;

Intervals are specified using  objects.Time

The constructor is overloaded to allow you specify a . The priority controls the priority of the thread that executes your task.thread priority

The  member function schedules an instance of your timer task for once-only execution after the specified time interval hasschedule
elapsed. Your code is executed by a separate thread that is created by the  class. The function throws an Timer

 if you invoke it on a destroyed timer.IllegalArgumentException

The  member function runs your task repeatedly, at the specified time interval. Your code is executed by a separatescheduleRepeated
thread that is created by the  class; the same thread is used every time your code runs. The function throws an Timer

 if you invoke it on a destroyed timer.IllegalArgumentException

If your code throws an exception, the  class ignores the exception, that is, for a task that is scheduled to run repeatedly, an exceptionTimer
in the current execution does not cancel the next execution.

If your code takes longer to execute than the time interval you have specified for repeated execution, the second execution is delayed
accordingly. For example, if you ask for repeated execution once every five seconds, and your code takes ten seconds to complete, then the
second execution of your task starts five seconds after the previous execution finishes, that is, the interval specifies the wait time between
successive executions.

A  instance that has already been scheduled with a  instance cannot be scheduled again with the same  instanceTimerTask Timer Timer
until the task has completed or been canceled.
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For a single  instance, the execution of all registered tasks is serialized. The wait interval applies on a per-task basis so, if youTimer
schedule task A at an interval of five seconds, and task B at an interval of ten seconds, successive runs of task A start no sooner than five
seconds after the previous task A has finished, and successive runs of task B start no sooner than ten seconds after the previous task B has
finished. If, at the time a task is scheduled to run, another task is still running, the new task's execution is delayed until the previous task has
finished.

If you want scheduled tasks to run concurrently, you can create several  instances; tasks then execute in as many threadsTimer
concurrently as there are  instances.Timer

The  member function removes a task from a timer's schedule. In other words, it stops a task that is scheduled for repeatedcancel
execution from being executed again. (For once-only tasks,  does nothing.) If you cancel a task while it is executing,  returnscancel cancel
immediately and the currently running task is allowed to complete normally; that is,  does not wait for any currently running task tocancel
complete.

The return value is true if  removed the task from the schedule. This is the case if you invoke  on a task that is scheduled forcancel cancel
repeated execution and this was the first time you cancelled that task; subsequent calls to  return false. Calling  on a taskcancel cancel
scheduled for once-only execution always returns false, as does calling  on a destroyed timer.cancel

The  member function removes all tasks from the timer's schedule. If you call  from any thread other than the timer's owndestroy destroy
execution thread, it joins with the currently executing task (if any), so the function does not return until the current task has completed. If you
call  from the timer's own execution thread, it instead detaches the timer's execution thread. Calling  a second time on thedestroy destroy
same  instance has no effect. Similarly, calling  on a destroyed timer has no effect.Timer cancel

Note that you must call  on a  instance before allowing it to go out of scope; failing to do so causes undefined behavior.destroy Timer

Calls to  or  on a destroyed timer do nothing.schedule scheduleRepeated

See Also

The C++ Time Class
The C++ Thread Classes
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Unicode and UTF-8 Conversion Functions in C++

The  namespace contains two helper functions that allow you to convert between wide strings containing Unicode charactersIceUtil
(either 16- or 32-bit, depending on your native  size) and narrow strings in UTF-8 encoding:wchar_t

C++

enum ConversionFlags { strictConversion, lenientConversion };

std::string wstringToString(const std::wstring&, ConversionFlags = lenientConversion);
std::wstring stringToWstring(const std::string&, ConversionFlags = lenientConversion);

These functions always convert to and from UTF-8 encoding, that is, they ignore any locale setting that might specify a different encoding.

Byte sequences that are illegal, such as , result in a . For other errors, the 0xF4908080 UTFConversionException ConversionFlags
parameter determines how rigorously the functions check for errors. When set to  (the default), the functions toleratelenientConversion
isolated surrogates and irregular sequences, and substitute the UTF-32 replacement character  for character values above 0x0000FFFD

. When set to , the functions do not tolerate such errors and throw a  instead:0x10FFFF strictConversion UTFConversionException

C++

enum ConversionError { partialCharacter, badEncoding };

class UTFConversionException : public Exception {
public:
    UTFConversionException(const char* file, int line, ConversionError r);

    ConversionError conversionError() const;
    // ...
};

The  member function returns the reason for the failure:conversionError

partialCharacter
The UTF-8 source string contains a trailing incomplete UTF-8 byte sequence.

badEncoding
The UTF-8 source string contains a byte sequence that is not a valid UTF-8 encoded character, or the Unicode source string
contains a bit pattern that does not represent a valid Unicode character.
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Version Information in C++

The header file  defines two macros that expand to the version of the Ice run time:IceUtil/Config.h

C++

#define ICE_STRING_VERSION "3.4.2" // "<major>.<minor>.<patch>"
#define ICE_INT_VERSION 30402      // AABBCC, with AA=major,
                                   // BB=minor, CC=patch

ICE_STRING_VERSION is a string literal in the form , for example, . For beta releases, the version is . .<major> <minor> <patch> 3.4.2
, for example, .. b<major> <minor> 3.4b

INT_VERSION is an integer literal in the form , where  is the major version number,  is the minor version number, and  is theAABBCC AA BB CC
patch level, for example,  for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, for version 3.4b, the value is30402

.30451



Ice 3.4.2 Documentation

313 Copyright © 2011, ZeroC, Inc.

Java Mapping

Topics

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The Java Utility Library
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Client-Side Slice-to-Java Mapping

In this section, we present the client-side Slice-to-Java mapping. The client-side Slice-to-Java mapping defines how Slice data types are
translated to Java types, and how clients invoke operations, pass parameters, and handle errors. Much of the Java mapping is intuitive. For
example, Slice sequences map to Java arrays, so there is essentially nothing new you have to learn in order to use Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For
example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is
iterating over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is
fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the Java mapping, you should need no more than the Slice definition of your application and knowledge of
the Java mapping rules. In particular, looking through the generated code in order to discern how to use the Java mapping
is likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code
to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to
write your client-side code.

The  PackageIce
All of the APIs for the Ice run time are nested in the  package, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  package are generated from Slice definitions; other parts of the Ice Ice
package provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover
the contents of the  package throughout the remainder of the book.Ice

Topics

Java Mapping for Identifiers
Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions
Java Mapping for Interfaces
Java Mapping for Operations
Java Mapping for Classes
Serializable Objects in Java
Customizing the Java Mapping
Asynchronous Method Invocation (AMI) in Java
Using the Slice Compiler for Java
Using Slice Checksums in Java
Example of a File System Client in Java
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Java Mapping for Identifiers

A Slice  maps to an identical Java identifier. For example, the Slice identifier  becomes the Java identifier . There isidentifier Clock Clock
one exception to this rule: if a Slice identifier is the same as a Java keyword or is an identifier reserved by the Ice run time (such as 

), the corresponding Java identifier is prefixed with an underscore. For example, the Slice identifier  is mapped as checkedCast while
._while

You should try to  as much as possible.avoid such identifiers

A single Slice identifier often results in several Java identifiers. For example, for a Slice interface named , the generated Java code usesFoo
the identifiers  and  (among others). If the interface has the name , the generated identifiers are  and  (Foo FooPrx while _while whilePrx

 ), that is, the underscore prefix is applied only to those generated identifiers that actually require it.not _whilePrx

See Also

Lexical Rules
Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions
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Java Mapping for Modules

A Slice  maps to a Java package with the same name as the Slice module. The mapping preserves the nesting of the Slicemodule
definitions. For example:

Slice

// Definitions at global scope here...

module M1 {
    // Definitions for M1 here...
    module M2 {
        // Definitions for M2 here...
    };
};

// ...

module M1 {     // Reopen M1
    // More definitions for M1 here...
};

This definition maps to the corresponding Java definitions:

Java

package M1;
// Definitions for M1 here...

package M1.M2;
// Definitions for M2 here...

package M1;
// Definitions for M1 here...

Note that these definitions appear in the appropriate source files; source files for definitions in module   are generated in directory M1 M1
underneath the top-level directory, and source files for definitions for module   are generated in directory   underneath the top-levelM2 M1/M2
directory. You can set the top-level output directory using the  option with .--output-dir slice2java

See Also

Modules
Using the Slice Compilers
Java Mapping for Identifiers
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions
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Java Mapping for Built-In Types

The Slice  are mapped to Java types as follows:built-in types

Slice Java

bool boolean

byte byte

short short

int int

long long

float float

double double

string String

Mapping of Slice built-in types to Java.

See Also

Basic Types
Java Mapping for Identifiers
Java Mapping for Modules
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions
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Java Mapping for Enumerations

A Slice  maps to the corresponding enumeration in Java. For example:enumeration

Slice

enum Fruit { Apple, Pear, Orange };

The Java mapping for  is shown below:Fruit

Java

public enum Fruit implements java.io.Serializable {
    Apple,
    Pear,
    Orange;

    // ...
}

Given the above definitions, we can use enumerated values as follows:

Java

Fruit f1 = Fruit.Apple;
Fruit f2 = Fruit.Orange;

if (f1 == Fruit.Apple) // Compare with constant
    // ...

if (f1 == f2)                     // Compare two enums
    // ...

switch (f2) {             // Switch on enum
case Fruit.Apple:
    // ...
    break;
case Fruit.Pear
    // ...
    break;
case Fruit.Orange
    // ...
    break;
}

Note that the generated class contains a number of other members, which we have not shown. These members are internal to the Ice run
time and you must not use them in your application code (because they may change from release to release).

See Also

Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
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Java Mapping for Structures

On this page:

Basic Java Mapping for Structures
Java Default Constructors for Structures

Basic Java Mapping for Structures

A Slice  maps to a Java class with the same name. For each Slice data member, the Java class contains a corresponding publicstructure
data member. For example, here is our  structure once more:Employee

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-Java compiler generates the following definition for this structure:

Java

public final class Employee implements java.lang.Cloneable, java.io.Serializable {
    public long number;
    public String firstName;
    public String lastName;

    public Employee {}

    public Employee(long number, String firstName, String lastName) {
        this.number = number;
        this.firstName = firstName;
        this.lastName = lastName;
    }

    public boolean equals(java.lang.Object rhs) {
        // ...
    }
    public int hashCode() {
        // ...
    }

    public java.lang.Object clone()
        java.lang.Object o;
        try
        {
            o = super.clone();
        }
        catch(java.lang.CloneNotSupportedException ex)
        {
            assert false; // impossible
        }
        return o;
    }
}

For each data member in the Slice definition, the Java class contains a corresponding public data member of the same name. Note that you
can optionally  for data members to use getters and setters instead.customize the mapping

The  member function compares two structures for equality. Note that the generated class also provides the usual  and equals hashCode
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 methods. (  has the default behavior of making a shallow copy.)clone clone

Java Default Constructors for Structures

Structures have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

Structures also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also

Structures
Java Mapping for Enumerations
Java Mapping for Sequences
Java Mapping for Dictionaries
Customizing the Java Mapping
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Java Mapping for Sequences

A Slice  maps to a Java array. This means that the Slice-to-Java compiler does not generate a separate named type for a Slicesequence
sequence.

For example:

Slice

sequence<Fruit> FruitPlatter;

This definition simply corresponds to the Java type . Naturally, because Slice sequences are mapped to Java arrays, you can takeFruit[]
advantage of all the array functionality provided by Java, such as initialization, assignment, cloning, and the  member. For example:length

Java

Fruit[] platter = { Fruit.Apple, Fruit.Pear };
assert(platter.length == 2);

Alternate mappings for sequence types are also possible.

See Also

Sequences
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Dictionaries
Customizing the Java Mapping
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Java Mapping for Dictionaries

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

As for sequences, the Java mapping does not create a separate named type for this definition. Instead, the dictionary is simply an instance
of the generic type , where  is the mapping of the key type and  is the mapping of the value type. In the examplejava.util.Map< , >K V K V
above,  is mapped to the Java type . The following code demonstrates how to allocateEmployeeMap java.util.Map<Long, Employee>
and use an instance of :EmployeeMap

Java

java.util.Map<Long, Employee> em = new java.util.HashMap<Long, Employee>();

Employee e = new Employee();
e.number = 31;
e.firstName = "James";
e.lastName = "Gosling";

em.put(e.number, e);

The type-safe nature of the mapping makes iterating over the dictionary quite convenient:

Java

for (java.util.Map.Entry<Long, Employee> i : em.entrySet()) {
    long num = i.getKey();
    Employee emp = i.getValue();
    System.out.println(emp.firstName + " was employee #" + num);
}

Alternate mappings for dictionary types are also possible.

See Also

Dictionaries
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Customizing the Java Mapping
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Java Mapping for Constants

Here are the sample  once more:constant definitions

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

Java

public interface AppendByDefault {
    boolean value = true;
}

public interface LowerNibble {
    byte value = 15;
}

public interface Advice {
    String value = "Don't Panic!";
}

public interface TheAnswer {
    short value = 42;
}

public interface PI {
    double value = 3.1416;
}

public interface FavoriteFruit {
    Fruit value = Fruit.Pear;
}

As you can see, each Slice constant is mapped to a Java interface with the same name as the constant. The interface contains a member
named  that holds the value of the constant.value

See Also

Constants and Literals
Java Mapping for Identifiers
Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Exceptions
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Java Mapping for Exceptions

On this page:

Java Mapping for User Exceptions
Java Default Constructors for User Exceptions
Java Mapping for Run-Time Exceptions

Java Mapping for User Exceptions

Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

Java

public class GenericError extends Ice.UserException {
    public String reason;

    public GenericError() {}

    public GenericError(Throwable cause)
    {
        super(cause);
    }

    public GenericError(String reason)
    {
        this.reason = reason;
    }

    public GenericError(String reason, Throwable cause)
    {
        super(cause);
        this.reason = reason;
    }

    public String ice_name()
    {
        return "GenericError";
    }
}

public class BadTimeVal extends GenericError {
    public BadTimeVal() {}

    public BadTimeVal(Throwable cause)
    {
        super(cause);
    }

    public BadTimeVal(String reason)
    {
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        super(reason);
    }

    public BadTimeVal(String reason, Throwable cause)
    {
        super(reason, cause);
    }

    public String ice_name()
    {
        return "BadTimeVal";
    }
}

public class BadZoneName extends GenericError {
    public BadZoneName() {}

    public BadZoneName(Throwable cause)
    {
        super(cause);
    }

    public BadZoneName(String reason)
    {
        super(reason);
    }

    public BadZoneName(String reason, Throwable cause)
    {
        super(reason, cause);
    }

    public String ice_name()
    {
        return "BadZoneName";
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    }
}

Each Slice exception is mapped to a Java class with the same name. For each data member, the corresponding class contains a public data
member. (Obviously, because  and  do not have members, the generated classes for these exceptions also doBadTimeVal BadZoneName
not have members.) Note that you can optionally  for data members to use getters and setters instead.customize the mapping

The inheritance structure of the Slice exceptions is preserved for the generated classes, so  and  inherit from BadTimeVal BadZoneName
.GenericError

Each exception also defines the  member function, which returns the name of the exception.ice_name

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically byIce.UserException
installing a handler for . , in turn, derives from .Ice.UserException Ice.UserException java.lang.Exception

Ice.UserException implements a  method that is inherited by its derived exceptions, so you can make memberwise shallowclone
copies of exceptions.

Note that the generated exception classes contain other member functions that are not shown. However, those member functions are
internal to the Java mapping and are not meant to be called by application code.

Java Default Constructors for User Exceptions

Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this
constructor accepts one argument for each base exception member, plus one argument for each derived exception member, in
base-to-derived order.

Java Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from  (which, in turn, derives from ).Ice.LocalException java.lang.RuntimeException

Ice.LocalException implements a  method that is inherited by its derived exceptions, so you can make memberwise shallowclone
copies of exceptions.

Recall the  for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you caninheritance diagram
handle exceptions according to the category of error they indicate:

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a  can be handled as , , ConnectTimeoutException ConnectTimeoutException TimeoutException
, or .LocalException java.lang.Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; theLocalException
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.FacetNotExistException ObjectNotExistException
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Java Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Java Classes Generated for an Interface
Proxy Interfaces in Java
The  Interface in JavaIce.ObjectPrx
Proxy Helpers in Java
Using Proxy Methods in Java
Object Identity and Proxy Comparison in Java
Deserializing Proxies in Java

Java Classes Generated for an Interface

The compiler generates quite a few source files for each Slice interface. In general, for an interface , the following< >interface-name
source files are created by the compiler:

< >.javainterface-name
This source file declares the  Java interface.< >interface-name

< >Holder.javainterface-name
This source file defines a  for the interface.holder type

< >Prx.javainterface-name
This source file defines the  .proxy interface < >Prxinterface-name

< >PrxHelper.javainterface-name
This source file defines the  for the interface's proxy.helper type

< >PrxHolder.javainterface-name
This source file defines the  for the interface's proxy.holder type

_< >Operations.javainterface-name
_< >OperationsNC.javainterface-name
These source files each define an interface that contains the operations corresponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The compiler also generates a file that is specific to the server side,
plus three additional files:

_< >Disp.javainterface-name
This file contains the definition of the  class.server-side skeleton

_< >Del.javainterface-name
_< >DelD.javainterface-name
_< >DelM.javainterface-name
These files contain code that is internal to the Java mapping; they do not contain any functions of relevance to application
programmers.

Proxy Interfaces in Java

On the client side, a Slice interface maps to a Java interface with methods that correspond to the operations on that interface. Consider the
following simple interface:

Slice

interface Simple {
    void op();
};

The Slice compiler generates the following definition for use by the client:
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Java

public interface SimplePrx extends Ice.ObjectPrx {
    public void op();
    public void op(java.util.Map<String, String> __context);
}

As you can see, the compiler generates a  . In general, the generated name is . If anproxy interface SimplePrx < >Prxinterface-name
interface is nested in a module , the generated class is part of package , so the fully-qualified name is .M M M.< >Prxinterface-name

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interface in a serverSimplePrx Simple
and is known as a proxy instance. All the details about the server-side object, such as its address, what protocol to use, and its object
identity are encapsulated in that instance.

Note that  inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx Ice.ObjectPrx Ice::Object

For each operation in the interface, the proxy class has a method of the same name. For the preceding example, we find that the operation 
 has been mapped to the method . Also note that  is overloaded: the second version of  has a parameter  of type op op op op __context

. This parameter is for use by the Ice run time to store information about how to deliver a request.java.util.Map<String, String>
You normally do not need to use it. (We examine the  parameter in detail in . The parameter is also used by __context Request Contexts

.)IceStorm

Because all the  types are interfaces, you cannot instantiate an object of such a type. Instead, proxy instances are< >Prxinterface-name
always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.The proxy
references handed out by the Ice run time are always of type ; the concrete implementation of the interface is part< >Prxinterface-name
of the Ice run time and does not concern application code.

A value of  denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).null

The  Interface in JavaIce.ObjectPrx

All Ice objects have  as the ultimate ancestor type, so all proxies inherit from .  provides a number ofObject Ice.ObjectPrx ObjectPrx
methods:

Java

package Ice;

public interface ObjectPrx {
    boolean equals(java.lang.Object r);
    Identity ice_getIdentity();
    boolean ice_isA(String __id);
    boolean ice_isA(String __id, java.util.Map<String, String> ctx);
    String[] ice_ids();
    String[] ice_ids(java.util.Map<String, String> ctx);
    String ice_id();
    String ice_id(java.util.Map<String, String> ctx);
    void ice_ping();
    void ice_ping(java.util.Map<String, String> ctx);
    // ...
}

The methods behave as follows:

equals
This operation compares two proxies for equality. Note that all aspects of proxies are compared by this operation, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does  imply that theynot
denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints,  returns equals

 even though the proxies denote the same object.false

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:
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Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Java

Ice.ObjectPrx o1 = ...;
Ice.ObjectPrx o2 = ...;
Ice.Identity i1 = o1.ice_getIdentity();
Ice.Identity i2 = o2.ice_getIdentity();

if (i1.equals(i2))
    // o1 and o2 denote the same object
else
    // o1 and o2 denote different objects

ice_isA
The  method determines whether the object denoted by the proxy supports a specific interface. The argument to ice_isA ice_isA
is a . For example, to see whether a proxy of type  denotes a  object, we can write:type ID ObjectPrx Printer

Java

Ice.ObjectPrx o = ...;
if (o != null && o.ice_isA("::Printer"))
    // o denotes a Printer object
else
    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke the  method. This avoids getting a ice_isA
 if the proxy is null.NullPointerException

ice_ids
The  method returns an array of strings representing all of the type IDs that the object denoted by the proxy supports.ice_ids

ice_id
The  method returns the type ID of the object denoted by the proxy. Note that the type returned is the type of the actualice_id
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a staticBasePrx
type ID of , the return value of  might be , or it might something more derived, such as .::Base ice_id ::Base ::Derived

ice_ping
The  method provides a basic reachability test for the object. If the object can physically be contacted (that is, the objectice_ping
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as  or .ObjectNotExistException ConnectTimeoutException

The , , , and  methods are remote operations and therefore support an additional overloading thatice_isA ice_ids ice_id ice_ping
accepts a . Also note that there are  in , not shown here. These methods provide different ways torequest context other methods ObjectPrx
dispatch a call and also provide access to an object's .facets

Proxy Helpers in Java

For each Slice interface, apart from the proxy interface, the Slice-to-Java compiler creates a helper class: for an interface , the nameSimple
of the generated helper class is . The helper classes contains two methods that support down-casting:SimplePrxHelper
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Java

public final class SimplePrxHelper extends Ice.ObjectPrxHelper implements SimplePrx {
    public static SimplePrx checkedCast(Ice.ObjectPrx b) {
        // ...
    }

    public static SimplePrx checkedCast(Ice.ObjectPrx b, Ice.Context ctx) {
        // ...
    }

    public static SimplePrx uncheckedCast(Ice.ObjectPrx b) {
        // ...
    }

    // ...
}

Both the  and  methods implement a down-cast: if the passed proxy is a proxy for an object of type ,checkedCast uncheckedCast Simple
or a proxy for an object with a type derived from , the cast returns a non-null reference to a proxy of type ; otherwise, ifSimple SimplePrx
the passed proxy denotes an object of a different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a  to determine whether the corresponding object supports a given type, for example:checkedCast

Java

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast(obj);
if (simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a  contacts the server. This is necessary because only the implementation of an object in the server has definitecheckedCast
knowledge of the type of an object. As a result, a  may throw a  or an checkedCast ConnectTimeoutException

. (This also explains the need for the helper class: the Ice run time must contact the server, so we cannot useObjectNotExistException
a Java down-cast.)

In contrast, an  does not contact the server and unconditionally returns a proxy of the requested type. However, if you douncheckedCast
use an , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,uncheckedCast
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is 

. However, other exceptions, such as a marshaling exception are possible as well. And, if the objectOperationNotExistException
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:

Slice

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a  object and use an  to down-cast the proxy:Process uncheckedCast
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Java

Ice.ObjectPrx obj = ...;                    // Get proxy...
ProcessPrx process = ProcessPrxHelper.uncheckedCast(obj);  // No worries...
process.launch(40, 60);                     // Oops...

If the proxy you received actually denotes a  object, the error will go undetected by the Ice run time: because  and  haveRocket int float
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of  will simplyRocket::launch
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

A final warning about down-casts: you must use either a  or an  to down-cast a proxy. If you use a JavacheckedCast uncheckedCast
cast, the behavior is undefined.

Using Proxy Methods in Java

The base proxy class  supports a variety of . Since proxies are immutable, each of theseObjectPrx methods for customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

Java

Ice.ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a  or  after using a factory method. However, a regular cast is still required, as shown in the examplecheckedCast uncheckedCast
below:

Java

Ice.ObjectPrx base = communicator.stringToProxy(...);
HelloPrx hello = HelloPrxHelper.checkedCast(base);
hello = (HelloPrx)hello.ice_timeout(10000); # Type is preserved
hello.sayHello();

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Java

Proxies provide an  method that compares proxies:equals

Java

interface ObjectPrx {
    boolean equals(java.lang.Object r);
}

Note that proxy comparison with  uses  of the information in a proxy for the comparison. This means that not only the objectequals all
identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be
the same. In other words, comparison with  tests for  identity,  object identity. A common mistake is to write code along theequals proxy not
following lines:
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Java

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (p1.equals(p2)) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with , we know that the two proxies denote the same object (because they are identical in all respects); however, ifequals
two proxies compare unequal with , we know absolutely nothing: the proxies may or may not denote the same object.equals

To compare the object identities of two proxies, you can use a helper function in the  class:Ice.Util

Java

package Ice;

public final class Util {
    public static int proxyIdentityCompare(ObjectPrx lhs, ObjectPrx rhs);
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs, ObjectPrx rhs);
    // ...
}

proxyIdentityCompare allows you to correctly compare proxies for identity:

Java

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

The function returns 0 if the identities are equal,  if  is less than , and 1 if  is greater than . (The comparison uses  as the-1 p1 p2 p1 p2 name
major and  as the minor sort key.)category

The  function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

In addition, the Java mapping provides two wrapper classes that allow you to wrap a proxy for use as the key of a hashed collection:
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Java

package Ice;

public class ProxyIdentityKey {
    public ProxyIdentityKey(Ice.ObjectPrx proxy);
    public int hashCode();
    public boolean equals(java.lang.Object obj);
    public Ice.ObjectPrx getProxy();
}

public class ProxyIdentityFacetKey {
    public ProxyIdentityFacetKey(Ice.ObjectPrx proxy);
    public int hashCode();
    public boolean equals(java.lang.Object obj);
    public Ice.ObjectPrx getProxy();
}

The constructor caches the identity and the hash code of the passed proxy, so calls to  and  can be evaluated efficiently.hashCode equals
The  method returns the proxy that was passed to the constructor.getProxy

As for the comparison functions,  only uses the proxy's identity, whereas  also includes theProxyIdentityKey ProxyIdentityFacetKey
facet name.

Deserializing Proxies in Java

Proxy objects implement the  interface that enables serialization of proxies to and from a byte stream. You canjava.io.Serializable
use the standard class  to deserialize all Slice types  proxies; proxies are a special case becausejava.io.ObjectInputStream except
they must be created by a communicator.

To supply a communicator for use in deserializing proxies, an application must use the class :Ice.ObjectInputStream

Java

package Ice;

public class ObjectInputStream extends java.io.ObjectInputStream
{
    public ObjectInputStream(Communicator communicator, java.io.InputStream stream)
        throws java.io.IOException;

    public Communicator getCommunicator();
}

The code shown below demonstrates how to use this class:

Java

Ice.Communicator communicator = ...
byte[] bytes = ... // data to be deserialized
java.io.ByteArrayInputStream byteStream = new java.io.ByteArrayInputStream(bytes);
Ice.ObjectInputStream in = new Ice.ObjectInputStream(communicator, byteStream);
Ice.ObjectPrx proxy = (Ice.ObjectPrx)in.readObject();

Ice raises  if an application attempts to deserialize a proxy without supplying a communicator.java.io.IOException

See Also

Interfaces, Operations, and Exceptions
Proxies
Type IDs
Java Mapping for Operations
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Operations on Object
Proxy Methods
Facets and Versioning
IceStorm
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Java Mapping for Operations

On this page:

Basic Java Mapping for Operations
Normal and  Operations in Javaidempotent
Passing Parameters in Java

In-Parameters in Java
Out-Parameters in Java
Null Parameters in Java

Exception Handling in Java
Exceptions and Out-Parameters

Basic Java Mapping for Operations

As we saw in the , for each  on an interface, the proxy class contains a corresponding member function withmapping for interfaces operation
the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

Java

NodePrx node = ...;             // Initialize proxy
String name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are returned by reference for complex types, and by value for
simple types (such as  or ).int double

Normal and  Operations in Javaidempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent
 has no effect. For example, consider the following interface:idempotent

Slice

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy interface for this is:

Java

public interface ExamplePrx extends Ice.ObjectPrx {
    public String op1();
    public String op2();
}

Because  affects an aspect of call dispatch, not interface, it makes sense for the two methods to be mapped the same.idempotent
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Passing Parameters in Java

In-Parameters in Java

The parameter passing rules for the Java mapping are very simple: parameters are passed either by value (for simple types) or by reference
(for complex types and type ). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of astring
parameter will not be changed by the invocation (with some caveats — see ).Location Transparency

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for these definitions:

Java

public interface ClientToServerPrx extends Ice.ObjectPrx {
    public void op1(int i, float f, boolean b, String s);
    public void op2(NumberAndString ns, String[] ss, java.util.Map st);
    public void op3(ClientToServerPrx proxy);
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer

Java

ClientToServerPrx p = ...;              // Get proxy...

p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14f;
boolean b = true;
String s = "Hello world!";
p.op1(i, f, b, s);                      // Pass simple variables

NumberAndString ns = new NumberAndString();
ns.x = 42;
ns.str = "The Answer";
String[] ss = { "Hello world!" };
java.util.HashMap st = new java.util.HashMap();
st.put(new Long(0), ns);
p.op2(ns, ss, st);                      // Pass complex variables

p.op3(p);                               // Pass proxy
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Out-Parameters in Java

Java does not have pass-by-reference: parameters are always passed by value. For a function to modify one of its arguments, we must pass
a reference (by value) to an object; the called function can then modify the object's contents via the passed reference.

To permit the called function to modify a parameter, the Java mapping uses so-called  classes. For example, for each of the built-inholder
Slice types, such as  and , the  package contains a corresponding holder class. Here are the definitions for the holderint string Ice
classes  and :Ice.IntHolder Ice.StringHolder

Java

package Ice;

public final class IntHolder {
    public IntHolder() {}
    public IntHolder(int value)
        this.value = value;
    }
    public int value;
}

public final class StringHolder {
    public StringHolder() {}
    public StringHolder(String value) {
        this.value = value;
    }
    public String value;
}

A holder class has a public  member that stores the value of the parameter; the called function can modify the value by assigning tovalue
that member. The class also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates a corresponding holder type. For example, here is the
generated holder type for the  structure we defined earlier:NumberAndString

Java

public final class NumberAndStringHolder {
    public NumberAndStringHolder() {}

    public NumberAndStringHolder(NumberAndString value) {
        this.value = value;
    }

    public NumberAndString value;
}

This looks exactly like the holder classes for the built-in types: we get a default constructor, a constructor that accepts an initial value, and
the public  member.value

Note that holder classes are generated for  Slice type you define. For example, for sequences, such as the  sequence,every FruitPlatter
the compiler does not generate a special Java  type because sequences map to Java arrays. However, the compiler doesFruitPlatter
generate a  class, so we can pass a  array as an out-parameter.FruitPlatterHolder FruitPlatter

To pass an out-parameter to an operation, we simply pass an instance of a holder class and examine the  member of eachvalue
out-parameter when the call completes. Here are the same Slice definitions we saw earlier, but this time with all parameters being passed in
the  direction:out



Ice 3.4.2 Documentation

339 Copyright © 2011, ZeroC, Inc.

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for these definitions:

Java

public interface ClientToServerPrx extends Ice.ObjectPrx {
    public void op1(Ice.IntHolder i, Ice.FloatHolder f,
                    Ice.BooleanHolder b, Ice.StringHolder s);
    public void op2(NumberAndStringHolder ns,
                    StringSeqHolder ss, StringTableHolder st);
    public void op3(ClientToServerPrxHolder proxy);
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ServerToClient

Java

ClientToServerPrx p = ...;              // Get proxy...

Ice.IntHolder ih = new Ice.IntHolder();
Ice.FloatHolder fh = new Ice.FloatHolder();
Ice.BooleanHolder bh = new Ice.BooleanHolder();
Ice.StringHolder sh = new Ice.StringHolder();
p.op1(ih, fh, bh, sh);

NumberAndStringHolder nsh = new NumberAndString();
StringSeqHolder ssh = new StringSeqHolder();
StringTableHolder sth = new StringTableHolder();
p.op2(nsh, ssh, sth);

ServerToClientPrxHolder stcph = new ServerToClientPrxHolder();
p.op3(stch);

System.out.writeln(ih.value);   // Show one of the values

Again, there are no surprises in this code: the various holder instances contain values once the operation invocation completes and the 
 member of each instance provides access to those values.value

Null Parameters in Java

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but thenull
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass  as anull
parameter or return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or
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string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or
strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string
element in a large sequence before sending the sequence in order to avoid . Note that using null parameters inNullPointerException
this way does  create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do notnot
exist (only  sequences, dictionaries, and strings do). For example, whether you send a string as  or as an empty string makes noempty null
difference to the receiver: either way, the receiver sees an empty string.

Exception Handling in Java

Any operation invocation may throw a  and, if the operation has an exception specification, may also throw run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or more operation invocations in a -  block:try catch

Java

ChildPrx child = ...;   // Get child proxy...

try {
    child.askToCleanUp();
} catch (Tantrum t) {
    System.out.write("The child says: ");
    System.out.writeln(t.reason);
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be handled by exception handlers higher in the hierarchy. For example:
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1.  

Java

public class Client {
    static void run() {
        ChildPrx child = ...;   // Get child proxy...
        try {
            child.askToCleanUp();
        } catch (Tantrum t) {
            System.out.print("The child says: ");
            System.out.println(t.reason);
            child.scold();          // Recover from error...
        }
        child.praise();             // Give positive feedback...
    }

    public static void
    main(String[] args)
    {
        try {
            // ...
            run();
            // ...
        } catch (Ice.LocalException e) {
            e.printStackTrace();
        } catch (Ice.UserException e) {
            System.err.println(e.getMessage());
        }
    }
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our .)first simple application

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may still
have its original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters,
Ice provides the weak exception guarantee  but does not provide the strong exception guarantee.[1]

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.

See Also

Operations
Java Mapping for Exceptions
Java Mapping for Sequences
Java Mapping for Interfaces
Location Transparency
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Java Mapping for Classes
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Basic Java Mapping for Classes

A Slice  is mapped to a Java class with the same name. The generated class contains a public data member for each Slice dataclass
member (just as for structures and exceptions), and a member function for each operation. Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

Java

public interface _TimeOfDayOperations {
    String format(Ice.Current current);
}

public interface _TimeOfDayOperationsNC {
    String format();
}

public abstract class TimeOfDay extends Ice.ObjectImpl
                                implements _TimeOfDayOperations, _TimeOfDayOperationsNC {
    public short hour;
    public short minute;
    public short second;

    public TimeOfDay();
    public TimeOfDay(short hour, short minute, short second);
    // ...
}

There are a number of things to note about the generated code:

The compiler generates "operations interfaces" called  and . These_TimeOfDayOperations _TimeOfDayOperationsNC
interfaces contain a method for each Slice operation of the class.
The generated class  inherits (indirectly) from . This means that all classes implicitly inherit from TimeOfDay Ice.Object

, which is the ultimate ancestor of all classes. Note that  is  the same as . In otherIce.Object Ice.Object not Ice.ObjectPrx
words, you  pass a class where a proxy is expected and vice versa. cannot
If a class has only data members, but no operations, the compiler generates a non-abstract class.
The generated class contains a public member for each Slice data member.
The generated class inherits member functions for each Slice operation from the operations interfaces.
The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.
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Operations Interfaces in Java

The methods in the  interface have an additional trailing parameter of type , whereas the_< >Operationsinterface-name Ice.Current
methods in the  interface lack this additional trailing parameter. The methods without the _< >OperationsNCinterface-name Current
parameter simply forward to the methods with a  parameter, supplying a default . For now, you can ignore this parameterCurrent Current
and pretend it does not exist.

If a class has only data members, but no operations, the compiler omits generating the  and ><_interface-name Operations _<
 interfaces.>OperationsNCinterface-name

Inheritance from  in JavaIce.Object

Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the illustration below, classesIce.Object
inherit from  instead of  (which is at the base of the inheritance hierarchy for proxies). As a result, you cannotIce.Object Ice.ObjectPrx
pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from  and .Ice.ObjectPrx Ice.Object

Ice.Object contains a number of member functions:

Java

package Ice;

public interface Object
{
    boolean ice_isA(String s);
    boolean ice_isA(String s, Current current);

    void ice_ping();
    void ice_ping(Current current);

    String[] ice_ids();
    String[] ice_ids(Current current);

    String ice_id();
    String ice_id(Current current);

    void ice_preMarshal();
    void ice_postUnmarshal();

    DispatchStatus ice_dispatch(Request request, DispatchInterceptorAsyncCallback cb);
}

The member functions of  behave as follows:Ice.Object

ice_isA
This function returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the class.ice_ping

ice_ids
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This function returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time  for a class. If you call  through a reference to a base instance, the returnedtype ID ice_id
type id is the actual (possibly more derived) type ID of the instance.

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

Note that the generated class does not override  and . This means that classes are compared using shallow referencehashCode equals
equality, not value equality (as is used for structures).

All Slice classes derive from  via the  abstract base class.  implements the Ice.Object Ice.ObjectImpl ObjectImpl
 interface to support Java's  facility.  also supplies an implementation of  thatjava.io.Serializable serialization ObjectImpl clone

returns a shallow memberwise copy.

Class Data Members in Java

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of thisprotected
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the  class shown below has the  metadata directive appliedTimeOfDay protected
to each of its data members:

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

Java

public abstract class TimeOfDay extends Ice.ObjectImpl
                                implements _TimeOfDayOperations,
                                           _TimeOfDayOperationsNC {
    protected short hour;
    protected short minute;
    protected short second;

    public TimeOfDay();
    public TimeOfDay(short hour, short minute, short second);
    // ...
}

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay
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Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Note that you can optionally  for data members to use getters and setters instead.customize the mapping

Class Operations in Java

Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such
as the  operation of our  class), you must provide an implementation of the operation in a class that is derived from theformat TimeOfDay
generated class. For example:

Java

public class TimeOfDayI extends TimeOfDay {
    public String format(Ice.Current current) {
        DecimalFormat df = (DecimalFormat)DecimalFormat.getInstance();
        df.setMinimumIntegerDigits(2);
        return new String(df.format(hour) + ":" + df.format(minute) + ":" +
                          df.format(second));
    }
}

Class Factories in Java

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However, get TimeOfDay
 is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a TimeOfDay

 class that implements the abstract  operation of the  abstract class. In other words, we must provide theTimeOfDayI format TimeOfDay
Ice run time with a factory that knows that the  abstract class has a  concrete implementation. The TimeOfDay TimeOfDayI

 interface provides us with the necessary operations:Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};
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To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory

Java

class ObjectFactory implements Ice.ObjectFactory {
    public Ice.Object create(String type) {
        if (type.equals(M.TimeOfDay.ice_staticId())) {
            return new TimeOfDayI();
        }
        assert(false);
        return null;
    }

    public void destroy() {
        // Nothing to do
    }
}

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
method is called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Java

Ice.Communicator ic = ...;
ic.addObjectFactory(new ObjectFactory(), M.TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the"::M::TimeOfDay" create
registered  instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, calls to  can be made concurrently.create destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in Java

Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

The generated class also contains a second constructor that accepts one argument for each member of the class. This allows you to create
and initialize a class in a single statement, for example:
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Java

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 14:45pm

For derived classes, the constructor requires an argument for every member of the class, including inherited members. For example,
consider the the definition from  once more:Class Inheritance

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

The constructors for the generated classes are as follows:

Java

public class TimeOfDay extends Ice.ObjectImpl {
    public TimeOfDay() {}

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

public class DateTime extends TimeOfDay
{
    public DateTime()
    {
        super();
    }

    public DateTime(short hour, short minute, short second,
                    short day, short month, short year)
    {
        super(hour, minute, second);
        this.day = day;
        this.month = month;
        this.year = year;
    }

    // ...
}

If you want to instantiate and initialize a  instance, you must either use the default constructor or provide values for all of the dataDateTime
members of the instance, including data members of any base classes.

See Also
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Classes
Class Inheritance
Type IDs
Serializable Objects in Java
JavaBean Mapping
The Current Object
Dispatch Interceptors
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Serializable Objects in Java

In Java terminology, a  typically refers to an object that implements the  interface and thereforeserializable object java.io.Serializable
supports serialization to and from a byte stream. All Java classes generated from Slice definitions implement the java.io.Serializable
interface.

In addition to serializing Slice types, applications may also need to incorporate foreign types into their Slice definitions. Ice allows you to pass
Java  directly as operation parameters or as fields of another data type. For example:serializable objects

Slice

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;
struct MyStruct {
    int i;
    JavaObj o;
};

interface Example {
    void op(JavaObj inObj, MyStruct s, out JavaObj outObj);
};

The generated code for  contains a member   of type  and a member   of type :MyStruct i int o SomePackage.JavaClass

Java

public final class MyStruct implements java.lang.Cloneable {
    public int i;
    public SomePackage.JavaClass o;

    // ...
}

Similarly, the signature for  has parameters of type  and  for the in-parameters, and op JavaClass MyStruct
 for the out-parameter. (Out-parameters are always passed as .)Ice.Holder<SomePackage.JavaClass> Ice.Holder< >class

Java

void op(SomePackage.JavaClass inObj,
        MyStruct s,
        Ice.Holder<SomePackage.JavaClass> outObj);

Of course, your client and server code must have an implementation of  that derives from :JavaClass java.io.Serializable

Java

package SomePackage;

public class JavaClass implements java.io.Serializable {
    // ...
}

You can implement this class in any way you see fit — the Ice run time does not place any other requirements on the implementation.

See Also

Serializable Objects
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Customizing the Java Mapping

You can customize the code that the Slice-to-Java compiler produces by annotating your Slice definitions with . This sectionmetadata
describes how metadata influences several aspects of the generated Java code.

On this page:

Java Packages
Java Package Configuration Properties

Custom Types in Java
Metadata in Java
Defining a Custom Sequence Type in Java
Defining a Custom Dictionary Type in Java
Using Custom Type Metadata in Java
Mapping for Modified Out Parameters in Java

JavaBean Mapping
JavaBean Generated Methods
JavaBean Metadata

Java Packages

By default, the scope of a Slice definition determines the package of its mapped Java construct. A Slice type defined in a module hierarchy is
 to a type residing in the equivalent Java package.mapped

There are times when applications require greater control over the packaging of generated Java classes. For instance, a company may have
software development guidelines that require all Java classes to reside in a designated package. One way to satisfy this requirement is to
modify the Slice module hierarchy so that the generated code uses the required package by default. In the example below, we have
enclosed the original definition of  in the modules  so that the compiler will create the class in the Workflow::Document com::acme

 package:com.acme

Slice

module com {
    module acme {
        module Workflow {
            class Document {
                // ...
            };
        };
    };
};

There are two problems with this workaround:

It incorporates the requirements of an implementation language into the application's interface specification.
Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of generated code through the use of . Theglobal metadata
example above can be converted as follows:

Slice

[["java:package:com.acme"]]
module Workflow {
    class Document {
        // ...
    };
};

The global metadata directive  instructs the compiler to generate all of the classes resulting from definitions injava:package:com.acme
this Slice file into the Java package . The net effect is the same: the class for  is generated in the package com.acme Document
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3.  

4.  

. However, we have addressed the two shortcomings of the first solution by reducing our impact on the interfacecom.acme.Workflow
specification: the Slice-to-Java compiler recognizes the package metadata directive and modifies its actions accordingly, whereas the
compilers for other language mappings simply ignore it.

Java Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifications for the Ice run time when unmarshaling exceptions
and . The Ice run time dynamically loads generated classes by translating their Slice type ids into Java class names. Forconcrete class types
example, the Ice run time translates the Slice type id  into the class name .::Workflow::Document Workflow.Document

However, when the generated classes are placed in a user-specified package, the Ice run time can no longer rely on the direct translation of
a Slice type id into a Java class name, and therefore requires additional configuration so that it can successfully locate the generated
classes. Two configuration properties are supported:

Ice.Package.Module=package
Associates a top-level Slice module with the package in which it was generated.

Only top-level module names are allowed; the semantics of global metadata prevent a nested module from being
generated into a different package than its enclosing module.

Ice.Default.Package=package
Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete class is described below:

Translate the Slice type id into a Java class name and attempt to load the class.
If that fails, extract the top-level module from the type id and check for an  property with a matching module name. IfIce.Package
found, prepend the specified package to the class name and try to load the class again.
If that fails, check for the presence of . If found, prepend the specified package to the class name and tryIce.Default.Package
to load the class again.
If the class still cannot be loaded, the instance may be .sliced

Continuing our example from the previous section, we can define the following property:

Ice.Package.Workflow=com.acme

Alternatively, we could achieve the same result with this property:

Ice.Default.Package=com.acme

Custom Types in Java

One of the more powerful applications of metadata is the ability to tailor the Java mapping for sequence and dictionary types to match the
needs of your application.

Metadata in Java

The metadata for specifying a custom type has the following format:

java:type:instance-type[:formal-type]

The formal type is optional; the compiler uses a default value if one is not defined. The instance type must satisfy an is-A relationship with
the formal type: either the same class is specified for both types, or the instance type must be derived from the formal type.

The Slice-to-Java compiler generates code that uses the formal type for all occurrences of the modified Slice definition except when the
generated code must instantiate the type, in which case the compiler uses the instance type instead.

The compiler performs no validation on your custom types. Misspellings and other errors will not be apparent until you compile the generated
code.
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Defining a Custom Sequence Type in Java

Although the default mapping of a sequence type to a native Java array is efficient and typesafe, it is not always the most convenient
representation of your data. To use a different representation, specify the type information in a metadata directive, as shown in the following
example:

Slice

["java:type:java.util.LinkedList<String>"]
sequence<string> StringList;

It is your responsibility to use a type parameter for the Java class (  in the example above) that is the correct mapping for theString
sequence's element type.

The compiler requires the formal type to implement , where  is the Java mapping of the element type. If you do notjava.util.List< >E E
specify a formal type, the compiler uses  by default.java.util.List< >E

Note that extra care must be taken when defining custom types that contain nested generic types, such as a custom sequence whose
element type is also a custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom
type metadata will be apparent when the generated code is compiled.

Defining a Custom Dictionary Type in Java

The default instance type for a dictionary is , where  is the Java mapping of the key type and  is the Javajava.util.HashMap< , >K V K V
mapping of the value type. If the semantics of a  are not suitable for your application, you can specify an alternate type usingHashMap
metadata as shown in the example below:

Slice

["java:type:java.util.TreeMap<String, String>"]
dictionary<string, string> StringMap;

It is your responsibility to use type parameters for the Java class (  in the example above) that are the correct mappings for theString
dictionary's key and value types.

The compiler requires the formal type to implement . If you do not specify a formal type, the compiler uses this typejava.util.Map< , >K V
by default.

Note that extra care must be taken when defining dictionary types that contain nested generic types, such as a dictionary whose element
type is a custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom type metadata
will be apparent when the generated code is compiled.

Using Custom Type Metadata in Java

You can define custom type metadata in a variety of situations. The simplest scenario is specifying the metadata at the point of definition:

Slice

["java:type:java.util.LinkedList<String>"]
sequence<string> StringList;

Defined in this manner, the Slice-to-Java compiler uses  (the default formal type) for all occurrences of java.util.List<String>
, and  when it needs to instantiate .StringList java.util.LinkedList<String> StringList

You may also specify a custom type more selectively by defining metadata for a data member, parameter or return value. For instance, the
mapping for the original Slice definition might be sufficient in most situations, but a different mapping is more convenient in particular cases.
The example below demonstrates how to override the sequence mapping for the data member of a structure as well as for several
operations:
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Slice

sequence<string> StringSeq;

struct S {
    ["java:type:java.util.LinkedList<String>"] StringSeq seq;
};

interface I {
    ["java:type:java.util.ArrayList<String>"] StringSeq
    modifiedReturnValue();

    void modifiedInParam(["java:type:java.util.ArrayList<String>"] StringSeq seq);

    void modifiedOutParam(out ["java:type:java.util.ArrayList<String>"] StringSeq seq);
};

As you might expect, modifying the mapping for an operation's parameters or return value may require the application to manually convert
values from the original mapping to the modified mapping. For example, suppose we want to invoke the  operation. ThemodifiedInParam
signature of its proxy operation is shown below:

Java

void modifiedInParam(java.util.List<String> seq, Ice.Current curr)

The metadata changes the mapping of the  parameter to , which is the default formal type. If a caller has a seq java.util.List
 value in the original mapping, it must convert the array as shown in the following example:StringSeq

Java

String[] seq = new String[2];
seq[0] = "hi";
seq[1] = "there";
IPrx proxy = ...;
proxy.modifiedInParam(java.util.Arrays.asList(seq));

Although we specified the instance type  for the parameter, we are still able to pass the result of java.util.ArrayList<String>
 because its return type ( ) is compatible with the parameter's formal type declared by the proxyasList java.util.List<String>

method. In the case of an operation parameter, the instance type is only relevant to a servant implementation, which may need to make
assumptions about the actual type of the parameter.

Mapping for Modified Out Parameters in Java

The mapping for an  parameter uses a generated "holder" class to convey the . If you modify the mapping of an out parameter value out
parameter, as discussed in the previous section, it is possible that the holder class for the parameter's unmodified type is no longer
compatible with the custom type you have specified. The holder class generated for  is shown below:StringSeq
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Java

public final class StringSeqHolder
{
    public
    StringSeqHolder()
    {
    }

    public
    StringSeqHolder(String[] value)
    {
        this.value = value;
    }

    public String[] value;
}

An  parameter of type  would normally map to a proxy method that used  to hold the parameter value.out StringSeq StringSeqHolder
When the parameter is modified, as is the case with the  operation, the Slice-to-Java compiler cannot use modifiedOutParam

 to hold an instance of , because  is only appropriate for the defaultStringSeqHolder java.util.List<String> StringSeqHolder
mapping to a native array.

As a result, the compiler handles these situations using instances of the generic class , where  is the parameter's formalIce.Holder< >T T
type. Consider the following example:

Slice

sequence<string> StringSeq;

interface I {
    void modifiedOutParam(out ["java:type:java.util.ArrayList<String>"] StringSeq seq);
};

The compiler generates the following mapping for the  proxy method:modifiedOutParam

Java

void modifiedOutParam(Ice.Holder<java.util.List<java.lang.String> > seq, Ice.Current curr)

The formal type of the parameter is , therefore the holder class becomes java.util.List<String>
.Ice.Holder<java.util.List<String>>

JavaBean Mapping

The Java mapping optionally generates JavaBean-style methods for the data members of class, structure, and exception types.

JavaBean Generated Methods

For each data member  of type , the mapping generates the following methods:val T

Java

public T getVal();
public void setVal(T v);

The mapping generates an additional method if  is the  type:T bool
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Java

public boolean isVal();

Finally, if  is a sequence type with an element type , two methods are generated to provide direct access to elements:T E

Java

public E getVal(int index);
public void setVal(int index, E v);

Note that these element methods are only generated for sequence types that use the default mapping.

The Slice-to-Java compiler considers it a fatal error for a JavaBean method of a class data member to conflict with a declared operation of
the class. In this situation, you must rename the operation or the data member, or disable the generation of JavaBean methods for the data
member in question.

JavaBean Metadata

The JavaBean methods are generated for a data member when the member or its enclosing type is annotated with the java:getset
metadata. The following example demonstrates both styles of usage:

Slice

sequence<int> IntSeq;

class C {
    ["java:getset"] int i;
    double d;
};

["java:getset"]
struct S {
    bool b;
    string str;
};

["java:getset"]
exception E {
    IntSeq seq;
};

JavaBean methods are generated for all members of struct  and exception , but for only one member of class . Relevant portions of theS E C
generated code are shown below:

Java

public class C extends Ice.ObjectImpl
{
    ...

    public int i;

    public int
    getI()
    {
        return i;
    }

    public void
    setI(int _i)
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    {
        i = _i;
    }

    public double d;
}

public final class S implements java.lang.Cloneable
{
    public boolean b;

    public boolean
    getB()
    {
        return b;
    }

    public void
    setB(boolean _b)
    {
        b = _b;
    }

    public boolean
    isB()
    {
        return b;
    }

    public String str;

    public String
    getStr()
    {
        return str;
    }

    public void
    setStr(String _str)
    {
        str = _str;
    }

    ...
}

public class E extends Ice.UserException
{
    ...

    public int[] seq;

    public int[]
    getSeq()
    {
        return seq;
    }

    public void
    setSeq(int[] _seq)
    {
        seq = _seq;
    }

    public int
    getSeq(int _index)
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    {
        return seq[_index];
    }

    public void
    setSeq(int _index, int _val)
    {
        seq[_index] = _val;
    }
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    ...
}

See Also

Metadata
Java Mapping for Modules
Java Mapping for Operations
Class Inheritance Semantics
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Asynchronous Method Invocation (AMI) in Java

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the  is deprecated and will be removed in a future release.old API

On this page:

Basic Asynchronous API in Java
Asynchronous Proxy Methods in Java
Asynchronous Exception Semantics in Java

 Class in JavaAsyncResult
Polling for Completion in Java
Generic Completion Callbacks in Java
Sharing State Between  and  Methods in Javabegin_ end_
Type-Safe Completion Callbacks in Java
Asynchronous Oneway Invocations in Java
Flow Control in Java
Asynchronous Batch Requests in Java
Concurrency Semantics for AMI in Java
AMI Limitations in Java

Basic Asynchronous API in Java

Consider the following simple Slice definition:

Slice

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Asynchronous Proxy Methods in Java

Besides the synchronous proxy methods,  generates the following asynchronous proxy methods:slice2java

Java

public interface EmployeesPrx extends Ice.ObjectPrx
{
    // ...

    public Ice.AsyncResult begin_getName(int number);
    public Ice.AsyncResult begin_getName(int number, java.util.Map<String, String> __ctx);

    public String end_getName(Ice.AsyncResult __result);
}

Four additional overloads of  are generated for use with  and begin_getName generic completion callbacks type-safe
.completion callbacks
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As you can see, the single  operation results in  and  methods. (The  method is overloadedgetName begin_getName end_getName begin_
so you can pass a .)per-invocation context

The  method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls ,end_getName end_getName
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

Java

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin_getName(99);

// Continue to do other things here...

String name = e.end_getName(r);

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . This value contains the state that the Ice run time requires to keep trackbegin_getName AsyncResult
of the asynchronous invocation. You must pass the  that is returned by the  method to the corresponding AsyncResult begin_ end_
method.

The  method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the  method has onebegin_ end_
out-parameter for each out-parameter of the corresponding Slice operation (plus the  parameter). For example, consider theAsyncResult
following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op

Java

Ice.AsyncResult begin_op(int inp1, String inp2);
Ice.AsyncResult begin_op(int inp1, String inp2, java.util.Map<String, String> __ctx);
double end_op(Ice.BooleanHolder outp1, Ice.LongHolder outp2, Ice.AsyncResult r);

Asynchronous Exception Semantics in Java

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception wasend_
encountered during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with thebegin_
code that calls the  method (instead of being present twice, once where the  method is called, and again where the end_ begin_ end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  methodbegin_
throws . This is necessary because, once the run time is finalized, it can no longer throw anCommunicatorDestroyedException
exception from the  method.end_

The only other exception that is thrown by the  and  methods is . This exceptionbegin_ end_ java.lang.IllegalArgumentException
indicates that you have used the API incorrectly. For example, the  method throws this exception if you call an operation that has abegin_
return value or out-parameters on a oneway proxy. Similarly, the  method throws this exception if you use a different proxy to call the end_

 method than the proxy you used to call the  method, or if the  you pass to the  method was obtained byend_ begin_ AsyncResult end_
calling the  method for a different operation.begin_

AsyncResult Class in Java

The  that is returned by the  method encapsulates the state of the asynchronous invocation:AsyncResult begin_
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Java

public class AsyncResult {
    public Communicator getCommunicator();
    public Connection getConnection();
    public ObjectPrx getProxy();
    public String getOperation();

    public boolean isCompleted();
    public void waitForCompleted();

    public boolean isSent();
    public void waitForSent();

    public void throwLocalException();

    public boolean sentSynchronously();
}

The methods have the following semantics:

Communicator getCommunicator()
This method returns the communicator that sent the invocation.

Connection getConnection()
This method returns the connection that was used for the invocation.

ObjectPrx getProxy()
This method returns the proxy that was used to call the  method.begin_

String getOperation()
This method returns the name of the operation.

boolean isCompleted()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the  methodend_
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

void waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

boolean isSent()
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If thebegin_
transport cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time itisSent
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent,  returns false.isSent

void waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After 

 returns,  returns true if the request was successfully written to the client-side transport, or false if anwaitForSent isSent
exception occurred. In the case of a failure, you can call the corresponding  method or  to obtain theend_ throwLocalException
exception.

void throwLocalException()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, throwLocalException
does nothing.

boolean sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued,  returns false (independent of whether the request is still in the queue or has since been written tosentSynchronously
the client-side transport).

Polling for Completion in Java

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider theAsyncResult
following simple interface to transfer files from client to server:
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Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit asend
file would be along the following lines:

Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize); // Read a chunk
    ft.send(offset, bs);       // Send the chunk
    offset += bs.length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:
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Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;

LinkedList<Ice.AsyncResult> results = new LinkedList<Ice.AsyncResult>();
int numRequests = 5;

while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice.AsyncResult r = ft.begin_send(offset, bs);
    offset += bs.length;

    // Wait until this request has been passed to the transport.
    r.waitForSent();
    results.add(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.size() > numRequests) {
        Ice.AsyncResult r = results.getFirst();
        results.removeFirst();
        r.waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (results.size() > 0) {
    Ice.AsyncResult r = results.getFirst();
    results.removeFirst();
    r.waitForCompleted();
}

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. InnumRequests + 1
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . InnumRequests
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time takennumRequests
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in Java

The  method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the begin_ getName
operation:

Java

Ice.AsyncResult begin_getName(int number, Ice.Callback __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Ice.Callback __cb);

The second version of  lets you override the default context. Following the in-parameters, the  method accepts abegin_getName begin_
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parameter of type , which is a callback class with a  method that you must provide. The Ice run time invokes the Ice.Callback completed
 method when an asynchronous operation completes. For example:completed

Java

public class MyCallback extends Ice.Callback
{
    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            System.out.println("Name is: " + name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

Note that your callback class must derive from . The implementation of your callback method must call the  method.Ice.Callback end_
The proxy for the call is available via the  method on the  that is passed by the Ice run time. The return type of getProxy AsyncResult

 is , so you must down-cast the proxy to its correct type.getProxy Ice.ObjectPrx

Your callback method should catch and handle any exceptions that may be thrown by the  method. If an operation can throw userend_
exceptions, this means that you need an additional catch handler for  (or catch all possible user exceptions explicitly).Ice.UserException
If you allow an exception to escape from the callback method, the Ice run time produces a log entry by default and ignores the exception.
(You can disable the log message by setting the property  to zero.)Ice.Warn.AMICallback

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to
the  method:begin_

Java

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

This is often written using an anonymous class instead:

Java

EmployeesPrx e = ...;

e.begin_getName(
        99,
        new Ice.AsyncCallback()
        {
            public void completed(Ice.AsyncResult r)
            {
                EmployeesPrx p = (EmployeesPrx)r.getProxy();
                try {
                    String name = p.end_getName(r);
                    System.out.println("Name is: " + name);
                } catch (Ice.LocalException ex) {
                    System.err.println("Exception: " + ex);
                }
            }
        });

An anonymous class is useful particularly for callbacks that do only a small amount of work because the code that starts the call and the
code that processes the results are physically close together.
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Sharing State Between  and  Methods in Javabegin_ end_

It is common for the  method to require access to some state that is established by the code that calls the  method. As anend_ begin_
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the  method knows which user interface element should receive thebegin_
update, and the  method needs access to that element.end_

Assuming that we have a  class that designates a particular user interface element, you could pass different widgets by storing theWidget
widget to be used as a member of your callback class:

Java

public class MyCallback extends Ice.AsyncCallback
{
    public MyCallback(Widget w)
    {
        _w = w;
    }

    private Widget _w;

    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            _w.writeString(name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

For this example, we assume that widgets have a  method that updates the relevant UI element.writeString

When you call the  method, you pass the appropriate callback instance to inform the  method how to update the display:begin_ end_

Java

EmployeesPrx e = ...;
Widget widget1 = ...;
Widget widget2 = ...;

// Invoke the getName operation with different widget callbacks.
e.begin_getName(99, new MyCallback(widget1));
e.begin_getName(24, new MyCallback(widget2));

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point
where its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback
instance to multiple invocations. (If you do this, your callback methods may need to use synchronization.)

Type-Safe Completion Callbacks in Java

The  is not entirely type-safe:generic callback API

You must down-cast the return value of  to the correct proxy type before you can call the  method.getProxy end_
You must call the correct  method to match the operation called by the  method.end_ begin_
You must remember to catch exceptions when you call the  method; if you forget to do this, you will not know that the operationend_
failed.

slice2java generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you must implement
a callback class that provides two callback methods:
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a  method that is called if the operation succeedsresponse
an  method that is called if the operation raises an exceptionexception

Your callback class must derive from the base class that is generated by . The name of this base class is slice2java <module>
. Here is a callback class for an invocation of the  operation:.Callback_ _<interface> <operation> getName

Java

public class MyCallback extends Demo.Callback_Employees_getName
{
    public void response(String name)
    {
        System.out.println("Name is: " + name);
    }

    public void exception(Ice.LocalException ex)
    {
        System.err.println("Exception is: " + ex);
    }
}

The  callback parameters depend on the operation signature. If the operation has non-  return type, the first parameter of the response void
 callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the correspondingresponse

Slice operation, in the order of declaration.

The  callback is invoked if the invocation fails because of an Ice run time exception. If the Slice operation can also raise userexception
exceptions, your callback class must supply an additional overloading of  that accepts an argument of type exception

.Ice.UserException

The proxy methods are overloaded to accept this callback instance:

Java

Ice.AsyncResult begin_getName(int number,
                              Callback_Employees_getName __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Callback_Employees_getName __cb);

You pass the callback to an invocation as you would with the generic API:

Java

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

Asynchronous Oneway Invocations in Java

You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have anyvoid
out-parameters, and does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns valuesbegin_
or raises a user exception, the  method throws an .begin_ IllegalArgumentException

The callback methods looks exactly as for a twoway invocation. For the generic API, the Ice run time does not call the  callbackcompleted
method unless the invocation raised an exception during the  method ("on the way out"). For the type-safe API, the begin_ response
method is never called.

Flow Control in Java
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Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can writebegin_
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResult.sentSynchronously
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the
request internally for later transmission in the background. (In that case,  returns false.)AsyncResult.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the , you can override the  method:generic API sent

Java

public class MyCallback extends Ice.AsyncCallback
{
    public void completed(Ice.AsyncResult r)
    {
        // ...
    }

    public void sent(Ice.AsyncResult r)
    {
        // ...
    }
}

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Java

e.begin_getName(99, new MyCallback());

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the  method from the thread that callssent
the  method. On the other hand, if the run time has to queue the request, it calls the  method from a different thread once it hasbegin_ sent
written the request to the local transport. In addition, you can find out from the  that is returned by the  methodAsyncResult begin_
whether the request was sent synchronously or was queued, by calling .sentSynchronously

For the , the  method has the following signature:generic API sent

Java

void sent(Ice.AsyncResult r);

For the , the signature is:type-safe API

Java

void sent(boolean sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously by calling  on the .sentSynchronously AsyncResult
For the type-safe API, the boolean  parameter provides the same information.sentSynchronously

The  methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementingsent
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in Java

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests

the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.
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begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued byend_ice_flushBatchRequests
that proxy.

In addition, similar methods are available on the communicator and the  object that is returned by Connection
. These methods flush batch requests sent via the same communicator and via the same connection,AsyncResult.getConnection

respectively.

Concurrency Semantics for AMI in Java

The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the  callback from thesent
thread calling the  method if the request could be sent synchronously. In the  callback, you know which thread is calling thebegin_ sent
callback by looking at the  member or parameter.sentSynchronously

AMI Limitations in Java

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use , the Ice run time raises  if the servant happens to be collocated; thecollocation optimization CollocationOptimizationException
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

Request Contexts
Batched Invocations
Location Transparency
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Using the Slice Compiler for Java

On this page:

 Command-Line Optionsslice2java
Slice2Java Ant Task

Execution Environment
Dependencies
Parameters
Nested Elements
Using the Task

slice2java Command-Line Options

The Slice-to-Java compiler, , offers the following command-line options in addition to the :slice2java standard options

--tie
Generate .tie classes

--impl
Generate sample implementation files. This option will not overwrite an existing file.

--impl-tie
Generate sample implementation files using . This option will not overwrite an existing file.tie classes

--checksum CLASS
Generate  for Slice definitions into the class . The given class name may optionally contain a package specifier.checksums CLASS
The generated class contains checksums for all of the Slice files being translated by this invocation of the compiler. For example,
the command below causes  to generate the file  containing the checksums for the Slice definitionsslice2java Checksums.java
in  and : File1.ice File2.ice

slice2java --checksum Checksums File1.ice File2.ice

--stream
Generate  for Slice types.streaming helper functions

--meta META
Define the global metadata directive . Using this option is equivalent to defining the global metadata  in each named SliceMETA META
file, as well as in any file included by a named Slice file. Global metadata specified with  overrides any corresponding global--meta
metadata directive in the files being compiled.

Slice2Java Ant Task

The Ice for Java build system makes extensive use of an ant task named  to automate the execution of the Slice-to-JavaSlice2JavaTask
compiler. This task may also be useful for Ice developers. The task and its supporting classes reside in the JAR file named ,ant-ice.jar
which normally can be found in the  subdirectory of your Ice installation.lib

Execution Environment

The  must be able to locate and spawn the  executable. You can specify the directory of your Ice installationSlice2JavaTask slice2java
by defining the  ant property or the  environment variable, in which case the task assumes that the Slice compiler'sice.home ICE_HOME
executable is located in the  subdirectory of the specified installation directory. For example, if  is set to  on Linux,bin ICE_HOME /opt/Ice
the task assumes that the executable path name is . Furthermore, the task also configures its shared library/opt/Ice/bin/slice2java
search path (if necessary for your platform) to ensure the executable can resolve its library dependencies.

If both  and  are defined,  takes precedence. If neither are defined, the task assumes that the executableice.home ICE_HOME ice.home
can already be found in your  and that your shared library search path is configured correctly.PATH

Finally, you can use a task parameter to specify the full path name of the Slice compiler. Again, the task assumes that your shared library
search path is configured correctly.

Dependencies
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The task minimizes recompilation by maintaining dependencies between Slice files. The task stores this information in a file named .depend
in the output directory and updates these dependencies after each invocation. (You can specify a different name for this file using a task
parameter.)

Note that the task does not maintain dependencies between a Slice file and its generated Java source files. Consequently, removing the
generated Java source files does not cause the task to recompile a Slice file. In fact, the task only compiles a Slice file when any of the
following conditions are true:

no dependency file exists
no dependency information is found for the Slice file
the modification time of the Slice file is later than the modification time of the dependency file
the Slice file includes another Slice file that is eligible for compilation

The simplest way to force the task to recompile all of your Slice files is to remove the dependency file.

Parameters

The task supports the parameters listed in the following table:

Attribute Description Required

checksum Specifies the name of a class to contain the .Slice checksums No

dependencyfile Specifies an alternate name for the dependency file. If you specify a relative filename, it is relative to
ant's current working directory. If not specified, the task uses the name  by default. If you do not.depend
define this attribute and  is defined, the task creates the  file in the designatedoutputdir .depend
output directory (see ).outputdir

No

ice Instructs the Slice compiler to permit symbols that have the reserved prefix . This parameter is usedIce
in the Ice build system and is not normally required by applications.

No

outputdir Specifies the directory in which the Slice compiler generates Java source files. If not specified, the task
uses ant's current working directory.

No

stream Indicates whether to generate . If not specified, streaming support is not generated.streaming support No

tie Indicates whether to generate . If not specified, tie classes are not generated.tie classes No

translator Specifies the path name of the Slice compiler. If not specified, the task locates the Slice compiler in its 
.execution environment

No

For the flag parameters ( , , and ), legal positive values are , , or ; negative values are , , or .ice stream tie on true yes off false no

Nested Elements

Several Slice compiler options must be defined as nested elements of the task:

define
Defines a preprocessor macro. The element supports the attributes  and (optionally) , as shown below:name value
<define name="FOO">
<define name="BAR" value="5">
These definitions are equivalent to the command-line options  and , respectively.-DFOO -DBAR=5

fileset
Specifies the set of Slice files to be compiled. Refer to the ant documentation of its  type for more information.FileSet

includepath
Specifies the include file search path for Slice files. In ant terminology,  is a . Refer to the antincludepath path-like structure
documentation of its  type for more information.Path

meta
Defines a global metadata directive in each Slice file as well as in each included Slice file. The element supports  and name value
attributes.

Using the Task

Define the following  element in your project's build file to enable the task:taskdef
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Ant

<taskdef name="slice2java" classname="Slice2JavaTask"/>

This configuration assumes that  is already present in ant's class path. Alternatively, you can specify the JAR explicitly asant-ice.jar
follows:

Ant

<taskdef name="slice2java" classpath="/opt/Ice/lib/ant-ice.jar"
    classname="Slice2JavaTask"/>

Once activated, you can invoke the task to translate your Slice files. The example shown below is a simplified version of the ant project for
the  demo:hello

Ant

<target name="generate" depends="init">
    <mkdir dir="generated"/>
    <slice2java outputdir="generated">
        <fileset dir="." includes="Hello.ice"/>
    </slice2java>
</target>

<target name="compile" depends="generate">
    <mkdir dir="classes"/>
    <javac srcdir=".:generated" destdir="classes">
        <exclude name="generated/**"/>
        ...
    </javac>
</target>

<target name="all" depends="compile"/>

<target name="clean">
    <delete dir="generated"/>
    <delete dir="classes"/>
</target>

This project demonstrates some practices that we encourage you to adopt in your own projects. First, it is helpful to keep the source files
generated by the Slice compiler separate from your application's source files by dedicating an output directory for the exclusive use of the
Slice compiler. Doing so helps to minimize confusion and makes it easier to configure a source-code management system to ignore
generated files.

Next, we also recommend that you include a  target in your ant project that removes this output directory. Assuming that theclean
dependency file ( ) is also stored in this directory, removing the output directory is an efficient way to clean up your project's source.depend
tree and guarantees that all of your Slice files are recompiled in the next build.

Finally, after seeing the  element in the invocation of  you might infer that the generated code was not being compiled, butexclude javac
the presence of the output directory in the  attribute ensures that the generated code is included in the build. The purpose of the srcdir

 element is to prevent ant from including the generated files twice in its target list.exclude

See Also

Using the Slice Compilers
Using Slice Checksums in Java
Tie Classes in Java
Streaming Interfaces
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Using Slice Checksums in Java

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compilerchecksums slice2java --checksum
to generate a new Java class that adds checksums to a static map member. Assuming we supplied the option  to --checksum Checksums

, the generated class  looks like this:slice2java Checksums.java

Java

public class Checksums {
    public static java.util.Map<String, String> checksums;
}

The read-only map  is initialized automatically prior to first use; no action is required by the application.checksums

In order to verify a server's checksums, a client could simply compare the dictionaries using the  method. However, this is notequals
feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the local
checksums as demonstrated below:

Java

java.util.Map<String, String> serverChecksums = ...
java.util.Iterator<java.util.Map.Entry<String, String>> i =
    Checksums.checksums.entrySet().iterator();
while(i.hasNext()) {
    java.util.Map.Entry<String, String> e = i.next();
    String id = e.getKey();
    String checksum = e.getValue();
    String serverChecksum = serverChecksums.get(id);
    if (serverChecksum == null) {
        // No match found for type id!
    } else if (!checksum.equals(serverChecksum)) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
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Example of a File System Client in Java

This page presents the source code for a very simple client to access a server that implements the file system we developed in Slice for a
. The Java code hardly differs from the code you would write for an ordinary Java program. This is one of the biggestSimple File System

advantages of using Ice: accessing a remote object is as easy as accessing an ordinary, local Java object. This allows you to put your effort
where you should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for
the  as well, meaning that you can develop distributed applications easily and efficiently.server side

We now have seen enough of the client-side Java mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

Java

import Filesystem.*;

public class Client {

    // Recursively print the contents of directory "dir" in
    // tree fashion.  For files, show the contents of each file.
    // The "depth" parameter is the current nesting level
    // (for indentation).

    static void
    listRecursive(DirectoryPrx dir, int depth)
    {
        char[] indentCh = new char[++depth];
        java.util.Arrays.fill(indentCh, '\t');
        String indent = new String(indentCh);

        NodePrx[] contents = dir.list();

        for (int i = 0; i < contents.length; ++i) {
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            DirectoryPrx subdir = DirectoryPrxHelper.checkedCast(contents[i]);
            FilePrx file = FilePrxHelper.uncheckedCast(contents[i]);
            System.out.println(indent + contents[i].name() +
                (subdir != null ? " (directory):" : " (file):"));
            if (subdir != null) {
                listRecursive(subdir, depth);
            } else {
                String[] text = file.read();
                for (int j = 0; j < text.length; ++j)
                    System.out.println(indent + "\t" + text[j]);
            }
        }
    }

    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            // Create a communicator
            //
            ic = Ice.Util.initialize(args);

            // Create a proxy for the root directory
            //
            Ice.ObjectPrx base = ic.stringToProxy("RootDir:default -p 10000");
            if (base == null)
                throw new RuntimeException("Cannot create proxy");

            // Down-cast the proxy to a Directory proxy
            //
            DirectoryPrx rootDir = DirectoryPrxHelper.checkedCast(base);
            if (rootDir == null)
                throw new RuntimeException("Invalid proxy");

            // Recursively list the contents of the root directory
            //
            System.out.println("Contents of root directory:");
            listRecursive(rootDir, 0);
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
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1.  

2.  

3.  

    }
}

After importing the  package, the  class defines two methods: , which is a helper function to print theFilesystem Client listRecursive
contents of the file system, and , which is the main program. Let us look at  first:main main

The structure of the code in  follows what we saw in . After initializing the run time, the client creates amain Hello World Application
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in . The function is passed a proxy to a directory to list, and an indent level. (The indent levellistRecursive
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.)  calls the  operation on the directory and iterates over the returned sequence of nodes:listRecursive list

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we  that theis-a Directory DirectoryPrx checkedCast checkedCast know
Node  File and, therefore, an  is sufficient to get a . is-a uncheckedCast FilePrx
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast

 because an  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.
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Note that, so far, our client (and server) are not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Example of a File System Server in Java
Object Life Cycle
IceGrid
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Server-Side Slice-to-Java Mapping

The mapping for Slice data types to Java is identical on the client side and server side. This means that everything in Client-Side
 also applies to the server side. However, for the server side, there are a few additional things you need to know —Slice-to-Java Mapping

specifically how to:

Initialize and finalize the server-side run time
Implement servants
Pass parameters and throw exceptions
Create servants and register them with the Ice run time

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using , for example, to improve performance or scalability. However, these APIs are alladditional APIs
described in Slice, so, to use these APIs, you need not learn any Java mapping rules beyond those we described here.

Topics

The Server-Side main Method in Java
Server-Side Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Tie Classes in Java
Object Incarnation in Java
Asynchronous Method Dispatch (AMD) in Java
Example of a File System Server in Java
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The Server-Side main Method in Java

On this page:

A Basic  Method in Javamain
The  Class in JavaIce.Application

Using  on the Client Side in JavaIce.Application
Catching Signals in Java

 and Properties in JavaIce.Application
Limitations of  in JavaIce.Application

A Basic  Method in Javamain

The main entry point to the Ice run time is represented by the local Slice interface . As for the client side, you mustIce::Communicator
initialize the Ice run time by calling  before you can do anything else in your server. Ice.Util.initialize Ice.Util.initialize
returns a reference to an instance of an :Ice.Communicator

Java

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            // ...
        } catch (Exception e) {
            e.printStackTrace();
            status = 1;
        }
        // ...
    }
}

Ice.Util.initialize accepts the argument vector that is passed to  by the operating system. The function scans the argumentmain
vector for any  that are relevant to the Ice run time, but does not remove those options. If anything goes wrong duringcommand-line options
initialization,  throws an exception.initialize

The semantics of Java arrays prevents  from modifying the size of the argument vector.Ice.Util.initialize
However,  of  is provided that allows the application to obtain a newanother overloading Ice.Util.initialize
argument vector with the Ice options removed.

Before leaving your  function, you  call . The  operation is responsible for finalizing the Ice runmain must Communicator.destroy destroy
time. In particular,  waits for any operation implementations that are still executing in the server to complete. In addition, destroy destroy
ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and
memory. Never allow your  function to terminate without calling  first; doing so has undefined behavior.main destroy

The general shape of our server-side  function is therefore as follows:main
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Java

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            // ...
        } catch (Exception e) {
            e.printStackTrace();
            status = 1;
        }
        if (ic != null) {
            try {
                ic.destroy();
            } catch (Exception e) {
                e.printStackTrace();
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note that the code places the call to  into a  block and takes care to return the correct exit status to theIce.Util.initialize try
operating system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The  Class in JavaIce.Application

The preceding structure for the  function is so common that Ice offers a class, , that encapsulates all the correctmain Ice.Application
initialization and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Java

package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }

public abstract class Application {
    public Application()

    public Application(SignalPolicy signalPolicy)

    public final int main(String appName, String[] args)

    public final int main(String appName, String[] args, String configFile)

    public final int main(String appName, String[] args, InitializationData initData)

    public abstract int run(String[] args)

    public static String appName()

    public static Communicator communicator()

    // ...
}

The intent of this class is that you specialize  and implement the abstract  method in your derived class. WhateverIce.Application run
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code you would normally place in  goes into the  method instead. Using , our program looks as follows:main run Ice.Application

Java

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        // Server code here...

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server();
        int status = app.main("Server", args);
        System.exit(status);
    }
}

Note that  is overloaded: you can pass an optional file name or an  structure.Application.main InitializationData

If you pass a  to , the property settings in this file are overridden by settings in a file identified by the configuration file name main
 environment variable (if defined). Property settings supplied on the  take precedence over all other settings.ICE_CONFIG command line

The  function does the following:Application.main

It installs an exception handler for . If your code fails to handle an exception,  printsjava.lang.Exception Application.main
the name of an exception and a stack trace on  before returning with a non-zero return value.System.err
It initializes (by calling ) and finalizes (by calling ) a communicator. You can getIce.Util.initialize Communicator.destroy
access to the communicator for your server by calling the static  accessor.communicator
It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your  method therefore is free of Ice-related options and only contains options and arguments that are specificrun
to your application.
It provides the name of your application via the static  member function. The return value from this call is the first argumentappName
in the call to , so you can get at this name from anywhere in your code by calling Application.main

 (which is usually required for error messages). In the example above, the return value from Ice.Application.appName
 would be .appName Server

It installs a shutdown hook that properly shuts down the communicator.
It installs a  if the application has not already configured one. The per-process logger uses the value of the per-process logger

 property as a prefix for its messages and sends its output to the standard error channel. An application canIce.ProgramName
also specify an .alternate logger

Using  ensures that your program properly finalizes the Ice run time, whether your server terminates normally or inIce.Application
response to an exception. We recommend that all your programs use this class; doing so makes your life easier. In addition, 

 also provides features for signal handling and configuration that you do not have to implement yourself when you useIce.Application
this class.

Using  on the Client Side in JavaIce.Application

You can use  for your clients as well: simply implement a class that derives from  and place theIce.Application Ice.Application
client code into its  method. The advantage of this approach is the same as for the server side:  ensures that therun Ice.Application
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in Java

The simple server we developed in  had no way to shut down cleanly: we simply interrupted the server from theHello World Application
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an application to register a  that is invoked when the JVM isshutdown hook
shutting down. There are several events that trigger JVM shutdown, such as a call to  or an interrupt signal from the operatingSystem.exit
system, but the shutdown hook is not provided with the reason for the shut down.
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Ice.Application registers a shutdown hook by default, allowing you to cleanly terminate your application prior to JVM shutdown.

Java

package Ice;

public abstract class Application {
    // ...

    synchronized public static void destroyOnInterrupt()
    synchronized public static void shutdownOnInterrupt()
    synchronized public static void setInterruptHook(Thread t)
    synchronized public static void defaultInterrupt()
    synchronized public static boolean interrupted()
}

The functions behave as follows:

destroyOnInterrupt
This function installs a shutdown hook that calls  on the communicator. This is the default behavior.destroy

shutdownOnInterrupt
This function installs a shutdown hook that calls  on the communicator.shutdown

setInterruptHook
This function installs a custom shutdown hook that takes responsibility for performing whatever action is necessary to terminate the
application. Refer to the Java documentation for  for more information on the semantics of shutdownRuntime.addShutdownHook
hooks.

defaultInterrupt
This function removes the shutdown hook.

interrupted
This function returns true if the shutdown hook caused the communicator to shut down, false otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by the JVM. This is useful, for example, for logging purposes.

By default,  behaves as if  was invoked, therefore our server  function requires no changeIce.Application destroyOnInterrupt main
to ensure that the program terminates cleanly on JVM shutdown. (You can disable this default shutdown hook by passing the enumerator 

 to the constructor. In that case, shutdown is not intercepted and terminates the VM.) However, we add a diagnostic toNoSignalHandling
report the occurrence, so our  function now looks like:main

Java

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        // Server code here...

        if (interrupted())
            System.err.println(appName() + ": terminating");

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server();
        int status = app.main("Server", args);
        System.exit(status);
    }
}

During the course of normal execution, the JVM does not terminate until all non-daemon threads have completed. If an interrupt occurs, the
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JVM ignores the status of active threads and terminates as soon as it has finished invoking all of the installed shutdown hooks.

In a subclass of , the default shutdown hook (as installed by ) blocks until the application's mainIce.Application destroyOnInterrupt
thread completes. As a result, an interrupted application may not terminate successfully if the main thread is blocked. For example, this can
occur in an interactive application when the main thread is waiting for console input. To remedy this situation, the application can install an
alternate shutdown hook that does not wait for the main thread to finish:

Java

public class Server extends Ice.Application {
    class ShutdownHook extends Thread {
        public void
        run()
        {
            try
            {
                communicator().destroy();
            }
            catch(Ice.LocalException ex)
            {
                ex.printStackTrace();
            }
        }
    }

    public int
    run(String[] args)
    {
        setInterruptHook(new ShutdownHook());

        // ...
    }
}

After replacing the default shutdown hook using , the JVM will terminate as soon as the communicator is destroyed.setInterruptHook

Ice.Application and Properties in Java

Apart from the functionality shown in this section,  also takes care of initializing the Ice run time with property values. Ice.Application
 allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread poolProperties

size or port number for a server. The  function of  is overloaded; the second version allows you to specify the namemain Ice.Application
of a configuration file that will be processed during initialization.

Limitations of  in JavaIce.Application

Ice.Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use 
. Instead, you must structure your code as we saw in  (taking care to always destroy theIce.Application Hello World Application

communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
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Server-Side Java Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing member functions in a servant class,
you provide the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in Java
Servant Classes in Java

Normal and  Operations in Javaidempotent

Skeleton Classes in Java

On the client side, interfaces map to . On the server side, interfaces map to  classes. A skeleton is a class that has aproxy classes skeleton
pure virtual member function for each operation on the corresponding interface. For example, consider our  for the Slice definition Node
interface:

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

Java

package Filesystem;

public interface _NodeOperations
{
    String name(Ice.Current current);
}

public interface _NodeOperationsNC
{
    String name();
}

public interface Node extends Ice.Object,
                              _NodeOperations,
                              _NodeOperationsNC {}

public abstract class _NodeDisp extends Ice.ObjectImpl
                                implements Node
{
    // Mapping-internal code here...
}

The important points to note here are:

As for the client side, Slice modules are mapped to Java packages with the same name, so the skeleton class definitions are part of
the  package.Filesystem

For each Slice interface , the compiler generates Java interfaces  and <interface-name> _ Operations<interface-name> _
 (  and  in this example). These interfaces contain aOperationsNC<interface-name> _NodeOperations _NodeOperationsNC

method for each operation in the Slice interface. (You can ignore the  parameter for now.)Ice.Current

For each Slice interface , the compiler generates a Java interface  (  in this<interface-name> <interface-name> Node
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example). That interface extends  and the two operations interfaces.Ice.Object

For each Slice interface , the compiler generates an abstract class  (<interface-name> _ Disp<interface-name> _NodeDisp
in this example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in Java

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the  interface, you could write:Node

Java

package Filesystem;

public final class NodeI extends _NodeDisp {

    public NodeI(String name)
    {
        _name = name;
    }

    public String name(Ice.Current current)
    {
        return _name;
    }

    private String _name;
}

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called .I Node NodeI
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that 

 extends , that is, it derives from its skeleton class.NodeI _NodeDisp

As far as Ice is concerned, the  class must implement only a single method: the  method that it inherits from its skeleton. ThisNodeI name
makes the servant class a concrete class that can be instantiated. You can add other member functions and data members as you see fit to
support your implementation. For example, in the preceding definition, we added a  member and a constructor. (Obviously, the_name
constructor initializes the  member and the  function returns its value.)_name name

Normal and  Operations in Javaidempotent

Whether an operation is an ordinary operation or an  operation has no influence on the way the operation is mapped. Toidempotent
illustrate this, consider the following interface:

Slice

interface Example {
               void   normalOp();
    idempotent void   idempotentOp();
    idempotent string readonlyOp();
};

The operations class for this interface looks like this:

Java

public interface _ExampleOperations
{
    void normalOp(Ice.Current current);
    void idempotentOp(Ice.Current current);
    String readonlyOp(Ice.Current current);
}
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Note that the signatures of the member functions are unaffected by the  qualifier.idempotent

See Also

Slice for a Simple File System
Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Tie Classes in Java
The Current Object
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Parameter Passing in Java

For each parameter of a Slice operation, the Java mapping generates a corresponding parameter for the method in the 
 interface. In addition, every operation has an additional, trailing parameter of type . For_ Operations<interface-name> Ice.Current

example, the  operation of the  interface has no parameters, but the  method of the  interface has aname Node name _NodeOperations
single parameter of type . We will ignore this parameter for now.Ice.Current

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice

module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated skeleton class for this interface looks as follows:

Java

public interface _ExampleOperations
{
    String op(String sin, Ice.StringHolder sout, Ice.Current current);
}

As you can see, there are no surprises here. For example, we could implement  as follows:op

Java

public final class ExampleI extends M._ExampleDisp {

    public String op(String sin, Ice.StringHolder sout, Ice.Current current)
    {
        System.out.println(sin);     // In params are initialized
        sout.value = "Hello World!"; // Assign out param
        return "Done";
    }
}

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies,
classes, or dictionaries: the parameter passing conventions follow normal Java rules and do not require special-purpose API calls.

See Also

Server-Side Java Mapping for Interfaces
Raising Exceptions in Java
Tie Classes in Java
The Current Object
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Raising Exceptions in Java

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

Java

// ...

public void
write(String[] text, Ice.Current current)
    throws GenericError
{
    try
    {
        // Try to write file contents here...
    }
    catch(Exception ex)
    {
        throw new GenericError("Exception during write operation", ex);
    }
}

Note that, for this example, we have supplied the  to the  constructor. This parameter sets theoptional second parameter GenericError
inner exception and preserves the original cause of the error for later diagnosis.

If you throw an arbitrary Java run-time exception (such as a ), the Ice run time catches the exception and thenClassCastException
returns an  to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in theUnknownException
exception specification of the operation), the client receives an .UnknownUserException

If you throw an Ice run-time exception, such as , the client receives an . For thatMemoryLimitException UnknownLocalException
reason, you should never throw system exceptions from operation implementations. If you do, all the client will see is an 

, which does not tell the client anything useful.UnknownLocalException

Three run-time exceptions are  and not changed to  when returned to thetreated specially UnknownLocalException
client: , , and .ObjectNotExistException OperationNotExistException FacetNotExistException

See Also

Run-Time Exceptions
Java Mapping for Exceptions
Server-Side Java Mapping for Interfaces
Parameter Passing in Java
Tie Classes in Java
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Tie Classes in Java

The mapping to  requires the servant class to inherit from its skeleton class. Occasionally, this creates a problem: someskeleton classes
class libraries require you to inherit from a base class in order to access functionality provided by the library; because Java does not support
multiple implementation inheritance, this means that you cannot use such a class library to implement your servants because your servants
cannot inherit from both the library class and the skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write servants that replaces inheritance with delegation. This approach is
supported by . The idea is that, instead of inheriting from the skeleton class, you simply create a class (known as an tie classes

 or ) that contains methods corresponding to the operations of an interface. You use the  optionimplementation class delegate class --tie
with the  compiler to create a tie class. For example, the  option causes the compiler to create exactly the same code forslice2java --tie
the  as we saw previously, but to also emit an additional tie class. For an interface , the generated tie interfaceNode <interface-name>
class has the name :_ Tie<interface-name>
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Java

package Filesystem;

public class _NodeTie extends _NodeDisp implements Ice.TieBase {

    public _NodeTie() {}

    public
    _NodeTie(_NodeOperations delegate)
    {
        _ice_delegate = delegate;
    }

    public java.lang.Object
    ice_delegate()
    {
        return _ice_delegate;
    }

    public void
    ice_delegate(java.lang.Object delegate)
    {
        _ice_delegate = (_NodeOperations)delegate;
    }

    public boolean
    equals(java.lang.Object rhs)
    {
        if (this == rhs)
        {
            return true;
        }
        if (!(rhs instanceof _NodeTie))
        {
            return false;
        }

        return _ice_delegate.equals(((_NodeTie)rhs)._ice_delegate);
    }

    public int
    hashCode()
    {
        return _ice_delegate.hashCode();
    }

    public String
    name(Ice.Current current)
    {
        return _ice_delegate.name(current);
    }

    private _NodeOperations _ice_delegate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a servant class (it extends ) that delegates to your_NodeDisp
implementation class each invocation of a method corresponding to a Slice operation:
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A skeleton class, tie class, and implementation class.

The generated tie class also implements the  interface, which defines methods for obtaining and changing the delegateIce.TieBase
object:

Java

package Ice;

public interface TieBase {
    java.lang.Object ice_delegate();
    void ice_delegate(java.lang.Object delegate);
}

The delegate has type  in these methods in order to allow a tie object's delegate to be manipulated without knowing itsjava.lang.Object
actual type. However, the  modifier raises  if the given delegate object is not of the correct type.ice_delegate ClassCastException

Given this machinery, we can create an implementation class for our  interface as follows:Node

Java

package Filesystem;

public final class NodeI implements _NodeOperations {

    public NodeI(String name)
    {
        _name = name;
    }

    public String name(Ice.Current current)
    {
        return _name;
    }

    private String _name;
}

Note that this class is identical to our previous implementation, except that it implements the  interface and does not_NodeOperations
extend  (which means that you are now free to extend any other class to support your implementation)._NodeDisp

To create a servant, you instantiate your implementation class and the tie class, passing a reference to the implementation instance to the tie
constructor:

Java

NodeI fred = new NodeI("Fred");         // Create implementation
_NodeTie servant = new _NodeTie(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate instance by calling :ice_delegate
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Java

_NodeTie servant = new _NodeTie();      // Create tie
// ...
NodeI fred = new NodeI("Fred");         // Create implementation
// ...
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the servant, not your delegate. Furthermore, you must not use a
tie instance to  an Ice object until the tie has a delegate. Once you have set the delegate, you must not change it for the lifetime ofincarnate
the tie; otherwise, undefined behavior results.

You should use the tie approach only when necessary, that is, if you need to extend some base class in order to implement your servants:
using the tie approach is more costly in terms of memory because each Ice object is incarnated by two Java objects (the tie and the
delegate) instead of just one. In addition, call dispatch for ties is marginally slower than for ordinary servants because the tie forwards each
operation to the delegate, that is, each operation invocation requires two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the delegate back to the tie. If you need to navigate back to the tie from
the delegate, you can store a reference to the tie in a member of the delegate. (The reference can, for example, be initialized by the
constructor of the delegate.)

See Also

Server-Side Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Object Incarnation in Java
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1.  
2.  
3.  
4.  

Object Incarnation in Java

Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can classNodeI
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must take the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a Java Servant
Creating an Identity in Java
Activating a Java Servant
UUIDs as Identities in Java
Creating Proxies in Java

Proxies and Servant Activation in Java
Direct Proxy Creation in Java

Instantiating a Java Servant

Instantiating a servant means to allocate an instance:

Java

Node servant = new NodeI("Fred");

This code creates a new  instance and assigns its address to a reference of type . This works because  is derived from NodeI Node NodeI
, so a  reference can refer to an instance of type . However, if we want to invoke a member function of the  class atNode Node NodeI NodeI

this point, we must use a  reference:NodeI

Java

NodeI servant = new NodeI("Fred");

Whether you use a  or a  reference depends purely on whether you want to invoke a member function of the  class: if not,Node NodeI NodeI
a  reference works just as well as a  reference.Node NodeI

Creating an Identity in Java

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

An Ice object identity is a structure with the following Slice definition:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};



Ice 3.4.2 Documentation

393 Copyright © 2011, ZeroC, Inc.

1.  

2.  
3.  

The full identity of an object is the combination of both the  and  fields of the  structure. For now, we will leave the name category Identity
 field as the empty string and simply use the  field. (The  field is most often used in conjunction with category name category servant

.)locators

To create an identity, we simply assign a key that identifies the servant to the  field of the  structure:name Identity

Java

Ice.Identity id = new Ice.Identity();
id.name = "Fred"; // Not unique, but good enough for now

Activating a Java Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the  operation on the object adapter. Assuming that we haveadd
access to the object adapter in the  variable, we can write:_adapter

Java

_adapter.add(servant, id);

Note the two arguments to : the servant and the object identity. Calling  on the object adapter adds the servant and the servant'sadd add
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming
request into the correct member function on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

UUIDs as Identities in Java

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. Java provides a helper function that we can use to create such identities:

Java

public class Example {
    public static void
    main(String[] args)
    {
        System.out.println(java.util.UUID.randomUUID().toString());
    }
}

When executed, this program prints a unique string such as . Each call to 5029a22c-e333-4f87-86b1-cd5e0fcce509 randomUUID
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation  thataddWithUUID
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can create an identity and register a
servant with that identity in a single step as follows:

Java

_adapter.addWithUUID(new NodeI("Fred"));
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Creating Proxies in Java

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in . However, creation of proxies by the client in thisHello World Application
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in Java

The  and  servant activation operations on the object adapter return a proxy for the corresponding Ice object. This meansadd addWithUUID
we can write:

Java

NodePrx proxy = NodePrxHelper.uncheckedCast(_adapter.addWithUUID(new NodeI("Fred")));

Here,  both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an  here because  returns a proxy of type .uncheckedCast addWithUUID Ice.ObjectPrx

Direct Proxy Creation in Java

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that  creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxiescreateProxy
have a life cycle that is quite independent from the life cycle of servants:

Java

Ice.Identity id = new Ice.Identity();
id.name = java.util.UUID.randomUUID().toString();
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if werandomUUID
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an . (WeObjectNotExistException
examine these life cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Server-Side Java Mapping for Interfaces
Object Adapter States
Servant Locators
Object Life Cycle
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1.  

2.  

Asynchronous Method Dispatch (AMD) in Java

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's 
. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests andthread pool

therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receiveAMI
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

Enabling AMD with Metadata in Java
AMD Mapping in Java

Callback interface for AMD
Dispatch method for AMD

AMD Exceptions in Java
AMD Example in Java

Enabling AMD with Metadata in Java

To enable asynchronous dispatch, you must add an  metadata directive to your Slice definitions. The directive applies at the["amd"]
interface and the operation level. If you specify  at the interface level, all operations in that interface use asynchronous dispatch; if["amd"]
you specify  for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive ["amd"]

 synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannotreplaces
use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
    bool isValid();
    float computeRate();
};

interface J {
    ["amd"] void startProcess();
    int endProcess();
};

In this example, both operations of interface  use asynchronous dispatch, whereas, for interface ,  uses asynchronousI J startProcess
dispatch and  uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in
your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in Java

The Java mapping emits the following code for each AMD operation:

Callback interface
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2.  Dispatch method

Callback interface for AMD

A callback interface is used by the implementation to notify the Ice run time about the completion of an operation. The name of this interface
is formed using the pattern . For example, an operation named  defined in interface  results in an interface named AMD_class_op foo I

. The interface is generated in the same scope as the interface or class containing the operation. Two methods are provided:AMD_I_foo

Java

public void ice_response(<params>);

The  method allows the server to report the successful completion of the operation. If the operation has a non-  returnice_response void
type, the first parameter to  is the return value. Parameters corresponding to the operation's out parameters follow the returnice_response
value, in the order of declaration.

Java

public void ice_exception(java.lang.Exception ex);

The  method allows the server to raise an exception. With respect to exceptions, there is less compile-time type safety inice_exception
an AMD implementation because there is no  clause on the dispatch method and any exception type could conceivably be passed tothrows

. However, the Ice run time  the exception value using the same semantics as for synchronous dispatch.ice_exception validates

Neither  nor  throw any exceptions to the caller.ice_response ice_exception

Dispatch method for AMD

The dispatch method, whose name has the suffix , has a  return type. The first parameter is a reference to an instance of the_async void
callback interface described above. The remaining parameters comprise the  parameters of the operation, in the order of declaration.in

For example, suppose we have defined the following operation:

Slice

interface I {
  ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation  is shown below:foo

Java

public interface AMD_I_foo {
    void ice_response(int __ret, long l);
    void ice_exception(java.lang.Exception ex);
}

The dispatch method for asynchronous invocation of operation  is generated as follows:foo

Java

void foo_async(AMD_I_foo __cb, short s);

AMD Exceptions in Java

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).
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These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are  and local exceptions may undergo validated
.translation

AMD Example in Java

To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the  operation returns a new grid of the same size with theinterpolate
values interpolated in some interesting (but unspecified) way.

Our servant class derives from  and supplies a definition for the  method that creates a  toDemo._ModelDisp interpolate_async Job
hold the callback object and arguments, and adds the  to a queue. The method is synchronized to guard access to the queue:Job

Java

public final class ModelI extends Demo._ModelDisp {
    synchronized public void interpolate_async(
        Demo.AMD_Model_interpolate cb,
        float[][] data,
        float factor,
        Ice.Current current)
            throws RangeError
    {
        _jobs.add(new Job(cb, data, factor));
    }

    java.util.LinkedList<Job> _jobs = new java.util.LinkedList<Job>();
}

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next  from the queue and invokes , which uses  (not shown) toJob execute interpolateGrid
perform the computational work:
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Java

class Job {
    Job(Demo.AMD_Model_interpolate cb,
        float[][] grid,
        float factor)
    {
        _cb = cb;
        _grid = grid;
        _factor = factor;
    }

    void execute()
    {
        if (!interpolateGrid()) {
            _cb.ice_exception(new Demo.RangeError());
            return;
        }
        _cb.ice_response(_grid);
    }

    private boolean interpolateGrid() {
        // ...
    }

    private Demo.AMD_Model_interpolate _cb;
    private float[][] _grid;
    private float _factor;
}

If  returns , then  is invoked to indicate that a range error has occurred. The  statementinterpolateGrid false ice_exception return
following the call to  is necessary because  does not throw an exception; it only marshals the exceptionice_exception ice_exception
argument and sends it to the client.

If interpolation was successful,  is called to send the modified grid back to the client.ice_response

See Also

User Exceptions
Run-Time Exceptions
Asynchronous Method Invocation (AMI) in Java
The Ice Threading Model
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Example of a File System Server in Java

This page presents the source code for a Java server that implements our  and communicates with the  we wrote earlier.file system client
The code is fully functional, apart from the required interlocking for threads.

Note that the server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be
present just the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away
from application code so that you can concentrate on developing application logic instead of networking infrastructure.

The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the  data member while another thread updates it. Obviously, if that_lines
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the  and read write
operations thread-safe. We discuss thread safety in .The Ice Threading Model

On this page:

Implementing a File System Server in Java
Server Main Program in Java

 Servant Class in JavaFileI
 Servant Class in JavaDirectoryI

 Data MembersDirectoryI
 ConstructorDirectoryI
 MethodsDirectoryI

Implementing a File System Server in Java

We have now seen enough of the server-side Java mapping to implement a server for our . (You may find it useful to review thesefile system
Slice definitions before studying the source code.)

Our server is composed of three source files:

Server.java
This file contains the server main program.

Filesystem/DirectoryI.java
This file contains the implementation for the  servants.Directory

Filesystem/FileI.java
This file contains the implementation for the  servants.File

Server Main Program in Java

Our server main program, in the file , uses the  class. The  method installs a shutdown hook, createsServer.java Ice.Application run
an object adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a
main program as follows:

Java

import Filesystem.*;

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        //
        // Terminate cleanly on receipt of a signal
        //
        shutdownOnInterrupt();

        // Create an object adapter (stored in the _adapter
        // static members)
        //
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        Ice.ObjectAdapter adapter = communicator().createObjectAdapterWithEndpoints(
            "SimpleFilesystem", "default -p 10000");
        DirectoryI._adapter = adapter;
        FileI._adapter = adapter;

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file "README" in the root directory
        //
        File file = new FileI("README", root);
        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // Create a directory "Coleridge" in the root directory
        //
        DirectoryI coleridge = new DirectoryI("Coleridge", root);

        // Create a file "Kubla_Khan" in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new String[]{ "In Xanadu did Kubla Khan",
                             "A stately pleasure-dome decree:",
                             "Where Alph, the sacred river, ran",
                             "Through caverns measureless to man",
                             "Down to a sunless sea." };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // All objects are created, allow client requests now
        //
        adapter.activate();

        // Wait until we are done
        //
        communicator().waitForShutdown();

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server();
        System.exit(app.main("Server", args));
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    }
}

The code imports the contents of the  package. This avoids having to continuously use fully-qualified identifiers with a Filesystem
 prefix.Filesystem.

The next part of the source code is the definition of the  class, which derives from  and contains the mainServer Ice.Application
application logic in its  method. Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards therun
end, activate the object adapter and call .waitForShutdown

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
structure shown below:

A small file system.

As we will see shortly, the servants for our directories and files are of type  and , respectively. The constructor for eitherDirectoryI FileI
type of servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory.
(For the root directory, which has no parent, we pass a null parent.) Thus, the statement

Java

DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name  and no parent directory."/"

Here is the code that establishes the structure in the above illustration:
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Java

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file "README" in the root directory
        //
        File file = new FileI("README", root);
        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // Create a directory "Coleridge" in the root directory
        //
        DirectoryI coleridge = new DirectoryI("Coleridge", root);

        // Create a file "Kubla_Khan" in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new String[]{ "In Xanadu did Kubla Khan",
                             "A stately pleasure-dome decree:",
                             "Where Alph, the sacred river, ran",
                             "Through caverns measureless to man",
                             "Down to a sunless sea." };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

We first create the root directory and a file  within the root directory. (Note that we pass a reference to the root directory as theREADME
parent when we create the new node of type .)FileI

The next step is to fill the file with text:

Java

        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

Recall that  by default map to Java arrays. The Slice type  is simply an array of strings; we add a line of text to our Slice sequences Lines
 file by initializing the  array to contain one element.README text

Finally, we call the Slice  operation on our  servant by writing:write FileI

Java

            file.write(text, null);
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This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to
the servant (of type ) and  via a proxy (of type ), the Ice run time does not know that this call is even taking place — suchFileI not FilePrx
a direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Java function call.

In similar fashion, the remainder of the code creates a subdirectory called  and, within that directory, a file called  toColeridge Kubla_Khan
complete the structure in the illustration listed above.

FileI Servant Class in Java

Our  servant class has the following basic structure:FileI

Java

public class FileI extends _FileDisp
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private String _name;
    private DirectoryI _parent;
    private String[] _lines;
}

The class has a number of data members:

_adapter
This static member stores a reference to the single object adapter we use in our server.

_name
This member stores the name of the file incarnated by the servant.

_parent
This member stores the reference to the servant for the file's parent directory.

_lines
This member holds the contents of the file.

The  and  data members are initialized by the constructor:_name _parent

Java

public
FileI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;

    assert(_parent != null);

    // Create an identity
    //
    Ice.Identity myID = new Ice.Identity();
    myID.name = java.util.UUID.randomUUID().toString();

    // Add the identity to the object adapter
    //
    _adapter.add(this, myID);

    // Create a proxy for the new node and
    // add it as a child to the parent
    //
    NodePrx thisNode = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
    _parent.addChild(thisNode);
}
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After initializing the  and  members, the code verifies that the reference to the parent is not null because every file must have_name _parent
a parent directory. The constructor then generates an identity for the file by calling  and adds itself to thejava.util.UUID.randomUUID
servant map by calling . Finally, the constructor creates a proxy for this file and calls the  method on itsObjectAdapter.add addChild
parent directory.  is a helper function that a child directory or file calls to add itself to the list of descendant nodes of its parentaddChild
directory. We will see the implementation of this function in . MethodsDirectoryI

The remaining methods of the  class implement the Slice operations we defined in the  and  Slice interfaces:FileI Node File

Java

// Slice Node::name() operation

public String
name(Ice.Current current)
{
    return _name;
}

// Slice File::read() operation

public String[]
read(Ice.Current current)
{
    return _lines;
}

// Slice File::write() operation

public void
write(String[] text, Ice.Current current)
    throws GenericError
{
    _lines = text;
}

The  method is inherited from the generated  interface (which is a base interface of the  class from which  isname Node _FileDisp FileI
derived). It returns the value of the  member._name

The  and  methods are inherited from the generated  interface (which is a base interface of the  class fromread write File _FileDisp
which  is derived) and return and set the  member.FileI _lines

DirectoryI Servant Class in Java

The  class has the following basic structure:DirectoryI

Java

package Filesystem;

public final class DirectoryI extends _DirectoryDisp
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private String _name;
    private DirectoryI _parent;
    private java.util.ArrayList<NodePrx> _contents = new java.util.ArrayList<NodePrx>();
}

DirectoryI Data Members

As for the  class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the FileI
 member holds a null reference.) In addition, we have a  data member that stores the list of child directories. These_parent _contents

data members are initialized by the constructor:



Ice 3.4.2 Documentation

405 Copyright © 2011, ZeroC, Inc.

Java

public
DirectoryI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;

    // Create an identity. The parent has the
    // fixed identity "RootDir"
    //
    Ice.Identity myID = new Ice.Identity();
    myID.name = _parent != null ? java.util.UUID.randomUUID().toString() : "RootDir";

    // Add the identity to the object adapter
    //
    _adapter.add(this, myID);

    // Create a proxy for the new node and add it as a
    // child to the parent
    //
    NodePrx thisNode = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
    if (_parent != null)
        _parent.addChild(thisNode);
}

DirectoryI Constructor

The constructor creates an identity for the new directory by calling . (For the root directory, we use thejava.util.UUID.randomUUID
fixed identity .) The servant adds itself to the servant map by calling  and then creates a reference to itself"RootDir" ObjectAdapter.add
and passes it to the  helper function.addChild

DirectoryI Methods

addChild adds the passed reference to the  list:_contents

Java

void
addChild(NodePrx child)
{
    _contents.add(child);
}

The remainder of the operations,  and , are equally trivial:name list
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Java

public String
name(Ice.Current current)
{
    return _name;
}

// Slice Directory::list() operation

public NodePrx[]
list(Ice.Current current)
{
    NodePrx[] result = new NodePrx[_contents.size()];
    _contents.toArray(result);
    return result;
}

Note that the  member is of type , which is convenient for the implementation of the _contents java.util.ArrayList<NodePrx>
 method. However, this requires us to convert the list into a Java array in order to return it from the  operation.addChild list

See Also

Slice for a Simple File System
Example of a File System Client in Java
The Server-Side main Method in Java
Java Mapping for Sequences
The Ice Threading Model
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The Java Utility Library

Ice for Java includes a number of utility APIs in the  package and the  class. This section summarizes the contents ofIceUtil Ice.Util
these APIs for your reference.

On this page:

The  Package in JavaIceUtil
 and  ClassesCache Store

The  Class in JavaIce.Util
Communicator Initialization Methods
Identity Conversion
Per-Process Logger Methods
Property Creation Methods
Proxy Comparison Methods
Stream Creation
Version Information

The  Package in JavaIceUtil

Cache and  ClassesStore

The  class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, withoutCache
holding a lock on the entire cache while values are being loaded from the database. If you want to create  that store theirevictors for servants
state in a database, the  class can simplify your evictor implementation considerably.Cache

You may also want to examine the implementation of the Freeze background save evictor in the source distribution; it uses
 for its implementation.IceUtil.Cache

The  class has the following interface:Cache

Java

package IceUtil;

public class Cache {
    public Cache(Store store);

    public Object pin(Object key);
    public Object pin(Object key, Object o);
    public Object unpin(Object key);

    public Object putIfAbsent(Object key, Object newObj);
    public Object getIfPinned(Object key);

    public void clear();
    public int size();
}

Internally, a  maintains a map of name-value pairs. The implementation of  takes care of maintaining the map; in particular, itCache Cache
ensures that concurrent lookups by callers are possible without blocking even if some of the callers are currently loading values from the
backing store. In turn, this is useful for evictor implementations, such as the Freeze . The  class does not limitbackground save evictor Cache
the number of entries in the cache — it is the job of the evictor implementation to limit the map size by calling  on elements of the mapunpin
that it wants to evict.

The  class works in conjunction with a  interface for which you must provide an implementation. The  interface is trivial:Cache Store Store
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Java

package IceUtil;

public interface Store {
    Object load(Object key);
}

You must implement the  method in a class that you derive from . The  implementation calls  when it needs toload Store Cache load
retrieve the value for the passed key from the backing store. If  cannot locate a record for the given key because no such record exists,load
it must return null. If  fails for some other reason, it can throw an exception derived from , which isload java.lang.RuntimeException
propagated back to the application code.

The public member functions of  behave as follows:Cache

Cache(Store s)

The constructor initializes the cache with your implementation of the  interface.Store

Object pin(Object key, Object val)

To add a key-value pair to the cache, your evictor can call . The return value is null if the key and value were added; otherwise, if thepin
map already contains an entry with the given key, the entry is unchanged and  returns the original value for that key.pin

This version of  does  call  to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add apin not load
newly-created object to the cache.

Object pin(Object key)

This version of  returns the value stored in the cache for the given key if the cache already contains an entry for that key. If no entry withpin
the given key is in the cache,  calls  to retrieve the corresponding value (if any) from the backing store.  returns the valuepin load pin
returned by , that is, the value if  could retrieve it, null if  could not retrieve it, or any exception thrown by .load load load load

Object unpin(Object key)

unpin removes the entry for the given key from the cache. If the cache contained an entry for the key, the return value is the value for that
key; otherwise, the return value is null.

Object putIfAbsent(Object key, Object val)

This function adds a key-value pair to the cache. If the cache already contains an entry for the given key,  returns the originalputIfAbsent
value for that key. If no entry with the given key is in the cache,  calls  to retrieve the corresponding entry (if any) fromputIfAbsent load
the backing store and returns the value returned by .load

If the cache does not contain an entry for the given key and  does not retrieve a value for the key, the method adds the new entry andload
returns null.

Object getIfPinned(Object key)

This function returns the value stored for the given key. If an entry for the given key is in the map, the function returns the corresponding
value; otherwise, the function returns null.  does not call .getIfPinned load

void clear()

This function removes all entries in the map.

int size()

This function returns the number of entries in the map.

The  Class in JavaIce.Util
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Communicator Initialization Methods

Ice.Util provides a number of overloaded  methods that .initialize create a communicator

Identity Conversion

Ice.Util contains two methods for  of type  to and from strings.converting object identities Ice.Identity

Per-Process Logger Methods

Ice.Util provides methods for getting and setting the .per-process logger

Property Creation Methods

Ice.Util provides a number of overloaded  methods that .createProperties create property sets

Proxy Comparison Methods

Two methods,  and , allow you to  that are storedproxyIdentityCompare proxyIdentityAndFacetCompare compare object identities
in proxies (either ignoring the facet or taking the facet into account).

Stream Creation

Two methods,  and  create  for use with dynamic invocation.createInputStream createOutputStream streams

Version Information

The  and  methods return the version of the Ice run time:stringVersion intVersion

Java

public static String stringVersion();
public static int intVersion();

The  method returns the Ice version in the form , for example, . For beta releases, thestringVersion . .<major> <minor> <patch> 3.4.2
version is , for example, .. b<major> <minor> 3.4b

The  method returns the Ice version in the form , where  is the major version number,  is the minor versionintVersion AABBCC AA BB
number, and  is patch level, for example,  for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, forCC 30402
version 3.4b, the value is .30451

See Also

Background Save Evictor
Java Mapping for Interfaces
Command-Line Parsing and Initialization
Setting Properties
Object Identity
Java Streaming Interfaces
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C-Sharp Mapping

Topics

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
.NET Compact Framework Support
The .NET Utility Library
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Client-Side Slice-to-C-Sharp Mapping

The client-side Slice-to-C# mapping defines how Slice data types are translated to C# types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C# mapping is intuitive. For example, by default, Slice sequences map to C# arrays, so there is
little you have learn in order to use Slice sequences in C#.

The C# API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For example,
if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is iterating
over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is fully
thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the C# mapping, you should need no more than the Slice definition of your application and knowledge of
the C# mapping rules. In particular, looking through the generated code in order to discern how to use the C# mapping is
likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code to
confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to write
your client-side code.

The  NamespaceIce

All of the APIs for the Ice run time are nested in the  namespace, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  namespace are generated from Slice definitions; other parts of the Ice Ice
namespace provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally
cover the contents of the  namespace throughout the remainder of the manual.Ice
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C-Sharp Mapping for Identifiers

Slice identifiers map to an identical C# identifier. For example, the Slice identifier  becomes the C# identifier . If a Slice identifierClock Clock
is the same as a C# keyword, the corresponding C# identifier is a  (an identifier prefixed with @). For example, the Sliceverbatim identifier
identifier  is mapped as .while @while

You should try to  as much as possible.avoid such identifiers

The Slice-to-C# compiler generates classes that inherit from interfaces or base classes in the .NET framework. These interfaces and classes
introduce a number of methods into derived classes. To avoid name clashes between Slice identifiers that happen to be the same as an
inherited method, such identifiers are prefixed with  and suffixed with   in the generated code. For example, the Slice identifier ice_ _ Clone
maps to the C# identifier  if it would clash with an inherited . The complete list of identifiers that are so changed is:ice_Clone_ Clone

Clone Equals Finalize

GetBaseException GetHashCode GetObjectData

GetType MemberwiseClone ReferenceEquals

ToString checkedCast uncheckedCast

Note that Slice identifiers in this list are translated to the corresponding C# identifier only where necessary. For example, structures do not
derive from , so if a Slice structure contains a member named , the corresponding C# structure's member is named ICloneable Clone

 as well. On the other hand, classes do derive from , so, if a Slice class contains a member named , theClone ICloneable Clone
corresponding C# class's member is named .ice_Clone_

Also note that, for the purpose of prefixing, Slice identifiers are case-insensitive, that is, both  and  are escaped and map to Clone clone
 and , respectively.ice_Clone_ ice_clone_

See Also

Identifiers That Are Keywords
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C-Sharp Mapping for Modules

Slice modules map to C# namespaces with the same name as the Slice module. The mapping preserves the nesting of the Slice definitions.
For example:

Slice

module M1 {
    // Definitions for M1 here...
    module M2 {
        // Definitions for M2 here...
    };
};

// ...

module M1 {     // Reopen M1
    // More definitions for M1 here...
};

This definition maps to the corresponding C# definitions:

C#

namespace M1
{
    namespace M2
    {
        // ...
    }
    // ...
}

// ...

namespace M1    // Reopen M1
{
    // ...
}

If a Slice module is reopened, the corresponding C# namespace is reopened as well.

See Also
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C-Sharp Mapping for Built-In Types

The Slice built-in types are mapped to C# types as shown below:

Slice C#

bool bool

byte byte

short short

int int

long long

float float

double double

string string

Mapping of Slice built-in types to C#.

See Also
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C-Sharp Mapping for Enumerations

A Slice  maps to the corresponding enumeration in C#. For example:enumeration

Slice

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C# definition is identical:

C#

enum Fruit { Apple, Pear, Orange };

See Also
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C-Sharp Mapping for Structures

Ice for .NET supports two different mappings for Slice . By default, Slice structures map to C# structures if they (recursively)structures
contain only value types. If a Slice structure (recursively) contains a string, proxy, class, sequence, or dictionary member, it maps to a C#
class. A  allows you to force the mapping to a C# class for Slice structures that contain only value types.metadata directive

In addition, for either mapping, you can control whether Slice data members are mapped to fields or to .properties

On this page:

Structure Mapping for Structures in C#
Class Mapping for Structures in C#
Property Mapping for Structures in C#

Structure Mapping for Structures in C#

Consider the following structure:

Slice

struct Point {
    double x;
    double y;
};

This structure consists of only value types and so, by default, maps to a C# partial structure:

C#

public partial struct Point
{
    public double x;
    public double y;

    public Point(double x, double y);

    public override int GetHashCode();
    public override bool Equals(object other);

    public static bool operator==(Point lhs, Point rhs);
    public static bool operator!=(Point lhs, Point rhs);
}

For each data member in the Slice definition, the C# structure contains a corresponding public data member of the same name.

The generated constructor accepts one argument for each structure member, in the order in which they are defined in the Slice definition.
This allows you to construct and initialize a structure in a single statement:

C#

Point p = new Point(5.1, 7.8);

Note that C# does not allow a value type to declare a default constructor or to assign default values to data members.

The structure overrides the  and  methods to allow you to use it as the key type of a dictionary. (Note that the staticGetHashCode Equals
two-argument version of  is inherited from .) Two structures are equal if (recursively) all their data members areEquals System.Object
equal. Otherwise, they are not equal. For structures that contain reference types,  performs a deep comparison; that is, referenceEquals
types are compared for value equality, not reference equality.

Class Mapping for Structures in C#
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The mapping for Slice structures to C# structures provides value semantics. Usually, this is appropriate, but there are situations where you
may want to change this:

If you use structures as members of a collection, each access to an element of the collection incurs the cost of boxing or unboxing.
Depending on your situation, the performance penalty may be noticeable.
On occasion, it is useful to be able to assign null to a structure, for example, to support "not there" semantics (such as when
implementing parameters that are conceptually optional).

To allow you to choose the correct performance and functionality trade-off, the Slice-to-C# compiler provides an alternative mapping of
structures to classes, for example:

Slice

["clr:class"] struct Point {
    double x;
    double y;
};

The  metadata directive instructs the Slice-to-C# compiler to generate a mapping to a C# partial class for this structure. The"clr:class"
generated code is almost identical, except that the keyword  is replaced by the keyword  and that the class has a defaultstruct class
constructor and inherits from :ICloneable

C#

public partial class Point : _System.ICloneable
{
    public double x;
    public double y;

    public Point();
    public Point(double x, double y);

    public object Clone();

    public override int GetHashCode();
    public override bool Equals(object other);

    public static bool operator==(Point lhs, Point rhs);
    public static bool operator!=(Point lhs, Point rhs);
}

Some of the generated marshaling code differs for the class mapping of structures, but this is irrelevant to application code.

The class has a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

The class also provides a second constructor that has one parameter for each data member. This allows you to construct and initialize a
class instance in a single statement:

C#

Point p = new Point(5.1, 7.8);

The  method performs a shallow memberwise copy, and the comparison methods have the usual semantics (they perform valueClone
comparison).

Note that you can influence the mapping for structures only at the point of definition of a structure, that is, for a particular structure type, you
must decide whether you want to use the structure or the class mapping. (You cannot override the structure mapping elsewhere, for
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example, for individual structure members or operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a member of reference type, it is automatically mapped to a C# class.
(The compiler behaves as if you had explicitly specified the  metadata directive for the structure.)"clr:class"

Here is our  structure once more:Employee

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The structure contains two strings, which are reference types, so the Slice-to-C# compiler generates a C# class for this structure:

C#

public partial class Employee : _System.ICloneable
{
    public long number;
    public string firstName;
    public string lastName;

    public Employee();
    public Employee(long number, string firstName, string lastName);

    public object Clone();

    public override int GetHashCode();
    public override bool Equals(object other);

    public static bool operator==(Employee lhs, Employee rhs);
    public static bool operator!=(Employee lhs, Employee rhs);
}

Property Mapping for Structures in C#

You can instruct the compiler to emit property definitions instead of public data members. For example:

Slice

["clr:property"] struct Point {
    double x;
    double y;
};

The  metadata directive causes the compiler to generate a property for each Slice data member:"clr:property"
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C#

public partial struct Point
{
    private double x_prop;
    public double x {
        get {
            return x_prop;
        }
        set {
            x_prop = value;
        }
    }

    private double y_prop;
    public double y {
        get {
            return y_prop;
        }
        set {
            y_prop = value;
        }
    }

    // Other methods here...
}

Note that the properties are non-virtual because C# structures cannot have virtual properties. However, if you apply the "clr:property"
directive to a structure that contains a member of reference type, or if you combine the  and  directives, the"clr:property" "clr:class"
generated properties are virtual. For example:

Slice

["clr:property", "clr:class"]
struct Point {
    double x;
    double y;
};

This generates the following code:
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C#

public partial class Point : System.ICloneable
{
    private double x_prop;
    public virtual double x {
        get {
            return x_prop;
        }
        set {
            x_prop = value;
        }
    }

    private double y_prop;
    public virtual double y {
        get {
            return y_prop;
        }
        set {
            y_prop = value;
        }
    }

    // Other methods here...
}

See Also

Metadata
C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
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C-Sharp Mapping for Sequences

Ice for .NET supports several different mappings for . By default, sequences are mapped to arrays. You can use sequences metadata
 to map sequences to a number of alternative types:directives

System.Collections.Generic.List
System.Collections.Generic.LinkedList
System.Collections.Generic.Queue
System.Collections.Generic.Stack
Types derived from , which is a drop-in replacement for  (thisIce.CollectionBase System.Collections.CollectionBase
mapping is provided mainly for compatibility with Ice versions prior to 3.3)
User-defined custom types that derive from .System.Collections.Generic.IEnumerable<T>

The different mappings allow you to map sequences to a container type that provides the correct performance trade-off for your application.

On this page:

Array Mapping for Sequences in C#
Mapping to Predefined Generic Containers for Sequences in C#
Mapping to Custom Types for Sequences in C#

 Mapping for Sequences in C#CollectionBase
Multi-Dimensional Sequences in C#

Array Mapping for Sequences in C#

By default, the Slice-to-C# compiler maps sequences to arrays. Interestingly, no code is generated in this case; you simply define an array of
elements to model the Slice sequence. For example:

Slice

sequence<Fruit> FruitPlatter;

Given this definition, to create a sequence containing an apple and an orange, you could write:

C#

Fruit[] fp = { Fruit.Apple, Fruit.Orange };

Or, alternatively:

C#

Fruit fp[] = new Fruit[2];
fp[0] = Fruit.Apple;
fp[1] = Fruit.Orange;

The array mapping for sequences is both simple and efficient, especially for sequences that do not need to provide insertion or deletion other
than at the end of the sequence.

Mapping to Predefined Generic Containers for Sequences in C#

With metadata directives, you can change the default mapping for sequences to use generic containers provided by .NET. For example:
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Slice

["clr:generic:List"] sequence<string> StringSeq;
["clr:generic:LinkedList"] sequence<Fruit> FruitSeq;
["clr:generic:Queue"] sequence<int> IntQueue;
["clr:generic:Stack"] sequence<double> DoubleStack;

The < >  metadata directive causes the  compiler to the map the corresponding sequence to one of the"clr:generic: type " slice2cs
containers in the  namespace. For example, the  sequence maps to System.Collections.Generic Queue

 due to its metadata directive.System.Collections.Generic.Queue<int>

The predefined containers allow you to select an appropriate space-performance trade-off, depending on how your application uses a
sequence. In addition, if a sequence contains value types, such as , the generic containers do not incur the cost of boxing and unboxingint
and so are quite efficient. (For example,  performs within a few percentage points of anSystem.Collections.Generic.List<int>
integer array for insertion and deletion at the end of the sequence, but has the advantage of providing a richer set of operations.)

Generic containers can be used for sequences of any element type except objects. For sequences of objects, only  is supportedList
because it provides the functionality required for efficient unmarshaling. Metadata that specifies any other generic type is ignored with a
warning:

Slice

class MyClass {
    // ...
};

["clr:generic:List"]
sequence<MyClass> MyClassList; // OK

["clr:generic:LinkedList"]
sequence<MyClass> MyClassLinkedList; // Ignored

In this example, sequence type  maps to the generic container , butMyClassList System.Collections.Generic.List<MyClass>
sequence type  uses the default array mapping.MyClassLinkedList

Mapping to Custom Types for Sequences in C#

If the array mapping and the predefined containers are unsuitable for your application (for example, because you may need a priority queue,
which does not come with .NET), you can implement your own custom containers and direct  to map sequences to these customslice2cs
containers. For example:

Slice

["clr:generic:MyTypes.PriorityQueue"] sequence<int> Queue;

This metadata directive causes the Slice  sequence to be mapped to the type . You must specify theQueue MyTypes.PriorityQueue
fully-qualified name of your custom type following the  prefix. This is because the generated code prepends a clr:generic: global::
qualifier to the type name you provide; for the preceding example, the generated code refers to your custom type as 

.global::MyTypes.PriorityQueue<int>

Your custom type can have whatever interface you deem appropriate, but it must meet the following requirements:

The custom type must derive from .System.Collections.Generic.IEnumerable<T>
The custom type must provide a readable  property that returns the number of elements in the collection.Count
The custom type must provide an  method that appends an element to the end of the collection.Add
If (and only if) the Slice sequence contains elements that are Slice classes, the custom type must provide an indexer that sets the
value of an element at a specific index. (Indexes, as usual, start at zero.)

As an example, here is a minimal class (omitting implementation) that meets these criteria:
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C#

public class PriorityQueue<T> : IEnumerable<T>
{
    public IEnumerator<T> GetEnumerator();

    public int Count
        get;

    public void Add(T elmt);

    public T this[int index] // Needed for class elements only.
        set;

    // Other methods and data members here...
}

CollectionBase Mapping for Sequences in C#

The  mapping is provided mainly for compatibility with Ice versions prior to 3.3. Internally,  isCollectionBase CollectionBase
implemented using , so it offers the same performance trade-offs as . (For valueSystem.Collections.Generic.List<T> List<T>
types,  is considerably faster than , however.)Ice.CollectionBase System.Collections.CollectionBase

Ice.CollectionBase is not as type-safe as  because, in order to remain source-code compatible with List<T>
, it provides methods that accept elements of type . This means that, if you pass anSystem.Collections.CollectionBase object

element of the wrong type, the problem will be diagnosed only at run time, instead of at compile time. For this reason, we suggest that you
do not use the  mapping for new code.CollectionBase

To enable the  mapping, you must use the  metadata directive:CollectionBase "clr:collection"

Slice

["clr:collection"] sequence<Fruit> FruitPlatter;

With this directive,  generates a type that derives from :slice2cs Ice.CollectionBase

C#

public class FruitPlatter : Ice.CollectionBase<M.Fruit>, System.ICloneable
{
    public FruitPlatter();
    public FruitPlatter(int capacity);
    public FruitPlatter(Fruit[] a);
    public FruitPlatter(System.Collections.Generic.IEnumerable<Fruit> l);

    public static implicit operator _System.Collections.Generic.List<Fruit>(FruitPlatter s);

    public virtual FruitPlatter GetRange(int index, int count);

    public static FruitPlatter Repeat(Fruit value, int count);

    public object Clone();
}

The generated  class provides the following methods:FruitPlatter

FruitPlatter();
FruitPlatter(int capacity);
FruitPlatter(Fruit[] a);
FruitPlatter(IEnumerable<Fruit> l);
Apart from calling the default constructor, you can also specify an initial capacity for the sequence or, using the array constructor,
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initialize a sequence from an array. In addition, you can initialize the class to contain the same elements as any enumerable
collection with the same element type.

FruitPlatter GetRange(int index, int count);
This method returns a new sequence with  elements that are copied from the source sequence beginning at .count index

FruitPlatter Repeat(Fruit value, int count);
This method returns a sequence with  elements that are initialized to .count value

object Clone()
The  method returns a shallow copy of the source sequence.Clone

static implicit operator List<Fruit> (FruitPlatter s);
This operator performs an implicit conversion of a  instance to a , so you can pass a FruitPlatter List<Fruit> FruitPlatter
sequence where a , , or  is expected.List<Fruit> IEnumerable<Fruit> System.Collections.IEnumerable

The remaining methods are provided by the generic  base class. This class provides the following methods:Ice.CollectionBase

CollectionBase();
CollectionBase(int capacity);
CollectionBase(T[] a);
CollectionBase(IEnumerable<T> l);
The constructors initialize the sequence as for the concrete derived class.

int Count { get; }  
This property returns the number of elements of the sequence.

int Capacity { get; set; } 
This property controls the capacity of the sequence. Its semantics are as for the corresponding property of .List<T>

virtual void TrimToSize();
This method sets the capacity of the sequence to the actual number of elements.

int Add(object o);
int Add(T value);
These methods append  at the end of the sequence. They return the index at which the element is inserted (which always isvalue
the value of  prior the call to .)Count Add

void Insert(int index, object o);
void Insert(int index, T value);
These methods insert an element at the specified index.

virtual void InsertRange(int index, CollectionBase<T> c);
virtual void InsertRange(int index, T[] c);
These methods insert a range of values into the sequence starting at the given index.

virtual void SetRange(int index, CollectionBase<T> c);
virtual void SetRange(int index, T[] c);
These methods copy the provided sequence over a range of elements in the target sequence, starting at the provided index, with
semantics as for .System.Collections.ArrayList

void RemoveAt(int index);
This method deletes the element at the specified index.

void Remove(object o);
void Remove(T value);
These methods search for the specified element and, if present, delete that element. If the element is not in the sequence, the
methods do nothing.

virtual void RemoveRange(int index, int count);
This method removes  elements, starting at the given index.count

void Clear();
This method deletes all elements of the sequence.

bool Contains(object o);
bool Contains(T value);
These methods return true if the sequence contains ; otherwise, they return false.value

int IndexOf(object o);
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int IndexOf(T value);
These methods return the index of the specified element. If the element is not in the sequence, the return value is .-1

virtual int LastIndexOf(T value);
virtual int LastIndexOf(T value, int startIndex);
virtual int LastIndexOf(T value, int startIndex, int count);
These methods search for the provided element and return its last occurrence in the sequence, as for 

.System.Collections.ArrayList.LastIndexOf

object this[int index] { get; set; } 
T this[int index] { get; set; } 
The indexers allow you to read and write elements using array subscript notation.

IEnumerator<T> GetEnumerator();
This method returns an enumerator that you can use to iterate over the collection.

static implicit operator List<T> (CollectionBase<T> s);
As for the derived class, this operator permits implicit conversion to a .List<T>

void CopyTo(T[] a);
void CopyTo(T[] a, int i);
void CopyTo(int i, T[] a, int ai, int c);
void CopyTo(System.Array a, int i);
These methods copy the contents of a sequence into an array. The semantics are the same as for the corresponding methods of 

.List<T>

T[] ToArray();
The  method returns the contents of the sequence as an array.ToArray

void AddRange(CollectionBase<T> s);
void AddRange(T[] a);
The  methods append the contents of a sequence or an array to the current sequence, respectively.AddRange

virtual void Sort();
virtual void Sort(System.Collections.IComparer comparer);
virtual void Sort(int index, int count, System.Collections.IComparer comparer);
These methods sort the sequence.

virtual void Reverse();
virtual void Reverse(int index, int count);
These methods reverse the order of elements of the sequence.

virtual int BinarySearch(T value);
virtual int BinarySearch(T value, System.Collections.IComparer comparer);
virtual int BinarySearch(int index, int count, T value, System.Collections.IComparer comparer);
The methods perform a binary search on the sequence, with semantics as for .System.Collections.ArrayList

static FruitPlatter Repeat(Fruit value, int count);
This method returns a sequence with  elements that are initialized to .count value

Note that for all methods that return sequences, these methods perform a shallow copy, that is, if you have a sequence whose elements
have reference type, what is copied are the references, not the objects denoted by those references.

Ice.CollectionBase also provides the usual  and  methods, as well as the comparison operators for equality andGetHashCode Equals
inequality. (Two sequences are equal if they have the same number of elements and all elements in corresponding positions are equal, as
determined by the  method of the elements.)Equals

Ice.CollectionBase also implements the inherited , , and  properties (which return false),IsFixedSize IsReadOnly IsSynchronized
and the inherited  property (which returns ).SyncRoot this

Creating a sequence containing an apple and an orange is simply a matter of writing:

C#

FruitPlatter fp = new FruitPlatter();
fp.Add(Fruit.Apple);
fp.Add(Fruit.Orange);
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Multi-Dimensional Sequences in C#

Slice permits you to define sequences of sequences, for example:

Slice

enum Fruit { Apple, Orange, Pear };
["clr:generic:List"] sequence<Fruit> FruitPlatter;
["clr:generic:LinkedList"] sequence<FruitPlatter> Cornucopia;

If we use these definitions as shown, the type of FruitPlatter in the generated code is:

C#

System.Collections.Generic.LinkedList<System.Collections.Generic.List<Fruit>>

Here the outer sequence contains elements of type , as you would expect.List<Fruit>

Now let us modify the definition to change the mapping of  to an array:FruitPlatter

Slice

enum Fruit { Apple, Orange, Pear };
sequence<Fruit> FruitPlatter;
["clr:LinkedList"] sequence<FruitPlatter> Cornucopia;

With this definition, the type of  becomes:Cornucopia

C#

System.Collections.Generic.LinkedList<Fruit[]>

The generated code now no longer mentions the type  anywhere and deals with the outer sequence elements as an array of FruitPlatter
 instead.Fruit

See Also

Metadata
C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
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C-Sharp Mapping for Structures
C-Sharp Mapping for Dictionaries
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C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions
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C-Sharp Mapping for Dictionaries

Ice for .NET supports three different mappings for dictionaries. By default, dictionaries are mapped to 
. You can use  to map dictionaries to two other types:System.Collections.Generic.Dictionary<T> metadata directives

System.Collections.Generic.SortedDictionary
Types derived from , which is a drop-in replacement for  (thisIce.DictionaryBase System.Collections.DictionaryBase
mapping is provided mainly for compatibility with Ice versions prior to 3.3)

On this page:

Mapping to Predefined Containers for Dictionaries in C#
 mapping for Dictionaries in C#DictionaryBase

Mapping to Predefined Containers for Dictionaries in C#

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

By default, the Slice-to-C# compiler maps the dictionary to the following type:

C#

System.Collections.Generic.Dictionary<long, Employee>

You can use the  metadata directive to change the mapping to a sorted dictionary:"clr:generic:SortedDictionary"

Slice

["clr:generic:SortedDictionary"]
dictionary<long, Employee> EmployeeMap;

With this definition, the type of the dictionary becomes:

C#

System.Collections.Generic.SortedDictionary<long, Employee>

DictionaryBase mapping for Dictionaries in C#

The  mapping is provided mainly for compatibility with Ice versions prior to 3.3. Internally,  isDictionaryBase DictionaryBase
implemented using , so it offers the same performance trade-offs as System.Collections.Generic.Dictionary<T> Dictionary<T>
. (For value types,  is considerably faster than , however.)Ice.DictionaryBase System.Collections.DictionaryBase

Ice.DictionaryBase is not as type-safe as  because, in order to remain source code compatible with Dictionary<T>
, it provides methods that accept elements of type . This means that, if you pass anSystem.Collections.DictionaryBase object

element of the wrong type, the problem will be diagnosed only at run time, instead of at compile time. For this reason, we suggest that you
do not use the  mapping for new code.DictionaryBase

To enable the  mapping, you must use the  metadata directive:DictionaryBase "clr:collection"

Slice

["clr:collection"] dictionary<long, Employee> EmployeeMap;
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With this directive,  generates a type that derives from :slice2cs Ice.CollectionBase

C#

public class EmployeeMap : Ice.DictionaryBase<long, Employee>, System.ICloneable
{
    public void AddRange(EmployeeMap m);
    public object Clone();
}

Note that the generated  class derives from , which provides a super-set of the interface of the .NET EmployeeMap Ice.DictionaryBase
 class. Apart from methods inherited from , the class provides a System.Collections.DictionaryBase DictionaryBase Clone

method and an  method that allows you to append the contents of one dictionary to another. If the target dictionary contains a keyAddRange
that is also in the source dictionary, the target dictionary's value is preserved. For example:

C#

Employee e1 = new Employee();
e1.number = 42;
e1.firstName = "Herb";
e1.lastName = "Sutter";

EmployeeMap em1 = new EmployeeMap();
em[42] = e;

Employee e2 = new Employee();
e2.number = 42;
e2.firstName = "Stan";
e2.lastName = "Lipmann";

EmployeeMap em2 = new EmployeeMap();
em[42] = e2;

// Add contents of em2 to em1
//
em1.AddRange(em2);

// Equal keys preserve the original value
//
Debug.Assert(em1[42].firstName.Equals("Herb"));

The  class provides the following methods:DictionaryBase
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C#

public abstract class DictionaryBase<KT, VT>
    : System.Collections.IDictionary
{
    public DictionaryBase();

    public int Count { get; }

    public void Add(KT key, VT value);
    public void Add(object key, object value);

    public void CopyTo(System.Array a, int index);

    public void Remove(KT key);
    public void Remove(object key);

    public void Clear();

    public System.Collections.ICollection Keys { get; }
    public System.Collections.ICollection Values { get; }

    public VT this[KT key] { get; set; }
    public object this[object key] { get; set; }

    public bool Contains(KT key);
    public bool Contains(object key);

    public override int GetHashCode();
    public override bool Equals(object other);
    public static bool operator==(DictionaryBase<KT, VT> lhs, DictionaryBase<KT, VT> rhs);
    public static bool operator!=(DictionaryBase<KT, VT> lhs, DictionaryBase<KT, VT> rhs);

    public System.Collections.IEnumerator GetEnumerator();

    public bool IsFixedSize { get; }
    public bool IsReadOnly { get; }
    public bool IsSynchronized { get; }
    public object SyncRoot { get; }
}

The methods have the same semantics as the corresponding methods in the .NET Framework. The  method returns true if twoEquals
dictionaries contain the same number of entries and, for each entry, the key and value are the same (as determined by their Equals
methods).

The  method performs a shallow copy.Clone

The class also implements the inherited , , and  properties (which return false), and the IsFixedSize IsReadOnly IsSynchronized
 property (which returns ).SyncRoot this

See Also

Metadata
C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions
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C-Sharp Collection Comparison

The utility class  allows you to compare collections for equality:Ice.CollectionComparer

C#

public class CollectionComparer {
    public static bool
    Equals(System.Collections.IDictionary d1, System.Collections.IDictionary d2);

    public static bool
    Equals(System.Collections.ICollection c1, System.Collections.ICollection c2);

    public static bool
    Equals(System.Collections.IEnumerable c1, System.Collections.IEnumerable c2);
}

Equality of the elements in a collection is determined by calling the elements'  method.Equals

Two dictionaries are equal if they contain the same number of entries with identical keys and values.

Two collections that derive from  or  are equal if they contain the same number of entries and entries compareICollection IEnumerable
equal. Note that order is significant, so corresponding entries must not only be equal but must also appear in the same position.

See Also

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions
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C-Sharp Mapping for Constants

Here are the sample  once more:constant definitions

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

C#

public abstract class AppendByDefault
{
    public const bool value = true;
}

public abstract class LowerNibble
{
    public const byte value = 15;
}

public abstract class Advice
{
    public const string value = "Don't Panic!";
}

public abstract class TheAnswer
{
    public const short value = 42;
}

public abstract class PI
{
    public const double value = 3.1416;
}

public enum Fruit { Apple, Pear, Orange }

public abstract class FavoriteFruit
{
    public const Fruit value = Fruit.Pear;
}

As you can see, each Slice constant is mapped to a class with the same name as the constant. The class contains a member named value
that holds the value of the constant.

The mapping to classes instead of to plain constants is necessary because C# does not permit constant definitions at
namespace scope.

See Also

Constants and Literals
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C-Sharp Mapping for Identifiers
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C-Sharp Mapping for Exceptions

On this page:

Inheritance Hierarchy for Exceptions in C#
C# Mapping for User Exceptions
C# Default Constructors for User Exceptions
C# Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in C#

The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for exceptions.

The ancestor of all exceptions is . Derived from that is , which provides the definitions of a number ofSystem.Exception Ice.Exception
constructors.  and  are derived from  and form the base of all run-time andIce.LocalException Ice.UserException Ice.Exception
user exceptions, respectively.

The constructors defined in  have the following signatures:Ice.Exception

C#

public abstract class Exception : System.Exception
{
    public Exception();
    public Exception(System.Exception ex);
}

Each concrete derived exception class implements these constructors. The second constructor initializes the  property of InnerException
. (Both constructors set the  property to the empty string.)System.Exception Message

C# Mapping for User Exceptions
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Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};

exception BadTimeVal extends GenericError {};

exception BadZoneName extends GenericError {};

These exception definitions map as follows:

C#

public partial class GenericError : Ice.UserException
{
    public string reason;

    public GenericError();
    public GenericError(System.Exception ex__);
    public GenericError(string reason);
    public GenericError(string reason, System.Exception ex__);

    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

public partial class BadTimeVal : M.GenericError
{
    public BadTimeVal();
    public BadTimeVal(System.Exception ex__);
    public BadTimeVal(string reason);
    public BadTimeVal(string reason, System.Exception ex__);

    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

public partial class BadZoneName : M.GenericError
{
    public BadZoneName();
    public BadZoneName(System.Exception ex__);
    public BadZoneName(string reason);
    public BadZoneName(string reason, System.Exception ex__);

    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

Each Slice exception is mapped to a C# partial class with the same name. For each exception member, the corresponding class contains a
public data member. (Obviously, because  and  do not have members, the generated classes for theseBadTimeVal BadZoneName
exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated classes, so  and  inherit from BadTimeVal BadZoneName
.GenericError

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically byIce.UserException
installing a handler for . Similarly, you can catch all Ice run-time exceptions with a handler for Ice.UserException Ice.LocalException
, and you can catch all Ice exceptions with a handler for .Ice.Exception

All exceptions provide the usual  and  methods, as well as the  and  comparison operators.GetHashCode Equals == !=



Ice 3.4.2 Documentation

435 Copyright © 2011, ZeroC, Inc.

The generated exception classes also contain other member functions that are not shown here; these member functions are internal to the
C# mapping and are not meant to be called by application code.

C# Default Constructors for User Exceptions

Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

Exceptions also provide constructors that accept one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions,
these constructors accept one argument for each base exception member, plus one argument for each derived exception member, in
base-to-derived order.

C# Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from  (which, in turn, derives from ).Ice.LocalException Ice.Exception

Ice.LocalException implements a  method that is inherited by its derived exceptions, so you can make memberwise shallowClone
copies of exceptions.

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error
they indicate:

Ice.Exception
This is the root of the inheritance tree for both run-time and user exceptions.

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a  can be handled as , , ConnectTimeoutException ConnectTimeoutException TimeoutException
, or .LocalException Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; theLocalException
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.FacetNotExistException ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
Facets and Versioning
Object Life Cycle
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C-Sharp Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Interfaces in C#
The  Interface in C#Ice.ObjectPrx
Proxy Helpers in C#
Using Proxy Methods in C#
Object Identity and Proxy Comparison in C#

Proxy Interfaces in C#

On the client side, a Slice interface maps to a C# interface with member functions that correspond to the operations on that interface.
Consider the following simple interface:

Slice

interface Simple {
    void op();
};

The Slice compiler generates the following definition for use by the client:

C#

public interface SimplePrx : Ice.ObjectPrx
{
    void op();
    void op(System.Collections.Generic.Dictionary<string, string> __context);
}

As you can see, the compiler generates a  . In general, the generated name is . If anproxy interface SimplePrx < >Prxinterface-name
interface is nested in a module , the generated interface is part of namespace , so the fully-qualified name is .M M M.< >Prxinterface-name

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interface in a serverSimplePrx Simple
and is known as a . All the details about the server-side object, such as its address, what protocol to use, and its objectproxy instance
identity are encapsulated in that instance.

Note that  inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx Ice.ObjectPrx Ice::Object

For each operation in the interface, the proxy class has a member function of the same name. For the preceding example, we find that the
operation  has been mapped to the method . Also note that  is overloaded: the second version of  has a parameter ,op op op op __context
which is a dictionary of string pairs. This parameter is for use by the Ice run time to store information about how to deliver a request. You
normally do not need to use it. (We examine the  parameter in detail in . The parameter is also used by __context Request Contexts

.)IceStorm

Because all the  types are interfaces, you cannot instantiate an object of such a type. Instead, proxy instances are< >Prxinterface-name
always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.The proxy
references handed out by the Ice run time are always of type ; the concrete implementation of the interface is part< >Prxinterface-name
of the Ice run time and does not concern application code.

A value of  denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).null

The  Interface in C#Ice.ObjectPrx

All Ice objects have  as the ultimate ancestor type, so all proxies inherit from .  provides a number ofObject Ice.ObjectPrx ObjectPrx
methods:
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C#

namespace Ice
{
    public interface ObjectPrx
    {
        Identity ice_getIdentity();
        bool ice_isA(string id);
        string ice_id();
        void ice_ping();

        int GetHashCode();
        bool Equals(object r);

        // Defined in a helper class:
        //
        public static bool Equals(Ice.ObjectPrx lhs, ObjectPrx rhs);
        public static bool operator==(ObjectPrx lhs, ObjectPrx rhs);
        public static bool operator!=(ObjectPrx lhs, ObjectPrx rhs);

        // ...
    }
}

Note that the static methods are not actually defined in , but in a helper class that becomes a base class of an instantiatedIce.ObjectPrx
proxy. However, this is simply an internal detail of the C# mapping — conceptually, these methods belong with , so weIce.ObjectPrx
discuss them here.

The methods behave as follows:

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

C#

Ice.ObjectPrx o1 = ...;
Ice.ObjectPrx o2 = ...;
Ice.Identity i1 = o1.ice_getIdentity();
Ice.Identity i2 = o2.ice_getIdentity();

if (i1.Equals(i2))
    // o1 and o2 denote the same object
else
    // o1 and o2 denote different objects

ice_isA
The  method determines whether the object denoted by the proxy supports a specific interface. The argument to ice_isA ice_isA
is a . For example, to see whether a proxy of type  denotes a  object, we can write:type ID ObjectPrx Printer
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C#

Ice.ObjectPrx o = ...;
if (o != null && o.ice_isA("::Printer"))
    // o denotes a Printer object
else
    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke the  method. This avoids getting a ice_isA
 if the proxy is null.NullReferenceException

ice_ids
The  method returns an array of strings representing all of the  that the object denoted by the proxy supports.ice_ids type IDs

ice_id
The  method returns the  of the object denoted by the proxy. Note that the type returned is the type of the actualice_id type ID
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a staticBasePrx
type ID of , the return value of  might be , or it might something more derived, such as .::Base ice_id ::Base ::Derived

ice_ping
The  method provides a basic reachability test for the object. If the object can physically be contacted (that is, the objectice_ping
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as  or .ObjectNotExistException ConnectTimeoutException

Equals
This method compares two proxies for equality. Note that all aspects of proxies are compared by this operation, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does  imply that theynot
denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints,  returns equals

 even though the proxies denote the same object.false

The , , , and  methods are remote operations and therefore support an additional overloading thatice_isA ice_ids ice_id ice_ping
accepts a . Also note that there are  in , not shown here. These methods provide different ways torequest context other methods ObjectPrx
dispatch a call and also provide access to an object's .facets

Proxy Helpers in C#

For each Slice interface, apart from the proxy interface, the Slice-to-C# compiler creates a helper class: for an interface , the name ofSimple
the generated helper class is .SimplePrxHelper

You can ignore the  base class — it exists for mapping-internal purposes.ObjectPrxHelperBase

The helper class contains two methods of interest:

C#

public class SimplePrxHelper : Ice.ObjectPrxHelperBase, SimplePrx
{
    public static SimplePrx checkedCast(Ice.ObjectPrx b);
    public static SimplePrx checkedCast(
        Ice.ObjectPrx b,
        System.Collections.Generic.Dictionary<string, string> ctx);
    public static SimplePrx uncheckedCast(Ice.ObjectPrx b)

    // ...
}

Both the  and  methods implement a down-cast: if the passed proxy is a proxy for an object of type ,checkedCast uncheckedCast Simple
or a proxy for an object with a type derived from , the cast returns a non-null reference to a proxy of type ; otherwise, ifSimple SimplePrx
the passed proxy denotes an object of a different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a  to determine whether the corresponding object supports a given type, for example:checkedCast
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C#

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast(obj);
if (simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a  contacts the server. This is necessary because only the implementation of an object in the server has definitecheckedCast
knowledge of the type of an object. As a result, a  may throw a  or an checkedCast ConnectTimeoutException

. (This also explains the need for the helper class: the Ice run time must contact the server, so we cannot useObjectNotExistException
a C# down-cast.)

In contrast, an  does not contact the server and unconditionally returns a proxy of the requested type. However, if you douncheckedCast
use an , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,uncheckedCast
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is 

. However, other exceptions, such as a marshaling exception are possible as well. And, if the objectOperationNotExistException
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:

Slice

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a  object and use an  to down-cast the proxy:Process uncheckedCast

C#

Ice.ObjectPrx obj = ...;                   // Get proxy...
ProcessPrx process = ProcessPrxHelper.uncheckedCast(obj); // No worries...
process.launch(40, 60);                    // Oops...

If the proxy you received actually denotes a  object, the error will go undetected by the Ice run time: because  and  haveRocket int float
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of  will simplyRocket::launch
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

A final warning about down-casts: you must use either a  or an  to down-cast a proxy. If you use a C# cast,checkedCast uncheckedCast
the behavior is undefined.

Using Proxy Methods in C#

The base proxy class  supports a variety of methods for . Since proxies are immutable, each of theseObjectPrx customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:
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C#

Ice.ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a  or  after using a factory method. However, a regular cast is still required, as shown in the examplecheckedCast uncheckedCast
below:

C#

Ice.ObjectPrx base = communicator.stringToProxy(...);
HelloPrx hello = HelloPrxHelper.checkedCast(base);
hello = (HelloPrx)hello.ice_timeout(10000); # Type is preserved
hello.sayHello();

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C#

Proxies provide an  method that compares proxies:Equals

C#

public interface ObjectPrx {
    bool Equals(object r);
}

Note that proxy comparison with  uses  of the information in a proxy for the comparison. This means that not only the objectEquals all
identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be
the same. In other words, comparison with  (or  and ) tests for  identity,  object identity. A common mistake is to writeEquals == != proxy not
code along the following lines:

C#

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (p1.Equals(p2)) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with , we know that the two proxies denote the same object (because they are identical in all respects); however, ifEquals
two proxies compare unequal with , we know absolutely nothing: the proxies may or may not denote the same object.Equals

To compare the object identities of two proxies, you can use a helper function in the  class:Ice.Util
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C#

public sealed class Util {
    public static int proxyIdentityCompare(ObjectPrx lhs, ObjectPrx rhs);
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs, ObjectPrx rhs);
// ...

proxyIdentityCompare allows you to correctly compare proxies for identity:

C#

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

The function returns 0 if the identities are equal,  if  is less than , and 1 if  is greater than . (The comparison uses  as the-1 p1 p2 p1 p2 name
major and  as the minor sort key.)category

The  function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

The C# mapping also provides two helper classes in the  namespace that allow you to insert proxies into hashtables or orderedIce
collections, based on the identity, or the identity plus the facet name:

C#

public class ProxyIdentityKey
    : System.Collections.IHashCodeProvider,
      System.Collections.IComparer {

    public int GetHashCode(object obj);
    public int Compare(object obj1, object obj2);
}

public class ProxyIdentityFacetKey
    : System.Collections.IHashCodeProvider,
      System.Collections.IComparer {

    public int GetHashCode(object obj);
    public int Compare(object obj1, object obj2);
}

Note these classes derive from  and , so they can be used for both hash tables and ordered collections.IHashCodeProvider IComparer

See Also

Interfaces, Operations, and Exceptions
Proxies
C-Sharp Mapping for Operations
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm
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C-Sharp Mapping for Operations

On this page:

Basic C# Mapping for Operations
Normal and  Operations in C#idempotent
Passing Parameters in C#

In-Parameters in C#
Out-Parameters in C#
Null Parameters in C#

Exception Handling in C#
Exceptions and Out-Parameters in C#

Basic C# Mapping for Operations

As we saw in the , for each  on an interface, the proxy class contains a corresponding member functionC# mapping for interfaces operation
with the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

C#

NodePrx node = ...;             // Initialize proxy
string name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are returned by reference for complex types, and by value for
simple types (such as  or ).int double

Normal and  Operations in C#idempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent
 has no effect. For example, consider the following interface:idempotent

Slice

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy interface for this is:

C#

public interface ExamplePrx : Ice.ObjectPrx
{
    string op1();
    string op2();
}

Because  affects an aspect of call dispatch, not interface, it makes sense for the two methods to be mapped the same.idempotent
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Passing Parameters in C#

In-Parameters in C#

The parameter passing rules for the C# mapping are very simple: parameters are passed either by value (for value types) or by reference
(for reference types). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of a parameter will not
be changed by the invocation (with some caveats — see ).Location Transparency

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for these definitions:

C#

public interface ClientToServerPrx : Ice.ObjectPrx
{
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, string[] ss, Dictionary<long, string[]> st);
    void op3(ClientToServerPrx proxy);
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer
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C#

ClientToServerPrx p = ...;              // Get proxy...

p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14f;
bool b = true;
string s = "Hello world!";
p.op1(i, f, b, s);                      // Pass simple variables

NumberAndString ns = new NumberAndString();
ns.x = 42;
ns.str = "The Answer";
string[] ss = new string[1];
ss[0] = "Hello world!";
Dictionary<long, string[]> st = new Dictionary<long, string[]>();
st[0] = ss;
p.op2(ns, ss, st);                      // Pass complex variables

p.op3(p);                               // Pass proxy

Out-Parameters in C#

Slice  parameters simply map to C#  parameters.out out

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the  direction:out

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns, out StringSeq ss, out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for these definitions:

C#

public interface ServerToClientPrx : Ice.ObjectPrx
{
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out string[] ss,
             out Dictionary<long, string[]> st);
    void op3(out ServerToClientPrx proxy);
}

Given a proxy to a  interface, the client code can pass parameters as in the following example:ServerToClient
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C#

ClientToServerPrx p = ...;              // Get proxy...

int i;
float f;
bool b;
string s;
p.op1(out i, out f, out b, out s);

NumberAndString ns;
string[] ss;
Dictionary<long, string[]> st;
p.op2(out ns, out ss, out st);

ServerToClientPrx stc;
p.op3(out stc);

System.Console.WriteLine(i);   // Show one of the values

Null Parameters in C#

Some Slice types naturally have "empty" or "not there" semantics. Specifically, C# sequences (if mapped to ),CollectionBase
dictionaries, strings, and structures (if mapped to ) all can be , but the corresponding Slice types do not have the concept of aclasses null
null value.

Slice sequences, dictionaries, and strings cannot be null, but can be empty. To make life with these types easier, whenever you
pass a C#  reference as a parameter or return value of type sequence, dictionary, or string, the Ice run time automaticallynull
sends an empty sequence, dictionary, or string to the receiver.

If you pass a C#  reference to a Slice structure that is mapped to a C#  as a parameter or return value, the Ice run timenull class
automatically sends a structure whose elements are default-initialized. This means that all proxy members are initialized to ,null
sequence and dictionary members are initialized to empty collections, strings are initialized to the empty string, and members that
have a value type are initialized to their default values.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are structures, sequences,
dictionaries, or strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example,
every string element in a large sequence before sending the sequence in order to avoid . Note that using nullNullReferenceException
parameters in this way does  create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned,not
these do not exist (only  sequences, dictionaries, and strings do). For example, whether you send a string as  or as an emptyempty null
string makes no difference to the receiver: either way, the receiver sees an empty string.

Exception Handling in C#

Any operation invocation may throw a  and, if the operation has an exception specification, may also throw run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as C# exceptions, so you can simply enclose one or more operation invocations in a -  block:try catch
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C#

ChildPrx child = ...;   // Get child proxy...

try
{
    child.askToCleanUp();
}
catch (Tantrum t)
{
    System.Console.Write("The child says: ");
    System.Console.WriteLine(t.reason);
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be handled by exception handlers higher in the hierarchy. For example:

C#

public class Client
{
    private static void run() {
        ChildPrx child = ...;       // Get child proxy...
        try
        {
            child.askToCleanUp();
        }
        catch (Tantrum t)
        {
            System.Console.Write("The child says: ");
            System.Console.WriteLine(t.reason);
            child.scold();          // Recover from error...
        }
        child.praise();             // Give positive feedback...
    }

    static void Main(string[] args)
    {
        try
        {
            // ...
            run();
            // ...
        }
        catch (Ice.Exception e)
        {
            System.Console.WriteLine(e);
        }
    }
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our .)first simple application

Note that the  method of exceptions prints the name of the exception, any inner exceptions, and the stack trace. Of course, youToString
can be more selective in the way exceptions are displayed. For example,  returns the (unscoped) name of ane.GetType().Name
exception.

Exceptions and Out-Parameters in C#

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may still
have its original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters,
Ice provides the weak exception guarantee  but does not provide the strong exception guarantee.[1]
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1.  

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.

See Also

Operations
C-Sharp Mapping for Exceptions
C-Sharp Mapping for Interfaces
Location Transparency
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Basic C# Mapping for Classes

A Slice  is mapped to a C# class with the same name. By default, the generated class contains a public data member for each Sliceclass
data member (just as for structures and exceptions), and a member function for each operation. Alternatively, you can use the property

 by specifying the  metadata directive, which generates classes with virtual properties instead of data members.mapping "clr:property"

Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:
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1.  

2.  

3.  
4.  
5.  

C#

public interface TimeOfDayOperations_
{
    string format(Ice.Current __current);
}

public interface TimeOfDayOperationsNC_
{
    string format();
}

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    public short hour;
    public short minute;
    public short second;

    public TimeOfDay()
    {
    }

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    public string format()
    {
        return format(new Ice.Current());
    }

    public abstract string format(Ice.Current __current);
}

There are a number of things to note about the generated code:

The compiler generates "operations interfaces" called  and _. TheseTimeOfDayOperations_ TimeOfDayOperationsNC
interfaces contain a method for each Slice operation of the class.
The generated class  inherits (indirectly) from . This means that all classes implicitly inherit from TimeOfDay Ice.Object

, which is the ultimate ancestor of all classes. Note that  is  the same as . In otherIce.Object Ice.Object not Ice.ObjectPrx
words, you  pass a class where a proxy is expected and vice versa. cannot
If a class has only data members, but no operations, the compiler generates a non-abstract class.
The generated class contains a public member for each Slice data member.
The generated class inherits member functions for each Slice operation from the operations interfaces.
The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

Operations Interfaces in C#

The methods in the  interface have an additional trailing parameter of type , whereas theOperations_<interface-name> Ice.Current
methods in the  interface lack this additional trailing parameter. The methods without the OperationsNC_<interface-name> Current
parameter simply forward to the methods with a  parameter, supplying a default . For now, you can ignore this parameterCurrent Current
and pretend it does not exist.

If a class has only data members, but no operations, the compiler omits generating the  and Operations_<interface-name>
 interfaces.OperationsNC_<interface-name>
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Inheritance from  in C#Ice.Object

Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the illustration below, classesIce.Object
inherit from  instead of  (which is at the base of the inheritance hierarchy for proxies). As a result, you cannotIce.Object Ice.ObjectPrx
pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from  and .Ice.ObjectPrx Ice.Object

Ice.Object contains a number of member functions:

C#

namespace Ice
{
    public interface Object : System.ICloneable
    {
        bool ice_isA(string s);
        bool ice_isA(string s, Current current);

        void ice_ping();
        void ice_ping(Current current);

        string[] ice_ids();
        string[] ice_ids(Current current);

        string ice_id();
        string ice_id(Current current);

        void ice_preMarshal();
        void ice_postUnmarshal();

        DispatchStatus ice_dispatch(Request request, DispatchInterceptorAsyncCallback cb);
    }
}

The member functions of  behave as follows:Ice.Object

ice_isA
This function returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the class.ice_ping

ice_ids
This function returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time  for a class. If you call  through a reference to a base instance, the returnedtype ID ice_id
type id is the actual (possibly more derived) type ID of the instance.

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.
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ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

Note that the generated class does  override  and . This means that classes are compared using shallow referencenot GetHashCode Equals
equality, not value equality (as is used for structures).

The class also provides a  method (whose implementation is inherited from ); the  method returns a shallowClone Ice.ObjectImpl Clone
memberwise copy.

Class Data Members in C#

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of thisprotected
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the  class shown below has the  metadata directive appliedTimeOfDay protected
to each of its data members:

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

C#

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    protected short hour;
    protected short minute;
    protected short second;

    public TimeOfDay()
    {
    }

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay
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Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

If a protected data member also has the  directive, the generated property has protected visibility. Consider the clr:property TimeOfDay
class once again:

Slice

["protected", "clr:property"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The effects of combining these two metadata directives are shown in the generated code below:

C#

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    private short hour_prop;
    protected short hour {
        get {
            return hour_prop;
        }
        set {
            hour_prop = value;
        }
    }

    // ...
}

Refer to the  for more information on the property mapping for data members.structure mapping

Class Operations in C#

Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such
as the  operation of our  class), you must provide an implementation of the operation in a class that is derived from theformat TimeOfDay
generated class. For example:
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C#

public class TimeOfDayI : TimeOfDay
{
    public string format(Ice.Current current)
    {
        return   hour.ToString("D2") + ":"
               + minute.ToString("D2") + ":"
               + second.ToString("D2");
    }
}

Class Factories in C#

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However, get TimeOfDay
 is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a TimeOfDay

 class that implements the abstract  operation of the  abstract class. In other words, we must provide theTimeOfDayI format TimeOfDay
Ice run time with a factory that knows that the  abstract class has a  concrete implementation. The TimeOfDay TimeOfDayI

 interface provides us with the necessary operations:Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory
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C#

class ObjectFactory : Ice.ObjectFactory
{
    public Ice.Object create(string type)
    {
        if (type.Equals(M.TimeOfDay.ice_staticId()))
            return new TimeOfDayI();
        System.Diagnostics.Debug.Assert(false);
        return null;
    }

    public void destroy()
    {
        // Nothing to do
    }
}

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
method is called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

C#

Ice.Communicator ic = ...;
ic.addObjectFactory(new ObjectFactory(), M.TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the"::M::TimeOfDay" create
registered  instance, which returns a  instance to the Ice run time.ObjectFactory TimeOfDayI

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, calls to  can be made concurrently.create destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in C#

Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a  because the Ice run time does not accept null as a legal value for these types.class-mapped structure

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your . The default constructor initializes each of these data members to its declared value.Slice definition

Classes also provide a constructor that accepts one argument for each member of the class. This allows you to create and initialize a class
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in a single statement, for example:

C#

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument for every member of the class, including inherited members. For example,
consider the the definition from  once more:Class Inheritance

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

The constructors for the generated classes are as follows:

C#

public partial class TimeOfDay : Ice.ObjectImpl
{
    public TimeOfDay() {}

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

public partial class DateTime : TimeOfDay
{
    public DateTime() : base() {}

    public DateTime(short hour,
                    short minute,
                    short second,
                    short day,
                    short month,
                    short year) : base(hour, minute, second)
    {
        this.day = day;
        this.month = month;
        this.year = year;
    }

    // ...
}

If you want to instantiate and initialize a  instance, you must either use the default constructor or provide values for all of the dataDateTime
members of the instance, including data members of any base classes.
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See Also

Classes
Class Inheritance
Type IDs
C-Sharp Mapping for Structures
The Current Object
Dispatch Interceptors
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Serializable Objects in C-Sharp

In addition to serializing Slice types, applications may also need to incorporate foreign types into their Slice definitions. Ice allows you to pass
CLR  directly as operation parameters or as fields of another data type. For example:serializable objects

Slice

["clr:serializable:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;
struct MyStruct {
    int i;
    CLRObj o;
};

interface Example {
    void op(CLRObj o, MyStruct s);
};

The generated code for  contains member   of type  and a member   of type :MyStruct i int o SomeNamespace.CLRClass

C#

public partial class MyStruct : _System.ICloneable {
    public int i;
    SomeNamespace.CLRClass o;

    // ...
}

Similarly, the signature for  has parameters of type  and :op CLRClass MyStruct

C#

void op(SomeNamespace.CLRClass o, MyStruct s);

Of course, your client and server code must have an implementation of  that sets the  attribute:CLRClass Serializable

C#

namespace SomeNamespace {
    [Serializable]
    public class CLRClass {
        // ...
    }
}

You can implement this class in any way you see fit — the Ice run time does not place any other requirements on the implementation.
However, note that the CLR requires the class to reside in the same assembly for client and server.

See Also

Serializable Objects
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C-Sharp Specific Metadata Directives

The  compiler supports  directives that allow you to inject C# attribute specifications into the generated code. Theslice2cs metadata
metadata directive is . For example:cs:attribute:

Slice

["cs:attribute:System.Serializable"]
struct Point {
    double x;
    double y;
};

This results in the following code being generated for :S

C#

[System.Serializable]
public partial struct Point
{
    public double x;
    public double y;
    // ...
}

You can apply this metadata directive to any Slice construct, such as structure, operation, or parameter definitions.

You can use this directive also at global level. For example:

Slice

[["cs:attribute:assembly: AssemblyDescription(\"My assembly\")"]]

This results in the following code being inserted after any  directives and before any definitions:using

C#

[assembly: AssemblyDescription("My assembly")]

See Also

Metadata
Slice Metadata Directives
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Asynchronous Method Invocation (AMI) in C-Sharp

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the  is deprecated and will be removed in a future release.old API

On this page:

Basic Asynchronous API in C#
Asynchronous Proxy Methods in C#
Asynchronous Exception Semantics in C#

 Class in C#AsyncResult
Polling for Completion in C#
Generic Completion Callbacks in C#

Using Cookies for Generic Completion Callbacks in C#
Type-Safe Completion Callbacks in C#

Using Cookies for Type-Safe Completion Callbacks in C#
Asynchronous Oneway Invocations in C#
Flow Control in C#
Asynchronous Batch Requests in C#
Concurrency Semantics for AMI in C#
AMI Limitations in C#

Basic Asynchronous API in C#

Consider the following simple Slice definition:

Slice

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Asynchronous Proxy Methods in C#

Besides the synchronous proxy methods,  generates the following asynchronous proxy methods:slice2cs

C#

public interface EmployeesPrx : Ice.ObjectPrx {
    Ice.AsyncResult<Demo.Callback_Employees_getName>
    begin_getName(int number);

    Ice.AsyncResult<Demo.Callback_Employees_getName>
    begin_getName(int number,
                  _System.Collections.Generic.Dictionary<string, string> ctx__);

    string end_getName(Ice.AsyncResult r__);
}
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Two additional overloads of  are generated for use with .begin_getName generic completion callbacks

As you can see, the single  operation results in  and  methods. (The  method is overloadedgetName begin_getName end_getName begin_
so you can pass a .)per-invocation context

The  method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls ,end_getName end_getName
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

C#

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin_getName(99);

// Continue to do other things here...

string name = e.end_getName(r);

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . (The class derives from .) This valuebegin_getName Ice.AsyncResult System.IAsyncResult
contains the state that the Ice run time requires to keep track of the asynchronous invocation. You must pass the  that isAsyncResult
returned by the  method to the corresponding  method.begin_ end_

The  method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the  method has onebegin_ end_
out-parameter for each out-parameter of the corresponding Slice operation (plus the  parameter). For example, consider theAsyncResult
following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op

C#

Ice.AsyncResult<Demo.Callback_Employees_op> begin_op(int inp1, string inp2);

double end_op(out bool outp1, out long outp2, Ice.AsyncResult r__);

Asynchronous Exception Semantics in C#

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception wasend_
encountered during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with thebegin_
code that calls the  method (instead of being present twice, once where the  method is called, and again where the end_ begin_ end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  methodbegin_
throws . This is necessary because, once the run time is finalized, it can no longer throw anCommunicatorDestroyedException
exception from the  method.end_

The only other exception that is thrown by the  and  methods is . This exception indicates thatbegin_ end_ System.ArgumentException
you have used the API incorrectly. For example, the  method throws this exception if you call an operation that has a return value orbegin_
out-parameters on a oneway proxy. Similarly, the  method throws this exception if you use a different proxy to call the  methodend_ end_
than the proxy you used to call the  method, or if the  you pass to the  method was obtained by calling the begin_ AsyncResult end_

 method for a different operation.begin_



Ice 3.4.2 Documentation

461 Copyright © 2011, ZeroC, Inc.

AsyncResult Class in C#

The  that is returned by the  method encapsulates the state of the asynchronous invocation:AsyncResult begin_

C#

public interface AsyncResult : System.IAsyncResult
{
    Ice.Communicator getCommunicator();
    Ice.Connection getConnection();
    ObjectPrx getProxy();
    string getOperation();
    object AsyncState { get; }

    bool IsCompleted { get; }
    void waitForCompleted();

    bool isSent();
    void waitForSent();

    void throwLocalException();

    bool sentSynchronously();

    AsyncResult whenSent(Ice.AsyncCallback cb);
    AsyncResult whenSent(Ice.SentCallback cb);
    AsyncResult whenCompleted(Ice.ExceptionCallback ex);
}

public interface AsyncResult<T> : AsyncResult
{
    AsyncResult<T> whenCompleted(T cb, Ice.ExceptionCallback excb);

    new AsyncResult<T> whenCompleted(Ice.ExceptionCallback excb);
    new AsyncResult<T> whenSent(Ice.SentCallback cb);
}

The methods and properties have the following semantics:

Communicator getCommunicator()
This method returns the communicator that sent the invocation.

Connection getConnection()
This method returns the connection that was used for the invocation.

ObjectPrx getProxy()
This method returns the proxy that was used to call the  method.begin_

string getOperation()
This method returns the name of the operation.

object AsyncState { get; }  
This property stores an object that you can use to pass shared state from the  to the  method.begin_ end_

bool IsCompleted { get; }  
This property is true if, at the time it is called, the result of an invocation is available, indicating that a call to the  method will notend_
block the caller. Otherwise, if the result is not yet available, the method returns false.

void waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

bool isSent()
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If thebegin_
transport cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time itisSent
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent,  returns false.isSent
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void waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After 

 returns,  returns true if the request was successfully written to the client-side transport, or false if anwaitForSent isSent
exception occurred. In the case of a failure, you can call the corresponding  method or  to obtain theend_ throwLocalException
exception.

void throwLocalException()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, throwLocalException
does nothing.

bool sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued,  returns false (independent of whether the request is still in the queue or has since been written tosentSynchronously
the client-side transport).

AsyncResult whenSent(Ice.SentCallback cb)
AsyncResult<T> whenSent(Ice.SentCallback cb)
AsyncResult whenCompleted(Ice.ExceptionCallback ex)
AsyncResult<T> whenCompleted(T cb,Ice.ExceptionCallback excb)
AsyncResult<T> whenCompleted(Ice.ExceptionCallback excb)
These methods allow you to specify callback methods that are called by the Ice run time. The  methods set a callbackwhenSent
that triggers when an asynchronous invocation is written to the client-side transport. The  methods set a callbackwhenCompleted
that triggers when an asynchronous invocation completes (also see ).Generic Completion Callbacks in C#

Polling for Completion in C#

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider theAsyncResult
following simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit asend
file would be along the following lines:

C#

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize); // Read a chunk
    ft.send(offset, bs);       // Send the chunk
    offset += bs.Length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:
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C#

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;

LinkedList<Ice.AsyncResult> results = new LinkedList<Ice.AsyncResult>();
const int numRequests = 5;

while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice.AsyncResult r = ft.begin_send(offset, bs);
    offset += bs.Length;

    // Wait until this request has been passed to the transport.
    r.waitForSent();
    results.AddLast(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.Count > numRequests) {
        Ice.AsyncResult r = results.First;
        results.RemoveFirst();
        r.waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (results.Count > 0) {
    Ice.AsyncResult r = results.First;
    results.RemoveFirst();
    r.waitForCompleted();
}

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. InnumRequests + 1
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . InnumRequests
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time takennumRequests
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in C#

The  method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the begin_ getName
operation:
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C#

Ice.AsyncResult begin_getName(
        int number,
        Ice.AsyncCallback cb__,
        object cookie__);

Ice.AsyncResult begin_getName(
        int number,
        _System.Collections.Generic.Dictionary<string, string> ctx__,
        Ice.AsyncCallback cb__,
        object cookie__);

The second version of  lets you override the default context. (We discuss the purpose of the  parameter in the nextbegin_getName cookie
section.) Following the in-parameters, the  method accepts a parameter of type , which is a delegate for abegin_ Ice.AsyncCallback
callback method. The Ice run time invokes the callback method when an asynchronous operation completes. Your callback method must
have  return type and accept a single parameter of type , for example:void AsyncResult

C#

private class MyCallback
{
    public void finished(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            string name = e.end_getName(r);
            System.Console.WriteLine("Name is: " + name);
        } catch (Ice.Exception ex) {
            System.Console.Err.WriteLine("Exception is: " + ex);
        }
    }
}

The implementation of your callback method must call the  method. The proxy for the call is available via the  method on the end_ getProxy
 that is passed by the Ice run time. The return type of  is , so you must down-cast the proxy to itsAsyncResult getProxy Ice.ObjectPrx

correct type.

Your callback method should catch and handle any exceptions that may be thrown by the  method. If you allow an exception to escapeend_
from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by
setting the property  to zero.)Ice.Warn.AMICallback

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass a delegate for your
callback method to the  method:begin_

C#

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
Ice.AsyncCallback del = new Ice.AsyncCallback(cb.finished);

e.begin_getName(99, del, null); 

The trailing  argument specifies a cookie, which we will discuss shortly.null

You can avoid explicit instantiation of the delegate and, more tersely, write:
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C#

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb.finished, null); 

Using Cookies for Generic Completion Callbacks in C#

It is common for the  method to require access to some state that is established by the code that calls the  method. As anend_ begin_
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the  method knows which user interface element should receive thebegin_
update, and the  method needs access to that element.end_

The API allows you to pass such state by providing a cookie. A cookie is any class instance; the class can contain whatever data you want to
pass, as well as any methods you may want to add to manipulate that data.

Here is an example implementation that stores a . (We assume that this class provides whatever methods are needed by the Widget end_
method to update the display.) When you call the  method, you pass the appropriate cookie instance to inform the  method howbegin_ end_
to update the display:

C#

// Invoke the getName operation with different widget cookies.
MyCallback cb = ...;
e.begin_getName(99, cb.finished, widget1);
e.begin_getName(24, cb.finished, widget2);

The  method can retrieve the cookie from the  by reading the  property. For this example, we assume thatend_ AsyncResult AsyncState
widgets have a  method that updates the relevant UI element:writeString

C#

public void finished(Ice.AsyncResult r)
{
    EmployeesPrx e = (EmployeesPrx)r.getProxy();
    Widget widget = (Widget)r.AsyncState;
    try {
        string name = e.end_getName(r);
        widget.writeString(name);
    } catch (Ice.Exception ex) {
        handleException(ex);
    }
}

The cookie provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where
its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same cookie instance to
multiple invocations.

Type-Safe Completion Callbacks in C#

The  is not entirely type-safe:generic callback API

You must down-cast the return value of  to the correct proxy type before you can call the  method.getProxy end_
You must call the correct  method to match the operation called by the  method.end_ begin_
You must remember to catch exceptions when you call the  method; if you forget to do this, you will not know that the operationend_
failed.

slice2cs generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you supply delegates
for two callback methods:
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a success callback that is called if the operation succeeds
a failure callback that is called if the operation raises an exception

Here is a callback class for an invocation of the  operation:getName

C#

public class MyCallback
{
    public void getNameCB(string name)
    {
        System.Console.WriteLine("Name is: " + name);
    }

    public void failureCB(Ice.Exception ex)
    {
        System.Console.Err.WriteLine("Exception is: " + ex);
    }
}

The callback methods can have any name you prefer and must have  return type. The failure callback always has a single parameter ofvoid
type . The success callback parameters depend on the operation signature. If the operation has non-  return type, theIce.Exception void
first parameter of the success callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the
corresponding Slice operation, in the order of declaration.

At the calling end, you call the  method as follows:begin_

C#

MyCallback cb = new MyCallback();

e.begin_getName(99).whenCompleted(cb.getNameCB, cb.failureCB);

Note the  method on the  that is returned by the  method. This method establishes the link betweenwhenCompleted AsyncResult begin_
the  method and the callbacks that are called by the Ice run time by setting the delegates for the success and failure methods.begin_

It is legal to pass a null delegate for the success or failure methods. For the success callback, this is legal only for operations that have void
return type and no out-parameters. This is useful if you do not care when the operation completes but want to know if the call failed. If you
pass a null exception delegate, the Ice run time will ignore any exception that is raised by the invocation.

Using Cookies for Type-Safe Completion Callbacks in C#

The type-safe API does not support cookies. If you want to pass state from the  method to the  method, you must use the begin_ end_
 or, alternatively, place the state into the callback class containing the callback methods. Here is a simple implementation of ageneric API

callback class that stores a widget that can be retrieved by the  method:end_
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C#

public class MyCallback
{
    public MyCallback(Widget w)
    {
        _w = w;
    }

    private Widget _w;

    public void getNameCB(string name)
    {
        _w.writeString(name);
    }

    public void failureCB(Ice.Exception ex)
    {
        _w.writeError(ex);
    }
}

When you call the  method, you pass the appropriate callback instance to inform the  method how to update the display:begin_ end_

C#

EmployeesPrx e = ...;
Widget widget1 = ...;
Widget widget2 = ...;

MyCallback cb1 = new MyCallback(widget1);
MyCallback cb2 = new MyCallback(widget2);

// Invoke the getName operation with different widget callbacks.

e.begin_getName(99).whenCompleted(cb1.getNameCB, cb1.failureCB);
e.begin_getName(24).whenCompleted(cb2.getNameCB, cb2.failureCB);

Asynchronous Oneway Invocations in C#

You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have anyvoid
out-parameters, and does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns valuesbegin_
or raises a user exception, the  method throws a .begin_ System.ArgumentException

For the generic API, the callback method looks exactly as for a twoway invocation. However, for oneway invocations, the Ice run time does
not call the callback method unless the invocation raised an exception during the  method ("on the way out").begin_

For the type-safe API, you only specify a delegate for the failure method. For example, here is how you could call ice_ping
asynchronously:

C#

ObjectPrx p = ...;
MyCallback cb = new MyCallback();
p.begin_ice_ping().whenCompleted(cb.failureCB);

Flow Control in C#

Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can writebegin_
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the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResult.sentSynchronously
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the
request internally for later transmission in the background. (In that case,  returns false.)AsyncResult.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the , you can create an additional callback method:generic API

C#

public class MyCallback
{
    public void finished(Ice.AsyncResult r)
    {
        // ...
    }

    public void sent(Ice.AsyncResult r)
    {
        // ...
    }
}

As with any other callback method, you are free to choose any name you like. For this example, the name of the callback method is .sent
You inform the Ice run time that you want to be informed when a call has been passed to the local transport by calling :whenSent

C#

MyCallback cb = new MyCallback();

e.begin_getName(99).whenCompleted(cb.getNameCB, cb.failureCB).whenSent(cb.sent);

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the  method from the thread that callssent
the  method. On the other hand, if the run time has to queue the request, it calls the  method from a different thread once it hasbegin_ sent
written the request to the local transport. In addition, you can find out from the  that is returned by the  methodAsyncResult begin_
whether the request was sent synchronously or was queued, by calling .sentSynchronously

For the , the  method has the following signature:generic API sent

C#

void sent(Ice.AsyncResult r);

For the , the signature is:type-safe API

C#

void sent(bool sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously by calling  on the .sentSynchronously AsyncResult
For the type-safe API, the boolean  parameter provides the same information.sentSynchronously

The  methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementingsent
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C#

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
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 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests
the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued byend_ice_flushBatchRequests
that proxy.

In addition, similar methods are available on the communicator and the  object that is returned by Connection
. These methods flush batch requests sent via the same communicator and via the same connection,AsyncResult.getConnection

respectively.

Concurrency Semantics for AMI in C#

The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the  callback from thesent
thread calling the  method if the request could be sent synchronously. In the  callback, you know which thread is calling thebegin_ sent
callback by looking at the  member or parameter.sentSynchronously

AMI Limitations in C#

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use , the Ice run time raises  if the servant happens to be collocated; thecollocation optimization CollocationOptimizationException
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

Request Contexts
Batched Invocations
Location Transparency
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slice2cs Command-Line Options

The Slice-to-C# compiler, , offers the following command-line options in addition to the standard options described in slice2cs Using the
:Slice Compilers

--tie
Generate .tie classes

--impl
Generate sample implementation files. This option will not overwrite an existing file.

--impl-tie
Generate sample implementation files using . This option will not overwrite an existing file.tie classes

--checksum
Generate  for Slice definitions.checksums

--stream
Generate  for Slice types.streaming helper functions

See Also

Using the Slice Compilers
Tie Classes in C-Sharp
Streaming Interfaces
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Using Slice Checksums in C-Sharp

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compiler tochecksums slice2cs --checksum
generate checksums in each C# source file that are added to a member of the  class:Ice.SliceChecksums

C#

namespace Ice {
    public sealed class SliceChecksums {
        public readonly static SliceChecksumDict checksums;
    }
}

The  map is initialized automatically prior to first use; no action is required by the application.checksums

In order to verify a server's checksums, a client could simply compare the dictionaries using the  function. However, this is notEquals
feasible if it is possible that the server might be linked with more Slice definitions than the client. A more general solution is to iterate over the
local checksums as demonstrated below:

C#

Ice.SliceChecksumDict serverChecksums = ...
foreach(System.Collections.DictionaryEntry e in Ice.SliceChecksums.checksums) {
    string checksum = serverChecksums[e.Key];
    if (checksum == null) {
        // No match found for type id!
    } else if (!checksum.Equals(e.Value)) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
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Example of a File System Client in C-Sharp

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The C# code hardly differs from the code you would write for an ordinary C# program. This is one of the biggest advantages of using Ice:
accessing a remote object is as easy as accessing an ordinary, local C# object. This allows you to put your effort where you should, namely,
into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the  as well,server side
meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side C# mapping to develop a complete client to access our remote file system. For reference, here
is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

C#

using System;
using Filesystem;

public class Client
{
    // Recursively print the contents of directory "dir"
    // in tree fashion. For files, show the contents of
    // each file. The "depth" parameter is the current
    // nesting level (for indentation).

    static void listRecursive(DirectoryPrx dir, int depth)
    {
        string indent = new string('\t', ++depth);

        NodePrx[] contents = dir.list();

        foreach (NodePrx node in contents)
            DirectoryPrx subdir = DirectoryPrxHelper.checkedCast(node);
            FilePrx file = FilePrxHelper.uncheckedCast(node);



Ice 3.4.2 Documentation

473 Copyright © 2011, ZeroC, Inc.

            Console.WriteLine(
                indent + node.name() + (subdir != null ? " (directory):" : " (file):"));
            if (subdir != null) {
                listRecursive(subdir, depth);
            } else {
                string[] text = file.read();
                for (int j = 0; j < text.Length; ++j)
                    Console.WriteLine(indent + "\t" + text[j]);
            }
        }
    }

    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            // Create a communicator
            //
            ic = Ice.Util.initialize(ref args);

            // Create a proxy for the root directory
            //
            Ice.ObjectPrx obj = ic.stringToProxy("RootDir:default -p 10000");

            // Down-cast the proxy to a Directory proxy
            //
            DirectoryPrx rootDir = DirectoryPrxHelper.checkedCast(obj);

            // Recursively list the contents of the root directory
            //
            Console.WriteLine("Contents of root directory:");
            listRecursive(rootDir, 0);
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
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1.  

2.  

1.  

2.  

3.  

    }
}

The  class defines two methods: , which is a helper function to print the contents of the file system, and ,Client listRecursive Main
which is the main program. Let us look at  first:Main

The structure of the code in  follows what we saw in . After initializing the run time, the client creates aMain Hello World Application
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in . The function is passed a proxy to a directory to list, and an indent level. (The indent levellistRecursive
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.)  calls the  operation on the directory and iterates over the returned sequence of nodes:listRecursive list

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we  that theis-a Directory DirectoryPrx checkedCast checkedCast know
Node  File and, therefore, an  is sufficient to get a . is-a uncheckedCast FilePrx
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast

 because an  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.
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Note that, so far, our client (and server) are not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Example of a File System Server in C-Sharp
Object Life Cycle
IceGrid
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Server-Side Slice-to-C-Sharp Mapping

The mapping for Slice data types to C# is identical on the client side and server side. This means that everything in the Client-Side
 also applies to the server side. However, for the server side, there are a few additional things you need to know —Slice-to-C-Sharp Mapping

specifically, how to:

Initialize and finalize the server-side run time
Implement servants
Pass parameters and throw exceptions
Create servants and register them with the Ice run time.

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present in this chapter are very simple, they accurately reflect the basics of writing an Ice server. Of course, for
more sophisticated servers, you will be using , for example, to improve performance or scalability. However, these APIs areadditional APIs
all described in Slice, so, to use these APIs, you need not learn any C# mapping rules beyond those described here.

Topics

The Server-Side main Method in C-Sharp
Server-Side C-Sharp Mapping for Interfaces
Parameter Passing in C-Sharp
Raising Exceptions in C-Sharp
Tie Classes in C-Sharp
Object Incarnation in C-Sharp
Asynchronous Method Dispatch (AMD) in C-Sharp
Example of a File System Server in C-Sharp
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The Server-Side main Method in C-Sharp

On this page:

A Basic  Method in C#Main
The  Class in C#Ice.Application

Using  on the Client Side in C#Ice.Application
Catching Signals in C#

 and Properties in C#Ice.Application
Limitations of  in C#Ice.Application

A Basic  Method in C#Main

The main entry point to the Ice run time is represented by the local interface . As for the client side, you must initializeIce::Communicator
the Ice run time by calling  before you can do anything else in your server.  returns aIce.Util.initialize Ice.Util.initialize
reference to an instance of an :Ice.Communicator

C#

using System;

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator communicator = null;
        
        try {
            communicator = Ice.Util.initialize(ref args);
            // ...
        } catch (Exception ex) {
            Console.Error.WriteLine(ex);
            status = 1;
        }
        // ...
    }
}

Ice.Util.initialize accepts the argument vector that is passed to  by the operating system. The method scans the argumentMain
vector for any  that are relevant to the Ice run time; any such options are removed from the argument vector so, when command-line options

 returns, the only options and arguments remaining are those that concern your application. If anything goes wrongIce.Util.initialize
during initialization,  throws an exception.initialize

Before leaving your  method, you  call . The  operation is responsible for finalizing the Ice runMain must Communicator.destroy destroy
time. In particular,  waits for any operation implementations that are still executing in the server to complete. In addition, destroy destroy
ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and
memory. Never allow your  method to terminate without calling  first; doing so has undefined behavior.Main destroy

The general shape of our server-side  method is therefore as follows:Main
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C#

using System;

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator communicator = null;
        
        try {
            communicator = Ice.Util.initialize(ref args);
            // ...
        } catch (Exception ex) {
            Console.Error.WriteLine(ex);
            status = 1;
        }
        if (communicator != null) {
            try {
                communicator.destroy();
            } catch (Exception ex) {
                Console.Error.WriteLine(ex);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note that the code places the call to  into a  block and takes care to return the correct exit status to theIce.Util.initialize try
operating system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The  Class in C#Ice.Application

The preceding structure for the  method is so common that Ice offers a class, , that encapsulates all the correctMain Ice.Application
initialization and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

C#

namespace Ice
{
    public abstract class Application
    {
        public abstract int run(string[] args);

        public Application();

        public Application(SignalPolicy signalPolicy);

        public int main(string[] args);
        public int main(string[] args, string configFile);
        public int main(string[] args, InitializationData init);

        public static string appName();

        public static Communicator communicator();
    }
}

The intent of this class is that you specialize  and implement the abstract  method in your derived class. WhateverIce.Application run
code you would normally place in  goes into the  method instead. Using , our program looks as follows:Main run Ice.Application
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1.  

2.  

3.  

4.  

5.  
6.  

C#

using System;

public class Server
{
    class App : Ice.Application
    {
        public override int run(string[] args)
        {
            // Server code here...

            return 0;
        }
    }

    public static void Main(string[] args)
    {
        App app = new App();
        Environment.Exit(app.main(args));
    }
}

Note that  is overloaded: you can pass an optional file name or an  structure.Application.main InitializationData

If you pass a  to , the property settings in this file are overridden by settings in a file identified by the configuration file name main
 environment variable (if defined). Property settings supplied on the  take precedence over all other settings.ICE_CONFIG command line

The  method does the following:Application.main

It installs an exception handler for . If your code fails to handle an exception,  prints theSystem.Exception Application.main
name of the exception and a stack trace on  before returning with a non-zero return value.Console.Error
It initializes (by calling ) and finalizes (by calling ) a communicator. You can getIce.Util.initialize Communicator.destroy
access to the communicator for your server by calling the static  accessor.communicator
It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your  method therefore is free of Ice-related options and only contains options and arguments that are specificrun
to your application.
It provides the name of your application via the static  method. You can get at the application name from anywhere in yourappName
code by calling  (which is usually required for error messages).Ice.Application.appName
It installs a signal handler that properly destroys the communicator.
It installs a  if the application has not already configured one. The per-process logger uses the value of the per-process logger

 property as a prefix for its messages and sends its output to the standard error channel. An application canIce.ProgramName
also specify an .alternate logger

Using  ensures that your program properly finalizes the Ice run time, whether your server terminates normally or inIce.Application
response to an exception. We recommend that all your programs use this class; doing so makes your life easier. In addition, 

 also provides features for signal handling and configuration that you do not have to implement yourself when you useIce.Application
this class.

Using  on the Client Side in C#Ice.Application

You can use  for your clients as well: simply implement a class that derives from  and place theIce.Application Ice.Application
client code into its  method. The advantage of this approach is the same as for the server side:  ensures that therun Ice.Application
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in C#

The simple server we developed in  had no way to shut down cleanly: we simply interrupted the server from theHello World Application
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals,  encapsulates the low-level signal handling tasks, allowing you to cleanly shutIce.Application
down on receipt of a signal.
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C#

namespace Ice
{
    public abstract class Application
    {
        // ...

        public static void destroyOnInterrupt();
        public static void shutdownOnInterrupt();
        public static void ignoreInterrupt();
        public static void callbackOnInterrupt();
        public static void holdInterrupt();
        public static void releaseInterrupt();

        public static bool interrupted();

        public virtual void interruptCallback(int sig);
    }
}

The methods behave as follows:

destroyOnInterrupt
This method installs a handler that destroys the communicator if it is interrupted. This is the default behavior.

shutdownOnInterrupt
This method installs a handler that shuts down the communicator if it is interrupted.

ignoreInterrupt
This method causes signals to be ignored.

callbackOnInterrupt
This method configures  to invoke  when a signal occurs, thereby giving the subclassIce.Application interruptCallback
responsibility for handling the signal.

holdInterrupt
This method temporarily blocks signal delivery.

releaseInterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after  was called isholdInterrupt
delivered when you call .releaseInterrupt

interrupted
This method returns  if a signal caused the communicator to shut down,  otherwise. This allows us to distinguishtrue false
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass overrides this method to respond to signals. The method may be called concurrently with any other thread and must not
raise exceptions.

By default,  behaves as if  was invoked, therefore our server  method requires no changeIce.Application destroyOnInterrupt Main
to ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of Ice.Application
by passing the enumerator  to the constructor. In that case, signals retain their default behavior, that is, terminate theNoSignalHandling
process.) However, we add a diagnostic to report the occurrence, so our  method now looks like:run
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C#

using System;

public class Server
{
    class App : Ice.Application
    {
        public override int run(string[] args)
        {
            // Server code here...

            if (interrupted())
                Console.Error.WriteLine(appName() + ": terminating");

            return 0;
        }
    }

    public static void Main(string[] args)
    {
        App app = new App();
        Environment.Exit(app.main(args));
    }
}

Ice.Application and Properties in C#

Apart from the functionality shown in this section,  also takes care of initializing the Ice run time with property values. Ice.Application
 allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread poolProperties

size or port number for a server. The  method of  is overloaded; the second version allows you to specify the namemain Ice.Application
of a configuration file that will be processed during initialization.

Limitations of  in C#Ice.Application

Ice.Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use 
. Instead, you must structure your code as we saw in  (taking care to always destroy theIce.Application Hello World Application

communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
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Server-Side C-Sharp Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in C#
Servant Classes in C#

Server-Side Normal and  Operations in C#idempotent

Skeleton Classes in C#

On the client side, interfaces map to . On the server side, interfaces map to  classes. A skeleton is a class that has anproxy classes skeleton
abstract method for each operation on the corresponding interface. For example, consider our  for the  interface:Slice definition Node

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

C#

namespace Filesystem
{
    public interface NodeOperations_
    {
        string name(Ice.Current __current);
    }

    public interface NodeOperationsNC_
    {
        string name();
    }

    public interface Node : Ice.Object, NodeOperations_, NodeOperationsNC_
    {
    }

    public abstract class NodeDisp_ : Ice.ObjectImpl, Node
    {
        public string name()
        {
            return name(new Ice.Current());
        }

        public abstract string name(Ice.Current __current);

        // Mapping-internal code here...
    }
}

The important points to note here are:

As for the client side, Slice modules are mapped to C# namespaces with the same name, so the skeleton class definitions are part
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of the  namespace.Filesystem
For each Slice interface , the compiler generates C# interfaces  and <interface-name> Operations_<interface-name>

 (  and  in this example). These interfaces containOperationsNC_<interface-name> NodeOperations_ NodeOperationsNC_
a method for each operation in the Slice interface. (You can ignore the  parameter for the now.)Ice.Current
For each Slice interface , the compiler generates a C# interface  (  in this example).<interface-name> <interface-name> Node
That interface extends  and the two operations interfaces.Ice.Object
For each Slice interface , the compiler generates an abstract class  (<interface-name> Disp_<interface-name> NodeDisp_
in this example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in C#

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the  interface, you could write:Node

C#

public class NodeI : NodeDisp_
{
    public NodeI(string name)
    {
        _name = name;
    }

    public override string name(Ice.Current current)
    {
        return _name;
    }

    private string _name;
}

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called .I Node NodeI
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that 

 extends , that is, it derives from its skeleton class.NodeI NodeDisp_

As far as Ice is concerned, the  class must implement only a single method: the abstract  method that it inherits from its skeleton.NodeI name
This makes the servant class a concrete class that can be instantiated. You can add other methods and data members as you see fit to
support your implementation. For example, in the preceding definition, we added a  member and a constructor. (Obviously, the_name
constructor initializes the  member and the  method returns its value.)_name name

Server-Side Normal and  Operations in C#idempotent

Whether an operation is an ordinary operation or an  operation has no influence on the way the operation is mapped. Toidempotent
illustrate this, consider the following interface:

Slice

interface Example {
   void              normalOp();
   idempotent void   idempotentOp();
};

The operations class for this interface looks like this:

C#

public interface ExampleOperations_
{
    void normalOp(Ice.Current __current);
    void idempotentOp(Ice.Current __current);
}
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Note that the signatures of the methods are unaffected by the  qualifier.idempotent

See Also

Slice for a Simple File System
Parameter Passing in C-Sharp
Raising Exceptions in C-Sharp
Tie Classes in C-Sharp
The Current Object
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Parameter Passing in C-Sharp

Parameter Passing in C#

For each parameter of a Slice operation, the C# mapping generates a corresponding parameter for the corresponding method in the 
 interface. In addition, every operation has an additional, trailing parameter of type . ForOperations_<interface-name> Ice.Current

example, the  operation of the  interface has no parameters, but the  method of the  interface has aname Node name NodeOperations_
single parameter of type . We will ignore this parameter for now.Ice.Current

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice

module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated method for  looks as follows:op

C#

public interface ExampleOperations_
{
    string op(string sin, out string sout, Ice.Current __current);
}

As you can see, there are no surprises here. For example, we could implement  as follows:op

C#

using System;

public class ExampleI : ExampleDisp_
{
    public override string op(string sin, out string sout, Ice.Current current)
    {
        Console.WriteLine(sin);      // In params are initialized
        sout = "Hello World!";       // Assign out param
        return "Done";
    }
}

This code is in no way different from what you would normally write if you were to pass strings to and from a method; the fact that remote
procedure calls are involved does not affect your code in any way. The same is true for parameters of other types, such as proxies, classes,
or dictionaries: the parameter passing conventions follow normal C# rules and do not require special-purpose API calls.

See Also

Server-Side C-Sharp Mapping for Interfaces
Raising Exceptions in C-Sharp
Tie Classes in C-Sharp
The Current Object
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Raising Exceptions in C-Sharp

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

C#

// ...
public override void write(string[] text, Ice.Current current)
{
    try
    {
        // Try to write file contents here...
    }
    catch(System.Exception ex)
    {
        GenericError e = new GenericError("cannot write file", ex);
        e.reason = "Exception during write operation";
        throw e;
    }
}

Note that, for this example, we have supplied the  to the  constructor. This parameter sets the optional second parameter GenericError
 member of  and preserves the original cause of the error for later diagnosis.InnerException System.Exception

If you throw an arbitrary C# run-time exception (such as an ), the Ice run time catches the exception and thenInvalidCastException
returns an  to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in theUnknownException
exception specification of the operation), the client receives an .UnknownUserException

If you throw an Ice run-time exception, such , the client receives an . For that reason,MemoryLimitException UnknownLocalException
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocalException
, which does not tell the client anything useful.

Three run-time exceptions are  and not changed to  when returned to thetreated specially UnknownLocalException
client: , , and .ObjectNotExistException OperationNotExistException FacetNotExistException

See Also

Run-Time Exceptions
C-Sharp Mapping for Exceptions
Server-Side C-Sharp Mapping for Interfaces
Parameter Passing in C-Sharp
Tie Classes in C-Sharp
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Tie Classes in C-Sharp

The mapping to  requires the servant class to inherit from its skeleton class. Occasionally, this creates a problem: someskeleton classes
class libraries require you to inherit from a base class in order to access functionality provided by the library; because C# does not support
multiple implementation inheritance, this means that you cannot use such a class library to implement your servants because your servants
cannot inherit from both the library class and the skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write servants that replaces inheritance with delegation. This approach is
supported by . The idea is that, instead of inheriting from the skeleton class, you simply create a class (known as an tie classes

 or ) that contains methods corresponding to the operations of an interface. You use the  optionimplementation class delegate class --tie
with the  compiler to create a tie class. For example, the  option causes the compiler to create exactly the same code forslice2cs --tie
the  as we saw previously, but to also emit an additional tie class. For an interface , the generated tie interfaceNode <interface-name>
class has the name :Tie_<interface-name>
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C#

public class NodeTie_ : NodeDisp_, Ice.TieBase
{
    public NodeTie_()
    {
    }

    public NodeTie_(NodeOperations_ del)
    {
        _ice_delegate = del;
    }

    public object ice_delegate()
    {
        return _ice_delegate;
    }

    public void ice_delegate(object del)
    {
        _ice_delegate = (NodeOperations_)del;
    }

    public override int GetHashCode()
    {
        return _ice_delegate == null ? 0 : _ice_delegate.GetHashCode();
    }

    public override bool Equals(object rhs)
    {
       if (object.ReferenceEquals(this, rhs))
       {
           return true;
       }
       if (!(rhs is NodeTie_))
       {
           return false;
       }
       if (_ice_delegate == null)
       {
           return ((NodeTie_)rhs)._ice_delegate == null;
       }
       return _ice_delegate.Equals(((NodeTie_)rhs)._ice_delegate);
    }

    public override string name(Ice.Current __current)
    {
        return _ice_delegate.name(__current);
    }

    private NodeOperations_ _ice_delegate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a servant class (it extends ) that delegates eachNodeDisp_
invocation of a method that corresponds to a Slice operation to your implementation class:



Ice 3.4.2 Documentation

489 Copyright © 2011, ZeroC, Inc.

A skeleton class, tie class, and implementation class.

The  interface defines the  methods that allow you to get and set the delegate.Ice.TieBase ice_delegate

Given this machinery, we can create an implementation class for our  interface as follows:Node

C#

public class NodeI : NodeOperations_
{
    public NodeI(string name)
    {
        _name = name;
    }

    public override string name(Ice.Current current)
    {
        return _name;
    }

    private string _name;
}

Note that this class is identical to our previous implementation, except that it implements the  interface and does notNodeOperations_
extend  (which means that you are now free to extend any other class to support your implementation).NodeDisp_

To create a servant, you instantiate your implementation class and the tie class, passing a reference to the implementation instance to the tie
constructor:

C#

NodeI fred = new NodeI("Fred");         // Create implementation
NodeTie_ servant = new NodeTie_(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate instance by calling :ice_delegate

C#

NodeTie_ servant = new NodeTie_();      // Create tie
// ...
NodeI fred = new NodeI("Fred");         // Create implementation
// ...
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the servant, not your delegate. Furthermore, you must not use a
tie instance to  an Ice object until the tie has a delegate. Once you have set the delegate, you must not change it for the lifetime ofincarnate
the tie; otherwise, undefined behavior results.

You should use the tie approach only if you need to, that is, if you need to extend some base class in order to implement your servants:
using the tie approach is more costly in terms of memory because each Ice object is incarnated by two C# objects (the tie and the delegate)
instead of just one. In addition, call dispatch for ties is marginally slower than for ordinary servants because the tie forwards each operation
to the delegate, that is, each operation invocation requires two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the delegate back to the tie. If you need to navigate back to the tie from
the delegate, you can store a reference to the tie in a member of the delegate. (The reference can, for example, be initialized by the
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constructor of the delegate.)

See Also

Server-Side C-Sharp Mapping for Interfaces
Parameter Passing in C-Sharp
Raising Exceptions in C-Sharp
Object Incarnation in C-Sharp
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1.  
2.  
3.  
4.  

Object Incarnation in C-Sharp

Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can classNodeI
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must take the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a C# Servant
Creating an Identity in C#
Activating a C# Servant
UUIDs as Identities in C#
Creating Proxies in C#

Proxies and Servant Activation in C#
Direct Proxy Creation in C#

Instantiating a C# Servant

Instantiating a servant means to allocate an instance:

C#

Node servant = new NodeI("Fred");

This code creates a new  instance and assigns its address to a reference of type . This works because  is derived from NodeI Node NodeI
, so a  reference can refer to an instance of type . However, if we want to invoke a method of the  class at this point,Node Node NodeI NodeI

we must use a  reference:NodeI

C#

NodeI servant = new NodeI("Fred");

Whether you use a  or a  reference depends purely on whether you want to invoke a method of the  class: if not, a Node NodeI NodeI Node
reference works just as well as a  reference.NodeI

Creating an Identity in C#

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

An Ice object identity is a structure with the following Slice definition:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};
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1.  

2.  
3.  

The full identity of an object is the combination of both the  and  fields of the  structure. For now, we will leave the name category Identity
 field as the empty string and simply use the  field. (The  field is most often used in conjunction with category name category servant

.)locators

To create an identity, we simply assign a key that identifies the servant to the  field of the  structure:name Identity

C#

Ice.Identity id = new Ice.Identity();
id.name = "Fred"; // Not unique, but good enough for now

Activating a C# Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the  operation on the object adapter. Assuming that we haveadd
access to the object adapter in the  variable, we can write:_adapter

C#

_adapter.add(servant, id);

Note the two arguments to : the servant and the object identity. Calling  on the object adapter adds the servant and the servant'sadd add
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming
request into the correct method on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

UUIDs as Identities in C#

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. .NET provides a helper function that we can use to create such identities:

C#

public class Example
{
    public static void Main(string[] args)
    {
        System.Console.WriteLine(System.Guid.NewGuid().ToString());
    }
}

When executed, this program prints a unique string such as . Each call to  creates5029a22c-e333-4f87-86b1-cd5e0fcce509 NewGuid
a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation  thataddWithUUID
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can create an identity and register a
servant with that identity in a single step as follows:

C#

_adapter.addWithUUID(new NodeI("Fred"));
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Creating Proxies in C#

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in . However, creation of proxies by the client in thisHello World Application
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in C#

The  and  servant activation operations on the object adapter return a proxy for the corresponding Ice object. This meansadd addWithUUID
we can write:

C#

NodePrx proxy = NodePrxHelper.uncheckedCast(_adapter.addWithUUID(new NodeI("Fred")));

Here,  both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an  here because  returns a proxy of type .uncheckedCast addWithUUID Ice.ObjectPrx

Direct Proxy Creation in C#

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that  creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxiescreateProxy
have a life cycle that is quite independent from the life cycle of servants:

C#

Ice.Identity id = new Ice.Identity();
id.name = System.Guid.NewGuid().ToString();
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if we returnNewGuid
the proxy to a client and the client invokes an operation on the proxy, the client will receive an . (We examineObjectNotExistException
these life cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Server-Side C-Sharp Mapping for Interfaces
Object Adapter States
Servant Locators
Object Life Cycle
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1.  

2.  

Asynchronous Method Dispatch (AMD) in C-Sharp

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's 
. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests andthread pool

therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receiveAMI
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

Enabling AMD with Metadata in C#
AMD Mapping in C#

Callback Interface for AMD
Dispatch Method for AMD

AMD Exceptions in C#
AMD Example in C#

Enabling AMD with Metadata in C#

To enable asynchronous dispatch, you must add an  metadata directive to your Slice definitions. The directive applies at the["amd"]
interface and the operation level. If you specify  at the interface level, all operations in that interface use asynchronous dispatch; if["amd"]
you specify  for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive["amd"]
replaces synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannot
use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"] void startProcess();
  int endProcess();
};

In this example, both operations of interface  use asynchronous dispatch, whereas, for interface ,  uses asynchronousI J startProcess
dispatch and  uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in
your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in C#

The C# mapping emits the following code for each AMD operation:

Callback interface
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2.  Dispatch method

Callback Interface for AMD

A callback interface is used by the implementation to notify the Ice run time about the completion of an operation. The name of this interface
is formed using the pattern . For example, an operation named  defined in interface  results in an interface named AMD_class_op foo I

. The interface is generated in the same scope as the interface or class containing the operation. Two methods are provided:AMD_I_foo

C#

public void ice_response(<params>);

The  method allows the server to report the successful completion of the operation. If the operation has a non-  returnice_response void
type, the first parameter to  is the return value. Parameters corresponding to the operation's  parameters follow theice_response out
return value, in the order of declaration.

C#

public void ice_exception(System.Exception ex);

The  method allows the server to raise an exception. Although any exception type could conceivably be passed to ice_exception
, the Ice run time  the exception value using the same semantics as for synchronous dispatch.ice_exception validates

Neither  nor  throw any exceptions to the caller.ice_response ice_exception

Dispatch Method for AMD

The dispatch method, whose name has the suffix , has a  return type. The first parameter is a reference to an instance of the_async void
callback interface described above. The remaining parameters comprise the  parameters of the operation, in the order of declaration.in

For example, suppose we have defined the following operation:

Slice

interface I {
  ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation  is shown below:foo

C#

public interface AMD_I_foo
{
    void ice_response(int __ret, long l);
    void ice_exception(System.Exception ex);
}

The dispatch method for asynchronous invocation of operation  is generated as follows:foo

C#

public abstract void foo_async(AMD_I_foo __cb, short s, Ice.Current __current);

AMD Exceptions in C#

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).
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These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are validated as described in , andUser Exceptions
local exceptions may undergo the translation described in .Run-Time Exceptions

AMD Example in C#

To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the  operation returns a new grid of the same size with theinterpolate
values interpolated in some interesting (but unspecified) way.

Our servant class derives from  and supplies a definition for the  method that creates a  toDemo._ModelDisp interpolate_async Job
hold the callback object and arguments, and adds the  to a queue. The method uses a  statement to guard access to the queue:Job lock

C#

public class ModelI : Demo.ModelDisp_
{
    public override void interpolate_async(
        Demo.AMD_Model_interpolate cb,
        float[][] data,
        float factor,
        Ice.Current current)
    {
        lock(this)
        {
            _jobs.Add(new Job(cb, data, factor));
        }
    }

    private System.Collections.ArrayList _jobs = new System.Collections.ArrayList();
}

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next  from the queue and invokes , which uses  (not shown) toJob execute interpolateGrid
perform the computational work:
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C#

public class Job {
    public Job(Demo.AMD_Model_interpolate cb, float[][] grid, float factor)
    {
        _cb = cb;
        _grid = grid;
        _factor = factor;
    }

    public void execute()
    {
        if (!interpolateGrid()) {
            _cb.ice_exception(new Demo.RangeError());
            return;
        }
        _cb.ice_response(_grid);
    }

    private boolean interpolateGrid()
    {
        // ...
    }

    private Demo.AMD_Model_interpolate _cb;
    private float[][] _grid;
    private float _factor;
}

If  returns , then  is invoked to indicate that a range error has occurred. The  statementinterpolateGrid false ice_exception return
following the call to  is necessary because  does not throw an exception; it only marshals the exceptionice_exception ice_exception
argument and sends it to the client.

If interpolation was successful,  is called to send the modified grid back to the client.ice_response

See Also

User Exceptions
Run-Time Exceptions
Asynchronous Method Invocation (AMI) in C-Sharp
The Ice Threading Model
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Example of a File System Server in C-Sharp

This page presents the source code for a C# server that implements our  and communicates with the  we wrote earlier. Thefile system client
code is fully functional, apart from the required interlocking for threads.

The server is free of code that relates to distribution: most of the server code is simply application logic that would be present just the same
for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking infrastructure.

The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the  data member while another thread updates it. Obviously, if that_lines
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the  and read write
operations thread-safe. We discuss thread safety in .The Ice Threading Model

On this page:

Implementing a File System Server in C#
Server Main Program in C#

 Servant Class in C#FileI
 Servant Class in C#DirectoryI

 Data MembersDirectoryI
 ConstructorDirectoryI
 MethodsDirectoryI

Implementing a File System Server in C#

We have now seen enough of the server-side C# mapping to implement a server for our . (You may find it useful to review thesefile system
Slice definitions before studying the source code.)

Our server is composed of three source files:

Server.cs
This file contains the server main program.

DirectoryI.cs
This file contains the implementation for the  servants.Directory

FileI.cs
This file contains the implementation for the  servants.File

Server Main Program in C#

Our server main program, in the file , uses the  class. The  method installs a signal handler, creates anServer.cs Ice.Application run
object adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a main
program as follows:

C#

using Filesystem;
using System;

public class Server
{
    class App : Ice.Application
    {
        public override int run(string[] args)
        {
            // Terminate cleanly on receipt of a signal
            //
            shutdownOnInterrupt();

            // Create an object adapter (stored in the _adapter
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            // static members)
            //
            Ice.ObjectAdapter adapter = communicator().createObjectAdapterWithEndpoints(
                "SimpleFilesystem", "default -p 10000");
            DirectoryI._adapter = adapter;
            FileI._adapter = adapter;

            // Create the root directory (with name "/" and no
            // parent)
            //
            DirectoryI root = new DirectoryI("/", null);

            // Create a file called "README" in the root directory
            //
            File file = new FileI("README", root);
            string[] text;
            text = new string[] {
                "This file system contains a collection of poetry."
            };
            try {
                file.write(text);
            } catch (GenericError e) {
                Console.Error.WriteLine(e.reason);
            }

            // Create a directory called "Coleridge"
            // in the root directory
            //
            DirectoryI coleridge = new DirectoryI("Coleridge", root);

            // Create a file called "Kubla_Khan"
            // in the Coleridge directory
            //
            file = new FileI("Kubla_Khan", coleridge);
            text = new string[] { "In Xanadu did Kubla Khan",
                                  "A stately pleasure-dome decree:",
                                  "Where Alph, the sacred river, ran",
                                  "Through caverns measureless to man",
                                  "Down to a sunless sea." };
            try {
                file.write(text);
            } catch (GenericError e) {
                Console.Error.WriteLine(e.reason);
            }

            // All objects are created, allow client requests now
            //
            adapter.activate();

            // Wait until we are done
            //
            communicator().waitForShutdown();

            if (interrupted())
                Console.Error.WriteLine(appName() + ": terminating");

            return 0;
        }
    }

    public static void Main(string[] args)
    {
        App app = new App();
        Environment.Exit(app.main(args));
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    }
}

The code uses a  directive for the  namespace. This avoids having to continuously use fully-qualified identifiers with a using Filesystem
 prefix.Filesystem.

The next part of the source code is the definition of the  class, which includes a nested class that derives from Server Ice.Application
and contains the main application logic in its  method. Much of this code is boiler plate that we saw previously: we create an objectrun
adapter, and, towards the end, activate the object adapter and call .waitForShutdown

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
structure shown below:

A small file system.

As we will see shortly, the servants for our directories and files are of type  and , respectively. The constructor for eitherDirectoryI FileI
type of servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory.
(For the root directory, which has no parent, we pass a null parent.) Thus, the statement

C#

        DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name  and no parent directory."/"

Here is the code that establishes the structure in the above illustration:
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C#

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file called "README" in the root directory
        //
        File file = new FileI("README", root);
        string[] text;
        text = new string[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryI coleridge = new DirectoryI("Coleridge", root);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new string[] { "In Xanadu did Kubla Khan",
                              "A stately pleasure-dome decree:",
                              "Where Alph, the sacred river, ran",
                              "Through caverns measureless to man",
                              "Down to a sunless sea." };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }

We first create the root directory and a file  within the root directory. (Note that we pass a reference to the root directory as theREADME
parent when we create the new node of type .)FileI

The next step is to fill the file with text:

C#

        string[] text;
        text = new string[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }

Recall that  by default map to C# arrays. The Slice type  is simply an array of strings; we add a line of text to our Slice sequences Lines
 file by initializing the  array to contain one element.README text

Finally, we call the Slice  operation on our  servant by writing:write FileI
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C#

            file.write(text);

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to
the servant (of type ) and not via a proxy (of type ), the Ice run time does not know that this call is even taking place — suchFileI FilePrx
a direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary C# method call.

In similar fashion, the remainder of the code creates a subdirectory called  and, within that directory, a file called  toColeridge Kubla_Khan
complete the structure in the above illustration.

FileI Servant Class in C#

Our  servant class has the following basic structure:FileI

C#

using Filesystem;
using System;

public class FileI : FileDisp_
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private string _name;
    private DirectoryI _parent;
    private string[] _lines;
}

The class has a number of data members:

_adapter
This static member stores a reference to the single object adapter we use in our server.

_name
This member stores the name of the file incarnated by the servant.

_parent
This member stores the reference to the servant for the file's parent directory.

_lines
This member holds the contents of the file.

The  and  data members are initialized by the constructor:_name _parent
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C#

    public FileI(string name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;

        Debug.Assert(_parent != null);

        // Create an identity
        //
        Ice.Identity myID = new Ice.Identity();
        myId.name = System.Guid.NewGuid().ToString();

        // Add the identity to the object adapter
        //
        _adapter.add(this, myID);

        // Create a proxy for the new node and
        // add it as a child to the parent
        //
        NodePrx thisNode = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
        _parent.addChild(thisNode);
    }

After initializing the  and  members, the code verifies that the reference to the parent is not null because every file must have_name _parent
a parent directory. The constructor then generates an identity for the file by calling  and adds itself to the servant map by calling NewGuid

. Finally, the constructor creates a proxy for this file and calls the  method on its parent directory. ObjectAdapter.add addChild
 is a helper function that a child directory or file calls to add itself to the list of descendant nodes of its parent directory. We will seeaddChild

the implementation of this function in . MethodsDirectoryI

The remaining methods of the  class implement the Slice operations we defined in the  and  Slice interfaces:FileI Node File

C#

    // Slice Node::name() operation

    public override string name(Ice.Current current)
    {
        return _name;
    }

    // Slice File::read() operation

    public override string[] read(Ice.Current current)
    {
        return _lines;
    }

    // Slice File::write() operation

    public override void write(string[] text, Ice.Current current)
    {
        _lines = text;
    }

The  method is inherited from the generated  interface (which is a base interface of the  class from which  isname Node _FileDisp FileI
derived). It simply returns the value of the  member._name

The  and  methods are inherited from the generated  interface (which is a base interface of the  class fromread write File _FileDisp
which  is derived) and simply return and set the  member.FileI _lines

DirectoryI Servant Class in C#
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The  class has the following basic structure:DirectoryI

C#

using Filesystem;
using System;
using System.Collections;

public class DirectoryI : DirectoryDisp_
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private string _name;
    private DirectoryI _parent;
    private ArrayList _contents = new ArrayList();
}

DirectoryI Data Members

As for the  class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the FileI
 member holds a null reference.) In addition, we have a  data member that stores the list of child directories. These_parent _contents

data members are initialized by the constructor:

C#

    public DirectoryI(string name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;

        // Create an identity. The
        // parent has the fixed identity "RootDir"
        //
        Ice.Identity myID = new Ice.Identity();
        myID.name = _parent != null ? System.Guid.NewGuid().ToString() : "RootDir";

        // Add the identity to the object adapter
        //
        _adapter.add(this, myID);

        // Create a proxy for the new node and
        // add it as a child to the parent
        //
        NodePrx thisNode = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
        if (_parent != null)
            _parent.addChild(thisNode);
    }

DirectoryI Constructor

The constructor creates an identity for the new directory by calling . (For the root directory, we use the fixed identity .)NewGuid "RootDir"
The servant adds itself to the servant map by calling  and then creates a proxy to itself and passes it to the ObjectAdapter.add

 helper function.addChild

DirectoryI Methods

addChild simply adds the passed reference to the  list:_contents
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C#

    public void addChild(NodePrx child)
    {
        _contents.Add(child);
    }

The remainder of the operations,  and , are trivial:name list

C#

    public override string name(Ice.Current current)
    {
        return _name;
    }

    public override NodePrx[] list(Ice.Current current)
    {
        return (NodePrx[])_contents.ToArray(typeof(NodePrx));
    }

Note that the  member is of type , which is convenient for the implementation of the _contents System.Collections.ArrayList
 method. However, this requires us to convert the list into a C# array in order to return it from the  operation.addChild list

See Also

Slice for a Simple File System
Example of a File System Client in C-Sharp
The Server-Side main Method in C-Sharp
C-Sharp Mapping for Sequences
The Ice Threading Model
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.NET Compact Framework Support

Ice for .NET includes support for the .NET Compact Framework (.NET CF).

On this page:

Using Ice for .NET CF
Limitations of Ice for .NET CF
Managing Factory Assemblies in Ice for .NET CF

Using Ice for .NET CF

There are several API differences between .NET and .NET CF that impact the Ice run time, therefore Ice for .NET must be re-compiled to
target .NET CF. The Ice installer for Windows includes the .NET CF version of the Ice run time in , and\bin\cf\Ice.dllinstall-dir
the  automatically uses this DLL for Smart Device projects. To build Ice for .NET CF in a source distribution, enable Ice Visual Studio Add-in

 in .COMPACT cs\config\Make.rules.mak.cs

Limitations of Ice for .NET CF

The following features are  supported in Ice for .NET CF:not

Protocol compression
Signal processing in the  classIce.Application
IceSSL
ICE_CONFIG environment variable
Dynamic loading of Slice checksums
Ice.TCP.SndSize and  propertiesIce.TCP.RcvSize
Automatic discovery of dependent assemblies containing Slice-generated classes and exceptions

As we discuss in the next section, the last limitation is the most significant.

Managing Factory Assemblies in Ice for .NET CF

When receiving a Slice user exception or a concrete Slice object-by-value, the Ice run time must be able to dynamically translate the
encoded Slice type ID (such as ) into a .NET class name (such as ), dynamically locate that::MyModule::MyType MyModule.MyType
class, and instantiate it. This is convenient for .NET applications because it requires no additional user configuration; at startup, the Ice for
.NET run time recursively loads all dependent assemblies used by the program to ensure that any generated classes are available if
necessary.

The Compact Framework does not allow a program to discover its dependent assemblies, so this strategy cannot work. Consequently, Ice
for .NET CF adds the new configuration property  so that you can explicitly list any assemblies that contain theIce.FactoryAssemblies
generated code for user exceptions or concrete classes. When searching for a class, Ice for .NET CF first checks in the assemblies specified
by this property. If the type is not found, Ice automatically looks in the standard Ice assemblies ( , , , , Ice Glacier2 IceBox IceGrid

, and ).IcePatch2 IceStorm

Note that the program itself is also considered an assembly. If you compiled the main program directly with Slice-generated code, your 
 property must include the program itself if the generated code includes user exceptions or concrete classes. ForIce.FactoryAssemblies

simple build scenarios in which all generated code is compiled directly into the executable, the following configuration setting is sufficient:

Ice.FactoryAssemblies=client

This example assumes the executable is named . On the other hand, if Slice-generated code is also compiled into a dependentclient.exe
assembly, your configuration might look like this instead:

Ice.FactoryAssemblies=client MyOtherAssembly

Failing to define  can cause the Ice run time in the receiver to raise  or Ice.FactoryAssemblies NoObjectFactoryException
. If you are experiencing either of these exceptions, verify that your assemblies are configuredUnmarshalOutOfBoundsException

correctly.
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See Also

Visual Studio Add-in
Ice.FactoryAssemblies
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The .NET Utility Library

Ice for .Net includes a number of utility APIs in the  class. This appendix summarizes the contents of these APIs for yourIce.Util
reference.

On this page:

Communicator Initialization Methods
Identity Conversion
Per-Process Logger Methods
Property Creation Methods
Proxy Comparison Methods
Stream Creation
Version Information

Communicator Initialization Methods

Ice.Util provides a number of overloaded  methods that .initialize create a communicator

Identity Conversion

Ice.Util contains two methods to  of type  to and from strings.convert object identities Ice.Identity

Per-Process Logger Methods

Ice.Util provides methods for getting and setting the .per-process logger

Property Creation Methods

Ice.Util provides a number of overloaded  methods that .createProperties create property sets

Proxy Comparison Methods

Two methods,  and , allow you to  that are storedproxyIdentityCompare proxyIdentityAndFacetCompare compare object identities
in proxies (either ignoring the facet or taking the facet into account).

Stream Creation

Two methods,  and  create  for use with dynamic invocation.createInputStream createOutputStream streams

Version Information

The  and  methods return the version of the Ice run time:stringVersion intVersion

C#

public static string stringVersion();
public static int intVersion();

The  method returns the Ice version in the form , for example, . For beta releases, thestringVersion . .<major> <minor> <patch> 3.4.2
version is , for example, .. b<major> <minor> 3.4b

The  method returns the Ice version in the form , where  is the major version number,  is the minor versionintVersion AABBCC AA BB
number, and  is patch level, for example,  for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, forCC 30402
version 3.4b, the value is .30451

See Also
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Command-Line Parsing and Initialization
Setting Properties
C-Sharp Streaming Interfaces
Object Identity
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Objective-C Mapping

Topics

Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping
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Client-Side Slice-to-Objective-C Mapping

The client-side Slice-to-Objective-C mapping defines how Slice data types are translated to Objective-C types, and how clients invoke
operations, pass parameters, and handle errors. Much of the Objective-C mapping is intuitive. For example, Slice dictionaries map to Cocoa
framework dictionaries, so there is little new you have to learn in order to use Slice dictionaries in Objective-C.

The Objective-C mapping is thread-safe. For example, you can concurrently invoke operations on an object from different threads without the
risk of race conditions or corrupting data structures in the Ice run time, but you must still synchronize access to application data from different
threads. For example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another
thread is iterating over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run
time itself is fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the Objective-C mapping, you should need no more than the Slice definition of your application and
knowledge of the Objective-C mapping rules. In particular, looking through the generated code in order to discern how to
use the Objective-C mapping is likely to be confusing because the generated code is not necessarily meant for human
consumption and, occasionally, contains various cryptic constructs to deal with mapping internals. Of course, occasionally,
you may want to refer to the generated code to confirm a detail of the mapping, but we recommend that you otherwise use
the material presented here to see how to write your client-side code.

ICE Prefix

All of the APIs for the Ice run time are prefixed by , to avoid clashes with definitions for other libraries or applications.ICE
Parts of the Ice API are generated from Slice definitions; other parts provide special-purpose definitions that do not have a
corresponding Slice definition. Regardless of they way they are defined, the  prefix universally applies to all entryICE
points in the Ice run time. We will incrementally cover the contents of the Ice API throughout the remainder of the manual.

Topics

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
Objective-C Mapping for Operations
Objective-C Mapping for Local Interfaces
Objective-C Mapping for Classes
Objective-C Mapping for Interfaces by Value
Asynchronous Method Invocation (AMI) in Objective-C
slice2objc Command-Line Options
Example of a File System Client in Objective-C



Ice 3.4.2 Documentation

512 Copyright © 2011, ZeroC, Inc.

Objective-C Mapping for Modules

Because Objective-C does not support namespaces, a Slice module maps to a prefix for the identifiers defined inside the modules. By
default, the prefix is the same as the name of the module:

Slice

module example
{
    enum Color { Red, Green, Blue };
};

With this definition, the Slice identifier  maps to the Objective-C identifier .Color exampleColor

For nested modules, by default, the module identifiers are concatenated. For example, consider the following Slice definition:

Slice

module outer {
    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition, the Slice identifier  becomes  in Objective-C.Color outerinnerColor

You can use a metadata directive to change the default mapping to a different prefix. For example:

Slice

["objc:prefix:OUT"]
module outer {
    enum Vehicle { Car, Truck, Bicycle };

    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition,  maps to . However,  still maps to , that is, the metadata directiveVehicle OUTVehicle Color outerinnerColor
applies only to types defined in the  module, but not to types that are defined in nested modules. If you want to assign a prefix forouter
types in the nested module, you must use a separate metadata directive, for example:

Slice

["objc:prefix:OUT"]
module outer {
    enum Vehicle { Car, Truck, Bicycle };

    ["objc:prefix:IN"]
    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition,  maps to , and  maps to .Vehicle OUTVehicle Color INColor

For the remainder of the examples in this chapter, we assume that Slice definitions are enclosed by a module  that is annotatedExample
with the metadata directive .["objc:prefix:EX"]
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See Also

Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Identifiers

Objective-C identifiers are derived from Slice identifiers. The exact Objective-C identifier that is generated depends on the context. For types
that are nested in modules (and hence have global visibility in Objective-C), the generated Objective-C identifiers are prefixed with their 

. Slice identifiers that do not have global visibility (such as operation names and structure members) do not use the modulemodule prefix
prefix and are preserved without change. For example, consider the following Slice definition:

Slice

["objc:prefix:EX"]
module Example {
    struct Point {
        double x;
        double y;
    };
};

This maps to the following Objective-C definition:

Objective-C

@interface EXPoint : NSObject <NSCopying>
{
    @private
        ICEDouble x;
        ICEDouble y;
}

@property(nonatomic, assign) ICEDouble x;
@property(nonatomic, assign) ICEDouble y;

// More definitions here...
@end

If a Slice identifier is the same as an Objective-C keyword, the corresponding Objective-C identifier has an underscore suffix. For example,
Slice  maps to Objective-C .while while_

In some cases, the Objective-C mapping generates more than one identifier for a given Slice construct. For example, an interface Intf
generates the identifiers  and . If a Slice identifier happens to be an Objective-C keyword, the underscore suffix appliesEXIntf EXIntfPrx
only where necessary, so an interface  generates  and .while EXWhile EXWhilePrx

Note that Slice operation and member names can clash with the name of an inherited method, property, or instance variable. For example:

Slice

exception Failed {
    string reason; // Clashes with NSException
};

This is a legal Slice definition. However, the generated exception class derives from , which defines a  method. ToNSException reason
avoid hiding the method in the base class, the generated exception class maps the Slice  member to the Objective-C property reason

, just as it would for a keyword.reason_

This escape mechanism applies to all generated classes that directly or indirectly derive from  or .NSObject NSException

Internal Identifiers in Objective-C

Any methods that contain two or more adjacent underscores (such as  and ) are internal to the Objective-C mappingread__ op____
implementation and are not for use by application code.

See Also
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Objective-C Mapping for Modules
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Built-In Types

The Slice built-in types are mapped to Objective-C types as shown below.

Slice Objective-C

bool BOOL

byte ICEByte

short ICEShort

int ICEInt

long ICELong

float ICEFloat

double ICEDouble

string NSString or NSMutableString

Slice  maps to Objective-C . The remaining integral and floating-point types map to Objective-C type definitions instead of nativebool BOOL
types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example,  might beICELong
defined as  on one architecture and as    on another.)long long long

Note that  is a typedef for   . This guarantees that byte values are always in the range 0..255, and it ensures thatICEByte unsigned char
right-shifting an  does not cause sign-extension.ICEByte

Whether a Slice string maps to  or  depends on the context.  is used in some cases forNSString NSMutableString NSMutableString
operation parameters; otherwise, if a string is a data member of a Slice structure, class, or exception, it maps to . (We will discussNSString
these differences in more detail as we cover the mapping of the relevant Slice language features.)

See Also

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Enumerations

A Slice  maps to the corresponding enumeration in Objective-C. For example:enumeration

Slice

["objc:prefix:EX"]
module Example {
    enum Fruit { Apple, Pear, Orange };
};

The generated Objective-C definition is:

Objective-C

typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;

See Also

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Structures

On this page:

Basic Objective-C Mapping for Structures
Mapping for Data Members in Objective-C
Creating and Initializing Structures in Objective-C
Copying Structures in Objective-C
Deallocating Structures in Objective-C
Structure Comparison and Hashing in Objective-C

Basic Objective-C Mapping for Structures

A Slice  maps to an Objective-C class.structure

For each Slice data member, the generated Objective-C class has a corresponding property. For example, here is our  structureEmployee
once more:

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-Objective-C compiler generates the following definition for this structure:

Objective-C

@interface EXEmployee : NSObject <NSCopying>
{
    @private
        ICELong number;
        NSString *firstName;
        NSString *lastName;
}

@property(nonatomic, assign) ICELong number;
@property(nonatomic, retain) NSString *firstName;
@property(nonatomic, retain) NSString *lastName;

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;
+(id) employee;
// This class also overrides copyWithZone,
// hash, isequal, and dealloc.
@end

Mapping for Data Members in Objective-C

For each data member in the Slice definition, the Objective-C class contains a corresponding private instance variable of the same name, as
well as a property definition that allows you to set and get the value of the corresponding instance variable. For example, given an instance
of , you can write the following:EXEmployee
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Objective-C

ICELong number;
EXemployee *e = ...;
[e setNumber:99];
number = [e number];

// Or, more concisely with dot notation:

e.number = 99;
number = e.number;

Properties that represent data members always use the  property attribute. This avoids the overhead of locking each datanonatomic
member during access. The second property attribute is  for integral and floating-point types and  for all other types (such asassign retain
strings, structures, and so on.)

Creating and Initializing Structures in Objective-C

Structures provide the typical (inherited)  method:init

Objective-C

EXEmployee *e = [[EXEmployee alloc] init];
// ...
[e release];

As usual,  initializes the instance variables of the structure with zero-filled memory. You can also declare default values in your init Slice
, in which case this  method initializes each data member withdefinition init

its declared value.

In addition, a structure provides a second  method that accepts one parameter for each data member of the structure:init

Objective-C

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;

Note that the first parameter is always unlabeled; the second and subsequent parameters have a label that is the same as the name of the
corresponding Slice data member. The additional  method allows you to instantiate a structure and initialize its data members in ainit
single statement:

Objective-C

EXEmployee *e = [[EXEmployee alloc] init:99 firstName:@"Brad" lastName:@"Cox"];
// ...
[e release];

init applies the memory management policy of the corresponding properties, that is, it calls  on the  and retain firstName lastName
arguments.

Each structure also provides two convenience constructors that mirror the  methods: a parameter-less convenience constructor andinit
one that has a parameter for each Slice data member:

Objective-C

+(id) employee;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;

The convenience constructors have the same name as the mapped Slice structure (without the module prefix). As usual, they allocate an
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instance, perform the same initialization actions as the corresponding  methods, and call  on the return value:init autorelease

Objective-C

EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad" lastName:@"Cox"];

// No need to call [e release] here.

Copying Structures in Objective-C

Structures implement the  protocol. Structures are copied by assigning instance variables of value type and calling  onNSCopying retain
each instance variable of non-value type. In other words, the copy is shallow:

Objective-C

EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad" lastName:@"Cox"];
EXEmployee *e2 = [e copy];
NSAssert(e.number == e2.number);
NSAssert([e.firstName == e2.firstName]); // Same instance
// ...
[e2 release];

Note that, if you assign an  to a structure member and use the structure as a dictionary key, you must not modify theNSMutableString
string inside the structure without copying it because doing so will corrupt the dictionary.

Deallocating Structures in Objective-C

Each structure implements a  method that calls  on each instance variable with a  property attribute. This meansdealloc release retain
that structures take care of the memory management of their contents: releasing a structure automatically releases all its instance variables.

Structure Comparison and Hashing in Objective-C

Structures implement , so you can compare them for equality. Two structures are equal if all their instance variables are equal. ForisEqual
value types, equality is determined by the  operator; for non-value types other than classes, equality is determined by the corresponding==
instance variable's  method.  are compared by comparing their identity: two class members are equal if they both point atisEqual Classes
the same instance.

The  method returns a hash value is that is computed from the hash value of all of the structure's instance variables.hash

See Also

Structures
Dictionaries
Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
Objective-C Mapping for Classes
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Objective-C Mapping for Sequences

The Objective-C mapping uses different mappings for  of value types (such as ) and non-value types (such as sequences sequence<byte>
).sequence<string>

On this page:

Mapping for Sequences of Value Types in Objective-C
Mapping of Sequences of Non-Value Types in Objective-C

Mapping for Sequences of Value Types in Objective-C

The following Slice types are value types:

Integral types ( , , , , )bool byte short int long
Floating point types ( , )float double
Enumerated types

Sequences of these types map to a type definition. For example:

Slice

enum Fruit { Apple, Pear, Orange };

sequence<byte> ByteSeq;
sequence<int> IntSeq;
sequence<Fruit> FruitSeq;

The three Slice sequences produce the following Objective-C definitions:

Objective-C

typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;

typedef NSData EXByteSeq;
typedef NSMutableData EXMutableByteSeq;

typedef NSData EXIntSeq;
typedef NSMutableData EXMutableIntSeq;

typedef NSData EXFruitSeq;
typedef NSMutableData EXMutableFruitSeq;

As you can see, each sequence definition creates a pair of type definitions, an immutable version named 
, and a mutable version named . This constitutes the<module-prefix><Slice-name> <module-prefix>Mutable<Slice-name>

entire public API for sequences of value types, that is, sequences of value types simply map to  or . The NSData NSMutableData
 sequences contain an array of the corresponding element type in their internal byte array.NS(Mutable)Data

We chose to map sequences of value types to  instead of  because of the large overhead of placing eachNSData NSArray
sequence element into an  container instance.NSNumber

For example, here is how you could initialize a byte sequence of 1024 elements with values that are the modulo 128 of the element index in
reverse order:
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Objective-C

int limit = 1024;
EXMutableByteSeq *bs = [NSMutableData dataWithLength:limit];
ICEByte *p = (ICEByte *)[bs bytes];
while (--limit > 0) {
    *p++ = limit % 0x80;
}

Naturally, you do not need to initialize the sequence using a loop. For example, if the data is available in a buffer, you could use the 
 or  methods of  instead.dataWithBytes:length dataWithBytesNoCopy:length NSData

Here is one way to retrieve the bytes of the sequence:

Objective-C

const ICEByte* p = (const ICEByte *)[bs bytes];
const ICEByte* limitp = p + [bs length];
while (p < limitp) {
    printf("%d\n", *p++);
}

For sequences of types other than  or , you must keep in mind that the length of the  array is not the same as the numberbyte bool NSData
of elements. The following example initializes an integer sequence with the first few primes and prints out the contents of the sequence:

Objective-C

const int primes[] = { 1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23 };
EXMutableIntSeq *is = [NSMutableData dataWithBytes:primes length:sizeof(primes)];

const ICEInt *p = (const ICEInt *)[is bytes];
int limit = [is length] / sizeof(*p);
int i;
for(i = 0; i < limit; ++i) {
    printf("%d\n", p[i]);
}

The code to manipulate a sequence of enumerators is very similar. For portability, you should not assume a particular size for enumerators.
That is, instead of relying on all enumerators having the size of, for example, an , it is better to use  to ensure thatint sizeof(EXFruit)
you are not overstepping the bounds of the sequence.

Mapping of Sequences of Non-Value Types in Objective-C

Sequences of non-value types, such as sequences of , structures, classes, and so on, map to mutable and immutable typestring
definitions of . For example:NSArray

Slice

sequence<string> Page;
sequence<Page> Book;

This maps to:

Objective-C

typedef NSArray EXPage;
typedef NSMutableArray EXMutablePage;

typedef NSArray EXBook;
typedef NSMutableArray EXMutableBook;
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You use such sequences as you would use any other  in your code. For example:NSArray

Objective-C

EXMutablePage *page1 = [NSArray arrayWithObjects:
                                @"First line of page one",
                                @"Second line of page one",
                                nil];

EXMutablePage *page2 = [NSArray arrayWithObjects:
                                @"First line of page two",
                                @"Second line of page two",
                                nil];

EXMutableBook *book = [NSMutableArray array];
[book addObject:page1];
[book addObject:page2];
[book addObject:[NSArray array]]; // Empty page

This creates a book with three pages; the first two pages contain two lines each, and the third page is empty. You can print the contents of
the book as follows:

Objective-C

int pageNum = 0;
for (EXPage *page in book) {
    ++pageNum;
    int lineNum = 0;
    if ([page count] == 0) {
        printf("page %d: <empty>\n", pageNum);
    } else {
        for (NSString *line in page) {
            ++lineNum;
            printf("page %d, line %d: %s\n", pageNum, lineNum, [line UTF8String]);
        }
    }
}

This prints:

page 1, line 1: First line of page one
page 1, line 2: Second line of page one
page 2, line 1: First line of page two
page 2, line 2: Second line of page two
page 3: <empty>

If you have a sequence of proxies or a sequence of classes, to transmit a null proxy or class inside a sequence, you must insert an NSNull
value into the . In addition, the mapping also allows you to use  as the element value of an  for elements of typeNSArray NSNull NSArray
string, structure, sequence, or dictionary. For example, instead of inserting an empty  into the book sequence in the precedingNSArray
example, we could also have inserted :NSNull

Objective-C

EXMutableBook *book = [NSMutableArray array];
[book addObject:page1];
[book addObject:page2];
[book addObject:[NSNull null]]; // Empty page

See Also

Objective-C Mapping for Modules
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Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Dictionaries

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

Objective-C

typedef NSDictionary EXEmployeeMap;
typedef NSMutableDictionary EXMutableEmployeeMap;

Similar to , Slice dictionaries map to type definitions for  and , with the names sequences NSDictionary NSMutableDictionary
 and .<module-prefix><Slice-name> <module-prefix>Mutable<Slice-name>

As a result, you can use the dictionary like any other , for example:NSDictionary

Objective-C

EXMutableEmployeeMap *em = [EXMutableEmployeeMap dictionary];
EXEmployee *e = [EXEmployee employee];
e.number = 42;
e.firstName = @"Stan";
e.lastName = @"Lippman";
[em setObject:e forKey:[NSNumber numberWithLong:e.number]];

e = [EXEmployee employee];
e.number = 77;
e.firstName = @"Herb";
e.lastName = @"Sutter";
[em setObject:e forKey:[NSNumber numberWithLong:e.number]];

To put a value type into a dictionary (either as the key or the value), you must use  as the object to hold the value. If you have aNSNumber
dictionary that uses a Slice enumeration as the key or the value, you must insert the enumerator as an  that holds an .NSNumber int

To insert a null proxy or null class instance into a dictionary as a value, you must insert .NSNull

As a convenience feature, the Objective-C mapping also allows you to insert  as the value of a dictionary if the value type of theNSNull
dictionary is a string, structure, sequence, or dictionary. If you send such a dictionary to a receiver, the Ice run time marshals an empty
string, default-initialized structure, empty sequence, or empty dictionary as the corresponding value to the receiver, respectively.

See Also

Dictionaries
Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Constants
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces



Ice 3.4.2 Documentation

526 Copyright © 2011, ZeroC, Inc.

Objective-C Mapping for Constants

Slice  definitions map to corresponding Objective?C constant definitions. For example:constant

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

Objective-C

static const BOOL EXAppendByDefault = YES;
static const ICEByte EXLowerNibble = 15;
static NSString * const EXAdvice = @"Don't Panic!";
static const ICEShort EXTheAnswer = 42;
static const ICEDouble EXPI = 3.1416;

typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;
static const EXFruit EXFavoriteFruit = EXPear;

All constants are initialized directly in the generated header file, so they are compile-time constants and can be used in contexts where a
compile-time constant expression is required, such as to dimension an array or as the  label of a  statement.case switch

See Also

Constants and Literals
Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Exceptions
Objective-C Mapping for Interfaces
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Objective-C Mapping for Exceptions

This page describes the Objective-C mapping for exceptions.

On this page:

Exception Inheritance Hierarchy in Objective-C
Mapping for Exception Data Members in Objective-C
Objective-C Mapping for User Exceptions
Objective-C Mapping for Run-Time Exceptions

Creating and Initializing Run-Time Exceptions in Objective-C
Copying and Deallocating Exceptions in Objective-C
Exception Comparison and Hashing in Objective-C

Exception Inheritance Hierarchy in Objective-C

Here again is a fragment of the Slice definition for our :world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

Objective-C

@interface EXGenericError : ICEUserException
{
@private
    NSString *reason_;
}

@property(nonatomic, retain) NSString *reason_;

// ...
@end

@interface EXBadTimeVal : EXGenericError
// ...
@end

@interface EXBadZoneName : EXGenericError
// ...
@end

Each Slice exception is mapped to an Objective-C class. For each exception member, the corresponding class contains a private instance
variable and a property. (Obviously, because  and  do not have members, the generated classes for theseBadTimeVal BadZoneName
exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated classes, so  and  inheritEXBadTimeVal EXBadZoneName
from .EXGenericError

In turn,  derives from :EXGenericError ICEUserException
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Objective-C

@interface ICEException : NSException
-(NSString* *)ice_name;
@end

@interface ICEUserException : ICEException
// ...
@end

@interface ICELocalException : ICEException
// ...
@end

Note that  itself derives from , which derives from . Similarly, run-time exceptions deriveICEUserException ICEException NSException
from a common base class  that derives from , so we have the inheritance structure shown below:ICELocalException ICEException

Inheritance structure for exceptions.

ICEException provides a single method, , that returns the Slice type ID of the exception with the leading  omitted. Forice_name ::
example, the return value of  for our Slice  is .ice_name GenericError Example::GenericError

Mapping for Exception Data Members in Objective-C

As we mentioned , each data member of a Slice exception generates a corresponding Objective-C property. Here is an example thatearlier
extends our  with yet another exception:GenericError
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Slice

exception GenericError {
    string reason;
};

exception FileError extends GenericError {
    string name;
    int errorCode;
};

The generated properties for these exceptions are as follows:

Objective-C

@interface EXGenericError : ICEUserException
{
@private
    NSString *reason_;
}

@property(nonatomic, retain) NSString *reason_;

// ...
@end

@interface EXFileError : EXGenericError
{
@private
    NSString *name_;
    ICEInt errorCode;
}

@property(nonatomic, retain) NSString *name_;
@property(nonatomic, assign) ICEInt errorCode;

// ...
@end

This is exactly the same mapping as for , with one difference: the  and  members map to  and structure members name reason name_
 properties, whereas — as for structures —  maps to . The trailing underscore for  and reason_ errorCode errorCode reason_ name_

prevents a name collision with the  and  methods that are defined by : if you call the  method, you receivename reason NSException name
the name that is stored by ; if you call the  method, you receive the value of the  instance variable of NSException name_ name_

:EXFileError

Objective-C

@try {
    // Do something that can throw ExFileError...
}
@catch(EXFileError *ex)
{
    // Print the value of the Slice reason, name,
    // and errorCode members.
    printf("reason: %s, name: %s, errorCode: %d\n",
            [ex.reason_ UTF8String],
            [ex.name_ UTF8String],
            ex.errorCode);

    // Print the NSException name.
    printf("NSException name: %s\n", [[ex name] UTF8String]);
}
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The same escape mechanism applies if you define exception data members named , , or .callStackReturnAddresses raise userInfo

Objective-C Mapping for User Exceptions

Initialization of exceptions follows the same pattern as for : each exception (apart from the inherited no-argument  method)structures init
provides an  method that accepts one argument for each data member of the exception, and two convenience constructors. Forinit
example, the generated methods for our  exception look as follows:EXGenericError

Objective-C

@interface EXGenericError : ICEUserException
// ...

-(id) init:(NSString *)reason;
+(id) genericError;
+(id) genericError:(NSString *)reason;
@endif

If a user exception has no data members (and its base exceptions do not have data members either), only the inherited  method andinit
the no-argument convenience constructor are generated.

If you declare default values in your , the inherited  method and the no-argument convenience constructor initialize eachSlice definition init
data member with its declared value.

If an exception has a base exception with data members, its  method and convenience constructor accept one argument for each Sliceinit
data member, in base-to-derived order. For example, here are the methods for the  exception we defined :FileError above

Objective-C

@interface EXFileError : EXGenericError
// ...

-(id) init:(NSString *)reason name_:(NSString *)name
                              errorCode:(ICEInt)errorCode;
+(id) fileError;
+(id) fileError:(NSString *)reason name_:(NSString *)name
                                   errorCode:(ICEInt)errorCode;
@end

Note that  and the second convenience constructor accept three arguments; the first initializes the  base, and theinit EXGenericError
remaining two initialize the instance variables of .EXFileError

Objective-C Mapping for Run-Time Exceptions

The Ice run time throws  for a number of pre-defined error conditions. All run-time exceptions directly or indirectly deriverun-time exceptions
from  which, in turn, derives from . (See the above illustration for an example of an inheritanceICELocalException ICEException
diagram.)

By catching exceptions at the appropriate point in the hierarchy, you can handle exceptions according to the category of error they indicate:

NSException
This is the root of the complete inheritance tree. Catching  catches all exceptions, whether they relate to Ice or theNSException
Cocoa framework.

ICEException
Catching  catches both user and run-time exceptions.ICEException

ICEUserException
This is the root exception for all user exceptions. Catching  catches all user exceptions (but not run-timeICEUserException
exceptions).

ICELocalException
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This is the root exception for all run-time exceptions. Catching  catches all run-time exceptions (but not userICELocalException
exceptions).

ICETimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

ICEConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, an  can be handled as , , ICEConnectTimeoutException ICEConnectTimeoutException ICETimeoutException
, , or .ICELocalException ICEException NSException

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ;ICELocalException
the fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.ICEFacetNotExistException ICEObjectNotExistException

Creating and Initializing Run-Time Exceptions in Objective-C

ICELocalException provides two properties that return the file name and line number at which an exception was raised:

Objective-C

@interface ICELocalException : ICEException
{
// ...

@property(nonatomic, readonly) NSString* file;
@property(nonatomic, readonly) int line;

-(id)init:(const char*)file line:(int)line;
+(id)localException:(const char*)file line:(int)line;
@end

The  method and the convenience constructor accept the file name and line number as arguments.init

Concrete run-time exceptions that derived from  provide a corresponding  method and convenience constructor. ForICEException init
example, here is the Slice definition of :ObjectNotExistException

Slice

local exception RequestFailedException {
    Identity id;
    string facet;
    string operation;
};

local exception ObjectNotExistException extends RequestFailedException {};

The Objective-C mapping for  is:ObjectNotExistException
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Objective-C

@interface ICEObjectNotExistException : ICERequestFailedException
// ...
-(id) init:(const char*)file__p line:(int)line__p;
-(id) init:(const char*)file__p
           line:(int)line__p
           id_:(ICEIdentity *)id_
           facet:(NSString *)facet
           operation:(NSString *)operation;
+(id) objectNotExistException:(const char*)file__p
                              line:(int)line__p;
+(id) objectNotExistException:(const char*)file__p
                              line:(int)line__p
                              id_:(ICEIdentity *)id_
                              facet:(NSString *)facet
                              operation:(NSString *)operation;
@end

In other words, as for user exceptions, run-time exceptions provide  methods and convenience constructors that accept arguments ininit
base-to-derived order. This means that all run-time exceptions require a file name and line number when they are instantiated. For example,
you can throw an  as follows:ICEObjectNotExistException

Objective-C

@throw [ICEObjectNotExistException objectNotExistException:__FILE__ line:__LINE__];

If you throw this exception in the context of an executing operation on the server side, the , , and  instance variablesid_ facet operation
are automatically initialized by the Ice run time.

When you instantiate a run-time exception, the base  is initialized such that its  method returns the same string as NSException name
; the  and  methods return .ice_name reason userInfo nil

Copying and Deallocating Exceptions in Objective-C

User exceptions and run-time exceptions implement the  protocol, so you can copy them. The semantics are the same as for NSCopying
.structures

Similarly, like structures, exceptions implement a  method that takes care of deallocating the instance variables when an exceptiondealloc
is released.

Exception Comparison and Hashing in Objective-C

Exceptions do not override  or , so these methods have the behavior inherited from .isEqual hash NSObject

See Also

User Exceptions
Run-Time Exceptions
Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Interfaces
Facets and Versioning
Object Life Cycle
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Objective-C Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that represents the remote object. This makes the mapping easy and intuitive to use because, for all intents and purposes (apart
from error semantics), making a remote procedure call is no different from making a local procedure call.

On this page:

Proxy Classes and Proxy Protocols in Objective-C
Proxy Instantiation and Casting in Objective-C

Using a Checked Cast in Objective-C
Using an Unchecked Cast in Objective-C

Using Proxy Methods in Objective-C
Object Identity and Proxy Comparison in Objective-C

Proxy Classes and Proxy Protocols in Objective-C

On the client side, interfaces map to a protocol with member functions that correspond to the operations on those interfaces. Consider the
following simple interface:

Slice

["objc:prefix:EX"]
module Example {
    interface Simple {
        void op();
    }
};

The Slice compiler generates the following definitions for use by the client:

Objective-C

@interface EXSimplePrx : ICEObjectPrx
// Mapping-internal methods here...
@end

@protocol EXSimplePrx <ICEObjectPrx>
-(void) op;
-(void) op:(ICEContext *)context;
@end;

As you can see, the compiler generates a proxy protocol  and a proxy class . In general, the generated nameEXSimplePrx EXSimplePrx
for both protocol and class is .Prx<module-prefix><interface-name>

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interface in aEXSimplePrx Simple
server and is known as a . All the details about the server-side object, such as its address, what protocol to use, and itsproxy class instance
object identity are encapsulated in that instance.

Note that  derives from , and that  adopts the  protocol. This reflects the factEXSimplePrx ICEObjectPrx EXSimplePrx ICEObjectPrx
that all Slice interfaces implicitly derive from . For each operation in the interface, the proxy protocol has two methods whoseIce::Object
name is derived from the operation. For the preceding example, we find that the operation   is mapped to two methods,  and .op op op:

The second method has a trailing parameter of type . This parameter is for use by the Ice run time to store information aboutICEContext
how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing parameter does not exist. (We
examine the  parameter in detail in . The parameter is also used by .)ICEContext Request Contexts IceStorm

Proxy Instantiation and Casting in Objective-C

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly.
Instead, proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a
proxy directly.
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Proxies are immutable: once the run time has instantiated a proxy, that proxy continues to denote the same remote object and cannot be
changed. This means that, if you want to keep a copy of a proxy, it is sufficient to call  on the proxy. (You can also call  on aretain copy
proxy because  implements . However, calling  has the same effect as calling .)ICEObjectPrx NSCopying copy retain

Proxies are always passed and returned as type . For example, for the preceding id< Prx><module-prefix><interface-name>
 interface, the proxy type is .Simple id<EXSimplePrx>

The  base class provides class methods that allow you to cast a proxy from one type to another, as described below.ICEObjectPrx

Using a Checked Cast in Objective-C

A  tests whether the object denoted by a proxy implements the specified interface:checkedCast

Objective-C

+(id) checkedCast:(id<ICEObjectPrx>)proxy;

If so, the cast returns a proxy to the specified interface; otherwise, if the object denoted by the proxy does not implement the specified
interface, the cast returns . Checked casts are typically used to safely down-cast a proxy to a more derived interface. For example,nil
assuming we have Slice interfaces  and , you can write the following:Base Derived

Objective-C

id<EXBasePrx> base = ...;  // Initialize base proxy
id<EXDerivedPrx> derived = [EXDerivedPrx checkedCast:base];
if(derived != nil)
{
    // base implements run-time type Derived
    // use derived...
} else {
    // Base has some other, unrelated type
}

The expression [  tests whether  points at an object of type  (or an object with a typeEXDerivedPrx checkedCast:base] base Derived
that is derived from ). If so, the cast succeeds and  is set to point at the same object as . Otherwise, the cast failsDerived derived base
and  is set to . (Proxies that "point nowhere" are represented by .)derived nil nil

A  typically results in a remote message to the server.checkedCast

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies
only in narrowly-defined circumstances, so you cannot rely on a  not sending a message.checkedCast

The message effectively asks the server "is the object denoted by this proxy of type ?" The reply from the server is communicatedDerived
to the application code in form of a successful (non- ) or unsuccessful ( ) result. Sending a remote message is necessary because, asnil nil
a rule, there is no way for the client to find out what the actual run-time type of a proxy is without confirmation from the server. (For example,
the server may replace the implementation of the object for an existing proxy with a more derived one.) This means that you have to be
prepared for a  to fail. For example, if the server is not running, you will receive an ; ifcheckedCast ICEConnectionRefusedException
the server is running, but the object denoted by the proxy no longer exists, you will receive an .ICEObjectNotExistException

Using an Unchecked Cast in Objective-C

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

Objective-C

+(id) uncheckedCast:(id<ICEObjectPrx>)proxy;

Here is an example:
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Objective-C

id<EXBasePrx> base;
base = ...;  // Initialize base to point at a Derived
id<EXDerivedPrx> derived = [EXDerivedPrx uncheckedCast:base];
// Use derived...

An  provides a down-cast  consulting the server as to the actual run-time type of the object. You should use an uncheckedCast without
 only if you are certain that the proxy indeed supports the more derived type: an , as the name implies, isuncheckedCast uncheckedCast

not checked in any way; it does not contact the object in the server and, if the proxy does not support the specified interface, the cast does
not return null. If you use the proxy resulting from an incorrect  to invoke an operation, the behavior is undefined. MostuncheckedCast
likely, you will receive an , but, depending on the circumstances, the Ice run time may also report anICEOperationNotExistException
exception indicating that unmarshaling has failed, or even silently return garbage results.

Despite its dangers,  is still useful because it avoids the cost of sending a message to the server. And, particularly during uncheckedCast
, it is common to receive a proxy of type , but with a known run-time type. In such cases, an initialization id<ICEObjectPrx>

 saves the overhead of sending a remote message.uncheckedCast

Note that an  is  the same as an ordinary cast. The following is incorrect and has undefined behavior:uncheckedCast not

Objective-C

id<EXDerivedPrx> derived = (id<EXDerivedPrx>)base; // Wrong!

Both  and  call  on the proxy they return so, if you want to prevent the proxy from beingcheckedCast uncheckedCast autorelease
deallocated once the enclosing autorelease pool is drained, you must call  on the returned proxy.retain

Using Proxy Methods in Objective-C

The  provides a variety of . Since proxies are immutable, each of these "factory methods"ICEObjectPrx methods for customizing a proxy
returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten-second
timeout as shown below:

Objective-C

id<ICEObjectPrx> proxy = [communicator stringToProxy:...];
proxy = [proxy ice_timeout:10000];

A factory method returns a new (autoreleased) proxy object if the requested modification differs from the current proxy, otherwise it returns
the original proxy. The returned proxy is always of the same type as the source proxy, except for the factory methods  and ice_facet

. Calls to either of these methods may produce a proxy for an object of an unrelated type, therefore they return a base proxyice_identity
that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Objective-C

Proxy objects support comparison with . Note that  uses  of the information in a proxy for the comparison. This meansisEqual isEqual all
that not only the object identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and
endpoint information, must be the same as well. In other words, comparison with  tests for proxy identity, not object identity. AisEqual
common mistake is to write code along the following lines:

Objective-C

id<ICEObjectPrx> p1 = ...;      // Get a proxy...
id<ICEObjectPrx> p2 = ...;      // Get another proxy...

if (![p1 isEqual:p2]) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}
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Even though  and  differ, they may denote the same Ice object. This can happen if, for example,  and  embed the same objectp1 p2 p1 p2
identity, but use a different protocol to contact the target object. Similarly, the protocols might be the same, but could denote different
endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare
equal with , we know that the two proxies denote the same object (because they are identical in all respects); however, if twoisEqual
proxies compare unequal with  , we know absolutely nothing: the proxies may or may not denote the same object.isEqual

To compare the object identities of two proxies, you can use additional methods provided by proxies:

Objective-C

@protocol ICEObjectPrx <NSObject, NSCopying>
// ...
-(NSComparisonResult) compareIdentity:(id<ICEObjectPrx>)p;
-(NSComparisonResult) compareIdentityAndFacet:(id<ICEObjectPrx>)p;
@end

The  method compares the object identities embedded in two proxies while ignoring other information, such as facet andcompareIdentity
transport information. To include the  in the comparison, use  instead.facet name compareIdentityAndFacet

compareIdentity and  allow you to correctly compare proxies for object identity. The example belowcompareIdentityAndFacet
demonstrates how to use :compareIdentity

Objective-C

id<ICEObjectPrx> p1 = ...;      // Get a proxy...
id<ICEObjectPrx> p2 = ...;      // Get another proxy...

if ([p1 compareIdentity:p2] != NSOrderedSame) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

See Also

Interfaces, Operations, and Exceptions
Proxies
Objective-C Mapping for Operations
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm
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Objective-C Mapping for Operations

On this page:

Basic Objective-C Mapping for Operations
Normal and  Operations in Objective-Cidempotent
Passing Parameters in Objective-C

In-Parameters in Objective-C
Passing  and  in Objective-Cnil NSNull
Out-Parameters in Objective-C
Memory Management for Out-Parameters in Objective-C
Receiving Return Values in Objective-C
Chained Invocations in Objective-C

 Out-Parameters and Return Values in Objective-Cnil
Exception Handling in Objective-C

Exceptions and Out-Parameters in Objective-C
Exceptions and Return Values in Objective-C

Basic Objective-C Mapping for Operations

As we saw in the , for each  on an interface, the proxy protocol contains two corresponding methods with themapping for interfaces operation
same name as the operation.

To invoke an operation, you call it via the proxy object. For example, here is part of the definitions for our :file system

Slice

["objc:prefix:FS"]
module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
    // ...
}; 

The proxy protocol for the  interface looks as follows:Node

Objective-C

@protocol FSNodePrx <ICEObjectPrx>
-(NSMutableString *) name;
-(NSMutableString *) name:(ICEContext *)context;
@end;

The  method returns a value of type . Given a proxy to an object of type , the client can invoke the operationname NSMutableString Node
as follows:

Objective-C

id<EXNodePrx> node = ...;       // Initialize proxy
NSString *name = [node name];   // Get name via RPC

The  method sends the operation invocation to the server, waits until the operation is complete, and then unmarshals the return valuename
and returns it to the caller.

Because the  method autoreleases the return value, it is safe to ignore the return value. For example, the following code contains noname
memory leak:
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Objective-C

id<EXNodePrx> node = ...;       // Initialize proxy
[node name];                    // Useless, but no leak

If you ignore the return value, no memory leak occurs because the next time the enclosing autorelease pool is drained, the memory will be
reclaimed.

Normal and  Operations in Objective-Cidempotent

You can add an  qualifier to a Slice operation. As far as the corresponding proxy protocol methods are concerned, idempotent
 has no effect. For example, consider the following interface:idempotent

Slice

interface Ops {
                string op1();
    idempotent  string op2();
    idempotent  void op3(string s);
};

The proxy protocol for this interface looks like this:

Objective-C

@protocol EXOpsPrx <ICEObjectPrx>
-(NSMutableString *) op1;
-(NSMutableString *) op1:(ICEContext *)context;
-(NSMutableString *) op2;
-(NSMutableString *) op2:(ICEContext *)context;
-(void) op3:(NSString *)s;
-(void) op3:(NSString *)s context:(ICEContext *)context;
@end;

For brevity, we will not show the methods with the additional trailing  parameter for the remainder of thiscontext
discussion. Of course, the compiler generates the additional methods regardless.

Because  affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the idempotent idempotent
keyword.

Passing Parameters in Objective-C

In-Parameters in Objective-C

The parameter passing rules for the Objective-C mapping are very simple: value type parameters are passed by value and non-value type
parameters are passed by pointer. Semantically, the two ways of passing parameters are identical: the Ice run time guarantees not to
change the value of an in-parameter.

Here is an interface with operations that pass parameters of various types from client to server:
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Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

Objective-C

@interface EXNumberAndString : NSObject <NSCopying>
// ...
@property(nonatomic, assign) ICEInt x;
@property(nonatomic, retain) NSString *str;
// ...
@end

typedef NSArray EXStringSeq;
typedef NSMutableArray EXMutableStringSeq;

typedef NSDictionary EXStringTable;
typedef NSMutableDictionary EXMutableStringTable;

@protocol EXClientToServerPrx <ICEObjectPrx>
-(void) op1:(ICEInt)i f:(ICEFloat)f b:(BOOL)b s:(NSString *)s;
-(void) op2:(EXNumberAndString *)ns ss:(EXStringSeq *)ss st:(NSDictionary *)st;
-(void) op3:(id<EXClientToServerPrx>)proxy;
@end;

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer
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Objective-C

id<EXClientToServerPrx> p = ...;           // Get proxy...

[p op1:42 f:3.14 b:YES s:@"Hello world!"]; // Pass literals

ICEInt i = 42;
ICEFloat f = 3.14;
BOOL b = YES;
NSString *s = @"Hello world!";

[p op1:i f:f b:b s:s];                     // Pass simple vars

EXNumberAndString *ns = [EXNumberAndString numberAndString:42 str:@"The Answer"];
EXMutableStringSeq *ss = [ExMutableStringSeq array];
[ss addObject:@"Hello world!"];
EXStringTable *st = [EXMutableStringTable dictionary];
[ss setObject:ss forKey:[NSNumber numberWithInt:0]];

[p op2:ns ss:ss st:st];                    // Pass complex vars

[p op3:p];                                 // Pass proxy

You can pass either literals or variables to the various operations. The Ice run time simply marshals the value of the parameters to the server
and leaves parameters otherwise untouched, so there are no memory-management issues to consider.

Note that the invocation of  is somewhat unusual: the caller passes the proxy it uses to invoke the operation to the operation as aop3
parameter. While unusual, this is legal (and no memory management issues arise from doing this.)

Passing  and  in Objective-Cnil NSNull

The Slice language supports the concept of null ("points nowhere") for only two of its types: proxies and classes. For either type, nil
represents a null proxy or class. For other Slice types, such as strings, the concept of a null string simply does not apply. (There is no such
thing as a null string, only the empty string.) However, strings, structures, sequences, and dictionaries are all passed by pointer, which raises
the question of how the Objective-C mapping deals with  values.nil

As a convenience feature, the Objective-C mapping permits passing of  as a parameter for the following types:nil

Proxies (  sends a null proxy.)nil
Classes (  sends a null class instance.)nil
Strings (  sends an empty string.)nil
Structures (  sends a default-initialized structure.)nil
Sequences (  sends an empty sequence.)nil
Dictionaries (  sends an empty dictionary.)nil

It is impossible to add  to an  or , so the mapping follows the usual convention that an  element or nil NSArray NSDictionary NSArray
 value that is conceptually  is represented by . For example, to send a sequence of proxies, some of which areNSDictionary nil NSNull

null proxies, you must insert  values into the sequence.NSNull

As a convenience feature, if you have a sequence with elements of type string, structure, sequence, or dictionary, you can use  asNSNull
the element value. For elements that are , the Ice run time marshals an empty string, default-initialized structure, empty sequence, orNSNull
empty dictionary to the receiver.

Similarly, for dictionaries with value type string, structure, sequence, or dictionary, you can use  as the value to send theNSNull
corresponding empty value (or default-initialized value, in the case of structures).

Out-Parameters in Objective-C

The Objective-C mapping passes out-parameters by pointer (for value types) and by pointer-to-pointer (for non-value types). Here is the 
 once more, modified to pass all parameters in the  direction:Slice definition out
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Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

Objective-C

@protocol EXServerToClientPrx <ICEObjectPrx>
-(void) op1:(ICEInt *)i f:(ICEFloat *)f b:(BOOL *)b s:(NSMutableString **)s;
-(void) op2:(EXNumberAndString **)ns ss:(EXMutableStringSeq **)ss
            st:(EXMutableStringTable **)st;
-(void) op3:(id<EXClientToServerPrx> *)proxy;
@end

Note that, for types that come in immutable and mutable variants (strings, sequences, and dictionaries), the corresponding out-parameter
uses the mutable variant.

Given a proxy to a  interface, the client code can pass parameters as in the following example:ServerToClient

Objective-C

id<EXServerToClientPrx> p = ...; // Get proxy...

ICEInt i;
ICEFloat f;
BOOL b;
NSMutableString *s;

[p op1:&i f:&f b:&b s:&s];
// i, f, b, and s contain updated values now

EXNumberAndString *ns;
EXStringSeq *ss;
EXStringTable *st;

[p op2:&ns ss:&ss st:&st];
// ns, ss, and st contain updated values now

[p op3:&p];
// p has changed now!

Again, there are no surprises in this code: the caller simply passes pointers to pointer variables to a method; once the operation completes,
the values of those variables will have been set by the server.

Memory Management for Out-Parameters in Objective-C
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When the Ice run time returns an out-parameter to the caller, it does not make any assumptions about the previous value of that parameter
(if any). In other words, if you pass an initialized string as an out-parameter, the value you pass is simply discarded and the corresponding
variable is assigned a new instance. As an example, consider the following operation:

Slice

void getString(out string s);

You could call this as follows:

Objective-C

NSMutableString *s = @"Hello";
[p getString:&s];
// s now points at the returned string.

All out-parameters are autoreleased by the Ice run time before they are returned. This is convenient because it does just the right thing with
respect to memory management. For example, the following code does not leak memory:

Objective-C

NSMutableString *s = @"Hello";
[p getString:&s];
[p getString:&s]; // No leak here.

However, because the pointer value of out-parameters is simply assigned by the proxy method, you must be careful not to pass a variable as
an out-parameter if that variable was not released or autoreleased:

Objective-C

NSMutableString *s = [[NSMutableString alloc] initWithString:@"Hello"];
[p getString:&s]; // Bad news!

This code leaks the initial string because the proxy method assigns the passed pointer without calling  on it first. (In practice, this isrelease
rarely a problem because there is no need to initialize out-parameters and, if an out-parameter was initialized by being passed as an
out-parameter to an operation earlier, its value will have been autoreleased by the proxy method already.)

It is worth having another look at the final call of the  we saw earlier:code example

Objective-C

[p op3:&p];

Here,  is the proxy that is used to dispatch the call. That same variable  is also passed as an out-parameter to the call, meaning that thep p
server will set its value. In general, passing the same parameter as both an input and output parameter is safe (with the caveat we just
discussed).

Receiving Return Values in Objective-C

The Objective-C mapping returns return values in much the same way as out-parameters: value types are returned by value, and non-value
types are returned by pointer. As an example, consider the following operations:



Ice 3.4.2 Documentation

543 Copyright © 2011, ZeroC, Inc.

Slice

struct NumberAndString {
    int x;
    string str;
};

interface Ops {
    int getInt();
    string getString();
    NumberAndString getNumberAndString();
};

The proxy protocol looks as follows:

Objective-C

@protocol EXOpsPrx <ICEObjectPrx>
-(ICEInt) getInt;
-(NSMutableString *) getString;
-(EXNumberAndString *) getNumberAndString;
@end

Note that, for types with mutable and immutable variants (strings, sequences, and dictionaries), the formal return type is the mutable variant.
As for out-parameters, anything returned by pointer is autoreleased by the Ice run time. This means that the following code works fine and
does not contain memory management errors:

Objective-C

EXNumberAndString *ns = [NSNumberAndString numberAndString];
ns.x = [p getInt];
ns.str = [p getString]; // Autoreleased by getString,
                        // retained by ns.str.

[p getNumberAndString]; // No leak here.

The return value of  is autoreleased by the proxy method but, during the assignment to the property , the generated codegetString str
calls , so the structure keeps the returned string alive in memory, as it should. Similarly, ignoring the return value from an invocationretain
is safe because the returned value is autoreleased and will be reclaimed when the enclosing autorelease pool is drained.

Chained Invocations in Objective-C

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

interface Name {
    string getName();
    void setName(string name);
};

Suppose we have two proxies to interfaces of type ,  and , and chain invocations as follows:Name p1 p2

Objective-C

[p2 setName:[p1 getName]]; // No leak here.

This works exactly as intended: the value returned by  is transferred to . There are no memory-management or exception safety issuesp1 p2
with this code.
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nil Out-Parameters and Return Values in Objective-C

If an out-parameter or return value is a proxy or class, and the operation returns a null proxy or class, the proxy method returns . If anil
proxy or class is returned as part of a sequence or dictionary, the corresponding entry is .NSNull

For strings, structures, sequences, and dictionaries, the Ice run time  returns  or  (even if the server passed  or never nil NSNull nil NSNull
as the value). Instead, the unmarshaling code always instantiates an empty string, empty sequence, or empty dictionary, and it always
initializes structure members during unmarshaling, so structures that are returned from an operation invocation never contain a  instancenil
variable (except for proxy and class instance variables).

Exception Handling in Objective-C

Any operation invocation may throw  and, if the operation has an exception specification, may also throw a run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Objective-C exceptions, so you can simply enclose one or more operation invocations in a -  block:try catch

Objective-C

id<EXChildPrx> child = ...;    // Get proxy...
@try {
    [child askToCleanUp];      // Give it a try...
} @catch (EXTantrum *t) {
    printf("The child says: %s\n", t.reason_);
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:
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Objective-C

void run()
{
    id<EXChildPrx> child = ...;       // Get proxy...
    @try {
        [child askToCleanUp];         // Give it a try...
    } @catch (EXTantrum *t) {
        printf("The child says: %s\n", t.reason);
        [child scold];                // Recover from error...
    }
    [child praise];                   // Give positive feedback...
}

int
main(int argc, char* argv[])
{
    int status = 1;
    @try {
        // ...
        run();
        // ...
        status = 0;
    } @catch (ICEException *e) {
        printf("Unexpected run-time error: %s\n", [e ice_name]);
    }
    // ...
    return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our .)first simple application

Exceptions and Out-Parameters in Objective-C

If an operation throws an exception, the Ice run time makes no guarantee for the value of out-parameters. Individual out-parameters may
have the old value, the new value, or a value that is indeterminate, such that parts of the out-parameter have been assigned and others have
not. However, no matter what their state, the values will be "safe" for memory-management purposes, that is, any out-parameters that were
successfully unmarshaled are autoreleased.

Exceptions and Return Values in Objective-C

For return values, the Objective-C mapping provides the guarantee that a variable receiving the return value of an operation will not be
overwritten if an exception is thrown.

See Also

Operations
Hello World Application
Objective-C Mapping for Interfaces
Objective-C Mapping for Exceptions
Objective-C Mapping for Local Interfaces
Request Contexts
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Objective-C Mapping for Local Interfaces

The Ice run time defines APIs using . These APIs are provided as part of the Ice run time library and cannot be invoked remotely.Slice
(Doing so would not make any sense.) Therefore, the Slice interfaces for the Ice run time are defined as . The Objective-Clocal interfaces
mapping for local interfaces differs from the default mapping in two ways:

Local interfaces do not adopt an  protocol. (Doing so would be misleading because proxies imply that thePrx<interface-name>
target object can be remote.) Instead, the protocol for local interfaces has the same name as the interface. For example, the 

 interfaces is defined as:Ice::Communicator

Slice

["objc:prefix:ICE"]
module Ice {
    local interface Communicator {
        // ...
    }
};

Because  is a local interface, objects of type  are passed as  (  Communicator ICECommunicator id<ICECommunicator> not
 or ).ICECommunicator* id<ICEComunicatorPrx>

Types that come in mutable and immutable variants (strings, sequences, and dictionaries) are always passed as the immutable
variant. For example, the  operation on the  interface is defined as:getName ObjectAdapter

Slice

["objc:prefix:ICE"]
module Ice {
    local interface ObjectAdapter {
        string getName();
    };
};

Because  is a local interface, the  operation maps to:ObjectAdapter getName

Objective-C

-(NSString *) getName;

Note that the returned string is of type  instead of  (as would be the case for an operation on aNSString NSMutableString
non-local interface).
For local interfaces, parameters are passed as the immutable version because their values are not meant to be modified by
application code. In addition, passing the immutable version avoids an unnecessary data copy.

See Also

Modules
Local Types
Objective-C Mapping for Operations
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1.  

2.  
3.  

Objective-C Mapping for Classes

On this page:

Basic Objective-C Mapping for Classes
Derivation from  in Objective-CICEObject
Class Data Members in Objective-C
Class Constructors in Objective-C
Derived Classes in Objective-C
Passing Classes as Parameters in Objective-C
Operations of Classes in Objective-C
Class Factories in Objective-C

Using a Category to Implement Operations in Objective-C
Copying of Classes in Objective-C

Cyclic References in Objective-C

Basic Objective-C Mapping for Classes

A Slice  is mapped similar to a structure and exception.class

The generated class contains an instance variable and a property for each Slice data member. Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

Objective-C

@interface EXTimeOfDay : ICEObject
{
    ICEShort hour;
    ICEShort minute;
    ICEShort second;
}

@property(nonatomic, assign) ICEShort hour;
@property(nonatomic, assign) ICEShort minute;
@property(nonatomic, assign) ICEShort second;

-(id) init:(ICEShort)hour minute:(ICEShort)minute second:(ICEShort)second;
+(id) timeOfDay;
+(id) timeOfDay:(ICEShort)hour minute:(ICEShort)minute second:(ICEShort)second;
@end

There are a number of things to note about the generated code:

The generated class  derives from , which is the parent of all classes. Note that  is  theEXTimeOfDay ICEObject ICEObject not
same as . In other words, you  pass a class where a proxy is expected and vice versa.ICEObjectPrx cannot
The generated class contains a property for each Slice data member.
The generated class provides an  method that accepts one argument for each data member, and it provides the same twoinit
convenience constructors as structures and exceptions.

Derivation from  in Objective-CICEObject

All classes ultimately derive from a common base class, . Note that this is not the same as implementing the ICEObject ICEObjectPrx
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protocol (which is implemented by proxies). As a result, you cannot pass a class where a proxy is expected (and vice versa) because the
base types for classes and proxies are not compatible.

ICEObject defines a number of methods:

Objective-C

@protocol ICEObject <NSObject>
-(BOOL) ice_isA:(NSString*)typeId current:(ICECurrent*)current;
-(void) ice_ping:(ICECurrent*)current;
-(NSString*) ice_id:(ICECurrent*)current;
-(NSArray*) ice_ids:(ICECurrent*)current;
@end

@interface ICEObject NSObject <ICEObject, NSCopying>
-(BOOL) ice_isA:(NSString*)typeId;
-(void) ice_ping;
-(NSString*) ice_id;
-(NSArray*) ice_ids;
+(NSString*) ice_staticId;
-(void) ice_preMarshal;
-(void) ice_postUnmarshal;
-(BOOL) ice_dispatch:(id<ICERequest>)request;
-(id) initWithDelegate:(id)delegate;
+(id) objectWithDelegate:(id)delegate;
@end

The methods are split between the  protocol and class because classes can be servants.ICEObject

The methods of  behave as follows:ICEObject

ice_isA
This function returns  if the object supports the given , and  otherwise.YES type ID NO

ice_ping
 provides a basic reachability test for the class. If it completes without raising an exception, the class exists and isice_ping

reachable. Note that  is normally only invoked on the proxy for a class that might be remote because a class instance thatice_ping
is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time  for a class. If you call  via a pointer to a base instance, the returned type IDtype ID ice_id
is the actual (possibly more derived) type ID of the instance.

ice_staticId
This function returns the static  of a class.type ID

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

initWithDelegate
These constructors enable the implementation of servants with a .delegate

Class Data Members in Objective-C
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By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding property.

Class Constructors in Objective-C

Classes provide the usual  method and a parameter-less convenience constructor that perform default initialization of the class'sinit
instance variables. If you declare default values in your , the  method and convenience constructor initialize each dataSlice definition init
member with its declared value.

In addition, if a class has data members, it provides an  method and a convenience constructor that accept one argument for each datainit
member. This allows you to allocate and initialize a class instance in a single statement (instead of first having to allocate and
default-initialize the instance and then assign to its properties).

For derived classes, the  method and the convenience constructor have one parameter for each of the base class's data members, plusinit
one parameter for each of the derived class's data members, in base-to-derived order. For example:

Slice

class Base {
    int i;
};

class Derived extends Base {
    string s;
};

This generates:

Objective-C

@interface EXBase : ICEObject
// ...

@property(nonatomic, assign) ICEInt i;

-(id) init:(ICEInt)i;
+(id) base;
+(id) base:(ICEInt)i;
@end

@interface EXDerived : EXBase
// ...

@property(nonatomic, retain) NSString *s;

-(id) init:(ICEInt)i s:(NSString *)s;
+(id) derived;
+(id) derived:(ICEInt)i s:(NSString *)s;
@end

Derived Classes in Objective-C

Note that, in the preceding example, the derivation of the Slice definitions is preserved for the generated classes:  derives from EXBase
, and  derives from . This allows you to treat and pass classes polymorphically: you can always pass an ICEObject EXDerived EXBase
 instance where an  instance is expected.EXDerived EXBase

Passing Classes as Parameters in Objective-C

Classes are passed by pointer, like any other Objective-C object. For example, here is an operation that accepts a  as an in-parameterBase
and returns a :Derived
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Slice

Derived getDerived(Base d);

The corresponding proxy method looks as follows:

Objective-C

-(EXDerived *) getDerived:(EXBase *)d;

To pass a null instance, you simply pass .nil

Operations of Classes in Objective-C

If you look back at the code that is generated for the  class, you will notice that there is no indication at all that the class has a EXTimeOfDay
 operation. As opposed to proxies, classes do not implement any protocol that would define which operations are available. Thisformat

means that you can partially implement the operations of a class. For example, you might have a Slice class with five operations that is
returned from a server to a client. If the client uses only one of the five operations, the client-side code needs to implement only that one
operation and can leave the remaining four operations without implementation. (If the class were to implement a mandatory protocol, the
client-side code would have to implement all operations in order to avoid a compiler warning.)

Of course, you must implement those operations that you actually intend to call. The mapping of operations for classes follows the 
 mapping for operations on interfaces: parameter types and labels are exactly the same. (See server-side Parameter Passing in Objective-C

for details.) In a nutshell, the server-side mapping is the same as the client-side mapping except that, for types that have mutable and
immutable variants, they map to the immutable variant where the client-side mapping uses the mutable variant, and vice versa.

For example, here is how we could implement the  operation of our  class:format TimeOfDay

Objective-C

@interface TimeOfDayI : EXTimeOfDay
@end

@implementation TimeOfDayI
-(NSString *) format
{
    return [NSString stringWithFormat:@"%.2d:%.2d:%.2d", self.hour, self.minute, self.second];
}
@end

By convention, the implementation of classes with operations has the same name as the Slice class with an -suffix. Doing this is notI
mandatory — you can call your implementation class anything you like. However, if you do not want to use the -suffix naming, weI
recommend that you adopt another naming convention and follow it consistently.

Note that  derives from . This is because, as we will see in a moment, the Ice run time will instantiate a TimeOfDayI EXTimeOfDay
 instance whenever it receives a  instance over the wire and expects that instance to provide the properties of TimeOfDayI TimeOfDay

.EXTimeOfDay

Class Factories in Objective-C

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However,get TimeOfDayI
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unless we tell it, the Ice run time cannot magically know that we have created a  class that implements a  method. ToTimeOfDayI format
allow the Ice run time to instantiate the correct object, we must provide a factory that knows that the Slice  class is implementedTimeOfDay
by our  class. The  interface provides us with the necessary operations:TimeOfDayI Ice::Communicator

Slice

["objc:prefix:ICE"]
module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };
};

The object factory's  operation is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
operation is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

Objective-C

@interface ObjectFactory<ICEObjectFactory>
@end

@implementation ObjectFactory
-(ICEObject*) create:(NSString *)type
{
    NSAssert([type isEqualToString:@"::Example::TimeOfDay"]);
    return [[TimeOfDayI alloc] init];
}
@end

The  method is passed the  of the class to instantiate. For our  class, the type ID is .create type ID TimeOfDay "::Example::TimeOfDay"
Our implementation of  checks the type ID: if it is , it instantiates and returns a  object.create "::Example::TimeOfDay" TimeOfDayI
For other type IDs, it asserts because it does not know how to instantiate other types of objects.

Note that your factory  autorelease the returned instance. The Ice run time takes care of the necessary memory managementmust not
activities on your behalf.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Objective-C

id<ICECommunicator> ice = ...;
ObjectFactory *factory = [[[ObjectFactory alloc] init] autorelease];
[ic addObjectFactory:factory sliceId:@"::Example::TimeOfDay"];
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Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of"::Example::TimeOfDay" create
the registered  instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, the Ice run time may make concurrent calls to .create destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not (but can) create and register an object factory to
transmit instances of such a class. Only if a class has operations do you have to define and register an object factory.

Using a Category to Implement Operations in Objective-C

An alternative to registering a class factory is to use an Objective-C category to implement operations. For example, we could have
implemented our  method using a category instead:format

Objective-C

@interface EXTimeOfDay (TimeOfDayI)
@end

@implementation EXTimeOfDay (TimeOfDayI)
-(NSString *) format
{
    return [NSString stringWithFormat:@"%.2d:%.2d:%.2d", self.hour, self.minute, self.second];
}
@end

In this case, there is no need to derive from the generated  class because we provide the format implementation as aEXTimeOfDay
category. There is also no need to register a class factory: the Ice run time instantiates an  instance when a EXTimeOfDay TimeOfDay
instance arrives over the wire, and the  method is found at run time when it is actually called.format

This is a viable alternative approach to implement class operations. However, keep in mind that, if the operation implementation requires use
of instance variables that are not defined as part of the Slice definitions of a class, you cannot use this approach because Objective-C
categories do not permit you to add instance variables to a class.

Copying of Classes in Objective-C

Classes implement . The behavior is the same as for structures: instance variables of value type are copied by assignment,NSCopying
instance variables of pointer type are copied by calling , that is, the copy is shallow. To illustrate this, consider the following classretain
definition:

Slice

class Node {
    int i;
    string s;
    Node next;
};

We can initialize two instances of type  as follows:EXNode
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Objective-C

NSString lastString = [NSString stringWithString:@"last"];
EXNode *last = [EXNode node:99 s:lastString next:nil];

NSString firstString = [NSString stringWithString:@"first"];
EXNode *first = [EXNode node:1 s:firstString next:last];

This creates the situation shown below:

Two instances of type .EXNode

Now we create a copy of the first node by calling :copy

Objective-C

EXNode *copy = [[first copy] autorelease];

This creates the situation shown here:
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 instances after calling  on .EXNode copy first

As you can see, the first node is copied, but the last node (pointed at by the  instance variable of the first node) is not copied; instead, next
 and  now both have their  instance variable point at the same last node, and both point at the same string.first copy next

Cyclic References in Objective-C

One thing to be aware of are cyclic references among classes. As an example, we can easily create a cycle by executing the following
statements:

Objective-C

EXNode *first = [EXNode node];
ExNode *last = [EXNode node];
first.next = last;
last.next = first;

This makes the  instance variable of the two classes point at each other, creating the cycle shown below:next

Two nodes with cyclic references.

There is no problem with sending this class graph as a parameter. For example, you could pass either  or  as a parameter to anfirst last
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operation and, in the server, the Ice run time will faithfully rebuild the corresponding graph, preserving the cycle. However, if a server returns
such a graph from an operation invocation as the return value or as an out-parameter, all class instances that are part of a cycle are leaked.
The same is true on the client side: if you receive such a graph from an operation invocation and do not explicitly break the cycle, you will
leak all instances that form part of the cycle.

Because it is difficult to break cycles manually (and, on the server side, for return values and out-parameters, it is impossible to break them),
we recommend that you avoid cyclic references among classes.

A future version of the Objective-C run time may provide a garbage collector similar to the one used by Ice for C++.

See Also

Simple Classes
Objective-C Mapping for Classes]
Server-Side Objective-C Mapping for Interfaces
Parameter Passing in Objective-C
Dispatch Interceptors
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Objective-C Mapping for Interfaces by Value

Slice permits you to pass an :interface by value

Slice

interface ClassBase {
    void someOp();
    // ...
};

interface Processor {
    ClassBase process(ClassBase b);
};

class SomeClass implements ClassBase {
    // ...
};

Note that  accepts and returns a value of type . This is  the same as passing , which is a process ClassBase not id<ClassBasePrx> proxy
to an object of type  that is possibly remote. Instead, what is passed here is an , and the interface is passed by .ClassBase interface value

The immediate question is "what does this mean?" After all, interfaces are abstract and, therefore, it is impossible to pass an interface by
value. The answer is that, while an interface cannot be passed, what  be passed is a class that implements the interface. That class iscan
type-compatible with the formal parameter type and, therefore, can be passed by value. In the preceding example,  implements SomeClass

 and, hence, can be passed to and returned from the  operation.ClassBase process

The Objective-C mapping maps interface-by-value parameters to , regardless of the type of the interface. For example, theICEObject*
proxy protocol for the  operation is:process

Objective-C

-(ICEObject *) process:(ICEObject *)b;

This means that you can pass a class of any type to the operation, even if it is not type-compatible with the formal parameter type, because
all classes derive from . However, an invocation of  is still type-safe at run time: the Ice run time verifies that the classICEObject process
instance that is passed implements the specified interface; if not, the invocation throws an .ICEMarshalException

Passing interfaces by value as  is a consequence of the decision to not generate a formal protocol for classes. (If such aICEObject*
protocol would exist, the formal parameter type could be . However, as we described for the , a protocolid< >ProtocolName class mapping
would require the implementation of a class to implement all of its operations, which can be inconvenient. Because it is rare to pass
interfaces by value (more often, the formal parameter type will be a base  instead of a base ), the minor loss of static typeclass interface
safety is an acceptable trade-off.

See Also

Passing Interfaces by Value
Objective-C Mapping for Classes
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Asynchronous Method Invocation (AMI) in Objective-C

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

Basic Asynchronous API in Objective-C
Proxy Methods for AMI in Objective-C
Exception Handling for AMI in Objective-C

The  Protocol in Objective-CICEAsyncResult
Polling for Completion in Objective-C
Completion Callbacks in Objective-C
Oneway Invocations in Objective-C
Flow Control in Objective-C
Batch Requests in Objective-C
Concurrency in Objective-C

Basic Asynchronous API in Objective-C

Consider the following simple Slice definition:

Slice

module Demo {
    interface Employees {
        string getName(int number);
    };
};

Proxy Methods for AMI in Objective-C

Besides the synchronous proxy methods, the Objective-C mapping generates the following asynchronous proxy methods:
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Objective-C

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_
sent:(void(^)(BOOL))sent_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
context:(ICEContext *)context
response:(void(^)(NSMutableString*))response_
exception:(void(^)(ICEException*))exception_
sent:(void(^)(BOOL))sent_;

-(NSMutableString *) end_getName:(id<ICEAsyncResult>)result;

As you can see, the single  operation results in several  methods as well as an  method. The getName begin_getName end_getName
 methods optionally accept a  and .begin_ per-invocation context callbacks

The  methods send (or queue) an invocation of . These methods do not block the calling thread.begin_getName getName
The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls ,end_getName end_getName
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

Objective-C

id<EXEmployeesPrx> e = [EXEmployeesPrx checkedCast:...];
id<ICEAsyncResult> r = [e begin_getName:99]

// Continue to do other things here...

NSString* name = [e end_getName:r];

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . This value contains the state that the Ice run time requires tobegin_getName id<ICEAsyncResult>
keep track of the asynchronous invocation. You must pass the  that is returned by the  method to theid<ICEAsyncResult> begin_
corresponding  method.end_

The  method has one parameter for each in-parameter of the corresponding Slice operation. The  method accepts the begin_ end_
 object as its only argument and returns the out-parameters using the  as for regular synchronousid<ICEAsyncResult> same semantics

invocations. For example, consider the following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op
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Objective-C

-(id<ICEAsyncResult>) begin_op:(ICEInt)inp1 inp2:(NSString *)inp2;
-(ICEDouble) end_op:(BOOL*)outp1 outp2:(ICELong*)outp2
result:(id<ICEAsyncResult>)result;

The call to  returns the out-parameters as follows:end_op

Objective-C

BOOL outp1;
ICELong outp2;
ICEDouble doubleValue = [p end_op:&outp1 outp2:&outp2 result:result];

Exception Handling for AMI in Objective-C

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception wasend_
encountered during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with thebegin_
code that calls the  method (instead of being present twice, once where the  method is called, and again where the end_ begin_ end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  methodbegin_
throws . This is necessary because, once the run time is finalized, it can no longer throw anICECommunicatorDestroyedException
exception from the  method.end_

The only other exception that is thrown by the  and  methods is  with the begin_ end_ NSException NSInvalidArgumentException
name. This exception indicates that you have used the API incorrectly. For example, the  method throws this exception if you call anbegin_
operation that has a return value or out-parameters on a oneway proxy. Similarly, the  method throws this exception if you use aend_
different proxy to call the  method than the proxy you used to call the , or if the  you pass toend_ begin_ method id<ICEAsyncResult>
the  method was obtained by calling the  method for a different operation.end_ begin_

The  Protocol in Objective-CICEAsyncResult

The  that is returned by the  method encapsulates the state of the asynchronous invocation:id<ICEAsyncResult> begin_

Objective-C

@protocol ICEAsyncResult <NSObject>
-(id<ICECommunicator>) getCommunicator;
-(id<ICEConnection>) getConnection;
-(id<ICEObjectPrx>) getProxy;

-(BOOL) isCompleted;
-(void) waitForCompleted;

-(BOOL) isSent;
-(void) waitForSent;

-(BOOL) sentSynchronously;
-(NSString*) getOperation;
@end

The methods have the following semantics:

getCommunicator
This method returns the communicator that sent the invocation.

getConnection
This method returns the connection that was used for the invocation.

getProxy
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This method returns the proxy that was used to call the  method.begin_

getOperation
This method returns the name of the operation.

isCompleted
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the  methodend_
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

waitForCompleted
This method blocks the caller until the result of an invocation becomes available.

isSent
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If thebegin_
transport cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time itisSent
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued,  returns false.isSent

waitForSent
This method blocks the calling thread until a request has been written to the client-side transport.

sentSynchronously
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued,  returns false (independent of whether the request is still in the queue or has since been written tosentSynchronously
the client-side transport).

Polling for Completion in Objective-C

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider theICEAsyncResult
following simple interface to transfer files from client to server:

Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit asend
file would be along the following lines:

Objective-C

NSInputStream* stream = ...
id<EXFileTransferPrx> ft = [EXFileTransferPrx checkedCast:...];
int chunkSize = ...;
int offset = 0;
while([stream hasBytesAvailable])
{
    char bytes[chunkSize];
    int l = [stream read:bytes maxLength:sizeof(bytes)];
    if(l > 0)
    {
        [ft send:offset bytes:[ByteSeq dataWithBytes:bytes length:l]];
        offset += l;
    }
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:
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Objective-C

NSInputStream* stream = ...
id<EXFileTransferPrx> ft = [EXFileTransferPrx checkedCast:...];
int chunkSize = ...;
int offset = 0;
NSMutableArray* results = [NSMutableArray arrayWithCapacity:5];
int numRequests = 5;
while([stream hasBytesAvailable])
{
    char bytes[chunkSize];
    int l = [stream read:bytes maxLength:sizeof(bytes)];
    if(l > 0)
    {
        // Send up to numRequests + 1 chunks asynchronously.
        id<ICEAsyncResult> r =
            [ft begin_send:offset bytes:[ByteSeq dataWithBytes:bytes length:l]];
        offset += l;

        // Wait until this request has been passed to the
        // transport.
        [r waitForSent];
        [results addObject:r];

        // Once there are more than numRequests, wait for the
        // least recent one to complete.
        while([results count] > numRequests)
        {
            r = [results objectAtIndex:0];
            [results removeObjectAtIndex:0];
            [r waitForCompleted];
        }
    }
}

// Wait for any remaining requests to complete.
for(id<ICEAsyncResult> r in results)
{
    [r waitForCompleted];
}

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. InnumRequests + 1
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . InnumRequests
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time takennumRequests
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Completion Callbacks in Objective-C

The  method accepts three optional callback arguments that allow you to be notified asynchronously when a request completes.begin_
Here is the signature of the  method that we saw :begin_getName earlier
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Objective-C

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
    response:(void(^)(NSMutableString*))response_
    exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
    context:(ICEContext *)context
    response:(void(^)(NSMutableString*))response_
    exception:(void(^)(ICEException*))exception_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
    response:(void(^)(NSMutableString*))response_
    exception:(void(^)(ICEException*))exception_
    sent:(void(^)(BOOL))sent_;

-(id<ICEAsyncResult>) begin_getName:(ICEInt)number
    context:(ICEContext *)context
    response:(void(^)(NSMutableString*))response_
    exception:(void(^)(ICEException*))exception_
    sent:(void(^)(BOOL))sent_;

The value you pass for the response callback ( ), the exception callback ( ), or the sent callback ( ) argument mustresponse exception sent
be an Objective-C block. The response callback is invoked when the request completes successfully, and the exception callback is invoked
when the operation raises an exception. (The sent callback is primarily used for .)flow control

For example, consider the following callbacks for an invocation of the  operation:getName

Objective-C

void(^getNameCB)(NSMutableString*) = ^(NSMutableString* name)
{
    NSLog(@"Name is: %@", name);
};

void(^failureCB)(ICEException*) = ^(ICEException* ex)
{
    NSLog(@"Exception is: %@", [ex description]);
};

The response callback parameters depend on the operation signature. If the operation has a non-  return type, the first parameter of thevoid
response callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice
operation, in the order of declaration.

The exception callback is called if the invocation fails because of an Ice run time exception, or if the operation raises a user exception.

To inform the Ice run time that you want to receive callbacks for the completion of the asynchronous call, you pass the callbacks to the 
 method:begin_

Objective-C

e = [EmployeesPrx checkedCast:...]

[e begin_getName:99 response:getNameCB exception:failureCB];

You can also pass the Objective-C blocks directly to the call:
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Objective-C

[e begin_getName:99
    response: ^(NSMutableString* name)
        {
            NSLog(@"Name is: %@", name);
        }
    exception: ^(ICEException* ex)
        {
            NSLog(@"Exception is: %@", [ex description]);
        }];

Ice enforces the following semantics at run time regarding which callbacks can be optionally specified with a  value:nil

You must supply an exception callback.
You may omit the response callback for an operation that returns no data (that is, an operation with a void return type and no
out-parameters).

Oneway Invocations in Objective-C

You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have anyvoid
out-parameters, and does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns valuesbegin_
or raises a user exception, the  method throws  with the  name.begin_ NSException NSInvalidArgumentException

The callback signatures look exactly as for a twoway invocation, but the response block is never called and may be .nil

Flow Control in Objective-C

Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can writebegin_
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, [ICEAsyncResult

 returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the IcesentSynchronously]
run time queues the request internally for later transmission in the background. (In that case, [ICEAsyncResult sentSynchronously]
returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Objective-C

void(^sentCB)(BOOL) = ^(BOOL sentSynchronously)
{
    ...
}

You inform the Ice run time that you want to be notified when a request has been passed to the local transport as usual:

Objective-C

[e begin_getName:99 response:getNameCB exception:failureCB sent:sentCB];

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent callback from the thread that calls
the  method. On the other hand, if the run time has to queue the request, it calls the sent callback from a different thread once it hasbegin_
written the request to the local transport. The boolean  parameter indicates whether the request was sentsentSynchronously
synchronously or was queued.

The sent callback allows you to limit the number of queued requests by counting the number of requests that are queued and decrementing
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the count when the Ice run time passes a request to the local transport.

Batch Requests in Objective-C

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests

the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued byend_ice_flushBatchRequests
that proxy.

In addition, similar methods are available on the communicator and the  object that is returned by Connection [ICEAsyncResult
. These methods flush batch requests sent via the same communicator and via the same connection, respectively.getConnection]

Concurrency in Objective-C

The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the thread
calling the  method if the request could be sent synchronously. In the sent callback, you know which thread is calling the callback bybegin_
looking at the  parameter.sentSynchronously

See Also

Request Contexts
Batched Invocations
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slice2objc Command-Line Options

The Slice-to-Objective-C compiler, , offers the following command-line options in addition to the :slice2objc standard options

--include-dir DIR
Modifies  directives in source files to prepend the path name of each header file with the directory .#import DIR

--output-dir DIR
Places the generated source files into the specified output directory .DIR

--depend
Prints makefile dependency information to standard output. No code is generated when this option is specified. The output generally
needs to be filtered before it can be included in a makefile; the Ice build system uses the script  for thisconfig/makedepend.py
purpose.

--depend-xml
Prints dependency information to standard output in XML format. No code is generated when this option is specified. This option is
intended for use with Apple's Xcode development environment.

See Also

Using the Slice Compilers
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Example of a File System Client in Objective-C

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The Objective-C code shown here hardly differs from the code you would write for an ordinary Objective-C program. This is one of the
biggest advantages of using Ice: accessing a remote object is as easy as accessing an ordinary, local Objective-C object. This allows you to
put your effort where you should, namely, into developing your application logic instead of having to struggle with arcane networking APIs.
This is true for the  as well, meaning that you can develop distributed applications easily and efficiently.server side

We now have seen enough of the client-side Objective-C mapping to develop a complete client to access our remote file system. For
reference, here is the Slice definition once more:

Slice

["objc:prefix:FS"]
module Filesystem {
    exception GenericError {
        string reason;
    };

    interface Node {
        idempotent string name();
    };

    sequence<string> Lines;

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };

    sequence<Node*> NodeSeq;

    interface Directory extends Node {
        idempotent NodeSeq list();
    };
};

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:
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1.  

2.  

3.  

Objective-C

#import <Ice/Ice.h>
#import <Filesystem.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

static void
listRecursive(id<FSDirectoryPrx> dir, int depth)
{
    // ...
}

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    int status = 1;
    id<ICECommunicator> communicator;
    @try
    {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        // Create a proxy for the root directory
        //
        id<FSDirectoryPrx> rootDir = [FSDirectoryPrx checkedCast:
                [communicator stringToProxy: @"RootDir:default -p 10000"]];
        if (!rootDir)
            [NSException raise:@"invalid proxy" format:@"nil"];

        // Recursively list the contents of the root directory
        //
        printf("Contents of root directory:\n");
        listRecursive(rootDir, 0);

        status = 0;
    } @catch (NSException *ex) {
        NSLog(@"%@\n", [ex name]);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@\n", [ex name]);
    }

    [pool release];
    return status;
}

The code imports a few header files:
Ice/Ice.h: Always included in both client and server source files, provides definitions that are necessary for accessing
the Ice run time.
Filesystem.h The header that is generated by the Slice compiler from the Slice definitions in .Filesystem.ice
NSAutoreleasePool.h: The client uses an autorelease pool to reclaim memory before it exits.
stdio.h: The implementation of  prints to .listRecursive stdout

The structure of the code in  follows what we saw in . After initializing the run time, the client creates amain Hello World Application
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in :listRecursive
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1.  

2.  

3.  

Objective-C

// Print the specified number of tabs.

static void
printIndent(int depth)
{
    while (depth-- > 0)
        putchar('\t');
}

// Recursively print the contents of directory "dir" in tree
// fashion.  For files, show the contents of each file.
// The "depth" parameter is the current nesting level
// (for indentation).

static void
listRecursive(id<FSDirectoryPrx> dir, int depth)
{
    ++depth;
    FSNodeSeq *contents = [dir list];

    for (id<FSNodePrx> node in contents) {
        id<FSDirectoryPrx> dir = [FSDirectoryPrx checkedCast:node];
        id<FSFilePrx> file = [FSFilePrx uncheckedCast:node];
        printIndent(depth);
        printf("%s%s\n", [[node name] UTF8String], (dir ? " (directory):" : " (file):"));
        if (dir) {
            listRecursive(dir, depth);
        } else {
            FSLines *text = [file read];
            for (NSString *line in text) {
                printIndent(depth);
                printf("\t%s\n", [line UTF8String]);
            }
        }
    }
}

The function is passed a proxy to a directory to list, and an indent level. (The indent level increments with each recursive call and allows the
code to print the name of each node at an indent level that corresponds to the depth of the tree at that node.)  calls the listRecursive

 operation on the directory and iterates over the returned sequence of nodes:list

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we is-a Directory id<FSDirectoryPrx> checkedCast checkedCast know
that the    and, therefore, an  is sufficient to get an . Node is-a File uncheckedCast id<FSFilePrx>
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast

 because an  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:
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A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Example of a File System Server in Objective-C
Object Life Cycle
IceGrid
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Server-Side Slice-to-Objective-C Mapping

The mapping for Slice data types to Objective-C is identical on the client side and server side, except for operation parameters, which map
slightly differently for types that have mutable and immutable variants (strings, sequence, and dictionaries). This means that the mappings in
the  also apply to the server side. However, for the server side, there are a few additional things youClient-Side Slice-to-Objective-C Mapping
need to know — specifically, how to:

Initialize and finalize the server-side run time
Implement servants
Pass parameters and throw exceptions
Create servants and register them with the Ice run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using , for example, to improve performance or scalability. However, these APIs are alladditional APIs
described in Slice, so, to use these APIs, you need not learn any Objective-C mapping rules beyond those described here.

Topics

The Server-Side main Function in Objective-C
Server-Side Objective-C Mapping for Interfaces
Parameter Passing in Objective-C
Raising Exceptions in Objective-C
Object Incarnation in Objective-C
Example of a File System Server in Objective-C
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The Server-Side main Function in Objective-C

This page discusses how to initialize and finalize the server-side run time.

On this page:

Initializing and Finalizing the Server-Side Run Time
Alternative Ways to Create a Communicator in Objective-C

Initializing and Finalizing the Server-Side Run Time

The main entry point to the Ice run time is represented by the local interface . As for the client side, you must initializeICECommunicator
the Ice run time by calling  (a class method of the  class) before you can do anything else in your server. createCommunicator ICEUtil

 returns an instance of type :createCommunicator id<ICECommunicator>

Objective-C

int
main(int argc, char* argv[])
{
    // ...
    id<ICECommunicator> communicator = [ICEUtil createCommunicator:&argc argv:argv];
    // ...
}

createCommunicator accepts a  to  as well as . The class method scans the argument vector for any pointer argc argv command-line
 that are relevant to the Ice run time; any such options are removed from the argument vector so, when options createCommunicator

returns, the only options and arguments remaining are those that concern your application. If anything goes wrong during initialization, 
 throws an exception.createCommunicator

Before leaving your  function, you  call . The  operation is responsible for finalizing the Icemain must Communicator::destroy destroy
run time. In particular,  waits for any operation implementations that are still executing in the server to complete. In addition, destroy

 ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as filedestroy
descriptors and memory. Never allow your  function to terminate without calling  first; doing so has undefined behavior.main destroy

The general shape of our server-side  function is therefore as follows:main
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Objective-C

#import <Ice/Ice.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        // Server code here...

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

Note that the code places the call to  into a  block and takes care to return the correct exit status to the operatingcreateCommunicator try
system. Also note that the code creates and releases an autorelease pool. This ensures that memory will be released before the program
terminates.

The  handler for  ensures that the communicator is destroyed regardless of whether the program terminates normallycatch NSException
or due to an exception.

You must  release the communicator that is returned by . As for any operation that returns a pointer, the Ice runnot createCommunicator
time calls  on the returned instance, so you do not have to release it yourself.autorelease

This is also the reason why  is not called  (as it is for other language mappings) — createCommunicator initialize
 would suggest that the return value must be released because the method name begins with .initialize init

Alternative Ways to Create a Communicator in Objective-C

createCommunicator is provided in several versions that accept different arguments. Here is the complete list:

(id<ICECommunicator>) createCommunicator: (int*)argc argv:(char*[])argv
itData:(ICEInitializationData*)initData;
This is the designated initializer — the remaining versions of  are implemented in terms of this initializer. AscreateCommunicator
for the version we saw in the preceding section, this version accepts a pointer to  as well as  and removes Ice-related argc argv

 from the argument vector. The  argument allows you to pass additional initialization information tocommand-line options initData
the Ice run time (see below).

+(id<ICECommunicator>) createCommunicator;
This is equivalent to calling:
[ICEUtil createCommunicator:nil argv:nil initData:nil];

+(id<ICECommunicator>) createCommunicator: (int*)argc argv:(char*[])argv;
This is equivalent to calling
[ICEUtil createCommunicator:&argc argv:argv initData:nil];
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+(id<ICECommunicator>) createCommunicator: (ICEInitializationData*)initData
This is equivalent to calling
[ICEUtil createCommunicator:nil argv:nil initData:initData];

The  argument is of type . Even though it has no Slice definition, this class behaves as if it were ainitData ICEInitializationData
Slice structure with the following definition:

Slice

#include <Properties.ice>
#include <Logger.ice>

["objc:prefix:ICE"]
module Ice {
    dictionary<string, string> PrefixDict;

    local struct InitializationData {
        Ice::Properties properties;
        Ice::Logger logger;
    };
};

The  member allows you to explicitly set  for the communicator to be created. This is useful, for example, if youproperties property values
want to ensure that a particular property setting is always used by the communicator.

The  member sets the  that the Ice run time uses to log messages. If you do not set a logger (leaving the  member as logger logger logger
), the run time installs a default logger that calls  to log messages.nil NSLog

See Also

Communicator Initialization
Properties and Configuration
Logger Facility
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Server-Side Objective-C Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in Objective-C
Servant Classes in Objective-C

Derived Servants in Objective-C
Delegate Servants in Objective-C

Skeleton Classes in Objective-C

On the client side, interfaces map to . On the server side, interfaces map to  protocols and classes. Aproxy protocols and classes skeleton
skeleton is a class that has a method for each operation on the corresponding interface. For example, consider our  for the Slice definition

 interface:Node

Slice

["objc:prefix:FS"]
module Filesystem {
    interface Node {
        idempotent string name();
    };
// ...
};

The Slice compiler generates the following definition for this interface:

Objective-C

@protocol FSNode <ICEObject>
-(NSString *) name:(ICECurrent *)current;
@end

@interface FSNode : ICEObject
// ...
@end

As you can see, the server-side API consists of a protocol and a class, known as the  and . The methods ofskeleton protocol skeleton class
the skeleton class are internal to the mapping, so they do not concern us here. The skeleton protocol defines one method for each Slice
operation. As for the client-side mapping, the method name is the same as the name of the corresponding Slice operation. If the Slice
operation has parameters or a return value, these are reflected in the generated method, just as they are for the client-side mapping. In
addition, each method has an additional trailing parameter of type . This parameter provides additional information about anICECurrent
invocation to your server-side code.

As for the client-side mapping, the generated code reflects the fact that all Slice interfaces and classes ultimately derive from .Ice::Object
As you can see, the generated protocol incorporates the  protocol, and the generated class derives from the  class.ICEObject ICEObject

Servant Classes in Objective-C

The Objective-C mapping supports two different ways to implement servants. You can implement a servant by deriving from the skeleton
class and implementing the methods for the Slice operations in your derived class. Alternatively, you can use a delegate servant, which need
not derive from the skeleton class.

Derived Servants in Objective-C

To provide an implementation for an Ice object, you can create a servant class that derives from the corresponding skeleton class. For
example, to create a servant for the  interface, you could write:Node
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Objective-C

@interface NodeI : FSNode <FSNode>
{
    @private
        NSString *myName;
}

+(id) nodei:(NSString *)name;
@end

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called .I Node NodeI
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.)

Note that  derives from , that is, it derives from its skeleton class. In addition, it adopts the  protocol. Adopting theNodeI FSNode FSNode
protocol is not strictly necessary; however, if you do write your servants this way, the compiler emits a warning if you forget to implement one
or more Slice operations for the corresponding interface, so we suggest that you make it a habit to always have your servant class adopt its
skeleton protocol.

As far as Ice is concerned, the  class must implement the single  method that is defined by its skeleton protocol. That way, theNodeI name
Ice run time gets a servant that can respond to the operation that is defined by its Slice interface. You can add other methods and instance
variables as you see fit to support your implementation. For example, in the preceding definition, we added a  instance variable andmyName
property, a convenience constructor, and . Not surprisingly, the convenience constructor initializes the  instance variable,dealloc myName
the  method returns the value of that variable, and  releases it:name dealloc

Objective-C

@implementation NodeI

+(id) nodei:(NSString *)name
{
    NodeI *instance = [[[NodeI alloc] init] autorelease];
    instance.myName = [[name copy] retain];
    return instance;
}

-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(void) dealloc
{
    [myName release];
    [super dealloc];
}
@end

Delegate Servants in Objective-C

An alternate way to implement a servant is to use a delegate.  provides two constructors to do this:ICEObject

Objective-C

@interface ICEObject NSObject <ICEObject, NSCopying>
// ...
-(id) initWithDelegate:(id)delegate;
+(id) objectWithDelegate:(id)delegate;
@end

The  parameter specifies an object to which the servant will delegate operation invocations. That object need not derive from thedelegate



Ice 3.4.2 Documentation

576 Copyright © 2011, ZeroC, Inc.

skeleton class; the only requirement on the delegate is that it must have an implementation of the methods corresponding to the Slice
operations that are called by clients. As for derived servants, we suggest that the delegate adopt the skeleton protocol, so the compiler will
emit a warning if you forget to implement one or more Slice operations in the delegate.

The implementation of the Slice operations in a delegate servant is exactly the same as for a derived servant.

Delegate servants are useful if you need to derive your servant implementation from a base class in order to access some functionality. In
that case, you cannot also derive the servant from the generated skeleton class. A delegate servant gets around Objective-C's single
inheritance limitation and saves you having to write a servant class that forwards each operation invocation to the delegate.

Another use case are different interfaces that share their implementation. As an example, consider the following Slice definitions:

Slice

interface Intf1 {
    void op1();
};

interface Intf2 {
    void op2();
};

If  and  are substantially similar in their implementation and share common state, it can be convenient to implement the servants for op1 op2
 and  using a common delegate class:Intf1 Intf2

Objective-C

@interface Intf1AndIntf2 : NSObject<EXIntf1, EXIntf2>
    +(id) intf1AndIntf2;
@end

@implementation Intf1AndIntf2
    +(id) intf1AndIntf2 { /*...*/ }
    -(void) op1:(ICECurrent*)current { /*...*/ }
    -(void) op2:(ICECurrent*)current { /*...*/ }
@end

See  for an example of how to instantiate delegate servants.Instantiating an Objective-C Servant

Delegate servants do not permit you to override operations that are inherited from  (such as ). Therefore, if you wantICEObject ice_ping
to override , for example, to implement a , you must use a derived servant.ice_ping default servant

See Also

Slice for a Simple File System
Objective-C Mapping for Interfaces
Parameter Passing in Objective-C
Object Incarnation in Objective-C
The Current Object
Default Servants
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Parameter Passing in Objective-C

This page shows how to implement parameters for Slice operations in Objective-C.

On this page:

Implementing Parameters for Slice Operations in Objective-C
Memory Management for Operations in Objective-C

Implementing Parameters for Slice Operations in Objective-C

For each parameter of a Slice operation, the Objective-C mapping generates a corresponding parameter for the method in the skeleton. In
addition, every method has an additional, trailing parameter of type . For example, the  operation of the  interfaceICECurrent name Node
has no parameters, but the  method of the  skeleton protocol has a single parameter of type . We will ignore thisname Node ICECurrent
parameter for now.

Parameter passing on the server side follows the rules for the client side (with one exception):

In-parameters and the return value are passed by value or by pointer, depending on the parameter type.
Out-parameters are passed by pointer-to-pointer.

The exception to the client-side rules concerns types that come in mutable and immutable variants (strings, sequences, and dictionaries).
For these, the server-side mapping passes the mutable variant where the client-side passes the immutable variant, and vice versa.

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice

interface Intf {
    string op(string sin, out string sout);
};

The generated skeleton protocol for this interface looks as follows:

Objective-C

@protocol EXIntf <ICEObject>
-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current;
@end

As you can see, the in-parameter  is of type , and the out parameter and return value are passed as  (thesin NSMutableString NSString
opposite of the client-side mapping). This means that in-parameters are passed to the servant as their mutable variant, and it is safe for you
to modify such in-parameters. This is useful, for example, if a client passes a sequence to the operation, and the operation returns the
sequence with a few minor changes. In that case, there is no need for the operation implementation to copy the sequence. Instead, you can
simply modify the passed sequence as necessary and return the modified sequence to the client.

Here is an example implementation of the operation:

Objective-C

-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current
{
    printf("%s\n", [sin UTF8String]); // In-params are initialized
    *sout = [sin appendString:@"appended"]; // Assign out-param
    return @"Done";                         // Return a string
}

Memory Management for Operations in Objective-C
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To avoid leaking memory, you must be aware of how the Ice run time manages memory for operation implementations:

In-parameters are passed to the servant already autoreleased.
Out-parameters and return values must be returned by the servant as autoreleased values.

This follows the usual Objective-C convention: the allocator of a value is responsible for releasing it. This is what the Ice run time does for
in-parameters, and what you are expected to do for out-parameters and return values. These rules also mean that it is safe to return an
in-parameter as an out-parameter or return value. For example:

Objective-C

-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current
{
    *sout = sin; // Works fine.
    return sin;  // Works fine.
}

The Ice run time creates and releases a separate autorelease pool for each invocation. This means that the memory for parameters is
reclaimed as soon as the run time has marshaled the operation results back to the client.

See Also

Server-Side Objective-C Mapping for Interfaces
Raising Exceptions in Objective-C
The Current Object
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Raising Exceptions in Objective-C

To throw an exception from an operation implementation, you simply allocate the exception, initialize it, and throw it. For example:

Objective-C

-(void) write:(NSMutableArray *)text current:(ICECurrent *)current
{
    // Try to write the file contents here...
    // Assume we are out of space...
    if (error)
        @throw [FSGenericError genericError:@"file too large"];
}

As for out-parameters and return values, you must take care to throw an autoreleased exception.

If you throw an arbitrary Objective-C exception that does not derive from , the client receives an .ICEException UnknownException
Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the exception specification of the operation), the
client receives an .UnknownUserException

If you throw a run-time exception, such as , the client receives an . For that reason,MemoryLimitException UnknownLocalException
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocalException
, which does not tell the client anything useful.

Three run-time exceptions are  and not changed to  when returned to thetreated specially UnknownLocalException
client: , , and .ObjectNotExistException OperationNotExistException FacetNotExistException

See Also

Run-Time Exceptions
Objective-C Mapping for Exceptions
Server-Side Objective-C Mapping for Interfaces
Parameter Passing in Objective-C
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1.  
2.  
3.  
4.  

Object Incarnation in Objective-C

Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can classNodeI
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must follow these steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating an Objective-C Servant
Creating an Identity in Objective-C
Activating an Objective-C Servant
UUIDs as Identities in Objective-C
Creating Proxies in Objective-C

Proxies and Servant Activation in Objective-C
Direct Proxy Creation in Objective-C

Instantiating an Objective-C Servant

Instantiating a servant means to allocate an instance on the heap:

Objective-C

NodeI *servant = [NodeI nodei:@"Fred"];

This code creates a new  instance. For this example, we used the convenience constructor we saw . Of course, you are notNodeI earlier
obliged to define such a constructor but, if you do not, you must explicitly call  or  on the servant.release autorelease

For a , instantiation would look as follows:delegate servant

Objective-C

Intf1AndIntf2 *delegate = [Intf1AndIntf2 intf1AndIntf2];
ICEObject *servant = [ICEObject objectWithDelegate:delegate];

Creating an Identity in Objective-C

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

An Ice object identity is a structure with the following Slice definition:

Slice

["objc:prefix:ICE"]
module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};
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1.  

2.  
3.  

The full identity of an object is the combination of both the  and  fields of the  structure. For now, we will leave the name category Identity
 field as the empty string and simply use the  field. (The  field is most often used in conjunction with category name category servant

.)locators

To create an identity, we simply assign a key that identifies the servant to the  field of the  structure:name Identity

Objective-C

ICEIdentity ident = [ICEIdentity identity:"Fred" category:nil];

Activating an Objective-C Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the  operation on the object adapter. Assuming that we haveadd
access to the object adapter in the  variable, we can write:adapter

Objective-C

[adapter add:servant identity:ident];

Note the two arguments to : the servant and the object identity. Calling  on the object adapter adds the servant and the servant'sadd add
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant pointer from the servant map and dispatches the
incoming request into the correct method on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

Putting the preceding points together, we can write a simple method that instantiates and activates one of our  servants. For thisNodeI
example, we use a simple method on our servant called  that activates a servant in an object adapter with the passed identity:activate

Objective-C

-(void) activate:(id<ICEObjectAdapter>)a
                 name:(NSString *)name
{
    ICEIdentity ident = [ICEIdentity identity:name category:nil];
    [a add:self identity:ident];
}

UUIDs as Identities in Objective-C

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. The  class contains a helper function to create such identities:ICEUtil

Objective-C

@interface ICEUtil : NSObject
+(id) generateUUID;
// ...
@end

When executed, this method returns a unique string such as . Each call to 5029a22c-e333-4f87-86b1-cd5e0fcce509 generateUUID
creates a string that differs from all previous ones. You can use a UUID such as this to create object identities. For convenience, the object
adapter has an operation  that generates a UUID and adds a servant to the servant map in a single step:addWithUUID
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Objective-C

-(id<ICEObjectPrx>) addWithUUID:(ICEObject*)servant

Note that the operation returns the proxy for the servant just activated.

Creating Proxies in Objective-C

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our . However, creation of proxies by the client in this manner is usually only done tofirst example
allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically obtains further proxies by invoking
operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in Objective-C

The  and  servant activation operations on the object adapter return a proxy for the corresponding Ice object, as we sawadd addWithUUID
earlier. This means we can write:

Objective-C

NodeI *servant = [NodeI nodei:name];
id<FSNodePrx> proxy = [FSNodePrx uncheckedCast: [adapter addWithUUID:servant]];

// Pass proxy to client...

Here,  both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an  here because  returns a proxy of type >.uncheckedCast addWithUUID id<ICEObjectPrx

Direct Proxy Creation in Objective-C

The object adapter offers an operation to create a proxy for a given identity:

Slice

["objc:prefix:ICE"]
module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that  creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxiescreateProxy
have a life cycle that is quite independent from the life cycle of servants:

Objective-C

ICEIdentity *ident = [ICEIdentity identity];
ident.name = [ICEUtil generateUUID];
id<ICEObjectPrx> o = [adapter createProxy:ident];

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if wegenerateUUID
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an . (WeObjectNotExistException
examine these life cycle issues in more detail in .)Object Life Cycle
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See Also

Writing an Ice Application with Objective-C
Server-Side Objective-C Mapping for Interfaces
Object Adapter States
Servant Locators
Object Life Cycle
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Example of a File System Server in Objective-C

This page presents the source code for a C++ server that implements our  and communicates with the  we wrote earlier. Thefile system client
code here is fully functional, apart from the required interlocking for threads.

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just
the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application
code so that you can concentrate on developing application logic instead of networking infrastructure.

The server code presented here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the lines instance variable while another thread updates it. Obviously, if that
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the read and write
operations thread-safe with a few lines of code. We discuss how to write thread-safe servant implementations in The Ice

.Threading Model

On this page:

Implementing a File System Server in Objective-C
Server main Program in Objective-C
Servant Class Definitions in Objective-C
Servant Implementation in Objective-C

Implementing  in Objective-CFileI
Implementing  in Objective-CDirectoryI

Implementing a File System Server in Objective-C

We have now seen enough of the server-side Objective-C mapping to implement a server for our . (You may find it useful tofile system
review these Slice definitions before studying the source code.)

Our server is composed of three source files:

Server.m
This file contains the server main program.

FileI.m
This file contains the implementation for the  servants.File

DirectoryI.m
This file contains the implementation for the  servants.Directory

Server main Program in Objective-C

Our server main program, in the file , uses the structure we saw in an :Server.m earlier example

Objective-C

#import <Ice/Ice.h>
#import <FileI.h>
#import <DirectoryI.h>

#import <Foundation/NSAutoreleasePool.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];
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        id<ICEObjectAdapter> adapter = [communicator createObjectAdapterWithEndpoints:
                                @"SimpleFilesystem"
                                endpoints:@"default -p 10000"];

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root = [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir
        //
        DirectoryI *coleridge = [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

        // All objects are created, allow client requests now
        //
        [adapter activate];

        // Wait until we are done
        //
        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
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    return status;
}

There is quite a bit of code here, so let us examine each section in detail:

Objective-C

#import <Ice/Ice.h>
#import <FileI.h>
#import <DirectoryI.h>

#import <Foundation/NSAutoreleasePool.h>

The code includes the header , which contains the definitions for the Ice run time, and the files  and ,Ice/Ice.h FileI.h DirectoryI.h
which contain the definitions of our servant implementations. Because we use an autorelease pool, we need to include 

 as well.Foundation/NSAutoreleasePool.h

The next part of the source code is mostly boiler plate that we saw previously: we create an object adapter, and, towards the end, activate
the object adapter and call , which blocks the calling thread until you call  or  on the communicator.waitForShutdown shutdown destroy
(Ice does not make any demands on the main thread, so  simply blocks the calling thread; if you want to use the mainwaitForShutdown
thread for other purposes, you are free to do so.)

Objective-C

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator = [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter = [communicator createObjectAdapterWithEndpoints:
                                @"SimpleFilesystem"
                                endpoints:@"default -p 10000"];

        // ...

        // All objects are created, allow client requests now
        //
        [adapter activate];

        // Wait until we are done
        //
        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}
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The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
structure shown below:

A small file system.

As we will see shortly, the servants for our directories and files are of type  and , respectively. The constructor for eitherDirectoryI FileI
type of servant accepts two parameters: the name of the directory or file to be created and the servant for the parent directory. (For the root
directory, which has no parent, we pass a  parent.) Thus, the statementnil

Objective-C

DirectoryI *root = [DirectoryI directoryi:@"/" parent:nil];

creates the root directory, with the name  and no parent directory."/"

Here is the code that establishes the structure in the above illustration shown:
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Objective-C

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root = [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir
        //
        DirectoryI *coleridge = [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

We first create the root directory and a file  within the root directory. (Note that we pass the servant for the root directory as theREADME
parent pointer when we create the new node of type .)FileI

After creating each servant, the code calls  on the servant. (We will see the definition of this member function shortly.) The activate
 member function adds the servant to the ASM.activate

The next step is to fill the file with text:
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Objective-C

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root = [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir
        //
        DirectoryI *coleridge = [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

Recall that  map to  or , depending on the parameter direction. Here, we instantiate that arraySlice sequences NSArray NSMutableArray
and add a line of text to it.

Finally, we call the Slice  operation on our  servant by simply writing:write FileI

Objective-C

        [file write:text current:nil];

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via the pointer to
the servant (of type ) and  via a proxy (of type ), the Ice run time does not know that this call is even taking place —FileI not id<FilePrx>
such a direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Objective-C function call.
The operation implementation in the servant expects a  object. In this case, we pass nil (which is fine because the operationcurrent
implementation does not use it anyway).

In similar fashion, the remainder of the code creates a subdirectory called  and, within that directory, a file called  toColeridge Kubla_Khan
complete the structure in the above illustration.

Servant Class Definitions in Objective-C

We must provide servants for the concrete interfaces in our Slice specification, that is, we must provide servants for the  and File
 interfaces in the Objective-C classes  and . This means that our servant classes look as follows:Directory FileI DirectoryI
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Objective-C

#import <Filesystem.h>

@interface FileI : FSFile <FSFile>
// ...
@end

@interface DirectoryI : FSDirectory <FSDirectory>
// ...
@end

Each servant class derives from its skeleton class and adopts its skeleton protocol.

We now can think about how to implement our servants. One thing that is common to all nodes is that they have a name and a parent
directory. As we saw earlier, we pass these details to a convenience constructor, which also takes care of calling  on the newautorelease
servant.

In addition, we will use UUIDs as the object identities for files and directories. This relieves us of the need to otherwise come up with a
unique identity for each servant (such as path names, which would only complicate our implementation). Because the  operationlist
returns proxies to nodes, and because each proxy carries the identity of the servant it denotes, this means that our servants must store their
own identity, so we can create proxies to them when clients ask for them.

For  servants, we also need to store the contents of the file, leading to the following definition for the  class:File FileI

Objective-C

#import <Filesystem.h>

@class DirectoryI;

@interface FileI : FSFile <FSFile>
{
    @private
        NSString *myName;
        DirectoryI *parent;
        ICEIdentity *ident;
        NSArray *lines;
}

@property(nonatomic, retain) NSString *myName;
@property(nonatomic, retain) DirectoryI *parent;
@property(nonatomic, retain) ICEIdentity *ident;
@property(nonatomic, retain) NSArray *lines;

+(id) filei:(NSString *)name parent:(DirectoryI *)parent;
-(void) write:(NSMutableArray *)text current:(ICECurrent *)current;
-(void) activate:(id<ICEObjectAdapter>)a;
@end

The instance variables store the name, parent node, identity, and the contents of the file. The  convenience constructor instantiatesfilei
the servant, remembers the name and parent directory, assigns a new identity, and calls .autorelease

Note that the only Slice operation we have defined here is the  method. This is necessary because, as we saw previously, the code in write
 calls this method to initialize the files it creates.Server.m

For directories, the requirements are similar. They also need to store a name, parent directory, and object identity. Directories are also
responsible for keeping track of the child nodes. We can store these nodes in an array of proxies. This leads to the following definition:
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Objective-C

#import <Filesystem.h>

@interface DirectoryI : FSDirectory <FSDirectory>
{
    @private
        NSString *myName;
        DirectoryI *parent;
        ICEIdentity *ident;
        NSMutableArray *contents;
}
@property(nonatomic, retain) NSString *myName;
@property(nonatomic, retain) DirectoryI *parent;
@property(nonatomic, retain) ICEIdentity *ident;
@property(nonatomic, retain) NSMutableArray *contents;
        
+(id) directoryi:(NSString *)name parent:(DirectoryI *)parent;
-(void) addChild:(id<FSNodePrx>)child;
-(void) activate:(id<ICEObjectAdapter>)a;
@end

Because the code in  does not call any Slice operations on directory servants, we have not declared any of the correspondingServer.m
methods. (We will see the purpose of the  method shortly.) As for files, the convenience constructor creates the servant,addChild
remembers the name and parent, and assigns an object identity, as well as calling .autorelease

Servant Implementation in Objective-C

Let us now turn to how to implement each of the methods for our servants.

Implementing  in Objective-CFileI

The implementation of the , , and  operations for files is trivial, returning or updating the corresponding instance variable:name read write

Objective-C

-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(NSArray *) read:(ICECurrent *)current
{
    return lines;
}

-(void) write:(NSMutableArray *)text current:(ICECurrent *)current
{
    self.lines = text;
}

Note that this constitutes the complete implementation of the Slice operations for files.

Here is the convenience constructor:
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Objective-C

+(id) filei:(NSString *)name parent:(DirectoryI *)parent
{
    FileI *instance = [[[FileI alloc] init] autorelease];
    if(instance == nil)
    {
        return nil;
    }
    instance.myName = name;
    instance.parent = parent;
    instance.ident = [ICEIdentity identity:[ICEUtil generateUUID] category:nil];
    return instance;
}

After allocating and autoreleasing the instance, the constructor initializes the instance variables. The only interesting part of this code is how
we create the identity for the servant.  is a class method of the  class that returns a UUID. We assign this UUID togenerateUUID ICEUtil
the  member of the identity.name

We saw earlier that the server calls  after it creates each servant. Here is the implementation of this method:activate

Objective-C

-(void) activate:(id<ICEObjectAdapter>)a
{
    id<FSNodePrx> thisNode = [FSNodePrx uncheckedCast:[a add:self identity:ident]];
    [parent addChild:thisNode];
}

This is how our code informs the Ice run time of the existence of a new servant. The call to  on the object adapter adds the servant andadd
object identity to the adapter's servant map. In other words, this step creates the link between the object identity (which is embedded in
proxies), and the actual Objective-C class instance that provides the behavior for the Slice operations.

add returns a proxy to the servant, of type . Because the  instance variable of directory servants storesid<ICEObjectPrx> contents
proxies of type  (and  expects a proxy of that type), we down-cast the returned proxy to . In thisid<FSNodePrx> addChild id<FSNodePrx>
case, because we know that the servant we just added to the adapter is indeed a servant that implements the operations on the Slice Node
interface, we can use an .uncheckedCast

The call to  connects the new file to its parent directory.addChild

Finally, we need a  function so we do not leak the memory for the servant's instance variables:dealloc

Objective-C

-(void) dealloc
{
    [myName release];
    [parent release];
    [ident release];
    [lines release];
    [super dealloc];
}

Implementing  in Objective-CDirectoryI

The implementation of the Slice operations for directories is just as simple as for files:
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Objective-C

-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(NSArray *) list:(ICECurrent *)current
{
    return contents;
}

Because the  instance variable stores the proxies for child nodes of the directory, the  operation simply returns that variable.contents list

The convenience constructor looks much like the one for file servants:

Objective-C

+(id) directoryi:(NSString *)name parent:(DirectoryI *)parent
{
    DirectoryI *instance = [[[DirectoryI alloc] init] autorelease];
    if(instance == nil)
    {
        return nil;
    }
    instance.myName = name;
    instance.parent = parent;
    instance.ident = [ICEIdentity
        identity:(parent ? [ICEUtil generateUUID] : @"RootDir")
        category:nil];
    instance.contents = [[NSMutableArray alloc] init];
    return instance;
}

The only noteworthy differences are that, for the root directory (which has no parent), the code uses  as the identity. (As we saw "RootDir"
, the client knows that this is the identity of the root directory and uses it to create its proxy.)earlier

The  method connects our nodes into a hierarchy by updating the  instance variable. That way, each directory knowsaddChild contents
which nodes are contained in it:

Objective-C

-(void) addChild:(id<FSNodePrx>)child
{
     [contents addObject:child];
}

Finally, the  and  methods are very much like the corresponding methods for files:activate dealloc
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Objective-C

-(void) activate:(id<ICEObjectAdapter>)a
{
    id<FSNodePrx> thisNode = [FSNodePrx uncheckedCast:[a add:self identity:ident]];
    [parent addChild:thisNode];
}

-(void) dealloc
{
    [myName release];
    [parent release];
    [ident release];
    [contents release];
    [super dealloc];
}

See Also

Slice for a Simple File System
Objective-C Mapping for Sequences
Example of a File System Client in Objective-C
The Server-Side main Function in Objective-C
The Ice Threading Model
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Python Mapping

Topics

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
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Client-Side Slice-to-Python Mapping

The client-side Slice-to-Python mapping defines how Slice data types are translated to Python types, and how clients invoke operations,
pass parameters, and handle errors. Much of the Python mapping is intuitive. For example, Slice sequences map to Python lists, so there is
essentially nothing new you have to learn in order to use Slice sequences in Python.

The Python API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For
example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is
iterating over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is
fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the Python mapping, you should need no more than the Slice definition of your application and knowledge
of the Python mapping rules. In particular, looking through the generated code in order to discern how to use the Python
mapping is likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the
generated code to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here
to see how to write your client-side code.

The  ModuleIce

All of the APIs for the Ice run time are nested in the  module, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  module are generated from Slice definitions; other parts of the  moduleIce Ice
provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover the
contents of the  module throughout the remainder of the manual.Ice

A Python application can load the Ice run time using the  statement:import

import Ice

If the statement executes without error, the Ice run time is loaded and available for use. You can determine the version of
the Ice run time you have just loaded by calling the  function:stringVersion

icever = Ice.stringVersion()

Topics

Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions
Python Mapping for Interfaces
Python Mapping for Operations
Python Mapping for Classes
Asynchronous Method Invocation (AMI) in Python
Code Generation in Python
Using Slice Checksums in Python
Example of a File System Client in Python
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Python Mapping for Identifiers

A Slice  maps to an identical Python identifier. For example, the Slice identifier  becomes the Python identifier . Thereidentifier Clock Clock
is one exception to this rule: if a Slice identifier is the same as a Python keyword or is an identifier reserved by the Ice run time (such as 

), the corresponding Python identifier is prefixed with an underscore. For example, the Slice identifier  is mapped as checkedCast while
._while

You should try to  as much as possible.avoid such identifiers

The mapping does not modify a Slice identifier that matches the name of a Python built-in function because it can always be accessed by its
fully-qualified name. For example, the built-in function  can also be accessed as .hash __builtin__.hash

See Also

Lexical Rules
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions



Ice 3.4.2 Documentation

598 Copyright © 2011, ZeroC, Inc.

Python Mapping for Modules

A Slice  maps to a Python module with the same name. The mapping preserves the nesting of the Slice definitions. Note that you canmodule
optionally use  to gain further control over the generated code.packages

See Also

Modules
Python Mapping for Identifiers
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions
Code Generation in Python
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Python Mapping for Built-In Types

On this page:

Mapping of Slice Built-In Types to Python Types
String Mapping in Python

Mapping of Slice Built-In Types to Python Types

The Slice  are mapped to Python types as shown in this table:built-in types

Slice Python

bool bool

short int

int int

long long

float double

double double

string string

Although Python supports arbitrary precision in its integer types, the Ice run time validates integer values to ensure they have valid ranges
for their declared Slice types.

String Mapping in Python

String values returned as the result of a Slice operation (including return values, out parameters, and data members) are always represented
as instances of Python's 8-bit  type. These string values contain UTF-8 encoded strings unless the program has installed a string string

, in which case string values use the converter's native encoding instead.converter

Legal string input values for a remote Slice operation are shown below:

None
Ice marshals an empty string whenever  is encountered.None

8-bit string objects
Ice assumes that all 8-bit string objects contain valid UTF-8 encoded strings unless the program has installed a string converter, in
which case Ice assumes that 8-bit string objects use the native encoding expected by the converter.

Unicode objects
Ice converts a Unicode object into UTF-8 and marshals it directly. If a string converter is installed, it is not invoked for Unicode
objects.

See Also

Basic Types
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions
C++ Strings and Character Encoding
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Python Mapping for Enumerations

Python does not have an enumerated type, so a Slice  is emulated using a Python class: the name of the Slice enumerationenumeration
becomes the name of the Python class; for each enumerator, the class contains an attribute with the same name as the enumerator. For
example:

Slice

enum Fruit { Apple, Pear, Orange };

The generated Python class looks as follows:

Python

class Fruit(object):
    def __init__(self, val):
        assert(val >= 0 and val < 3)
        self.value = val

    # ...

Fruit.Apple = Fruit(0)
Fruit.Pear = Fruit(1)
Fruit.Orange = Fruit(2)

Each instance of the class has a  attribute providing the integer value of the enumerator. Note that the generated class also defines avalue
number of Python special methods, such as  and , which we have not shown.__str__ __cmp__

Given the above definitions, we can use enumerated values as follows:

Python

f1 = Fruit.Apple
f2 = Fruit.Orange

if f1 == Fruit.Apple:                # Compare with constant
    # ...

if f1 == f2:                         # Compare two enums
    # ...

if f2.value == Fruit.Apple.value:    # Use integer values
    # ...
elif f2.value == Fruit.Pear.value:
    # ...
elif f2.value == Fruit.Orange.value:
    # ...

As you can see, the generated class enables natural use of enumerated values. The  class attributes are preinitialized enumeratorsFruit
that you can use for initialization and comparison. You may also instantiate an enumerator explicitly by passing its integer value to the
constructor, but you must make sure that the passed value is within the range of the enumeration; failure to do so will result in an assertion
failure:

Python

favoriteFruit = Fruit(4) # Assertion failure!

See Also

Enumerations
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Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions
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Python Mapping for Structures

A Slice  maps to a Python class with the same name. For each Slice data member, the Python class contains a correspondingstructure
attribute. For example, here is our  structure once more:Employee

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Python mapping generates the following definition for this structure:

Python

class Employee(object):
    def __init__(self, number=0, firstName='', lastName=''):
        self.number = number
        self.firstName = firstName
        self.lastName = lastName

    def __hash__(self):
        # ...

    def __eq__(self, other):
        # ...

    def __str__(self):
        # ...

The constructor initializes each of the attributes to a default value appropriate for its type. You can also declare different  fordefault values
members of primitive and enumerated types.

The  method returns a hash value for the structure based on the value of all its data members.__hash__

The  method returns true if all members of two structures are (recursively) equal.__eq__

The  method returns a string representation of the structure.__str__

See Also

Structures
Dictionaries
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Python Mapping for Exceptions
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Python Mapping for Sequences

On this page:

Default Sequence Mapping in Python
Allowable Sequence Values in Python
Customizing the Sequence Mapping in Python

Default Sequence Mapping in Python

A Slice sequence maps by default to a Python list; the only exception is a sequence of bytes, which maps by default to a string in order to
lower memory utilization and improve throughput. This use of native types means that the Python mapping does not generate a separate
named type for a Slice sequence. It also means that you can take advantage of all the inherent functionality offered by Python's native types.
For example, here is the definition of our  sequence once more:FruitPlatter

Python

sequence<Fruit> FruitPlatter;

We can use the  sequence as shown below:FruitPlatter

Python

platter = [ Fruit.Apple, Fruit.Pear ]
assert(len(platter) == 2)
platter.append(Fruit.Orange)

The Ice run time validates the elements of a tuple or list to ensure that they are compatible with the declared type; a  exceptionValueError
is raised if an incompatible type is encountered.

Allowable Sequence Values in Python

Although each sequence type has a default mapping, the Ice run time allows a sender to use other types as well. Specifically, a tuple is also
accepted for a sequence type that maps to a list, and in the case of a byte sequence, the sender is allowed to supply a tuple or list of
integers as an alternative to a string.

Using a string for a byte sequence bypasses the validation step and avoids an extra copy, resulting in much greater
throughput than a tuple or list. For larger byte sequences, the use of a string is strongly recommended.

Furthermore, the Ice run time accepts objects that implement Python's buffer protocol as legal values for sequences of all primitive types
except strings. For example, you can use the  module to create a buffer that is transferred much more efficiently than a tuple or list.array
Consider the two sequence values in the sample code below:

Python

import array
...
seq1 = array.array("i", [1, 2, 3, 4, 5])
seq2 = [1, 2, 3, 4, 5]

The values have the same on-the-wire representation, but they differ greatly in marshaling overhead because the buffer can be traversed
more quickly and requires no validation.

Note that the Ice run time has no way of knowing what type of elements a buffer contains, therefore it is the application's responsibility to
ensure that a buffer is compatible with the declared sequence type.

Customizing the Sequence Mapping in Python

The previous section described the allowable types that an application may use when sending a sequence. That kind of flexibility is not
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possible when receiving a sequence, because in this case it is the Ice run time's responsibility to create the container that holds the
sequence.

As stated earlier, the default mapping for most sequence types is a list, and for byte sequences the default mapping is a string. Unless
otherwise indicated, an application always receives sequences as the container type specified by the default mapping. If it would be more
convenient to receive a sequence as a different type, you can customize the mapping by annotating your Slice definitions with metadata. The
following table describes the metadata directives supported by the Python mapping:

Directive Description

python:seq:default Use the default mapping.

python:seq:list Map to a Python list.

python:seq:tuple Map to a Python tuple.

A metadata directive may be specified when defining a sequence, or when a sequence is used as a parameter, return value or data member.
If specified at the point of definition, the directive affects all occurrences of that sequence type unless overridden by another directive at a
point of use. The following Slice definitions illustrate these points:

Slice

sequence<int> IntList; // Uses list by default
["python:seq:tuple"] sequence<int> IntTuple; // Defaults to tuple

sequence<byte> ByteString; // Uses string by default
["python:seq:list"] sequence<byte> ByteList; // Defaults to list

struct S {
    IntList i1; // list
    IntTuple i2; // tuple
    ["python:seq:tuple"] IntList i3; // tuple
    ["python:seq:list"] IntTuple i4; // list
    ["python:seq:default"] IntTuple i5; // list

    ByteString b1; // string
    ByteList b2; // list
    ["python:seq:list"] ByteString b3; // list
    ["python:seq:tuple"] ByteString b4; // tuple
    ["python:seq:default"] ByteList b5; // string
};

interface I {
    IntList op1(ByteString s1, out ByteList s2);

    ["python:seq:tuple"]
    IntList op2(["python:seq:list"] ByteString s1,
                ["python:seq:tuple"] out ByteList s2);
};

The operation  and the data members of structure  demonstrate how to override the mapping for a sequence at the point of use.op2 S

It is important to remember that these metadata directives only affect the receiver of the sequence. For example, the data members of
structure  are populated with the specified sequence types only when the Ice run time unmarshals an instance of . In the case of anS S
operation, custom metadata affects the client when specified for the operation's return type and output parameters, whereas metadata
affects the server for input parameters.

See Also

Sequences
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Dictionaries
Python Mapping for Constants
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Python Mapping for Exceptions
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Python Mapping for Dictionaries

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

As for , the Python mapping does not create a separate named type for this definition. Instead,  dictionaries are simplysequences all
instances of Python's dictionary type. For example:

Python

em = {}

e = Employee()
e.number = 31
e.firstName = "James"
e.lastName = "Gosling"

em[e.number] = e

The Ice run time validates the elements of a dictionary to ensure that they are compatible with the declared type; a  exception isValueError
raised if an incompatible type is encountered.

See Also

Dictionaries
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Constants
Python Mapping for Exceptions
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Python Mapping for Constants

Here are the  once more:constant definitions

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

The generated definitions for these constants are shown below:

Python

AppendByDefault = True
LowerNibble = 15
Advice = "Don't Panic!"
TheAnswer = 42
PI = 3.1416
FavoriteFruit = Fruit.Pear

As you can see, each Slice constant is mapped to a Python attribute with the same name as the constant.

See Also

Constants and Literals
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Exceptions
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Python Mapping for Exceptions

On this page:

Inheritance Hierarchy for Exceptions in Python
Python Mapping for User Exceptions
Python Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in Python

The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for Ice exceptions.

The ancestor of all exceptions is , from which  is derived.  and exceptions.Exception Ice.Exception Ice.LocalException
 are derived from  and form the base for all run-time and user exceptions.Ice.UserException Ice.Exception

Python Mapping for User Exceptions

Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:
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Python

class GenericError(Ice.UserException):
    def __init__(self, reason=''):
        self.reason = reason

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

class BadTimeVal(GenericError):
    def __init__(self, reason=''):
        GenericError.__init__(self, reason)

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

class BadZoneName(GenericError):
    def __init__(self, reason=''):
        GenericError.__init__(self, reason)

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

Each Slice exception is mapped to a Python class with the same name. The inheritance structure of the Slice exceptions is preserved for the
generated classes, so  and  inherit from .BadTimeVal BadZoneName GenericError

Each exception member corresponds to an attribute of the instance, which the constructor initializes to a default value appropriate for its
type. You can also declare different  for members of primitive and enumerated types. Although  and default values BadTimeVal

 do not declare data members, their constructors still accept a value for the inherited data member  in order to pass itBadZoneName reason
to the constructor of the base exception .GenericError

Each exception also defines the  method to return the name of the exception, and the special method  to return aice_name __str__
stringified representation of the exception and its members.

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically byIce.UserException
installing a handler for . Similarly, you can catch all Ice run-time exceptions with a handler for Ice.UserException Ice.LocalException
, and you can catch all Ice exceptions with a handler for .Ice.Exception

Python Mapping for Run-Time Exceptions

The Ice run time throws  for a number of pre-defined error conditions. All run-time exceptions directly or indirectly deriverun-time exceptions
from  (which, in turn, derives from ).Ice.LocalException Ice.Exception

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error
they indicate:

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
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This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a  can be handled as , , ConnectTimeoutException ConnectTimeoutException TimeoutException
, or .LocalException Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; theLocalException
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.FacetNotExistException ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Facets and Versioning
Object Life Cycle
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Python Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Classes in Python
 Class in PythonIce.ObjectPrx

Casting Proxies in Python
Using Proxy Methods in Python
Object Identity and Proxy Comparison in Python

Proxy Classes in Python

On the client side, a Slice interface maps to a Python class with methods that correspond to the operations on that interface. Consider the
following simple interface:

Slice

interface Simple {
    void op();
};

The Python mapping generates the following definition for use by the client:

Python

class SimplePrx(Ice.ObjectPrx):
    def op(self, _ctx=None):
        # ...

    # ...

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interface in a serverSimplePrx Simple
and is known as a . All the details about the server-side object, such as its address, what protocol to use, and its objectproxy instance
identity are encapsulated in that instance.

Note that  inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx Ice.ObjectPrx Ice::Object

For each operation in the interface, the proxy class has a method of the same name. In the preceding example, we find that the operation op
has been mapped to the method  . Note that  accepts an optional trailing parameter  representing the operation context. Thisop op _ctx
parameter is a Python dictionary for use by the Ice run time to store information about how to deliver a request. You normally do not need to
use it. (We examine the context parameter in detail in . The parameter is also used by .)Request Contexts IceStorm

Proxy instances are always created on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly.

A value of  denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).None

Ice.ObjectPrx Class in Python

All Ice objects have  as the ultimate ancestor type, so all proxies inherit from .  provides a number ofObject Ice.ObjectPrx ObjectPrx
methods:
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Python

class ObjectPrx(object):
    def equals(self, other):
    def ice_getIdentity(self):
    def ice_isA(self, id):
    def ice_ids(self):
    def ice_id(self):
    def ice_ping(self):
    # ...

The methods behave as follows:

equals
This method compares two proxies for equality. Note that all aspects of proxies are compared by this method, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does  imply that theynot
denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints,  returns equals

 even though the proxies denote the same object.false

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Python

proxy1 = ...
proxy2 = ...
id1 = proxy1.ice_getIdentity()
id2 = proxy2.ice_getIdentity()

if id1 == id2:
    # proxy1 and proxy2 denote the same object
else:
    # proxy1 and proxy2 denote different objects

ice_isA
The  method determines whether the object denoted by the proxy supports a specific interface. The argument to ice_isA ice_isA
is a . For example, to see whether a proxy of type  denotes a  object, we can write:type ID ObjectPrx Printer

Python

proxy = ...
if proxy != None and proxy.ice_isA("::Printer"):
    # proxy denotes a Printer object
else:
    # proxy denotes some other type of object

Note that we are testing whether the proxy is  before attempting to invoke the  method. This avoids getting a run-timeNone ice_isA
error if the proxy is .None

ice_ids
The  method returns an array of strings representing all of the  that the object denoted by the proxy supports.ice_ids type IDs
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ice_id
The  method returns the  of the object denoted by the proxy. Note that the type returned is the type of the actualice_id type ID
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a staticBasePrx
type ID of , the return value of  might be , or it might something more derived, such as .::Base ice_id ::Base ::Derived

ice_ping
The  method provides a basic reachability test for the object. If the object can physically be contacted (that is, the objectice_ping
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as  or .ObjectNotExistException ConnectTimeoutException

The , , , and  methods are remote operations and therefore support an optional trailing parameterice_isA ice_ids ice_id ice_ping
representing a . Also note that there are  in , not shown here. These methods provide differentrequest context other methods ObjectPrx
ways to dispatch a call and also provide access to an object's .facets

Casting Proxies in Python

The Python mapping for a proxy also generates two static methods:

Python

class SimplePrx(Ice.ObjectPrx):
    # ...

    def checkedCast(proxy, facet=''):
        # ...
    checkedCast = staticmethod(checkedCast)

    def uncheckedCast(proxy, facet=''):
        # ...
    uncheckedCast = staticmethod(uncheckedCast)

Both the  and  methods implement a down-cast: if the passed proxy is a proxy for an object of type ,checkedCast uncheckedCast Simple
or a proxy for an object with a type derived from , the cast returns a reference to a proxy of type ; otherwise, if theSimple SimplePrx
passed proxy denotes an object of a different type (or if the passed proxy is ), the cast returns .None None

The method names  and  are reserved for use in proxies. If a Slice interface defines an operation with eithercheckedCast uncheckedCast
of those names, the mapping escapes the name in the generated proxy by prepending an underscore. For example, an interface that defines
an operation named  is mapped to a proxy with a method named .checkedCast _checkedCast

Given a proxy of any type, you can use a  to determine whether the corresponding object supports a given type, for example:checkedCast

Python

obj = ...       # Get a proxy from somewhere...

simple = SimplePrx.checkedCast(obj)
if simple != None:
    # Object supports the Simple interface...
else:
    # Object is not of type Simple...

Note that a  contacts the server. This is necessary because only the implementation of an object in the server has definitecheckedCast
knowledge of the type of an object. As a result, a  may throw a  or an checkedCast ConnectTimeoutException

.ObjectNotExistException

In contrast, an  does not contact the server and unconditionally returns a proxy of the requested type. However, if you douncheckedCast
use an , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,uncheckedCast
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is 

. However, other exceptions, such as a marshaling exception are possible as well. And, if the objectOperationNotExistException
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:
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Slice

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a  object and use an  to down-cast the proxy:Process uncheckedCast

Python

obj = ...                               # Get proxy...
process = ProcessPrx.uncheckedCast(obj) # No worries...
process.launch(40, 60)                  # Oops...

If the proxy you received actually denotes a  object, the error will go undetected by the Ice run time: because  and  haveRocket int float
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of  will simplyRocket::launch
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

Using Proxy Methods in Python

The base proxy class  supports a variety of . Since proxies are immutable, each of theseObjectPrx methods for customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

Python

proxy = communicator.stringToProxy(...)
proxy = proxy.ice_timeout(10000)

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

Python

base = communicator.stringToProxy(...)
hello = Demo.HelloPrx.checkedCast(base)
hello = hello.ice_timeout(10000) # Type is preserved
hello.sayHello()

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Python

Proxy objects support comparison using the built-in relational operators as well as the  function. Note that proxy comparison uses  ofcmp all
the information in a proxy for the comparison. This means that not only the object identity must match for a comparison to succeed, but other
details inside the proxy, such as the protocol and endpoint information, must be the same. In other words, comparison tests for proxy
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identity,  object identity. A common mistake is to write code along the following lines:not

Python

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if p1 != p2:
    # p1 and p2 denote different objects       # WRONG!
else:
    # p1 and p2 denote the same object         # Correct

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each uses a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal, we know that the two proxies denote the same object (because they are identical in all respects); however, if two proxies
compare unequal, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the  module:Ice

Python

def proxyIdentityCompare(lhs, rhs)
def proxyIdentityAndFacetCompare(lhs, rhs)

proxyIdentityCompare allows you to correctly compare proxies for identity:

Python

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if Ice.proxyIdentityCompare(p1, p2) != 0:
    # p1 and p2 denote different objects       # Correct
else:
    # p1 and p2 denote the same object         # Correct

The function returns 0 if the identities are equal,  if  is less than , and  if  is greater than . (The comparison uses  as the?1 p1 p2 1 p1 p2 name
major sort key and  as the minor sort key.)category

The  function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

See Also

Interfaces, Operations, and Exceptions
Proxies
Python Mapping for Operations
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm
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Python Mapping for Operations

On this page:

Basic Python Mapping for Operations
Normal and  Operations in Pythonidempotent
Passing Parameters in Python

In-Parameters in Python
Out-Parameters in Python
Parameter Type Mismatches in Python
Null Parameters in Python

Exception Handling in Python

Basic Python Mapping for Operations

As we saw in the , for each  on an interface, the proxy class contains a corresponding method withPython mapping for interfaces operation
the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

Python

node = ...          # Initialize proxy
name = node.name()  # Get name via RPC

Normal and  Operations in Pythonidempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent
 has no effect. For example, consider the following interface:idempotent

Slice

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy class for this is:

Python

class ExamplePrx(Ice.ObjectPrx):
    def op1(self, _ctx=None):
        # ...

    def op2(self, _ctx=None):
        # ...

Because  affects an aspect of call dispatch, not interface, it makes sense for the two methods to look the same.idempotent
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Passing Parameters in Python

In-Parameters in Python

All parameters are passed by reference in the Python mapping; it is guaranteed that the value of a parameter will not be changed by the
invocation.

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

Python

class ClientToServerPrx(Ice.ObjectPrx):
    def op1(self, i, f, b, s, _ctx=None):
        # ...

    def op2(self, ns, ss, st, _ctx=None):
        # ...

    def op3(self, proxy, _ctx=None):
        # ...

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer
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Python

p = ...                                 # Get proxy...

p.op1(42, 3.14f, True, "Hello world!")  # Pass simple literals

i = 42
f = 3.14f
b = True
s = "Hello world!"
p.op1(i, f, b, s)                       # Pass simple variables

ns = NumberAndString()
ns.x = 42
ns.str = "The Answer"
ss = [ "Hello world!" ]
st = {}
st[0] = ns
p.op2(ns, ss, st)                       # Pass complex variables

p.op3(p)                                # Pass proxy

Out-Parameters in Python

As in Java, Python functions do not support reference arguments. That is, it is not possible to pass an uninitialized variable to a Python
function in order to have its value initialized by the function. The  overcomes this limitation with the use of  thatJava mapping holder classes
represent each  parameter. The Python mapping takes a different approach, one that is more natural for Python users.out

The semantics of  parameters in the Python mapping depend on whether the operation returns one value or multiple values. Anout
operation returns multiple values when it has declared multiple  parameters, or when it has declared a non-  return type and at leastout void
one  parameter.out

If an operation returns multiple values, the client receives them in the form of a . A non-  return value, if any, is always theresult tuple void
first element in the result tuple, followed by the  parameters in the order of declaration.out

If an operation returns only one value, the client receives the value itself.

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the  direction:out

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Python mapping generates the following code for this definition:
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Python

class ServerToClientPrx(Ice.ObjectPrx):
    def op1(self, _ctx=None):
        # ...

    def op2(self, _ctx=None):
        # ...

    def op3(self, _ctx=None):
        # ...

Given a proxy to a  interface, the client code can receive the results as in the following example:ServerToClient

Python

p = ...              # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()

The operations have no  parameters, therefore no arguments are passed to the proxy methods. Since  and  return multiplein op1 op2
values, their result tuples are unpacked into separate values, whereas the return value of  requires no unpacking.op3

Parameter Type Mismatches in Python

Although the Python compiler cannot check the types of arguments passed to a function, the Ice run time does perform validation on the
arguments to a proxy invocation and reports any type mismatches as a  exception.ValueError

Null Parameters in Python

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but theNone
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass  as aNone
parameter or return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or
strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string
element in a large sequence before sending the sequence in order to avoid a run-time error. Note that using null parameters in this way does

 create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only not empty
sequences, dictionaries, and strings do). For example, it makes no difference to the receiver whether you send a string as  or as anNone
empty string: either way, the receiver sees an empty string.

Exception Handling in Python

Any operation invocation may throw a  and, if the operation has an exception specification, may also throw run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Python exceptions, so you can simply enclose one or more operation invocations in a  block:try-except
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Python

child = ...       # Get child proxy...

try:
    child.askToCleanUp()
except Tantrum, t:
    print "The child says:", t.reason

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will usually be handled by exception handlers higher in the hierarchy. For example:

Python

import traceback, Ice

def run():
    child = ...   # Get child proxy...
    try:
        child.askToCleanUp()
    except Tantrum, t:
        print "The child says:", t.reason
        child.scold() # Recover from error...
    child.praise() # Give positive feedback...

try:
    # ...
    run()
    # ...
except Ice.Exception:
    traceback.print_exc()

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application in .)Hello World Application

See Also

Operations
Hello World Application
Slice for a Simple File System
Python Mapping for Operations
Python Mapping for Interfaces
Python Mapping for Exceptions
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Python Mapping for Classes

On this page:

Basic Python Mapping for Classes
Inheritance from  in PythonIce.Object
Class Data Members in Python
Class Constructors in Python
Class Operations in Python
Class Factories in Python

Basic Python Mapping for Classes

A Slice  maps to a Python class with the same name. The generated class contains an attribute for each Slice data member (just as forclass
structures and exceptions). Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Python mapping generates the following code for this definition:

Python

class TimeOfDay(Ice.Object):
    def __init__(self, hour=0, minute=0, second=0):
        # ...
        self.hour = hour
        self.minute = minute
        self.second = second

    def ice_staticId():
        return '::M::TimeOfDay'
    ice_staticId = staticmethod(ice_staticId)

    # ...

    #
    # Operation signatures.
    #
    # def format(self, current=None):

There are a number of things to note about the generated code:

The generated class  inherits from . This means that all classes implicitly inherit from , whichTimeOfDay Ice.Object Ice.Object
is the ultimate ancestor of all classes. Note that  is  the same as . In other words, you  passIce.Object not Ice.ObjectPrx cannot
a class where a proxy is expected and vice versa.
The constructor defines an attribute for each Slice data member.
The class defines the static method .ice_staticId
A comment summarizes the method signatures for each Slice operation.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from  in PythonIce.Object

Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the illustration below, classesIce.Object
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inherit from  instead of  (which is at the base of the inheritance hierarchy for proxies). As a result, you cannotIce.Object Ice.ObjectPrx
pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from  and .Ice.ObjectPrx Ice.Object

Ice.Object contains a number of methods:

Python

class Object(object):
    def ice_isA(self, id, current=None):
        # ...

    def ice_ping(self, current=None):
        # ...

    def ice_ids(self, current=None):
        # ...

    def ice_id(self, current=None):
        # ...

    def ice_staticId():
        # ...
    ice_staticId = staticmethod(ice_staticId)

    def ice_preMarshal(self):
        # ...

    def ice_postUnmarshal(self):
        # ...

The member functions of  behave as follows:Ice.Object

ice_isA
This method returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the object.ice_ping

ice_ids
This method returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This method returns the actual run-time  of the object. If you call  through a reference to a base instance, thetype ID ice_id
returned type ID is the actual (possibly more derived) type ID of the instance.

ice_staticId
This method is generated in each class and returns the static  of the class.type ID

ice_preMarshal
The Ice run time invokes this method prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.
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ice_postUnmarshal
The Ice run time invokes this method after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

Note that neither  nor the generated class override  and , so the default implementations apply.Ice.Object __hash__ __eq__

Class Data Members in Python

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding attribute.

Although Python provides no standard mechanism for restricting access to an object's attributes, by convention an attribute whose name
begins with an underscore signals the author's intent that the attribute should only be accessed by the class itself or by one of its subclasses.
You can employ this convention in your Slice classes using the  metadata directive. The presence of this directive causes theprotected
Slice compiler to prepend an underscore to the mapped name of the data member. For example, the  class shown below has theTimeOfDay

 metadata directive applied to each of its data members:protected

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

Python

class TimeOfDay(Ice.Object):
    def __init__(self, hour=0, minute=0, second=0):
        # ...
        self._hour = hour
        self._minute = minute
        self._second = second

    # ...

    #
    # Operation signatures.
    #
    # def format(self, current=None):

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Class Constructors in Python

Classes have a constructor that assigns to each data member a default value appropriate for its type. You can also declare different default
 for data members of primitive and enumerated types.values

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order.
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Class Operations in Python

Operations of classes are mapped to methods in the generated class. This means that, if a class contains operations (such as the format
operation of our  class), you must provide an implementation of the operation in a class that is derived from the generated class.TimeOfDay
For example:

Python

class TimeOfDayI(TimeOfDay):
    def __init__(self, hour=0, minute=0, second=0):
        TimeOfDay.__init__(self, hour, minute, second)

    def format(self, current=None):
        return "%02d:%02d:%02d" % (self.hour, self.minute, self.second)

A Slice class such as  that declares or inherits an operation is inherently abstract. Python does not support the notion of abstractTimeOfDay
classes or abstract methods, therefore the mapping merely summarizes the required method signatures in a comment for your convenience.
Furthermore, the mapping generates code in the constructor of an abstract class to prevent it from being instantiated directly; any attempt to
do so raises a  exception.RuntimeError

You may notice that the mapping for an operation adds an optional trailing parameter named . For now, you can ignore thiscurrent
parameter and pretend it does not exist.

Class Factories in Python

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However, get TimeOfDay
 is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a TimeOfDay

 class that implements the abstract  operation of the  abstract class. In other words, we must provide theTimeOfDayI format TimeOfDay
Ice run time with a factory that knows that the  abstract class has a  concrete implementation. The TimeOfDay TimeOfDayI

 interface provides us with the necessary operations:Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory



Ice 3.4.2 Documentation

625 Copyright © 2011, ZeroC, Inc.

Python

class ObjectFactory(Ice.ObjectFactory):
    def create(self, type):
        if type == M.TimeOfDay.ice_staticId():
            return TimeOfDayI()
        assert(False)
        return None

    def destroy(self):
        # Nothing to do
        pass

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
method is called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover earlier whether a Slice class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Python

ic = ...   # Get Communicator...
ic.addObjectFactory(ObjectFactory(), M.TimeOfDay.ice_staticId())

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the"::M::TimeOfDay" create
registered  instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, calls to  can be made concurrently.create destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes
Type IDs
Python Mapping for Operations
The Current Object
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Asynchronous Method Invocation (AMI) in Python

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the  is deprecated and will be removed in a future release.old API

On this page:

Basic Asynchronous API in Python
Asynchronous Proxy Methods in Python
Asynchronous Exception Semantics in Python

 Class in PythonAsyncResult
Polling for Completion in Python
Completion Callbacks in Python
Sharing State Between  and  Methods in Pythonbegin_ end_
Asynchronous Oneway Invocations in Python
Flow Control in Python
Asynchronous Batch Requests in Python
Concurrency Semantics for AMI in Python

Basic Asynchronous API in Python

Consider the following simple Slice definition:

Slice

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Asynchronous Proxy Methods in Python

Besides the synchronous proxy methods, the Python mapping generates the following asynchronous proxy methods:

Python

def begin_getName(self, number, _response=None, _ex=None, _sent=None, _ctx=None)
def end_getName(self, result)

As you can see, the single  operation results in  and  methods. The  optionallygetName begin_getName end_getName begin_ method
accepts a  and .per-invocation context callbacks

The  method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls ,end_getName end_getName
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:
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Python

e = EmployeePrx.checkedCast(...)
r = e.begin_getName(99)

# Continue to do other things here...

name = e.end_getName(r)

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . This value contains the state that the Ice run time requires to keep trackbegin_getName AsyncResult
of the asynchronous invocation. You must pass the  that is returned by the  method to the corresponding AsyncResult begin_ end_
method.

The  method has one parameter for each in-parameter of the corresponding Slice operation. The  method accepts the begin_ end_
 object as its only argument and returns the out-parameters using the  as for regular synchronousAsyncResult same semantics

invocations. For example, consider the following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op

Python

def begin_op(self, inp1, inp2, ...)
def end_op(self, result)

The call to  returns the following tuple:end_op

Python

doubleValue, outp1, outp2 = p.end_op(result)

Asynchronous Exception Semantics in Python

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception wasend_
encountered during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with thebegin_
code that calls the  method (instead of being present twice, once where the  method is called, and again where the end_ begin_ end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  methodbegin_
throws . This is necessary because, once the run time is finalized, it can no longer throw anCommunicatorDestroyedException
exception from the  method.end_

The only other exception that is thrown by the  and  methods is . This exception indicates that you have usedbegin_ end_ RuntimeError
the API incorrectly. For example, the  method throws this exception if you call an operation that has a return value or out-parametersbegin_
on a oneway proxy. Similarly, the  method throws this exception if you use a different proxy to call the  method than the proxy youend_ end_
used to call the  method, or if the  you pass to the  method was obtained by calling the  method for abegin_ AsyncResult end_ begin_
different operation.

AsyncResult Class in Python

The  that is returned by the  method encapsulates the state of the asynchronous invocation:AsyncResult begin_
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Python

class AsyncResult:
    def getCommunicator()
    def getConnection()
    def getProxy()
    def getOperation()

    def isCompleted()
    def waitForCompleted()

    def isSent()
    def waitForSent()

    def throwLocalException()

    def sentSynchronously()

The methods have the following semantics:

getCommunicator()
This method returns the communicator that sent the invocation.

getConnection()
This method returns the connection that was used for the invocation.

getProxy()
This method returns the proxy that was used to call the  method.begin_

getOperation()
This method returns the name of the operation.

isCompleted()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the  methodend_
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

isSent()
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If thebegin_
transport cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time itisSent
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent,  returns false.isSent

waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After 

 returns,  returns true if the request was successfully written to the client-side transport, or false if anwaitForSent isSent
exception occurred. In the case of a failure, you can call the corresponding  method or  to obtain theend_ throwLocalException
exception.

throwLocalException()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, throwLocalException
does nothing.

sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued,  returns false (independent of whether the request is still in the queue or has since been written tosentSynchronously
the client-side transport).

Polling for Completion in Python

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider theAsyncResult
following simple interface to transfer files from client to server:
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Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit asend
file would be along the following lines:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0
while not file.eof():
    bytes = file.read(chunkSize)  # Read a chunk
    ft.send(offset, bytes)        # Send the chunk
    offset += len(bytes.length)

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0

results = []
numRequests = 5

while not file.eof():
    bytes = file.read(chunkSize) # Read a chunk

    # Send up to numRequests + 1 chunks asynchronously.
    r = ft.begin_send(offset, bytes)
    offset += len(bytes)

    # Wait until this request has been passed to the transport.
    r.waitForSent()
    results.append(r)

    # Once there are more than numRequests, wait for the least
    # recent one to complete.
    while len(results) > numRequests:
        r = results[0]
        del results[0]
        r.waitForCompleted()

# Wait for any remaining requests to complete.
while len(results) > 0:
    r = results[0]
    del results[0]
    r.waitForCompleted()

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. InnumRequests + 1
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other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . InnumRequests
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time takennumRequests
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Completion Callbacks in Python

The  method accepts three optional callback arguments that allow you to be notified asynchronously when a request completes.begin_
Here are the corresponding methods for the  operation:getName

Python

def begin_getName(self, number, _response=None, _ex=None, _sent=None, _ctx=None)

The value you pass for the response callback ( ), the exception callback ( ), or the sent callback ( ) argument must be a _response _ex _sent
 such as a function or method. The response callback is invoked when the request completes successfully, and the exceptioncallable object

callback is invoked when the operation raises an exception. (The sent callback is primarily used for .)flow control

For example, consider the following callbacks for an invocation of the  operation:getName

Python

def getNameCB(name):
    print "Name is: " + name

def failureCB(ex):
    print "Exception is: " + str(ex)

The response callback parameters depend on the operation signature. If the operation has a non-  return type, the first parameter of thevoid
response callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice
operation, in the order of declaration.

The exception callback is invoked if the invocation fails because of an Ice run time exception, or if the operation raises a user exception.

To inform the Ice run time that you want to receive callbacks for the completion of the asynchronous call, you pass the callbacks to the 
 method:begin_

Python

e = EmployeesPrx.checkedCast(...)

e.begin_getName(99, getNameCB, failureCB)

Although the signature of an asynchronous proxy method implies that all of the callbacks are optional and therefore can be supplied in any
combination, Ice enforces the following semantics at run time:

If you omit all callbacks, you must call the  method explicitly as described .end_ earlier
If you supply either a response callback or a sent callback (or both), you must also supply an exception callback.
You may omit the response callback for an operation that returns no data (that is, an operation with a  return type and novoid
out-parameters).

Sharing State Between  and  Methods in Pythonbegin_ end_

It is common for the  method to require access to some state that is established by the code that calls the  method. As anend_ begin_
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the  method knows which user interface element should receive thebegin_
update, and the  method needs access to that element.end_
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Assuming that we have a  class that designates a particular user interface element, you could pass different widgets by storing theWidget
widget to be used as a member of a callback class:

Python

class MyCallback(object):
    def __init__(self, w):
        self._w = w

    def getNameCB(self, name):
        self._w.writeString(name)

    def failureCB(self, ex):
        print "Exception is: " + str(ex)

For this example, we assume that widgets have a  method that updates the relevant UI element.writeString

When you call the  method, you pass the appropriate callback instance to inform the  method how to update the display:begin_ end_

Python

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

# Invoke the getName operation with different widget callbacks.
cb1 = MyCallback(widget1)
e.begin_getName(99, cb1.getNameCB, cb1.failureCB)
cb2 = MyCallback(widget2)
e.begin_getName(24, cb2.getNameCB, cb2.failureCB)

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point
where its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback
instance to multiple invocations. (If you do this, your callback methods may need to use synchronization.)

For those situations in which a stateless callback is preferred, you can use a lambda function to pass state to a callback. Consider the
following example:

Python

def getNameCB(name, w):
    w.writeString(name)

def failureCB(ex):
    print "Exception is: " + str(ex)

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

# Use lambda functions to pass state.
e.begin_getName(99, lambda name: getNameCB(name, widget1), failureCB)
e.begin_getName(24, lambda name: getNameCB(name, widget2), failureCB)

This strategy eliminates the need to encapsulate shared state in a callback class. Since lambda functions can refer to variables in the
enclosing scope, they provide a convenient way to pass state directly to your callback.

Asynchronous Oneway Invocations in Python

You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have anyvoid
out-parameters, and does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns valuesbegin_
or raises a user exception, the  method throws a .begin_ RuntimeError
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The callback signatures look exactly as for a twoway invocation, but the response method is never called and may be omitted.

Flow Control in Python

Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can writebegin_
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResult.sentSynchronously
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the
request internally for later transmission in the background. (In that case,  returns false.)AsyncResult.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Python

def response(name):
    # ...

def exception(ex):
    # ...

def sent(sentSynchronously):
    # ...

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Python

e.begin_getName(99, response, exception, sent)

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent callback from the thread that calls
the  method. On the other hand, if the run time has to queue the request, it calls the sent callback from a different thread once it hasbegin_
written the request to the local transport. The boolean  parameter indicates whether the request was sentsentSynchronously
synchronously or was queued.

The sent callback allows you to limit the number of queued requests by counting the number of requests that are queued and decrementing
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in Python

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests

the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued byend_ice_flushBatchRequests
that proxy.

In addition, similar methods are available on the communicator and the  object that is returned by Connection
. These methods flush batch requests sent via the same communicator and via the same connection,AsyncResult.getConnection

respectively.

Concurrency Semantics for AMI in Python

The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the thread
calling the  method if the request could be sent synchronously. In the  callback, you know which thread is calling the callbackbegin_ sent
by looking at the  parameter.sentSynchronously
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See Also

Python Mapping for Operations
Request Contexts
Batched Invocations
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Code Generation in Python

The Python mapping supports two forms of code generation: dynamic and static.

On this page:

Dynamic Code Generation in Python
 Options in PythonIce.loadSlice

Locating Slice Files in Python
Loading Multiple Slice Files in Python

Static Code Generation in Python
Compiler Output in Python
Include Files in Python

Static Versus Dynamic Code Generation in Python
Application Considerations for Code Generation in Python
Mixing Static and Dynamic Code Generation in Python

 Command-Line Optionsslice2py
Generating Packages in Python

Dynamic Code Generation in Python

Using dynamic code generation, Slice files are "loaded" at run time and dynamically translated into Python code, which is immediately
compiled and available for use by the application. This is accomplished using the  function, as shown in the followingIce.loadSlice
example:

Python

Ice.loadSlice("Color.ice")
import M

print "My favorite color is", M.Color.blue

For this example, we assume that  contains the following definitions:Color.ice

Slice

module M {
    enum Color { red, green, blue };
};

The code imports module  after the Slice file is loaded because module  is not defined until the Slice definitions have been translated intoM M
Python.

Ice.loadSlice Options in Python

The  function behaves like a Slice compiler in that it accepts command-line arguments for specifying preprocessor optionsIce.loadSlice
and controlling code generation. The arguments must include at least one Slice file.

The function has the following Python definition:

Python

def Ice.loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, , which must be a string. The optional second argument cancmd
be used to pass additional command-line arguments as a list; this is useful when the caller already has the arguments in list form. The
function always returns .None

For example, the following calls to  are functionally equivalent:Ice.loadSlice
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Python

Ice.loadSlice("-I/opt/IcePy/slice Color.ice")
Ice.loadSlice("-I/opt/IcePy/slice", ["Color.ice"])
Ice.loadSlice("", ["-I/opt/IcePy/slice", "Color.ice"])

In addition to the ,  also supports the following command-line options:standard compiler options Ice.loadSlice

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate  for Slice definitions.checksums

Locating Slice Files in Python

If your Slice files depend on Ice types, you can avoid hard-coding the path name of your Ice installation directory by calling the 
 function:Ice.getSliceDir

Python

Ice.loadSlice("-I" + Ice.getSliceDir() + " Color.ice")

This function attempts to locate the  subdirectory of your Ice installation using an algorithm that succeeds for the following scenarios:slice

Installation of a binary Ice archive
Installation of an Ice source distribution using make install
Installation via a Windows installer
RPM installation on Linux
Execution inside a compiled Ice source distribution

If the  subdirectory can be found,  returns its absolute path name, otherwise the function returns .slice getSliceDir None

Loading Multiple Slice Files in Python

You can specify as many Slice files as necessary in a single invocation of , as shown below:Ice.loadSlice

Python

Ice.loadSlice("Syscall.ice Process.ice")

Alternatively, you can call  several times:Ice.loadSlice

Python

Ice.loadSlice("Syscall.ice")
Ice.loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of  generates Python code only for the named file. For example,Ice.loadSlice
suppose  includes  as follows:Syscall.ice Process.ice

Slice

// Syscall.ice
#include <Process.ice>
...

If you call , Python code is not generated for the Slice definitions in  or for anyIce.loadSlice("-I. Syscall.ice") Process.ice
definitions that may be included by . If you also need code to be generated for included files, one solution is to load themProcess.ice
individually in subsequent calls to . However, it is much simpler, not to mention more efficient, to use the  optionIce.loadSlice --all
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instead:

Python

Ice.loadSlice("--all -I. Syscall.ice")

When you specify ,  generates Python code for all Slice definitions included directly or indirectly from the named--all Ice.loadSlice
Slice files.

There is no harm in loading a Slice file multiple times, aside from the additional overhead associated with code generation. For example, this
situation could arise when you need to load multiple top-level Slice files that happen to include a common subset of nested files. Suppose
that we need to load both  and , both of which include . The simplest way to load both files is withSyscall.ice Kernel.ice Process.ice
a single call to :Ice.loadSlice

Python

Ice.loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for , the generated code is structured so that theProcess.ice
interpreter ignores duplicate definitions. We could have avoided generating unnecessary code with the following sequence of steps:

Python

Ice.loadSlice("--all -I. Syscall.ice")
Ice.loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely avoid this situation, and the overhead of code generation is
usually not significant enough to justify such an effort.

Static Code Generation in Python

You should be familiar with static code generation if you have used other Slice language mappings, such as C++ or Java. Using static code
generation, the Slice compiler  generates Python code from your Slice definitions.slice2py

Compiler Output in Python

For each Slice file ,  generates Python code into a file named  in the output directory.X.ice slice2py X_ice.py

Using the file name  would create problems if  defined a module named , therefore the suffix  isX.py X.ice X _ice
appended to the name of the generated file.

The default output directory is the current working directory, but a different directory can be specified using the  option.--output-dir

In addition to the generated file,  creates a Python package for each Slice module it encounters. A Python package is nothingslice2py
more than a subdirectory that contains a file with a special name ( ). This file is executed automatically by Python when a__init__.py
program first imports the package. It is created by  and must not be edited manually. Inside the file is Python code to import theslice2py
generated files that contain definitions in the Slice module of interest.

For example, the Slice files  and  both define types in the Slice module . First we present :Process.ice Syscall.ice OS Process.ice

Slice

module OS {
    interface Process {
        void kill();
    };
};

And here is :Syscall.ice
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Slice

#include <Process.ice>
module OS {
    interface Syscall {
        Process getProcess(int pid);
    };
};

Next, we translate these files using the Slice compiler:

> slice2py -I. Process.ice Syscall.ice

If we list the contents of the output directory, we see the following entries:

Python

OS/
Process_ice.py
Syscall_ice.py

The subdirectory  is the Python package that  created for the Slice module . Inside this directory is the special file OS slice2py OS
 that contains the following statements:__init__.py

Python

import Process_ice
import Syscall_ice

Now when a Python program executes , the two files  and  are implicitly imported.import OS Process_ice.py Syscall_ice.py

Subsequent invocations of  for Slice files that also contain definitions in the  module result in additional  statementsslice2py OS import
being added to . Be aware, however, that  statements may persist in  files after a Slice file isOS/__init__.py import __init__.py
renamed or becomes obsolete. This situation may manifest itself as a run-time error if the interpreter can no longer locate the generated file
while attempting to import the package. It may also cause more subtle problems, if an obsolete generated file is still present and being
loaded unintentionally. In general, it is advisable to remove the package directory and regenerate it whenever the set of Slice files changes.

A Python program may also import a generated file explicitly, using a statement such as . Typically, however, it isimport Process_ice
more convenient to import the Python module once, rather than importing potentially several individual files that comprise the module,
especially when you consider that the program must still import the module explicitly in order to make its definitions available. For example, it
is much simpler to state

Python

import OS

rather than the following alternative:

Python

import Process_ice
import Syscall_ice
import OS

Include Files in Python

It is important to understand how  handles include files. In the absence of the  option, the compiler does not generateslice2py --all
Python code for Slice definitions in included files. Rather, the compiler translates Slice  statements into Python #include import
statements in the following manner:
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1.  
2.  

3.  

Determine the full pathname of the include file.
Create the shortest possible relative pathname for the include file by iterating over each of the include directories (specified using
the  option) and removing the leading directory from the include file if possible. -I
For example, if the full pathname of an include file is , and we specified the options /opt/App/slice/OS/Process.ice

 and , then the shortest relative pathname is  after removing -I/opt/App -I/opt/App/slice OS/Process.ice
./opt/App/slice

Replace any slashes with underscores, remove the  extension, and append . Continuing our example from the previous.ice _ice
step, the translated import statement becomes
import OS_Process_ice

There is a potential problem here that must be addressed. The generated  statement shown above expects to find the file import
 somewhere in Python's search path. However,  uses a different default name, , when itOS_Process_ice.py slice2py Process_ice.py

compiles . To resolve this issue, we must use the  option when compiling :Process.ice. --prefix Process.ice

> slice2py --prefix OS_ Process.ice

The  option causes the compiler to prepend the specified prefix to the name of each generated file. When executed, the above--prefix
command creates the desired file name: OS_Process_ice.py.

It should be apparent by now that generating Python code for a complex Ice application requires a bit of planning. In particular, it is
imperative that you be consistent in your use of  statements, include directories, and  options to ensure that the correct#include --prefix
file names are used at all times.

Of course, these precautionary steps are only necessary when you are compiling Slice files individually. An alternative is to use the --all
option and generate Python code for all of your Slice definitions into one Python source file. If you do not have a suitable Slice file that
includes all necessary Slice definitions, you could write a "master" Slice file specifically for this purpose.

Static Versus Dynamic Code Generation in Python

There are several issues to consider when evaluating your requirements for code generation.

Application Considerations for Code Generation in Python

The requirements of your application generally dictate whether you should use dynamic or static code generation. Dynamic code generation
is convenient for a number of reasons:

it avoids the intermediate compilation step required by static code generation
it makes the application more compact because the application requires only the Slice files, not the assortment of files and
directories produced by static code generation
it reduces complexity, which is especially helpful during testing, or when writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

when an application uses a large number of Slice definitions and the startup delay must be minimized
when it is not feasible to deploy Slice files with the application
when a number of applications share the same Slice files
when Python code is required in order to utilize third-party Python tools.

Mixing Static and Dynamic Code Generation in Python

Using a combination of static and dynamic translation in an application can produce unexpected results. For example, consider a situation
where a dynamically-translated Slice file includes another Slice file that was statically translated:

Slice

// Slice
#include <Glacier2/Session.ice>

module App {
    interface SessionFactory {
        Glacier2::Session* createSession();
    };
};
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The Slice file  is statically translated, as are all of the Slice files included with the Ice run time.Session.ice

Assuming the above definitions are saved in , let's execute a simple Python script:App.ice

Python

# Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")

import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier): # Error
    def checkPermissions(self, userId, password):
        return (True, "")

The code looks reasonable, but running it produces the following error:

'module' object has no attribute 'PermissionsVerifier'

Normally, importing the Glacier2 module as we have done here would load all of the Python code generated for the Glacier2 Slice files.
However, since  has already included a subset of the Glacier2 definitions, the Python interpreter ignores any subsequent requestsApp.ice
to import the entire module, and therefore the  type is not present.PermissionsVerifier

One way to address this problem is to import the statically-translated modules first, prior to loading Slice files dynamically:

Python

# Python
import Ice, Glacier2 # Import Glacier2 before App.ice is loaded
Ice.loadSlice("-I/opt/Ice/slice App.ice")

class MyVerifier(Glacier2.PermissionsVerifier): # OK
    def checkPermissions(self, userId, password):
        return (True, "")

The disadvantage of this approach in a non-trivial application is that it breaks encapsulation, forcing one Python module to know what other
modules are doing. For example, suppose we place our  implementation in a module named :PermissionsVerifier verifier.py

Python

# Python
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
    def checkPermissions(self, userId, password):
        return (True, "")

Now that the use of Glacier2 definitions is encapsulated in , we would like to remove references to Glacier2 from the mainverifier.py
script:

Python

# Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # Error
v = verifier.MyVerifier()

Unfortunately, executing this script produces the same error as before. To fix it, we have to break the  module's encapsulation andverifier
import the  module in the main script because we know that the  module requires it:Glacier2 verifier
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Python

# Python
import Ice, Glacier2
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # OK
v = verifier.MyVerifier()

Although breaking encapsulation in this way might offend our sense of good design, it is a relatively minor issue.

Another solution is to import the necessary submodules explicitly. We can safely remove the Glacier2 reference from our main script after
rewriting  as shown below:verifier.py

Python

# Python
import Glacier2_PermissionsVerifier_ice
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
    def checkPermissions(self, userId, password):
        return (True, "")

Using the rules defined for , we can derive the name of the module containing the code generated for static code generation
 and import it directly. We need a second  statement to make the Glacier2 definitions accessible inPermissionsVerifier.ice import

this module.

slice2py Command-Line Options

The Slice-to-Python compiler, , offers the following command-line options in addition to the :slice2py standard options

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate  for Slice definitions.checksums

--prefix PREFIX
Use  as the prefix for  file names.PREFIX generated

Generating Packages in Python

By default, the scope of a Slice definition determines the  of its mapped Python construct. There are times, however, whenmodule
applications require greater control over the packaging of generated Python code. For example, consider the following Slice definitions:

Slice

module sys {
    interface Process {
        // ...
    };
};

Other language mappings can use these Slice definitions as shown, but they present a problem for the Python mapping: the top-level Slice
module  conflicts with Python's predefined module sys. A Python application executing the statement  would importsys import sys
whichever module the interpreter happens to locate first in its search path.

A workaround for this problem is to modify the Slice definitions so that the top-level module no longer conflicts with a predefined Python
module, but that may not be feasible in certain situations. For example, the application may already be deployed using other language
mappings, in which case the impact of modifying the Slice definitions could represent an unacceptable expense.
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The Python mapping could have addressed this issue by considering the names of predefined modules to be reserved, in which case the
Slice module  would be mapped to the Python module . However, the likelihood of a name conflict is relatively low to justify such asys _sys
solution, therefore the mapping supports a different approach: global  can be used to enclose generated code in a Python package.metadata
Our modified Slice definitions demonstrate this feature:

Slice

[["python:package:zeroc"]]
module sys {
    interface Process {
        // ...
    };
};

The global metadata directive  causes the mapping to generate all of the code resulting from definitions in thispython:package:zeroc
Slice file into the Python package . The net effect is the same as if we had enclosed our Slice definitions in the module : thezeroc zeroc
Slice module  is mapped to the Python module . However, by using metadata we have not affected the semantics of thesys zeroc.sys
Slice definitions, nor have we affected other language mappings.

See Also

Using the Slice Compilers
Python Mapping for Modules
Using Slice Checksums in Python
Metadata
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Using Slice Checksums in Python

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compiler tochecksums slice2py --checksum
generate code that adds checksums to the dictionary . The checksums are installed automatically when the PythonIce.sliceChecksums
code is first imported; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the dictionaries using the comparison operator. However, this is not
feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the local
checksums as demonstrated below:

Python

serverChecksums = ...
for i in Ice.sliceChecksums:
    if not serverChecksums.has_key(i):
        # No match found for type id!
    elif Ice.sliceChecksums[i] != serverChecksums[i]:
        # Checksum mismatch!

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
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Example of a File System Client in Python

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The Python code shown here hardly differs from the code you would write for an ordinary Python program. This is one of the biggest
advantages of using Ice: accessing a remote object is as easy as accessing an ordinary, local Python object. This allows you to put your
effort where you should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true
for the  as well, meaning that you can develop distributed applications easily and efficiently.server side

We now have seen enough of the client-side Python mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:
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Python

import sys, traceback, Ice, Filesystem

# Recursively print the contents of directory "dir"
# in tree fashion. For files, show the contents of
# each file. The "depth" parameter is the current
# nesting level (for indentation).

def listRecursive(dir, depth):
    indent = ''
    depth = depth + 1
    for i in range(depth):
        indent = indent + '\t'

    contents = dir.list()

    for node in contents:
        subdir = Filesystem.DirectoryPrx.checkedCast(node)
        file = Filesystem.FilePrx.uncheckedCast(node)
        print indent + node.name(),
        if subdir:
            print "(directory):"
            listRecursive(subdir, depth)
        else:
            print "(file):"
            text = file.read()
            for line in text:
                print indent + "\t" + line

status = 0
ic = None
try:
    # Create a communicator
    #
    ic = Ice.initialize(sys.argv)

    # Create a proxy for the root directory
    #
    obj = ic.stringToProxy("RootDir:default -p 10000")

    # Down-cast the proxy to a Directory proxy
    #
    rootDir = Filesystem.DirectoryPrx.checkedCast(obj)

    # Recursively list the contents of the root directory
    #
    print "Contents of root directory:"
    listRecursive(rootDir, 0)
except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    #
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)
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1.  

2.  

1.  

2.  

3.  

The program first defines the  function, which is a helper function to print the contents of the file system, and the mainlistRecursive
program follows. Let us look at the main program first:

The structure of the code follows what we saw in . After initializing the run time, the client creates a proxy toHello World Application
the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the default
protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in . The function is passed a proxy to a directory to list, and an indent level. (The indent levellistRecursive
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.)  calls the  operation on the directory and iterates over the returned sequence of nodes:listRecursive list

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we  that theis-a Directory DirectoryPrx checkedCast checkedCast know
Node  File and, therefore, an  is sufficient to get a . is-a uncheckedCast FilePrx
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast

 because an  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of a two files and a directory as follows:

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.
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We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Example of a File System Server in Python
Object Life Cycle
IceGrid
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Server-Side Slice-to-Python Mapping

The mapping for Slice data types to Python is identical on the client side and server side. This means that everything in the Client-Side
 section also applies to the server side. However, for the server side, there are a few additional things you need toSlice-to-Python Mapping

know — specifically, how to:

Initialize and finalize the server-side run time
Implement servants
Pass parameters and throw exceptions
Create servants and register them with the Ice run time.

Although the examples in this chapter are simple, they accurately reflect the basics of writing an Ice server. Of course, for more sophisticated
servers, you will be using , for example, to improve performance or scalability. However, these APIs are all described in Slice,additional APIs
so, to use these APIs, you need not learn any Python mapping rules beyond those described here.

Topics

The Server-Side main Program in Python
Server-Side Python Mapping for Interfaces
Parameter Passing in Python
Raising Exceptions in Python
Object Incarnation in Python
Asynchronous Method Dispatch (AMD) in Python
Example of a File System Server in Python
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The Server-Side main Program in Python

This section discussed how to initialize and finalize the server-side run time.

On this page:

Initializing and Finalizing the Server-Side Run Time in Python
The  Class in PythonIce.Application

Using  on the Client Side in PythonIce.Application
Catching Signals in Python

 and Properties in PythonIce.Application
Limitations of  in PythonIce.Application

Initializing and Finalizing the Server-Side Run Time in Python

The main entry point to the Ice run time is represented by the local interface . As for the client side, you must initializeIce::Communicator
the Ice run time by calling  before you can do anything else in your server.  returns a reference to anIce.initialize Ice.initialize
instance of :Ice.Communicator

Python

import sys, traceback, Ice

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    # ...
except:
    traceback.print_exc()
    status = 1

# ...

Ice.initialize accepts the argument list that is passed to the program by the operating system. The function scans the argument list for
any command-line options that are relevant to the Ice run time; any such options are removed from the argument list so, when 

 returns, the only options and arguments remaining are those that concern your application. If anything goes wrong duringIce.initialize
initialization,  throws an exception.initialize

You can pass a second argument of type  to .  is defined as follows:InitializationData Ice.initialize InitializationData

Python

class InitializationData(object):
    def __init__(self):
        self.properties = None
        self.logger = None
        self.threadHook = None

You can pass in an instance of this class to set  for the communicator, establish a , and to establish a properties logger thread notification
.hook

Before leaving your program, you  call . The  operation is responsible for finalizing the Ice run time.must Communicator.destroy destroy
In particular,  waits for any operation implementations that are still executing in the server to complete. In addition, destroy destroy
ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and
memory. Never allow your program to terminate without calling  first; doing so has undefined behavior.destroy

The general shape of our server-side program is therefore as follows:
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Python

import sys, traceback, Ice

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    # ...
except:
    traceback.print_exc()
    status = 1

if ic:
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note that the code places the call to  into a  block and takes care to return the correct exit status to the operatingIce.initialize try
system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The  Class in PythonIce.Application

The preceding program structure is so common that Ice offers a class, , that encapsulates all the correct initializationIce.Application
and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Python

class Application(object):

    def __init__(self, signalPolicy=0):

    def main(self, args, configFile=None, initData=None):

    def run(self, args):

    def appName():
        # ...
    appName = staticmethod(appName)

    def communicator():
        # ...
    communicator = staticmethod(communicator)

The intent of this class is that you specialize  and implement the abstract  method in your derived class. WhateverIce.Application run
code you would normally place in your main program goes into  instead. Using , our program looks as follows:run Ice.Application
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1.  

2.  

3.  

4.  

5.  
6.  

Python

import sys, Ice

class Server(Ice.Application):
    def run(self, args):
        # Server code here...
        return 0

app = Server()
status = app.main(sys.argv)
sys.exit(status)

You also can call  with an optional file name or an  structure. If you pass a  to , themain InitializationData configuration file name main
property settings in this file are overridden by settings in a file identified by the  environment variable (if defined). PropertyICE_CONFIG
settings supplied on the  take precedence over all other settings.command line

The  function does the following:Application.main

It installs an exception handler. If your code fails to handle an exception,  prints the exception informationApplication.main
before returning with a non-zero return value.
It initializes (by calling ) and finalizes (by calling ) a communicator. You can getIce.initialize Communicator.destroy
access to the communicator for your server by calling the static  accessor.communicator
It scans the argument list for options that are relevant to the Ice run time and removes any such options. The argument list that is
passed to your  method therefore is free of Ice-related options and only contains options and arguments that are specific to yourrun
application.
It provides the name of your application via the static  member function. The return value from this call is the first elementappName
of the argument vector passed to , so you can get at this name from anywhere in your code by calling Application.main

 (which is often necessary for error messages).Ice.Application.appName
It installs a signal handler that properly shuts down the communicator.
It installs a  if the application has not already configured one. The per-process logger uses the value of the per-process logger

 property as a prefix for its messages and sends its output to the standard error channel. An application canIce.ProgramName
also specify an .alternate logger

Using  ensures that your program properly finalizes the Ice run time, whether your server terminates normally or inIce.Application
response to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition, 

 also provides features for signal handling and configuration that you do not have to implement yourself when you useIce.Application
this class.

Using  on the Client Side in PythonIce.Application

You can use  for your clients as well: simply implement a class that derives from  and place theIce.Application Ice.Application
client code into its  method. The advantage of this approach is the same as for the server side:  ensures that therun Ice.Application
communicator is destroyed correctly even in the presence of exceptions or signals.

Catching Signals in Python

The simple server we developed in  had no way to shut down cleanly: we simply interrupted the server from theHello World Application
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals,  encapsulates Python's signal handling capabilities, allowing you to cleanly shutIce.Application
down on receipt of a signal:
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Python

class Application(object):
    # ...
    def destroyOnInterrupt():
        # ...
    destroyOnInterrupt = classmethod(destroyOnInterrupt)

    def shutdownOnInterrupt():
        # ...
    shutdownOnInterrupt = classmethod(shutdownOnInterrupt)

    def ignoreInterrupt():
        # ...
    ignoreInterrupt = classmethod(ignoreInterrupt)

    def callbackOnInterrupt():
        # ...
    callbackOnInterrupt = classmethod(callbackOnInterrupt)

    def holdInterrupt():
        # ...
    holdInterrupt = classmethod(holdInterrupt)

    def releaseInterrupt():
        # ...
    releaseInterrupt = classmethod(releaseInterrupt)

    def interrupted():
        # ...
    interrupted = classmethod(interrupted)

    def interruptCallback(self, sig):
        # Default implementation does nothing.
        pass

The methods behave as follows:

destroyOnInterrupt
This method installs a signal handler that destroys the communicator if it is interrupted. This is the default behavior.

shutdownOnInterrupt
This method installs a signal handler that shuts down the communicator if it is interrupted.

ignoreInterrupt
This method causes signals to be ignored.

callbackOnInterrupt
This method configures  to invoke  when a signal occurs, thereby giving the subclassIce.Application interruptCallback
responsibility for handling the signal.

holdInterrupt
This method temporarily blocks signal delivery.

releaseInterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after  was called isholdInterrupt
delivered when you call .releaseInterrupt

interrupted
This method returns  if a signal caused the communicator to shut down,  otherwise. This allows us to distinguishTrue False
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass overrides this method to respond to signals. The function may be called concurrently with any other thread and must not
raise exceptions.
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By default,  behaves as if  was invoked, therefore our server program requires no change toIce.Application destroyOnInterrupt
ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of Ice.Application
by passing   to the constructor. In that case, signals retain their default behavior, that is, terminate the process.) However, we add a1
diagnostic to report the occurrence of a signal, so our program now looks like:

Python

import sys, Ice

class MyApplication(Ice.Application):
    def run(self, args):

        # Server code here...

        if self.interrupted():
            print self.appName() + ": terminating"

        return 0

app = MyApplication()
status = app.main(sys.argv)
sys.exit(status)

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an
operation that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Ice.Application and Properties in Python

Apart from the functionality shown in this section,  also takes care of initializing the Ice run time with property values. Ice.Application
 allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread poolProperties

size or port number for a server. The  method of  accepts an optional second parameter allowing you to specify themain Ice.Application
name of a  that will be processed during initialization.configuration file

Limitations of  in PythonIce.Application

Ice.Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use 
. Instead, you must structure your code as we saw in  (taking care to always destroy theIce.Application Hello World Application

communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
Thread Safety
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Server-Side Python Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in Python
Servant Classes in Python

Server-Side Normal and  Operations in Pythonidempotent

Skeleton Classes in Python

On the client side, interfaces map to proxy classes. On the server side, interfaces map to . A skeleton is an abstract baseskeleton classes
class from which you derive your servant class and define a method for each operation on the corresponding interface. For example,
consider our  for the  interface:Slice definition Node

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Python mapping generates the following definition for this interface:

Python

class Node(Ice.Object):
    def __init__(self):
        # ...

    #
    # Operation signatures.
    #
    # def name(self, current=None):

The important points to note here are:

As for the client side, Slice modules are mapped to Python modules with the same name, so the skeleton class definitions are part
of the  module.Filesystem
The name of the skeleton class is the same as the name of the Slice interface ( ).Node
The skeleton class contains a comment summarizing the method signature of each operation in the Slice interface.
The skeleton class is an abstract base class because its constructor prevents direct instantiation of the class.
The skeleton class inherits from  (which forms the root of the Ice object hierarchy).Ice.Object

Servant Classes in Python

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the  interface, you could write:Node
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Python

import Filesystem

class NodeI(Filesystem.Node):
    def __init__(self, name):
        self._name = name

    def name(self, current=None):
        return self._name

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called .I Node NodeI
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that 

 extends , that is, it derives from its skeleton class.NodeI Filesystem.Node

As far as Ice is concerned, the  class must implement only a single method: the  method that is defined in the  interface.NodeI name Node
This makes the servant class a concrete class that can be instantiated. You can add other member functions and data members as you see
fit to support your implementation. For example, in the preceding definition, we added a  member and a constructor. (Obviously, the_name
constructor initializes the  member and the  function returns its value.)_name name

Server-Side Normal and  Operations in Pythonidempotent

Whether an operation is an ordinary operation or an  operation has no influence on the way the operation is mapped. Toidempotent
illustrate this, consider the following interface:

Slice

interface Example {
               void normalOp();
    idempotent void idempotentOp();
};

The mapping for this interface is shown below:

Python

class Example(Ice.Object):
    # ...

    #
    # Operation signatures.
    #
    # def normalOp(self, current=None):
    # def idempotentOp(self, current=None):

Note that the signatures of the methods are unaffected by the  qualifier.idempotent

See Also

Slice for a Simple File System
Python Mapping for Interfaces
Parameter Passing in Python
Raising Exceptions in Python
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Parameter Passing in Python

For each  parameter of a Slice operation, the Python mapping generates a corresponding parameter for the method in the skeleton. Inin
addition, every operation has an additional, trailing parameter of type . For example, the  operation of the  interfaceIce.Current name Node
has no parameters, but the  method in a Python servant has a  parameter. We will ignore this parameter for now.name current

An operation returning multiple values returns them in a tuple consisting of a non-  return value, if any, followed by the  parametersvoid out
in the order of declaration. An operation returning only one value simply returns the value itself.

An operation returns multiple values when it declares multiple out parameters, or when it declares a non-  return typevoid
and at least one  parameter.out

To illustrate these rules, consider the following interface that passes string parameters in all possible directions:

Slice

interface Example {
    string op1(string sin);
    void op2(string sin, out string sout);
    string op3(string sin, out string sout);
};

The generated skeleton class for this interface looks as follows:

Python

class Example(Ice.Object):
    def __init__(self):
        # ...

    #
    # Operation signatures.
    #
    # def op1(self, sin, current=None):
    # def op2(self, sin, current=None):
    # def op3(self, sin, current=None):

The signatures of the Python methods are identical because they all accept a single  parameter, but their implementations differ in thein
way they return values. For example, we could implement the operations as follows:

Python

class ExampleI(Example):
    def op1(self, sin, current=None):
        print sin             # In params are initialized
        return "Done"         # Return value

    def op2(self, sin, current=None):
        print sin             # In params are initialized
        return "Hello World!" # Out parameter

    def op3(self, sin, current=None):
        print sin             # In params are initialized
        return ("Done", "Hello World!")

Notice that  and  return their string values directly, whereas  returns a tuple consisting of the return value followed by the op1 op2 op3 out
parameter.

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact your code in any way. The same is true for parameters of other types, such as proxies, classes,



Ice 3.4.2 Documentation

656 Copyright © 2011, ZeroC, Inc.

or dictionaries: the parameter passing conventions follow normal Python rules and do not require special-purpose API calls.

See Also

Server-Side Python Mapping for Interfaces
Raising Exceptions in Python
The Current Object
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Raising Exceptions in Python

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

Python

class FileI(Filesystem.File):
    # ...

    def write(self, text, current=None):
        # Try to write the file contents here...
        # Assume we are out of space...
        if error:
            e = Filesystem.GenericError()
            e.reason = "file too large"
            raise e

The  generates a constructor that accepts values for data members, so we can simplify this example by changing ourmapping for exceptions
 statement to the following:raise

Python

class FileI(Filesystem.File):
    # ...

    def write(self, text, current=None):
        # Try to write the file contents here...
        # Assume we are out of space...
        if error:
            raise Filesystem.GenericError("file too large")

If you throw an arbitrary Python run-time exception, the Ice run time catches the exception and then returns an  to theUnknownException
client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the exception specification of the operation),
the client receives an .UnknownUserException

If you throw a run-time exception, such as , the client receives an . For that reason,MemoryLimitException UnknownLocalException
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocalException
, which does not tell the client anything useful.

Three run-time exceptions are  and not changed to  when returned to thetreated specially UnknownLocalException
client: , , and .ObjectNotExistException OperationNotExistException FacetNotExistException

See Also

Run-Time Exceptions
Server-Side Python Mapping for Interfaces
Python Mapping for Exceptions
Facets and Versioning
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1.  
2.  
3.  
4.  

Object Incarnation in Python

Having created a servant class such as the rudimentary , you can instantiate the class to create a concrete servant that can classNodeI
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must take the following steps:

Instantiate a servant class.
Create an identity for the Ice object incarnated by the servant.
Inform the Ice run time of the existence of the servant.
Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a Python Servant
Creating an Identity in Python
Activating a Python Servant
UUIDs as Identities in Python
Creating Proxies in Python

Proxies and Servant Activation in Python
Direct Proxy Creation in Python

Instantiating a Python Servant

Instantiating a servant means to allocate an instance:

Python

servant = NodeI("Fred")

This statement creates a new  instance and assigns its reference to the variable .NodeI servant

Creating an Identity in Python

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.

The Ice object model assumes that all objects (regardless of their adapter) have a .globally unique identity

An Ice object identity is a structure with the following Slice definition:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the  and  fields of the  structure. For now, we will leave the name category Identity
 field as the empty string and simply use the  field. (The  field is most often used in conjunction with category name category servant

.)locators

To create an identity, we simply assign a key that identifies the servant to the  field of the  structure:name Identity
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1.  

2.  
3.  

Python

id = Ice.Identity()
id.name = "Fred" # Not unique, but good enough for now

Note that the  allows us to write the following equivalent code:mapping for structures

Python

id = Ice.Identity("Fred") # Not unique, but good enough for now

Activating a Python Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the  operation on the object adapter. Assuming that we haveadd
access to the object adapter in the  variable, we can write:adapter

Python

adapter.add(servant, id)

Note the two arguments to : the servant and the object identity. Calling  on the object adapter adds the servant and the servant'sadd add
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.
The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.
If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming
request into the correct member function on the servant.

Assuming that the object adapter is in the , client requests are dispatched to the servant as soon as you call .active state add

UUIDs as Identities in Python

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. The  function creates such identities:Ice.generateUUID

Python

import Ice
print Ice.generateUUID()

When executed, this program prints a unique string such as . Each call to 5029a22c-e333-4f87-86b1-cd5e0fcce509 generateUUID
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation  thataddWithUUID
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can create an identity and register a
servant with that identity in a single step as follows:

Python

adapter.addWithUUID(NodeI("Fred"))

Creating Proxies in Python

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
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only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in . However, creation of proxies by the client in thisHello World Application
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in Python

The  and  servant activation operations on the object adapter return a proxy for the corresponding Ice object. This meansadd addWithUUID
we can write:

Python

proxy = adapter.addWithUUID(NodeI("Fred"))
nodeProxy = Filesystem.NodePrx.uncheckedCast(proxy)

# Pass nodeProxy to client...

Here,  both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.addWithUUID

Note that we need to use an  here because  returns a proxy of type .uncheckedCast addWithUUID Ice.ObjectPrx

Direct Proxy Creation in Python

The object adapter offers an operation to create a proxy for a given identity:

Slice

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that  creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxiescreateProxy
have a life cycle that is quite independent from the life cycle of servants:

Python

id = Ice.Identity()
id.name = Ice.generateUUID()
proxy = adapter.createProxy(id)

This creates a proxy for an Ice object with the identity returned by . Obviously, no servant yet exists for that object so, if wegenerateUUID
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an . (WeObjectNotExistException
examine these life cycle issues in more detail in .)Object Life Cycle

See Also

Hello World Application
Python Mapping for Structures
Server-Side Python Mapping for Interfaces
Object Adapter States
Servant Locators
Object Life Cycle
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Asynchronous Method Dispatch (AMD) in Python

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's 
. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests andthread pool

therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receiveAMI
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

Enabling AMD with Metadata in Python
AMD Mapping in Python
AMD Exceptions in Python
AMD Example in Python

Enabling AMD with Metadata in Python

To enable asynchronous dispatch, you must add an  metadata directive to your Slice definitions. The directive applies at the["amd"]
interface and the operation level. If you specify  at the interface level, all operations in that interface use asynchronous dispatch; if["amd"]
you specify  for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive ["amd"]

 synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannotreplaces
use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
    bool isValid();
    float computeRate();
};

interface J {
    ["amd"] void startProcess();
    int endProcess();
};

In this example, both operations of interface  use asynchronous dispatch, whereas, for interface ,  uses asynchronousI J startProcess
dispatch and  uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in
your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in Python

For each AMD operation, the Python mapping emits a dispatch method with the same name as the operation and the suffix . This_async
method returns . The first parameter is a reference to a callback object, as described below. The remaining parameters comprise the None

 parameters of the operation, in the order of declaration.in

The callback object defines two methods:
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def ice_response(self, < >)params
The  method allows the server to report the successful completion of the operation. If the operation has a non-ice_response void
return type, the first parameter to  is the return value. Parameters corresponding to the operation's  parametersice_response out
follow the return value, in the order of declaration.

def ice_exception(self, ex)
The  method allows the server to report an exception.ice_exception

Neither  nor  throw any exceptions to the caller.ice_response ice_exception

Suppose we have defined the following operation:

Slice

interface I {
    ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation  is shown below:foo

Python

class ...
    #
    # Operation signatures.
    #
    # def ice_response(self, _result, l)
    # def ice_exception(self, ex)

The dispatch method for asynchronous invocation of operation  is generated as follows:foo

Python

def foo_async(self, __cb, s)

AMD Exceptions in Python

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).

These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are  and local exceptions may undergo validated
.translation

AMD Example in Python

To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:
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Slice

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the  operation returns a new grid of the same size with theinterpolate
values interpolated in some interesting (but unspecified) way.

Our servant class derives from  and supplies a definition for the  method that creates a  to hold theDemo.Model interpolate_async Job
callback object and arguments, and adds the  to a queue. The method uses a lock to guard access to the queue:Job

Python

class ModelI(Demo.Model):
    def __init__(self):
        self._mutex = threading.Lock()
        self._jobs = []

    def interpolate_async(self, cb, data, factor, current=None):
        self._mutex.acquire()
        try:
            self._jobs.append(Job(cb, data, factor))
        finally:
            self._mutex.release()

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next  from the queue and invokes , which uses  (not shown) toJob execute interpolateGrid
perform the computational work:

Python

class Job(object):
    def __init__(self, cb, grid, factor):
        self._cb = cb
        self._grid = grid
        self._factor = factor

    def execute(self):
        if not self.interpolateGrid():
            self._cb.ice_exception(Demo.RangeError())
            return
        self._cb.ice_response(self._grid)

    def interpolateGrid(self):
        # ...

If  returns , then  is invoked to indicate that a range error has occurred. The  statementinterpolateGrid False ice_exception return
following the call to  is necessary because  does not throw an exception; it only marshals the exceptionice_exception ice_exception
argument and sends it to the client.

If interpolation was successful,  is called to send the modified grid back to the client.ice_response

See Also
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User Exceptions
Run-Time Exceptions
Asynchronous Method Invocation (AMI) in Python
The Ice Threading Model
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Example of a File System Server in Python

This page presents the source code for a Python server that implements our  and communicates with the  we wrote earlier.file system client

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just
the same as a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application
code so that you can concentrate on developing application logic instead of networking infrastructure.

On this page:

Implementing a File System Server in Python
Server Main Program in Python

 Servant Class in PythonFileI
 Servant Class in PythonDirectoryI
 Data Members in PythonDirectoryI
 Constructor in PythonDirectoryI
 Methods in PythonDirectoryI

Thread Safety in Python

Implementing a File System Server in Python

We have now seen enough of the server-side Python mapping to implement a server for our . (You may find it useful to reviewfile system
these Slice definitions before studying the source code.)

Our server is implemented in a single source file, , containing our server's main program as well as the definitions of our Server.py
 and  servant subclasses.Directory File

Server Main Program in Python

Our server main program uses the  class. The  method installs a signal handler, creates an object adapter,Ice.Application run
instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a main program as
follows:

Python

import sys, threading, Ice, Filesystem

# DirectoryI servant class ...
# FileI servant class ...

class Server(Ice.Application):
    def run(self, args):
        # Terminate cleanly on receipt of a signal
        #
        self.shutdownOnInterrupt()

        # Create an object adapter (stored in the _adapter
        # static members)
        #
        adapter = self.communicator().createObjectAdapterWithEndpoints(
                        "SimpleFilesystem", "default -p 10000")
        DirectoryI._adapter = adapter
        FileI._adapter = adapter

        # Create the root directory (with name "/" and no parent)
        #
        root = DirectoryI("/", None)

        # Create a file called "README" in the root directory
        #
        file = FileI("README", root)
        text = [ "This file system contains a collection of poetry." ]
        try:
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            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # Create a directory called "Coleridge"
        # in the root directory
        #
        coleridge = DirectoryI("Coleridge", root)

        # Create a file called "Kubla_Khan"
        # in the Coleridge directory
        #
        file = FileI("Kubla_Khan", coleridge)
        text = [ "In Xanadu did Kubla Khan",
                 "A stately pleasure-dome decree:",
                 "Where Alph, the sacred river, ran",
                 "Through caverns measureless to man",
                 "Down to a sunless sea." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # All objects are created, allow client requests now
        #
        adapter.activate()

        # Wait until we are done
        #
        self.communicator().waitForShutdown()

        if self.interrupted():
            print self.appName() + ": terminating"

        return 0
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app = Server()
sys.exit(app.main(sys.argv))

The code defines the  class, which derives from  and contains the main application logic in its  method.Server Ice.Application run
Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object adapter and
call .waitForShutdown

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
structure shown below:

A small file system.

As we will see shortly, the servants for our directories and files are of type  and , respectively. The constructor for eitherDirectoryI FileI
type of servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory.
(For the root directory, which has no parent, we pass .) Thus, the statementNone

Python

        root = DirectoryI("/", None)

creates the root directory, with the name  and no parent directory."/"

Here is the code that establishes the structure in the above illustration:
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Python

        # Create the root directory (with name "/" and no parent)
        #
        root = DirectoryI("/", None)

        # Create a file called "README" in the root directory
        #
        file = FileI("README", root)
        text = [ "This file system contains a collection of poetry." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # Create a directory called "Coleridge"
        # in the root directory
        #
        coleridge = DirectoryI("Coleridge", root)

        # Create a file called "Kubla_Khan"
        # in the Coleridge directory
        #
        file = FileI("Kubla_Khan", coleridge)
        text = [ "In Xanadu did Kubla Khan",
                 "A stately pleasure-dome decree:",
                 "Where Alph, the sacred river, ran",
                 "Through caverns measureless to man",
                 "Down to a sunless sea." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

We first create the root directory and a file  within the root directory. (Note that we pass a reference to the root directory as theREADME
parent when we create the new node of type .)FileI

The next step is to fill the file with text:

Python

        text = [ "This file system contains a collection of poetry." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

Recall that  map to Python lists. The Slice type  is simply a list of strings; we add a line of text to our  file bySlice sequences Lines README
initializing the  list to contain one element.text

Finally, we call the Slice  operation on our  servant by simply writing:write FileI

Python

            file.write(text)

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to
the servant (of type ) and not via a proxy (of type ), the Ice run time does not know that this call is even taking place — suchFileI FilePrx
a direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Python method call.

In similar fashion, the remainder of the code creates a subdirectory called  and, within that directory, a file called  toColeridge Kubla_Khan
complete the structure in the above illustration.
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FileI Servant Class in Python

Our  servant class has the following basic structure:FileI

Python

class FileI(Filesystem.File):
    # Constructor and operations here...

    _adapter = None

The class has a number of data members:

_adapter
This class member stores a reference to the single object adapter we use in our server.

_name
This instance member stores the name of the file incarnated by the servant.

_parent
This instance member stores the reference to the servant for the file's parent directory.

_lines
This instance member holds the contents of the file.

The , , and  data members are initialized by the constructor:_name _parent _lines

Python

    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._lines = []

        assert(self._parent != None)

        # Create an identity
        #
        myID = Ice.Identity()
        myID.name = Ice.generateUUID()

        # Add ourself to the object adapter
        #
        self._adapter.add(self, myID)

        # Create a proxy for the new node and
        # add it as a child to the parent
        #
        thisNode = Filesystem.NodePrx.uncheckedCast(self._adapter.createProxy(myID))
        self._parent.addChild(thisNode)

After initializing the instance members, the code verifies that the reference to the parent is not  because every file must have a parentNone
directory. The constructor then generates an identity for the file by calling  and adds itself to the servant map by calling Ice.generateUUID

. Finally, the constructor creates a proxy for this file and calls the  method on its parent directory. ObjectAdapter.add addChild
 is a helper function that a child directory or file calls to add itself to the list of descendant nodes of its parent directory. We will seeaddChild

the implementation of this function in . MethodsDirectoryI

The remaining methods of the  class implement the Slice operations we defined in the  and  Slice interfaces:FileI Node File
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Python

    # Slice Node::name() operation

    def name(self, current=None):
        return self._name

    # Slice File::read() operation

    def read(self, current=None):
        return self._lines

    # Slice File::write() operation

    def write(self, text, current=None):
        self._lines = text

The  method is inherited from the generated  class. It simply returns the value of the  instance member.name Node _name

The  and  methods are inherited from the generated  class and simply return and set the  instance member.read write File _lines

DirectoryI Servant Class in Python

The  class has the following basic structure:DirectoryI

Python

class DirectoryI(Filesystem.Directory):
    # Constructor and operations here...

    _adapter = None

DirectoryI Data Members in Python

As for the  class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the FileI
 member holds .) In addition, we have a  data member that stores the list of child directories. These data_parent None _contents

members are initialized by the constructor:
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Python

    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._contents = []

        # Create an identity. The
        # parent has the fixed identity "RootDir"
        #
        myID = Ice.Identity()
        if(self._parent):
            myID.name = Ice.generateUUID()
        else:
            myID.name = "RootDir"

        # Add ourself to the object adapter
        #
        self._adapter.add(self, myID)

        # Create a proxy for the new node and
        # add it as a child to the parent
        #
        thisNode = Filesystem.NodePrx.uncheckedCast(self._adapter.createProxy(myID))
        if self._parent:
            self._parent.addChild(thisNode)

DirectoryI Constructor in Python

The constructor creates an identity for the new directory by calling . (For the root directory, we use the fixed identity Ice.generateUUID
.) The servant adds itself to the servant map by calling  and then creates a proxy to itself and passes it to"RootDir" ObjectAdapter.add

the  helper function.addChild

DirectoryI Methods in Python

addChild simply adds the passed reference to the  list:_contents

Python

    def addChild(self, child):
        self._contents.append(child)

The remainder of the operations,  and , are trivial:name list

Python

    def name(self, current=None):
        return self._name

    def list(self, current=None):
        return self._contents

Thread Safety in Python

The server code we have written so far is not quite correct as it stands: if two clients access the same file in parallel, each via a different
thread, one thread may read the  data member while another thread updates it. Obviously, if that happens, we may write or return_lines
garbage or, worse, crash the server. However, we can make the  and  operations thread-safe with a few trivial changes to the read write

 class:FileI
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Python

    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._lines = []
        self._mutex = threading.Lock()

        # ...

    def name(self, current=None):
        return self._name

    def read(self, current=None):
        self._mutex.acquire()
        lines = self._lines[:] # Copy the list
        self._mutex.release()
        return lines

    def write(self, text, current=None):
        self._mutex.acquire()
        self._lines = text
        self._mutex.release()

We modified the constructor to add the instance member , and then enclosed our  and  implementations in a critical_mutex read write
section. (The  method does not require a critical section because the file's name is immutable.)name

No changes for thread safety are necessary in the  class because the  interface, in its current form, defines noDirectoryI Directory
operations that modify the object.

See Also

Slice for a Simple File System
Python Mapping for Sequences
Example of a File System Client in Python
The Server-Side main Program in Python
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Ruby Mapping
Ice currently provides a client-side mapping for Ruby, but not a server-side mapping.

Topics

Client-Side Slice-to-Ruby Mapping
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Client-Side Slice-to-Ruby Mapping

The client-side Slice-to-Ruby mapping defines how Slice data types are translated to Ruby types, and how clients invoke operations, pass
parameters, and handle errors. Much of the Ruby mapping is intuitive. For example, Slice sequences map to Ruby arrays, so there is
essentially nothing new you have to learn in order to use Slice sequences in Ruby.

The Ruby API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For
example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is
iterating over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is
fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the Ruby mapping, you should need no more than the Slice definition of your application and knowledge of
the Ruby mapping rules. In particular, looking through the generated code in order to discern how to use the Ruby mapping
is likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code
to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to
write your client-side code.

The  ModuleIce
All of the APIs for the Ice run time are nested in the  module, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  module are generated from Slice definitions; other parts of the  moduleIce Ice
provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover the
contents of the  module throughout the remainder of the book.Ice

A Ruby application can load the Ice run time using the  statement:require

require 'Ice'

If the statement executes without error, the Ice run time is loaded and available for use. You can determine the version of
the Ice run time you have just loaded by calling the  function:stringVersion

icever = Ice::stringVersion()

Topics

Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
Ruby Mapping for Classes
Code Generation in Ruby
The main Program in Ruby
Using Slice Checksums in Ruby
Example of a File System Client in Ruby
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1.  

2.  

Ruby Mapping for Identifiers

A Slice  maps to an identical Ruby identifier. For example, the Slice identifier  becomes the Ruby identifier . There areidentifier Clock Clock
two exceptions to this rule:

Ruby requires the names of classes, modules, and constants to begin with an upper case letter. If a Slice identifier maps to the
name of a Ruby class, module, or constant, and the Slice identifier does not begin with an upper case letter, the mapping replaces
the leading character with its upper case equivalent. For example, the Slice identifier  is mapped as .bankAccount BankAccount
If a Slice identifier is the same as a Ruby keyword, the corresponding Ruby identifier is prefixed with an underscore. For example,
the Slice identifier  is mapped as .while _while

You should try to  as much as possible.avoid such identifiers

See Also

Lexical Rules
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations



Ice 3.4.2 Documentation

676 Copyright © 2011, ZeroC, Inc.

Ruby Mapping for Modules

A Slice  maps to a Ruby module with the . The mapping preserves the nesting of the Slice definitions.module same name

See Also

Modules
Ruby Mapping for Identifiers
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
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Ruby Mapping for Built-In Types

On this page:

Mapping of Slice Built-In Types to Ruby Types
String Mapping in Ruby

Mapping of Slice Built-In Types to Ruby Types

The Slice  are mapped to Ruby types as shown in this table:built-in types

Slice Ruby

bool  or true false

byte Fixnum

short Fixnum

int  or Fixnum Bignum

long  or Fixnum Bignum

float Float

double Float

string String

Although Ruby supports arbitrary precision in its integer types, the Ice run time validates integer values to ensure they have valid ranges for
their declared Slice types.

String Mapping in Ruby

String values returned as the result of a Slice operation (including return values, out parameters, and data members) contain UTF-8 encoded
strings unless the program has installed a , in which case string values use the converter's native encoding instead.string converter

As string input values for a remote Slice operation, Ice accepts  in addition to  objects; each occurrence of  is marshaled asnil String nil
an empty string. Ice assumes that all  objects contain valid UTF-8 encoded strings unless the program has installed a stringString
converter, in which case Ice assumes that  objects use the native encoding expected by the converter.String

See Also

Basic Types
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
C++ Strings and Character Encoding
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Ruby Mapping for Enumerations

Ruby does not have an enumerated type, so a Slice  is emulated using a Ruby class: the name of the Slice enumerationenumeration
becomes the name of the Ruby class; for each enumerator, the class contains a constant with the  as the enumerator. Forsame name
example:

Slice

enum Fruit { Apple, Pear, Orange };

The generated Ruby class looks as follows:

Ruby

class Fruit
    include Comparable

    Apple = # ...
    Pear = # ...
    Orange = # ...

    def Fruit.from_int(val)

    def to_i

    def to_s

    def <=>(other)

    def hash

    # ...
end

The compiler generates a class constant for each enumerator that holds a corresponding instance of . The  class methodFruit from_int
returns an instance given its integer value, while  returns the integer value of an enumerator and  returns its Slice identifier. Theto_i to_s
comparison operators are available as a result of including , which means a program can compare enumerators according toComparable
their integer values.

Given the above definitions, we can use enumerated values as follows:

Ruby

f1 = Fruit::Apple
f2 = Fruit::Orange

if f1 == Fruit::Apple   # Compare for equality
    # ...

if f1 < f2              # Compare two enums
    # ...

case f2
when Fruit::Orange
    puts "found Orange"
else
    puts "found #{f2.to_s}"
end

As you can see, the generated class enables natural use of enumerated values.
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See Also

Enumerations
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations



Ice 3.4.2 Documentation

680 Copyright © 2011, ZeroC, Inc.

Ruby Mapping for Structures

A Slice  maps to a Ruby class with the . For each Slice data member, the Ruby class contains a corresponding instancestructure same name
variable as well as accessors to read and write its value. For example, here is our  structure once more:Employee

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Ruby mapping generates the following definition for this structure:

Ruby

class Employee
    def initialize(number=0, firstName='', lastName='')
        @number = number
        @firstName = firstName
        @lastName = lastName
    end

    def hash
        # ...
    end

    def ==
        # ...
    end

    def inspect
        # ...
    end

    attr_accessor :number, :firstName, :lastName
end

The constructor initializes each of the instance variables to a default value appropriate for its type. You can also declare different default
 for members of primitive and enumerated types.values

The compiler generates a definition for the  method, which allows instances to be used as keys in a hash collection. The  methodhash hash
returns a hash value for the structure based on the value of its data members.

The  method returns true if all members of two structures are (recursively) equal.==

The  method returns a string representation of the structure.inspect

See Also

Structures
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
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Ruby Mapping for Sequences

On this page:

Mapping Slice Sequences to Ruby Arrays
Mapping for Byte Sequences in Ruby

Mapping Slice Sequences to Ruby Arrays

A Slice  maps to a Ruby array; the only exception is a sequence of bytes, which . The use of a Ruby array meanssequence maps to a string
that the mapping does not generate a separate named type for a Slice sequence. It also means that you can take advantage of all the array
functionality provided by Ruby. For example:

Slice

sequence<Fruit> FruitPlatter;

We can use the  sequence as shown below:FruitPlatter

Ruby

platter = [ Fruit::Apple, Fruit::Pear ]
platter.push(Fruit::Orange)

The Ice run time validates the elements of a sequence to ensure that they are compatible with the declared type; a  exception isTypeError
raised if an incompatible type is encountered.

Mapping for Byte Sequences in Ruby

A Ruby string can contain arbitrary 8-bit binary data, therefore it is a more efficient representation of a byte sequence than a Ruby array in
both memory utilization and throughput performance.

When receiving a byte sequence (as the result of an operation, as an out parameter, or as a member of a data structure), the value is always
represented as a string. When sending a byte sequence as an operation parameter or data member, the Ice run time accepts both a string
and an array of integers as legal values. For example, consider the following Slice definitions:

Slice

// Slice
sequence<byte> Data;

interface I {
    void sendData(Data d);
    Data getData();
};

The interpreter session below uses these Slice definitions to demonstrate the mapping for a sequence of bytes:

Ruby

> proxy = ...
> proxy.sendData("\0\1\2\3")   # Send as a string
> proxy.sendData([0, 1, 2, 3]) # Send as an array
> d = proxy.getData()
> d.class
=> String
> d
=> "\000\001\002\003"

The two invocations of  are equivalent; however, the second invocation incurs additional overhead as the Ice run time mustsendData
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validate the type and range of each array element.

See Also

Sequences
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
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Ruby Mapping for Dictionaries

Here is the definition of our  once more:EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

As for , the Ruby mapping does not create a separate named type for this definition. Instead,  dictionaries are simply instancessequences all
of Ruby's hash collection type. For example:

Ruby

em = {}

e = Employee.new
e.number = 31
e.firstName = "James"
e.lastName = "Gosling"

em[e.number] = e

The Ice run time validates the elements of a dictionary to ensure that they are compatible with the declared type; a  exception isTypeError
raised if an incompatible type is encountered.

See Also

Dictionaries
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
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Ruby Mapping for Constants

Here are the  once more:constant definitions

Slice

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

The generated definitions for these constants are shown below:

Ruby

AppendByDefault = true
LowerNibble = 15
Advice = "Don't Panic!"
TheAnswer = 42
PI = 3.1416
FavoriteFruit = Fruit::Pear

As you can see, each Slice constant is mapped to a Ruby constant with the same name.

See Also

Constants and Literals
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations
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Ruby Mapping for Exceptions

On this page:

Inheritance Hierarchy for Exceptions in Ruby
Ruby Mapping for User Exceptions
Ruby Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in Ruby

The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for Ice exceptions.

The ancestor of all exceptions is , from which  is derived.  and StandardError Ice::Exception Ice::LocalException
 are derived from  and form the base for all run-time and user exceptions.Ice::UserException Ice::Exception

Ruby Mapping for User Exceptions

Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map to the abbreviated Ruby class definitions shown below:
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Ruby

class GenericError < Ice::UserException
    def initialize(reason='')

    def to_s

    def inspect

    attr_accessor :reason
end

class BadTimeVal < GenericError
    def initialize(reason='')

    def to_s

    def inspect
end

class BadZoneName < GenericError
    def initialize(reason='')

    def to_s

    def inspect
end

Each Slice exception is mapped to a Ruby class with the same name. The inheritance structure of the Slice exceptions is preserved for the
generated classes, so  and  inherit from .BadTimeVal BadZoneName GenericError

Each exception member corresponds to an instance variable of the instance, which the constructor initializes to a default value appropriate
for its type. You can also declare different  for members of primitive and enumerated types. Accessors are provided to readdefault values
and write the data members.

Although  and  do not declare data members, their constructors still accept a value for the inherited dataBadTimeVal BadZoneName
member  in order to pass it to the constructor of the base exception .reason GenericError

Each exception also defines the standard methods  and  to return the name of the exception and a stringified representationto_s inspect
of the exception and its members, respectively.

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically byIce::UserException
installing a handler for . Similarly, you can catch all Ice run-time exceptions with a handler for Ice::UserException

, and you can catch all Ice exceptions with a handler for .Ice::LocalException Ice::Exception

Ruby Mapping for Run-Time Exceptions

The Ice run time throws  for a number of pre-defined error conditions. All run-time exceptions directly or indirectly deriverun-time exceptions
from  (which, in turn, derives from ).Ice::LocalException Ice::Exception

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error
they indicate:

Ice::LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice::UserException
This is the root of the inheritance tree for user exceptions.

Ice::TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice::ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.
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For example, a  can be handled as , , ConnectTimeoutException ConnectTimeoutException TimeoutException
, or .LocalException Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; theLocalException
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.FacetNotExistException ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Sequences
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Facets and Versioning
Object Life Cycle
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Ruby Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Classes in Ruby
 Class in RubyIce::ObjectPrx

Casting Proxies in Ruby
Using Proxy Methods in Ruby
Object Identity and Proxy Comparison in Ruby

Proxy Classes in Ruby

On the client side, a Slice interface maps to a Ruby class with methods that correspond to the operations on those interfaces. Consider the
following simple interface:

Slice

interface Simple {
    void op();
};

The Ruby mapping generates the following definition for use by the client:

Ruby

class SimplePrx < Ice::ObjectPrx
    def op(_ctx=nil)
        # ...

    # ...
end

In the client's address space, an instance of  is the local ambassador for a remote instance of the  interface in a serverSimplePrx Simple
and is known as a . All the details about the server-side object, such as its address, what protocol to use, and its objectproxy instance
identity are encapsulated in that instance.

Note that  inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx Ice::ObjectPrx Ice::Object

For each operation in the interface, the proxy class has a method of the same name. In the preceding example, we find that the operation op
has been mapped to the method . Note that  accepts an optional trailing parameter  representing the operation context. Thisop op _ctx
parameter is a Ruby hash value for use by the Ice run time to store information about how to deliver a request. You normally do not need to
use it. (We examine the context parameter in detail in . The parameter is also used by .)Request Contexts IceStorm

Proxy instances are always created on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly.

A value of  denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).nil

Ice::ObjectPrx Class in Ruby

All Ice objects have  as the ultimate ancestor type, so all proxies inherit from .  provides a number ofObject Ice::ObjectPrx ObjectPrx
methods:
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Ruby

class ObjectPrx
    def eql?(proxy)
    def ice_getIdentity
    def ice_isA(id)
    def ice_ids
    def ice_id
    def ice_ping
    # ...
end

The methods behave as follows:

eql?
The implementation of this standard Ruby method compares two proxies for equality. Note that all aspects of proxies are compared
by this operation, such as the communication endpoints for the proxy. This means that, in general, if two proxies compare unequal,
that does  imply that they denote different objects. For example, if two proxies denote the same Ice object via different transportnot
endpoints,  returns  even though the proxies denote the same object.eql? false

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Ruby

proxy1 = ...
proxy2 = ...
id1 = proxy1.ice_getIdentity
id2 = proxy2.ice_getIdentity

if id1 == id2
    # proxy1 and proxy2 denote the same object
else
    # proxy1 and proxy2 denote different objects
end

ice_isA
The  method determines whether the object denoted by the proxy supports a specific interface. The argument to ice_isA ice_isA
is a . For example, to see whether a proxy of type  denotes a  object, we can write:type ID ObjectPrx Printer

Ruby

proxy = ...
if proxy && proxy.ice_isA("::Printer")
    # proxy denotes a Printer object
else
    # proxy denotes some other type of object
end

Note that we are testing whether the proxy is  before attempting to invoke the  method. This avoids getting a run-timenil ice_isA
error if the proxy is .nil
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ice_ids
The  method returns an array of strings representing all of the  that the object denoted by the proxy supports.ice_ids type IDs

ice_id
The  method returns the  of the object denoted by the proxy. Note that the type returned is the type of the actualice_id type ID
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a staticBasePrx
type ID of , the return value of  might be , or it might be something more derived, such as .::Base ice_id "::Base" "::Derived"

ice_ping
The  method provides a basic reachability test for the object. If the object can physically be contacted (that is, the objectice_ping
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as  or .ObjectNotExistException ConnectTimeoutException

The , , , and  methods are remote operations and therefore support an additional overloading thatice_isA ice_ids ice_id ice_ping
accepts a . Also note that there are  in , not shown here. These methods provide different ways torequest context other methods ObjectPrx
dispatch a call and also provide access to an object's .facets

Casting Proxies in Ruby

The Ruby mapping for a proxy also generates two class methods:

Ruby

class SimplePrx < Ice::ObjectPrx
    # ...

    def SimplePrx.checkedCast(proxy, facet='', ctx={})

    def SimplePrx.uncheckedCast(proxy, facet='')
end

Both the  and  methods implement a down-cast: if the passed proxy is a proxy for an object of type ,checkedCast uncheckedCast Simple
or a proxy for an object with a type derived from , the cast returns a reference to a proxy of type ; otherwise, if theSimple SimplePrx
passed proxy denotes an object of a different type (or if the passed proxy is ), the cast returns .nil nil

The method names  and  are reserved for use in proxies. If a Slice interface defines an operation with eithercheckedCast uncheckedCast
of those names, the mapping escapes the name in the generated proxy by prepending an underscore. For example, an interface that defines
an operation named  is mapped to a proxy with a method named .checkedCast _checkedCast

Given a proxy of any type, you can use a checkedCast to determine whether the corresponding object supports a given type, for example:

Ruby

obj = ...       # Get a proxy from somewhere...

simple = SimplePrx::checkedCast(obj)
if simple
    # Object supports the Simple interface...
else
    # Object is not of type Simple...
end

Note that a  contacts the server. This is necessary because only the server implementation has definite knowledge of the typecheckedCast
of an object. As a result, a  may throw a  or an .checkedCast ConnectTimeoutException ObjectNotExistException

In contrast, an  does not contact the server and unconditionally returns a proxy of the requested type. However, if you douncheckedCast
use an , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,uncheckedCast
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is 

. However, other exceptions, such as a marshaling exception are possible as well. And, if the objectOperationNotExistException
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:
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Slice

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a  object and use an  to down-cast the proxy:Process uncheckedCast

Ruby

obj = ...                                # Get proxy...
process = ProcessPrx::uncheckedCast(obj) # No worries...
process.launch(40, 60)                   # Oops...

If the proxy you received actually denotes a  object, the error will go undetected by the Ice run time: because  and  haveRocket int float
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of  will simplyRocket::launch
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

Using Proxy Methods in Ruby

The base proxy class  supports a variety of . Since proxies are immutable, each of theseObjectPrx methods for customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

Ruby

proxy = communicator.stringToProxy(...)
proxy = proxy.ice_timeout(10000)

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

Ruby

base = communicator.stringToProxy(...)
hello = Demo::HelloPrx::checkedCast(base)
hello = hello.ice_timeout(10000) # Type is not discarded
hello.sayHello()

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Ruby

Proxy objects support comparison using the comparison operators , , and , as well as the  method. Note that proxy== != <=> eql?
comparison uses  of the information in a proxy for the comparison. This means that not only the object identity must match for aall
comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other words,
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comparison tests for  identity,  object identity. A common mistake is to write code along the following lines:proxy not

Ruby

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if p1 != p2
    # p1 and p2 denote different objects       # WRONG!
else
    # p1 and p2 denote the same object         # Correct
end

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each uses a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal, we know that the two proxies denote the same object (because they are identical in all respects); however, if two proxies
compare unequal, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the  module:Ice

Ruby

def proxyIdentityCompare(lhs, rhs)
def proxyIdentityAndFacetCompare(lhs, rhs)

proxyIdentityCompare allows you to correctly compare proxies for identity:

Ruby

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if Ice.proxyIdentityCompare(p1, p2) != 0
    # p1 and p2 denote different objects       # Correct
else
    # p1 and p2 denote the same object         # Correct
end

The function returns  if the identities are equal,  if  is less than , and  if  is greater than . (The comparison uses  as the0 -1 p1 p2 1 p1 p2 name
major sort key and  as the minor sort key.)category

The  function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

See Also

Interfaces, Operations, and Exceptions
Proxies
Type IDs
Ruby Mapping for Operations
Request Contexts
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm
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Ruby Mapping for Operations

On this page:

Basic Ruby Mapping for Operations
Normal and  Operations in Rubyidempotent
Passing Parameters in Ruby

In-Parameters in Ruby
Out-Parameters in Ruby
Parameter Type Mismatches in Ruby
Null Parameters in Ruby

Exception Handling in Ruby

Basic Ruby Mapping for Operations

As we saw in the , for each  on an interface, the proxy class contains a corresponding method with theRuby mapping for interfaces operation
same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

Ruby

node = ...          # Initialize proxy
name = node.name()  # Get name via RPC

Normal and  Operations in Rubyidempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned,idempotent
idempotent has no effect. For example, consider the following interface:

Slice

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy class for this is:

Ruby

class ExamplePrx < Ice::ObjectPrx
    def op1(_ctx=nil)

    def op2(_ctx=nil)
end

Because  affects an aspect of call dispatch, not interface, it makes sense for the two methods to look the same.idempotent

Passing Parameters in Ruby
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In-Parameters in Ruby

All parameters are passed by reference in the Ruby mapping; it is guaranteed that the value of a parameter will not be changed by the
invocation.

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

Ruby

class ClientToServerPrx < Ice::ObjectPrx
    def op1(i, f, b, s, _ctx=nil)

    def op2(ns, ss, st, _ctx=nil)

    def op3(proxy, _ctx=nil)
end

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer

Ruby

p = ...                                 # Get proxy...

p.op1(42, 3.14, true, "Hello world!")   # Pass simple literals

i = 42
f = 3.14
b = true
s = "Hello world!"
p.op1(i, f, b, s)                       # Pass simple variables

ns = NumberAndString.new()
ns.x = 42
ns.str = "The Answer"
ss = [ "Hello world!" ]
st = {}
st[0] = ns
p.op2(ns, ss, st)                       # Pass complex variables

p.op3(p)                                # Pass proxy
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Out-Parameters in Ruby

As in Java, Ruby functions do not support reference arguments. That is, it is not possible to pass an uninitialized variable to a Ruby function
in order to have its value initialized by the function. The  overcomes this limitation with the use of  that representJava mapping holder classes
each  parameter. The Ruby mapping takes a different approach, one that is more natural for Ruby users.out

The semantics of  parameters in the Ruby mapping depend on whether the operation returns one value or multiple values. An operationout
returns multiple values when it has declared multiple  parameters, or when it has declared a non-  return type and at least one out void out
parameter.

If an operation returns multiple values, the client receives them in the form of a . A non-  return value, if any, is always theresult array void
first element in the result array, followed by the  parameters in the order of declaration.out

If an operation returns only one value, the client receives the value itself.

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the  direction:out

Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Ruby mapping generates the following code for this definition:

Ruby

class ClientToServerPrx < Ice::ObjectPrx
    def op1(_ctx=nil)

    def op2(_ctx=nil)

    def op3(_ctx=nil)
end

Given a proxy to a  interface, the client code can receive the results as in the following example:ServerToClient

Ruby

p = ...              # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()

The operations have no  parameters, therefore no arguments are passed to the proxy methods. Since  and  return multiplein op1 op2
values, their result arrays are unpacked into separate values, whereas the return value of  requires no unpacking.op3

Parameter Type Mismatches in Ruby

Although the Ruby compiler cannot check the types of arguments passed to a method, the Ice run time does perform validation on the
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arguments to a proxy invocation and reports any type mismatches as a  exception.TypeError

Null Parameters in Ruby

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but thenil
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass  as anil
parameter or return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or
strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string
element in a large sequence before sending the sequence in order to avoid a run-time error. Note that using null parameters in this way does

 create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only not empty
sequences, dictionaries, and strings do). For example, it makes no difference to the receiver whether you send a string as  or as annil
empty string: either way, the receiver sees an empty string.

Exception Handling in Ruby

Any operation invocation may throw a  and, if the operation has an exception specification, may also throw run-time exception user
. Suppose we have the following simple interface:exceptions

Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Ruby exceptions, so you can simply enclose one or more operation invocations in a  block:begin-rescue

Ruby

child = ...        # Get child proxy...

begin
    child.askToCleanUp()
rescue Tantrum => t
    puts "The child says: #{t.reason}"
end

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will usually be handled by exception handlers higher in the hierarchy. For example:
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Ruby

def run()
    child = ...        # Get child proxy...
    begin
        child.askToCleanUp()
    rescue Tantrum => t
        puts "The child says: #{t.reason}"
        child.scold()  # Recover from error...
    end
    child.praise()     # Give positive feedback...
end

begin
    # ...
    run()
    # ...
rescue Ice::Exception => ex
    print ex.backtrace.join("\n")
end

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application in .)Hello World Application

See Also

Operations
Hello World Application
Slice for a Simple File System
Ruby Mapping for Operations
Ruby Mapping for Interfaces
Ruby Mapping for Exceptions
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Ruby Mapping for Classes

On this page:

Basic Ruby Mapping for Classes
Inheritance from  in RubyIce::Object
Class Data Members in Ruby
Class Constructors in Ruby
Class Operations in Ruby
Receiving Objects in Ruby
Class Factories in Ruby

Basic Ruby Mapping for Classes

A Slice  maps to a Ruby class with the . For each Slice data member, the generated class contains an instance variable andclass same name
accessors to read and write it, just as for structures and exceptions. Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Ruby mapping generates the following code for this definition:

Ruby

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    def inspect
        # ...
    end

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    def TimeOfDay.ice_staticId()
        '::M::TimeOfDay'
    end

    # ...
end
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1.  

2.  
3.  
4.  

There are a number of things to note about the generated code:

The generated class  includes the mixin module , which in turn includes .TimeOfDay TimeOfDay_mixin Ice::Object_mixin
This reflects the semantics of Slice classes in that all classes implicitly inherit from , which is the ultimate ancestor of allObject
classes. Note that  is  the same as . In other words, you  pass a class where a proxy isObject not Ice::ObjectPrx cannot
expected and vice versa.
The constructor defines an instance variable for each Slice data member.
The class defines the class method .ice_staticId
A comment summarizes the method signatures for each Slice operation.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from  in RubyIce::Object

In other language mappings, the inheritance relationship between  and a user-defined Slice class is stated explicitly, in that theObject
generated class derives from a language-specific representation of . Although its class type allows single inheritance, Ruby'sObject
loosely-typed nature places less emphasis on class hierarchies and relies more on .duck typing

In Ruby, an object's type is typically less important than the methods it supports. If it looks like a duck, and acts like a duck,
then it is a duck.

The Slice mapping for a class follows this convention by placing most of the necessary machinery in a mixin module that the generated class
includes into its definition. The Ice run time requires an instance of a Slice class to include the mixin module and define values for the
declared data members, but does not require that the object be an instance of the generated class.

As shown in the illustration below, classes have no relationship to  (which is at the base of the inheritance hierarchy forIce::ObjectPrx
proxies), therefore you cannot pass a class where a proxy is expected (and vice versa).

Inheritance from Ice::ObjectPrx and Object.

An instance of a Slice class  supports a number of methods:C

Ruby

def ice_isA(id, current=nil)

def ice_ping(current=nil)

def ice_ids(current=nil)

def ice_id(current=nil)

def C.ice_staticId()

def ice_preMarshal()

def ice_postUnmarshal()

The methods behave as follows:

ice_isA



Ice 3.4.2 Documentation

700 Copyright © 2011, ZeroC, Inc.

This method returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the object.ice_ping

ice_ids
This method returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This method returns the actual run-time  of the object. If you call  through a reference to a base instance, thetype ID ice_id
returned type id is the actual (possibly more derived) type ID of the instance.

ice_staticId
This method returns the static  of the class.type ID

ice_preMarshal
If the object supports this method, the Ice run time invokes it just prior to marshaling the object's state, providing the opportunity for
the object to validate its declared data members.

ice_postUnmarshal
If the object supports this method, the Ice run time invokes it after unmarshaling the object's state. An object typically defines this
method when it needs to perform additional initialization using the values of its declared data members.

The mixin module  supplies default definitions of  and . For each Slice class, the generated mixinIce::Object_mixin ice_isA ice_ping
module defines  and , and the generated class defines the  method.ice_ids ice_id ice_staticId

Note that neither  nor the generated class override  and , so the default implementations apply.Ice::Object hash ==

Class Data Members in Ruby

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding instance variable and accessor methods.

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of thisprotected
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the  class shown below has the  metadata directive appliedTimeOfDay protected
to each of its data members:

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:
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Ruby

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
    protected :hours, :hours=
    protected :minutes, :minutes=
    protected :seconds, :seconds=
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    # ...
end

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Class Constructors in Ruby

Classes have a constructor that assigns to each data member a default value appropriate for its type. You can also declare different default
 for data members of primitive and enumerated types.values

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order.

Class Operations in Ruby

Operations of classes are mapped to methods in the generated class. This means that, if a class contains operations (such as the format
operation of our  class), objects representing instances of  must define equivalent methods. For example:TimeOfDay TimeOfDay

Ruby

class TimeOfDayI < TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end
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In this case our implementation class  derives from the generated class . An alternative is to include the generatedTimeOfDayI TimeOfDay
mixin module, which makes it possible for the class to derive from a different base class if necessary:

Ruby

class TimeOfDayI < SomeOtherClass
    include TimeOfDay_mixin

    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As explained , an implementation of a Slice class must include the mixin module but is not required to derive from the generated class.earlier

Ruby allows an existing class to be reopened in order to augment or replace its functionality. This feature provides another way for us to
implement a Slice class: reopen the generated class and define the necessary methods:

Ruby

class TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As an added benefit, this strategy eliminates the need to define a class factory. The next section describes this subject in more detail.

A Slice class such as  that declares or inherits an operation is inherently abstract. Ruby does not support the notion of abstractTimeOfDay
classes or abstract methods, therefore the mapping merely summarizes the required method signatures in a comment for your convenience.

You may notice that the mapping for an operation adds an optional trailing parameter named . For now, you can ignore thiscurrent
parameter and pretend it does not exist.

Receiving Objects in Ruby

We have discussed the ways you can implement a Slice class, but we also need to examine the semantics of receiving an object as the
return value or as an out-parameter from an operation invocation. Consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. Unless we tell itget TimeOfDay
otherwise, the Ice run time in Ruby does exactly that: it instantiates the generated class . Although  is logically anTimeOfDay TimeOfDay
abstract class because its Slice equivalent defined an operation, Ruby has no notion of abstract classes and therefore it is legal to create an
instance of this class. Furthermore, there are situations in which this is exactly the behavior you want:

when you have reopened the generated class to define its operations, or
when your program uses only the data members of an object and does not invoke any of its operations.

On the other hand, if you have defined a Ruby class that implements the Slice class, you need the Ice run time to return an instance of your
class and not an instance of the generated class. The Ice run time cannot magically know about your implementation class, therefore you
must inform the Ice run time by installing a class factory.

Class Factories in Ruby

The Ice run time invokes a class factory when it needs to instantiate an object of a particular type. If no factory is found, the Ice run time
instantiates the generated class as described . To install a factory, we use operations provided by the above Ice::Communicator
interface:
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Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory,

string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must create an object that supports the TimeOfDayI Ice::ObjectFactory
interface:

Ruby

class ObjectFactory
    def create(type)
        fail unless type == M::TimeOfDay::ice_staticId()
        TimeOfDayI.new
    end

    def destroy
        # Nothing to do
    end
end

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
method is called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method fails because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Ruby

ic = ...   # Get Communicator...
ic.addObjectFactory(ObjectFactory.new, M::TimeOfDay::ice_staticId())

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the"::M::TimeOfDay" create
registered  instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called. However, calls to  can be made concurrently.create destroy create
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Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class.

See Also

Classes
Type IDs
The Current Object
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Code Generation in Ruby

The Ruby mapping supports two forms of code generation: dynamic and static.

On this page:

Dynamic Code Generation in Ruby
 Options in RubyIce::loadSlice

Locating Slice Files in Ruby
Loading Multiple Slice Files in Ruby
Limitations of Dynamic Code Generation in Ruby

Static Code Generation in Ruby
Compiler Output in Ruby
Include Files in Ruby

Static Versus Dynamic Code Generation in Ruby
Application Considerations for Code Generation in Ruby
Mixing Static and Dynamic Generation in Ruby

 Command-Line Optionsslice2rb

Dynamic Code Generation in Ruby

Using dynamic code generation, Slice files are "loaded" at run time and dynamically translated into Ruby code, which is immediately
compiled and available for use by the application. This is accomplished using the  method, as shown in the followingIce::loadSlice
example:

Ruby

Ice::loadSlice("Color.ice")
puts "My favorite color is #{M::Color.blue.to_s}"

For this example, we assume that  contains the following definitions:Color.ice

Slice

module M {
    enum Color { red, green, blue };
};

Ice::loadSlice Options in Ruby

The  method behaves like a Slice compiler in that it accepts command-line arguments for specifying preprocessor optionsIce::loadSlice
and controlling code generation. The arguments must include at least one Slice file.

The function has the following Ruby definition:

Ruby

def loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, , which must be a string. The optional second argument cancmd
be used to pass additional command-line arguments as a list; this is useful when the caller already has the arguments in list form. The
function always returns .nil

For example, the following calls to  are functionally equivalent:Ice::loadSlice
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Ruby

Ice::loadSlice("-I/opt/IceRuby/slice Color.ice")
Ice::loadSlice("-I/opt/IceRuby/slice", ["Color.ice"])
Ice::loadSlice("", ["-I/opt/IceRuby/slice", "Color.ice"])

In addition to the ,  also supports the following command-line options:standard compiler options Ice::loadSlice

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate  for Slice definitions.checksums

Locating Slice Files in Ruby

If your Slice files depend on Ice types, you can avoid hard-coding the path name of your Ice installation directory by calling the 
 function:Ice::getSliceDir

Ruby

Ice::loadSlice("-I" + Ice::getSliceDir() + " Color.ice")

This function attempts to locate the  subdirectory of your Ice installation using an algorithm that succeeds for the following scenarios:slice

Installation of a binary Ice archive
Installation of an Ice source distribution using make install
Installation via a Windows installer
RPM installation on Linux
Execution inside a compiled Ice source distribution

If the  subdirectory can be found,  returns its absolute path name, otherwise the function returns .slice getSliceDir nil

Loading Multiple Slice Files in Ruby

You can specify as many Slice files as necessary in a single invocation of , as shown below:Ice::loadSlice

Ruby

Ice::loadSlice("Syscall.ice Process.ice")

Alternatively, you can call  several times:Ice::loadSlice

Ruby

Ice::loadSlice("Syscall.ice")
Ice::loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of  generates Ruby code only for the named file. For example,Ice::loadSlice
suppose  includes  as follows:Syscall.ice Process.ice

Slice

// Syscall.ice
#include <Process.ice>
...

If you call , Ruby code is not generated for the Slice definitions in  or for anyIce::loadSlice("-I. Syscall.ice") Process.ice
definitions that may be included by . If you also need code to be generated for included files, one solution is to load themProcess.ice
individually in subsequent calls to . However, it is much simpler, not to mention more efficient, to use the  optionIce::loadSlice --all
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1.  
2.  

instead:

Ruby

Ice::loadSlice("--all -I. Syscall.ice")

When you specify ,  generates Ruby code for all Slice definitions included directly or indirectly from the named--all Ice::loadSlice
Slice files.

There is no harm in loading a Slice file multiple times, aside from the additional overhead associated with code generation. For example, this
situation could arise when you need to load multiple top-level Slice files that happen to include a common subset of nested files. Suppose
that we need to load both  and , both of which include . The simplest way to load both files is withSyscall.ice Kernel.ice Process.ice
a single call to :Ice::loadSlice

Ruby

Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for , the generated code is structured so that theProcess.ice
interpreter ignores duplicate definitions. We could have avoided generating unnecessary code with the following sequence of steps:

Ruby

Ice::loadSlice("--all -I. Syscall.ice")
Ice::loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely avoid this situation, and the overhead of code generation is
usually not significant enough to justify such an effort.

Limitations of Dynamic Code Generation in Ruby

The  method must be called outside of any module scope. For example, the following code is incorrect:Ice::loadSlice

Ruby

# WRONG
module M
    Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")
    ...
end

Static Code Generation in Ruby

You should be familiar with static code generation if you have used other Slice language mappings, such as C++ or Java. Using static code
generation, the Slice compiler  generates Ruby code from your Slice definitions.slice2rb

Compiler Output in Ruby

For each Slice file ,  generates Ruby code into a file named  in the output directory. The default output directory is theX.ice slice2rb X.rb
current working directory, but a different directory can be specified using the  option.--output-dir

Include Files in Ruby

It is important to understand how  handles include files. In the absence of the  option, the compiler does not generate Rubyslice2rb --all
code for Slice definitions in included files. Rather, the compiler translates Slice  statements into Ruby  statements in the#include require
following manner:

Determine the full pathname of the included file.
Create the shortest possible relative pathname for the included file by iterating over each of the include directories (specified using
the  option) and removing the leading directory from the included file if possible.-I
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2.  

3.  

For example, if the full pathname of an included file is , and we specified the options /opt/App/slice/OS/Process.ice
 and , then the shortest relative pathname is  after removing -I/opt/App -I/opt/App/slice OS/Process.ice

./opt/App/slice
Replace the  extension with . Continuing our example from the previous step, the translated  statement becomes.ice .rb require

require "OS/Process.rb"

As a result, you can use  options to tailor the  statements generated by the compiler in order to avoid absolute pathnames and-I require
match the organizational structure of your application's source files.

Static Versus Dynamic Code Generation in Ruby

There are several issues to consider when evaluating your requirements for code generation.

Application Considerations for Code Generation in Ruby

The requirements of your application generally dictate whether you should use dynamic or static code generation. Dynamic code generation
is convenient for a number of reasons:

It avoids the intermediate compilation step required by static code generation.
It makes the application more compact because the application requires only the Slice files, not the additional files produced by
static code generation.
It reduces complexity, which is especially helpful during testing, or when writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

when an application uses a large number of Slice definitions and the startup delay must be minimized
when it is not feasible to deploy Slice files with the application
when a number of applications share the same Slice files
when Ruby code is required in order to utilize third-party Ruby tools.

Mixing Static and Dynamic Generation in Ruby

You can safely use a combination of static and dynamic translation in an application. For it to work properly, you must correctly manage the
include paths for Slice translation and the Ruby interpreter so that the statically-generated code can be imported properly by .require

For example, suppose you want to dynamically load the following Slice definitions:

Slice

#include <Glacier2/Session.ice>

module MyApp {
    interface MySession extends Glacier2::Session {
        // ...
    };
};

Whether the included file  is loaded dynamically or statically is determined by the presence of the  option:Glacier2/Session.ice --all

Ruby

sliceDir = "-I#{ENV['ICE_HOME']}/slice"

# Load Glacier2/Session.ice dynamically:
Ice::loadSlice(sliceDir + " --all MySession.ice")

# Load Glacier2/Session.ice statically:
Ice::loadSlice(sliceDir + " MySession.ice")

In this example, the first invocation of  uses the  option so that code is generated dynamically for all included files. TheloadSlice --all
second invocation omits , therefore the Ruby interpreter executes the equivalent of the following statement:--all
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require "Glacier2/Session.rb"

As a result, before we can call  we must first ensure that the interpreter can locate the statically-generated file loadSlice
. We can do this in a number of ways, including:Glacier2/Session.rb

adding the parent directory (e.g., ) to the  environment variable/opt/IceRuby/ruby RUBYLIB
specifying the  option when starting the interpreter-I
modifying the search path at run time, as shown below:

$:.unshift("/opt/IceRuby/ruby")

slice2rb Command-Line Options

The Slice-to-Ruby compiler, , offers the following command-line options in addition to the :slice2rb standard options

--all
Generate code for all Slice definitions, including those from included files.

--checksum
Generate  for Slice definitions.checksums

See Also

Using the Slice Compilers
Using Slice Checksums in Ruby
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The main Program in Ruby

On this page:

Initializing the Ice Run Time in Ruby
The  Class in RubyIce::Application

Catching Signals in Ruby
 and Properties in RubyIce::Application

Limitations of  in RubyIce::Application

Initializing the Ice Run Time in Ruby

The main entry point to the Ice run time is represented by the local interface . You must initialize the Ice run time byIce::Communicator
calling  before you can do anything else in your program.Ice::initialize

Ice::initialize returns a reference to an instance of :Ice:::Communicator

Ruby

require 'Ice'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    # ...
rescue => ex
    puts ex
    status = 1
end

# ...

Ice::initialize accepts the argument list that is passed to the program by the operating system. The function scans the argument list
for any  that are relevant to the Ice run time; any such options are removed from the argument list so, when command-line options

 returns, the only options and arguments remaining are those that concern your application. If anything goes wrongIce::initialize
during initialization,  throws an exception.initialize

Before leaving your program, you  call . The  operation is responsible for finalizing the Ice run time.must Communicator.destroy destroy
In particular,  ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such asdestroy
file descriptors and memory. Never allow your program to terminate without calling  first; doing so has undefined behavior.destroy

The general shape of our program is therefore as follows:
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Ruby

require 'Ice'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    # ...
rescue => ex
    puts ex
    status = 1
end

if ic
    begin
        ic.destroy()
    rescue => ex
        puts ex
        status = 1
    end
end

exit(status)

Note that the code places the call to  into a  block and takes care to return the correct exit status to the operatingIce::initialize begin
system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The  Class in RubyIce::Application

The preceding program structure is so common that Ice offers a class, , that encapsulates all the correct initializationIce::Application
and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Ruby

module Ice
    class Application
        def main(args, configFile=nil, initData=nil)

        def run(args)

        def Application.appName()

        def Application.communicator()
    end
end

The intent of this class is that you specialize  and implement the abstract  method in your derived class. WhateverIce::Application run
code you would normally place in your main program goes into  instead. Using , our program looks as follows:run Ice::Application
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1.  

2.  

3.  

4.  

5.  

Ruby

require 'Ice'

class Client < Ice::Application
    def run(args)
        # Client code here...
        return 0
    end
end

app = Client.new()
status = app.main(ARGV)
exit(status)

If you prefer, you can also reopen  and define  directly:Ice::Application run

Ruby

require 'Ice'

class Ice::Application
    def run(args)
        # Client code here...
        return 0
    end
end

app = Ice::Application.new()
status = app.main(ARGV)
exit(status)

You may also call  with an optional file name or an  structure. If you pass a  to , themain InitializationData configuration file name main
settings in this file are overridden by settings in a file identified by the  environment variable (if defined). Property settingsICE_CONFIG
supplied on the  take precedence over all other settings.command line

The  method does the following:Application.main

It installs an exception handler. If your code fails to handle an exception,  prints the exception informationApplication.main
before returning with a non-zero return value.
It initializes (by calling ) and finalizes (by calling ) a communicator. You can getIce::initialize Communicator.destroy
access to the communicator for your program by calling the static  accessor.communicator
It scans the argument list for options that are relevant to the Ice run time and removes any such options. The argument list that is
passed to your  method therefore is free of Ice-related options and only contains options and arguments that are specific to yourrun
application.
It provides the name of your application via the static  method. The return value from this call is the first element of theappName
argument vector passed to , so you can get at this name from anywhere in your code by calling Application.main

 (which is often necessary for error messages).Ice::Application::appName
It installs a signal handler that properly shuts down the communicator.

Using  ensures that your program properly finalizes the Ice run time, whether your program terminates normally or inIce::Application
response to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition 

 also provides features for signal handling and configuration that you do not have to implement yourself when you useIce::Application
this class.

Catching Signals in Ruby

A program typically needs to perform some cleanup work before terminating, such as flushing database buffers or closing network
connections. This is particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other
persistent data.

To make it easier to deal with signals,  encapsulates Ruby's signal handling capabilities, allowing you to cleanly shutIce::Application
down on receipt of a signal:
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Ruby

class Application
    def Application.destroyOnInterrupt()

    def Application.ignoreInterrupt()

    def Application.callbackOnInterrupt()

    def Application.holdInterrupt()

    def Application.releaseInterrupt()

    def Application.interrupted()

    def interruptCallback(sig):
        # Default implementation does nothing.
    end
    # ...
end

The methods behave as follows:

destroyOnInterrupt
This method installs a signal handler that destroys the communicator if it is interrupted. This is the default behavior.

ignoreInterrupt
This method causes signals to be ignored.

callbackOnInterrupt
This function configures  to invoke  when a signal occurs, thereby giving the subclassIce::Application interruptCallback
responsibility for handling the signal.

holdInterrupt
This method temporarily blocks signal delivery.

releaseInterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after  was called isholdInterrupt
delivered when you call .releaseInterrupt

interrupted
This method returns  if a signal caused the communicator to shut down,  otherwise. This allows us to distinguishTrue False
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass implements this function to respond to signals. The function may be called concurrently with any other thread and must
not raise exceptions.

By default,  behaves as if  was invoked, therefore our program requires no change to ensureIce::Application destroyOnInterrupt
that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of  byIce::Application
passing the constant  to the constructor. In that case, signals retain their default behavior, that is, terminate theNoSignalHandling
process.) However, we add a diagnostic to report the occurrence of a signal, so our program now looks like:
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Ruby

require 'Ice'

class MyApplication < Ice::Application
    def run(args)
        # Client code here...

        if Ice::Application::interrupted()
            print Ice::Application::appName() + ": terminating"
        end

        return 0
    end
end

app = MyApplication.new()
status = app.main(ARGV)
exit(status)

Ice::Application and Properties in Ruby

Apart from the functionality shown in this section,  also takes care of initializing the Ice run time with property values. Ice::Application
 allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread poolProperties

size or the trace level for diagnostic output. The  method of  accepts an optional second parameter allowing youmain Ice::Application
to specify the name of a configuration file that will be processed during initialization.

Limitations of  in RubyIce::Application

Ice::Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use 
. Instead, you must structure your code as we saw in  (taking care to always destroy theIce::Application Hello World Application

communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
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Using Slice Checksums in Ruby

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compiler tochecksums slice2rb --checksum
generate code that adds checksums to the hash collection . The checksums are installed automatically when theIce::SliceChecksums
Ruby code is first parsed; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the two hash objects using a comparison operator. However, this is
not feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the
local checksums as demonstrated below:

Ruby

serverChecksums = ...
for i in Ice::SliceChecksums.keys
    if not serverChecksums.has_key?(i)
        # No match found for type id!
    elif Ice::SliceChecksums[i] != serverChecksums[i]
        # Checksum mismatch!
    end
end

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
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Example of a File System Client in Ruby

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The Ruby code shown here hardly differs from the code you would write for an ordinary Ruby program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local Ruby object. This allows you to put your effort where you
should, namely, into developing your application logic instead of having to struggle with arcane networking APIs.

We now have seen enough of the client-side Ruby mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

Ruby

require 'Filesystem.rb'

# Recursively print the contents of directory "dir"
# in tree fashion. For files, show the contents of
# each file. The "depth" parameter is the current
# nesting level (for indentation).

def listRecursive(dir, depth)
    indent = ''
    depth = depth + 1
    for i in (0...depth)
        indent += "\t"
    end

    contents = dir.list()

    for node in contents
        subdir = Filesystem::DirectoryPrx::checkedCast(node)
        file = Filesystem::FilePrx::uncheckedCast(node)
        print indent + node.name() + " "
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        if subdir
            puts "(directory):"
            listRecursive(subdir, depth)
        else
            puts "(file):"
            text = file.read()
            for line in text
                puts indent + "\t" + line
            end
        end
    end
end

status = 0
ic = nil
begin
    # Create a communicator
    #
    ic = Ice::initialize(ARGV)

    # Create a proxy for the root directory
    #
    obj = ic.stringToProxy("RootDir:default -p 10000")

    # Down-cast the proxy to a Directory proxy
    #
    rootDir = Filesystem::DirectoryPrx::checkedCast(obj)

    # Recursively list the contents of the root directory
    #
    puts "Contents of root directory:"
    listRecursive(rootDir, 0)
rescue => ex
    puts ex
    print ex.backtrace.join("\n")
    status = 1
end

if ic
    # Clean up
    #
    begin
        ic.destroy()
    rescue => ex
        puts ex
        print ex.backtrace.join("\n")
        status = 1
    end
end
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1.  

2.  

1.  

2.  

3.  

exit(status)

The program first defines the  function, which is a helper function to print the contents of the file system, and the mainlistRecursive
program follows. Let us look at the main program first:

The structure of the code follows what we saw in . After initializing the run time, the client creates a proxy toHello World Application
the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the default
protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to  and passes that proxy to , which prints the contents of the fileDirectoryPrx listRecursive
system.

Most of the work happens in . The function is passed a proxy to a directory to list, and an indent level. (The indent levellistRecursive
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.)  calls the  operation on the directory and iterates over the returned sequence of nodes:listRecursive list

The code does a  to narrow the  proxy to a  proxy, as well as an  to narrow the checkedCast Node Directory uncheckedCast
 proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the  Node File checkedCast Node

 , the code uses the  returned by the ; if the  fails, we  that theis-a Directory DirectoryPrx checkedCast checkedCast know
Node  File and, therefore, an  is sufficient to get a . is-a uncheckedCast FilePrx
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an  instead of a uncheckedCast

 because an  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of a two files and a a directory as follows:

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.
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Note that, so far, our client is not very sophisticated:

The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Object Life Cycle
IceGrid
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PHP Mapping
Ice currently provides a client-side mapping for PHP, but not a server-side mapping.

Topics

Client-Side Slice-to-PHP Mapping
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Client-Side Slice-to-PHP Mapping

The client-side Slice-to-PHP mapping defines how Slice data types are translated to PHP types, and how clients invoke operations, pass
parameters, and handle errors. Much of the PHP mapping is intuitive. For example, Slice sequences map to PHP arrays, so there is
essentially nothing new you have to learn in order to use Slice sequences in PHP.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for , , and  inexceptions interfaces operations
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

In order to use the PHP mapping, you should need no more than the Slice definition of your application and knowledge of
the PHP mapping rules. In particular, looking through the generated code in order to discern how to use the PHP mapping
is likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code
to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to
write your client-side code.

The  ModuleIce
All of the APIs for the Ice run time are nested in the  module, to avoid clashes with definitions for other libraries orIce
applications. Some of the contents of the  module are generated from Slice definitions; other parts of the  moduleIce Ice
provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover the
contents of the  module throughout the remainder of the manual.Ice

A PHP application can load the Ice run time using the  statement:require

require 'Ice.php';

If the statement executes without error, the Ice run time is loaded and available for use. You can determine the version of
the Ice run time you have just loaded by calling the  function:stringVersion

$icever = Ice_stringVersion();

Using the namespace mapping, you can refer to a global Ice function such as  either by its flattenedstringVersion
name (as shown above) or by its namespace equivalent:

$icever = \Ice\stringVersion();

Topics

PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
PHP Mapping for Interfaces
PHP Mapping for Operations
PHP Mapping for Classes
slice2php Command-Line Options
Application Notes for PHP
Using Slice Checksums in PHP
Example of a File System Client in PHP
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PHP Mapping for Identifiers

A Slice  maps to an identical PHP identifier. For example, the Slice identifier  becomes the PHP identifier . There isidentifier Clock Clock
one exception to this rule: if a Slice identifier is the same as a PHP keyword or is an identifier reserved by the Ice run time (such as 

), the corresponding PHP identifier is prefixed with an underscore. For example, the Slice identifier  is mapped as checkedCast while
._while

You should try to  as much as possible.avoid such identifiers

A single Slice identifier often results in several PHP identifiers. For example, for a Slice interface named , the generated PHP code usesFoo
the identifiers  and  (among others). If the interface has the name , the generated identifiers are  and  (Foo FooPrx while _while whilePrx

 ), that is, the underscore prefix is applied only to those generated identifiers that actually require it.not _whilePrx

See Also

Lexical Rules
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
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PHP Mapping for Modules

By default, identifiers defined within a Slice  are mapped to a flattened symbol that uses underscores as module separators. Considermodule
the following Slice definition:

Slice

module M {
    module N {
        enum Color { red, green, blue };
    };
};

The Slice identifier  maps to  by default because PHP releases prior to version 5.3 lacked language support forColor M_N_Color
namespaces. If you prefer to use namespaces instead, you can enable an alternate mapping in which Slice modules map to PHP
namespaces with the same name as the Slice module. This mapping preserves the nesting of the Slice definitions. Using the namespace
mapping, the Slice identifier  maps to .Color \M\N\Color

Be aware that using underscores in your Slice definitions can lead to name collisions in the flattened mapping. Consider the following
example:

Slice

module M {
    module N {
        enum Color { red, green, blue };
    };
};

module M_N {
    interface Color { };
};

Although these definitions are syntactically correct, they both map to the flattened PHP symbol .M_N_Color

See Also

Modules
PHP Mapping for Identifiers
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
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PHP Mapping for Built-In Types

On this page:

Mapping of Slice Built-In Types to PHP Types
String Mapping in PHP

Mapping of Slice Built-In Types to PHP Types

PHP has a limited set of primitive types: , , , and . The Slice  types are mapped to PHP types asboolean integer double string built-in
shown in the table below:

Slice Ruby

bool  or true false

byte integer

short integer

int integer

long integer

float double

double double

string string

PHP's  type may not accommodate the range of values supported by Slice's  type, therefore  values that are outside thisinteger long long
range are mapped as strings. Scripts must be prepared to receive an integer or string from any operation that returns a  value.long

String Mapping in PHP

String values returned as the result of a Slice operation (including return values, out parameters, and data members) contain UTF-8 encoded
strings unless the program has installed a , in which case string values use the converter's native encoding instead.string converter

As string input values for a remote Slice operation, Ice accepts  in addition to  objects; each occurrence of  is marshalednull string null
as an empty string. Ice assumes that all  objects contain valid UTF-8 encoded strings unless the program has installed a stringstring
converter, in which case Ice assumes that  objects use the native encoding expected by the converter.string

See Also

Basic Types
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
C++ Strings and Character Encoding
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PHP Mapping for Enumerations

PHP does not have an enumerated type, so a Slice  is mapped to a PHP class: the name of the Slice enumeration becomes theenumeration
name of the PHP class; for each enumerator, the class contains a constant with the same name as the enumerator. For example:

Slice

enum Fruit { Apple, Pear, Orange };

The generated PHP class looks as follows:

PHP

class Fruit
{
    const Apple = 0;
    const Pear = 1;
    const Orange = 2;
}

Since enumerated values are mapped to integers, application code is not required to use the generated constants. When an enumerated
value enters the Ice run time, Ice validates that the given integer is within the expected range for the enumeration. However, to minimize the
potential for defects in your code, we recommend using the generated constants instead of literal integers.

See Also

Enumerations
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
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PHP Mapping for Structures

A Slice  maps to a PHP class containing a public variable for each member of the structure. For example, here is our structure Employee
structure once more:

Slice

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The PHP mapping generates the following definition for this structure:

PHP

class Employee
{
    public function __construct($number=0, $firstName='', $lastName='');

    public function __toString();

    public $number;
    public $firstName;
    public $lastName;
}

The class provides a constructor whose arguments correspond to the data members. This allows you to instantiate and initialize the class in
a single statement (instead of having to first instantiate the class and then assign to its members). Each argument provides a default value
appropriate for the member's type. You can also declare different  for members of primitive and enumerated types.default values

The mapping also includes a definition for the  magic method, which returns a string representation of the structure.__toString

See Also

Structures
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
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PHP Mapping for Sequences

A Slice  maps to a native PHP indexed array. The first element of the Slice sequence is contained at index 0 (zero) of the PHPsequence
array, followed by the remaining elements in ascending index order.

Consider this example:

Slice

sequence<Fruit> FruitPlatter;

You can create an instance of  as shown below:FruitPlatter

PHP

// Make a small platter with one Apple and one Orange
//
$platter = array(Fruit::Apple, Fruit::Orange);

The Ice run time validates the elements of an array to ensure that they are compatible with the declared type and raises 
 if an incompatible type is encountered.InvalidArgumentException

See Also

Sequences
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Dictionaries
PHP Mapping for Constants
PHP Mapping for Exceptions
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PHP Mapping for Dictionaries

A Slice  maps to a native PHP associative array. The PHP mapping does not currently support all Slice dictionary types, however,dictionary
because native PHP associative arrays support only integers and strings as keys.

A Slice dictionary whose key type is an enumeration or one of the primitive types , , , , or  is mapped as anboolean byte short int long
associative array with an integer key.

Boolean values are treated as integers, with false equivalent to 0 (zero) and true equivalent to 1 (one).

A Slice dictionary with a  key type is mapped as an associative array with a string key. All other key types cause a warning to bestring
generated.

Here is the definition of our :EmployeeMap

Slice

dictionary<long, Employee> EmployeeMap;

You can create an instance of this dictionary as shown below:

PHP

$e1 = new Employee;
$e1->number = 42;
$e1->firstName = "Stan";
$e1->lastName = "Lipmann";

$e2 = new Employee;
$e2->number = 77;
$e2->firstName = "Herb";
$e2->lastName = "Sutter";

$em = array($e1->number => $e1, $e2->number => $e2);

The Ice run time validates the elements of a dictionary to ensure that they are compatible with the declared type; 
 exception is raised if an incompatible type is encountered.InvalidArgumentException

See Also

Dictionaries
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Constants
PHP Mapping for Exceptions



Ice 3.4.2 Documentation

729 Copyright © 2011, ZeroC, Inc.

PHP Mapping for Constants

A Slice  maps to a PHP constant. Consider the following definitions:constant

Slice

module M {
    const bool      AppendByDefault = true;
    const byte      LowerNibble = 0x0f;
    const string    Advice = "Don't Panic!";
    const short     TheAnswer = 42;
    const double    PI = 3.1416;

    enum Fruit { Apple, Pear, Orange };
    const Fruit     FavoriteFruit = Pear;
};

The mapping for these constants is shown below:

PHP

define('M_AppendByDefault', true);
define('M_LowerNibble', 15);
define('M_Advice', "Don't Panic!");
define('M_TheAnswer', 42);
define('M_PI', 3.1416);
define('M_FavoriteFruit', M_Fruit::Pear);

An application refers to a constant using its flattened name:

PHP

$ans = M_TheAnswer;

Using the namespace mapping, Slice constants are mapped to PHP constants in the enclosing namespace:

PHP

$ans = \M\TheAnswer;

See Also

Constants and Literals
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Exceptions
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PHP Mapping for Exceptions

On this page:

Inheritance Hierarchy for Exceptions in PHP
PHP Mapping for User Exceptions
PHP Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in PHP

The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for Ice exceptions.

The ancestor of all exceptions is , from which  is derived.  and Exception Ice_Exception Ice_LocalException Ice_UserException
are derived from  and form the base for all run-time and user exceptions.Ice_Exception

PHP Mapping for User Exceptions

Here is a fragment of the  once more:Slice definition for our world time server

Slice

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map to the abbreviated PHP class definitions shown below:
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PHP

class GenericError extends Ice_UserException
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();

    public $reason;
}

class BadTimeVal extends GenericError
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();
}

class BadZoneName extends GenericError
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();
}

Each Slice exception is mapped to a PHP class with the same name. The inheritance structure of the Slice exceptions is preserved for the
generated classes, so  and  inherit from .BadTimeVal BadZoneName GenericError

Each exception member corresponds to an instance variable of the instance, which the constructor initializes to a default value appropriate
for its type. You can also declare different  for members of primitive and enumerated types.default values

Although  and  do not declare data members, their constructors still accept a value for the inherited dataBadTimeVal BadZoneName
member  in order to pass it to the constructor of the base exception .reason GenericError

Each exception also defines the  method to return the exception's type name, as well as the  magic method to returnice_name __toString
a stringified representation of the exception and its members.

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically byIce_UserException
installing a handler for . Similarly, you can catch all Ice run-time exceptions with a handler for Ice_UserException Ice_LocalException
, and you can catch all Ice exceptions with a handler for .Ice_Exception

PHP Mapping for Run-Time Exceptions

The Ice run time throws  for a number of pre-defined error conditions. All run-time exceptions directly or indirectly deriverun-time exceptions
from  (which, in turn, derives from ).Ice_LocalException Ice_Exception

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error
they indicate:

Ice_LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice_UserException
This is the root of the inheritance tree for user exceptions.

Ice_TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice_ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example,  can be handled as , , Ice_ConnectTimeoutException Ice_ConnectTimeoutException Ice_TimeoutException
, or .Ice_LocalException Ice_Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Ice_LocalException
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; the fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to  and  life cycles, which you may want to catch explicitly. These exceptions arefacet object

 and , respectively.Ice_FacetNotExistException Ice_ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
PHP Mapping for Identifiers
PHP Mapping for Modules
PHP Mapping for Built-In Types
PHP Mapping for Enumerations
PHP Mapping for Structures
PHP Mapping for Sequences
PHP Mapping for Dictionaries
PHP Mapping for Constants
Facets and Versioning
Object Life Cycle
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PHP Mapping for Interfaces

The mapping of Slice  revolves around the idea that, to invoke a remote operation, you call a member function on a local classinterfaces
instance that is a  for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call isproxy
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Objects in PHP
 Class in PHPIce_ObjectPrx

Casting Proxies in PHP
Proxy Backward Compatibility in PHP

Using Proxy Methods in PHP
Object Identity and Proxy Comparison in PHP

Proxy Objects in PHP

Slice interfaces are implemented by instances of the  class. In the client's address space, an instance of  is theIce_ObjectPrx ObjectPrx
local ambassador for a remote instance of an interface in a server and is known as a . All the details about the server-sideproxy instance
object, such as its address, what protocol to use, and its object identity are encapsulated in that instance.

The PHP mapping for proxies differs from that of other Ice language mappings in that the  class is used to implement  SliceObjectPrx all
interfaces. The primary motivation for this design is minimizing the amount of code that is generated for each interface. As a result, a proxy
object returned by the communicator operations  and  is , meaning it is not associated with astringToProxy propertyToProxy untyped
user-defined Slice interface. Once you narrow the proxy to a particular interface, you can use that proxy to invoke your Slice operations.

Proxy instances are always created on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly.

A value of  denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).null

For each operation in the interface, the proxy object supports a method of the same name. Each operation accepts an optional trailing
parameter representing the operation context. This parameter is an associative string array for use by the Ice run time to store information
about how to deliver a request. You normally do not need to use it. (We examine the context parameter in detail in . TheRequest Contexts
parameter is also used by .)IceStorm

Ice_ObjectPrx Class in PHP

In the PHP language mapping, all proxies are instances of . This class provides a number of methods:Ice_ObjectPrx

PHP

class Ice_ObjectPrx
{
    function ice_getIdentity();
    function ice_isA($id);
    function ice_ids();
    function ice_id();
    function ice_ping();
    # ...
}

The methods behave as follows:

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:
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Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

PHP

$proxy1 = ...
$proxy2 = ...
$id1 = $proxy1->ice_getIdentity();
$id2 = $proxy2->ice_getIdentity();

if($id1 == $id2)
    // proxy1 and proxy2 denote the same object
else
    // proxy1 and proxy2 denote different objects

ice_isA
The  method determines whether the object denoted by the proxy supports a specific interface. The argument to ice_isA ice_isA
is a . For example, to see whether a proxy of type  denotes a  object, we can write:type ID ObjectPrx Printer

PHP

$proxy = ...
if($proxy != null && $proxy->ice_isA("::Printer"))
    // proxy denotes a Printer object
else
    // proxy denotes some other type of object

Note that we are testing whether the proxy is  before attempting to invoke the  method. This avoids getting a run-timenull ice_isA
error if the proxy is .null

ice_ids
The  method returns an array of strings representing all of the  that the object denoted by the proxy supports.ice_ids type IDs

ice_id
The  method returns the  of the object denoted by the proxy. Note that the type returned is the type of the actualice_id type ID
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type , with a staticBasePrx
type ID of , the return value of  might be , or it might be something more derived, such as .::Base ice_id "::Base" "::Derived"

ice_ping
The  method provides a basic reachability test for the object. If the object can physically be contacted (that is, the objectice_ping
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as  or .ObjectNotExistException ConnectTimeoutException

The  class also defines an operator for comparing two proxies for equality. Note that all aspects of proxies are compared by thisObjectPrx
operation, such as the communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does not
imply that they denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints,  returns ==

 even though the proxies denote the same object.false

The , , , and  methods are remote operations and therefore support an additional overloading thatice_isA ice_ids ice_id ice_ping
accepts a . Also note that there are  in , not shown here. These methods provide different ways torequest context other methods ObjectPrx
dispatch a call and also provide access to an object's .facets

Casting Proxies in PHP
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The PHP mapping for a proxy generates a class with two static methods. For example, the following class is generated for the Slice interface
named :Simple

PHP

class SimplePrxHelper
{
    public static function
    checkedCast($proxy, $facetOrCtx=null, $ctx=null);

    public static function
    uncheckedCast($proxy, $facet=null);
}

Both the  and  methods implement a down-cast: if the passed proxy is a proxy for an object of type ,checkedCast uncheckedCast Simple
or a proxy for an object with a type derived from , the cast returns a proxy narrowed to that type; otherwise, if the passed proxySimple
denotes an object of a different type (or if the passed proxy is ), the cast returns .null null

The method names  and  are reserved for use in proxies. If a Slice interface defines an operation with eithercheckedCast uncheckedCast
of those names, the mapping escapes the name in the generated proxy by prepending an underscore. For example, an interface that defines
an operation named  is mapped to a proxy with a method named .checkedCast _checkedCast

The arguments are described below:

$proxy
The proxy to be narrowed.

$facetOrCtx
This optional argument can be either a string representing a desired , or an associative string array representing a .facet context

$ctx
If  contains a facet name, use this argument to supply an associative string array representing a .$facetOrCtx context

$facet
Specifies the name of the desired .facet

Given a proxy of any type, you can use a  to determine whether the corresponding object supports a given type, for example:checkedCast

PHP

$obj = ...      // Get a proxy from somewhere...

$simple = SimplePrxHelper::checkedCast($obj);
if($simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a  contacts the server. This is necessary because only the server implementation has definite knowledge of the typecheckedCast
of an object. As a result, a  may throw a  or an .checkedCast ConnectTimeoutException ObjectNotExistException

In contrast, an  does not contact the server and unconditionally returns a proxy of the requested type. However, if you douncheckedCast
use an , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,uncheckedCast
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is 

. However, other exceptions, such as a marshaling exception are possible as well. And, if the objectOperationNotExistException
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:
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Slice

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a  object and use an  to down-cast the proxy:Process uncheckedCast

PHP

$obj = ...                                        // Get proxy...
$process = ProcessPrxHelper::uncheckedCast($obj); // No worries...
$process->launch(40, 60);                         // Oops...

If the proxy you received actually denotes a  object, the error will go undetected by the Ice run time: because  and  haveRocket int float
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of  will simplyRocket::launch
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

Proxy Backward Compatibility in PHP

Prior releases of the PHP language mapping provided two proxy methods for narrowing a proxy:

PHP

class Ice_ObjectPrx
{
    function ice_checkedCast($type, $facetOrCtx=null, $ctx=null);
    function ice_uncheckedCast($type, $facet=null);
    # ...
}

For example, a proxy can be narrowed as follows:

PHP

$proxy = $proxy->ice_checkedCast("::Demo::Hello");

Embedding such type ID strings in your application is a potential source of defects because the strings are not validated until run time.
Although these methods are still supported for the sake of backward compatibility, we recommend using the static methods that are
generated in the helper class corresponding to each interface, as shown below:

PHP

$proxy = Demo_HelloPrxHelper::checkedCast($proxy);

Not only are these static methods consistent with the APIs of other Ice language mappings, they also avoid the need to hard-code type ID
strings in your application.
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Using Proxy Methods in PHP

The base proxy class  supports a variety of . Since proxies are immutable, each of theseObjectPrx methods for customizing a proxy
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

PHP

$proxy = $communicator->stringToProxy(...);
$proxy = $proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

PHP

$base = $communicator->stringToProxy(...);
$hello = Demo_HelloPrxHelper::checkedCast($base);
$hello = $hello->ice_timeout(10000); // Type is not discarded
$hello->sayHello();

The only exceptions are the factory methods  and . Calls to either of these methods may produce a proxy for anice_facet ice_identity
object of an unrelated type, therefore they return an untyped proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in PHP

Proxy objects support comparison using the comparison operators  and . Note that proxy comparison uses  of the information in a== != all
proxy for the comparison. This means that not only the object identity must match for a comparison to succeed, but other details inside the
proxy, such as the protocol and endpoint information, must be the same. In other words, comparison tests for  identity,  objectproxy not
identity. A common mistake is to write code along the following lines:

PHP

$p1 = ...        // Get a proxy...
$p2 = ...        // Get another proxy...

if($p1 != $p2)
    // p1 and p2 denote different objects       // WRONG!
else
    // p1 and p2 denote the same object         // Correct

Even though  and  differ, they may denote the same Ice object. This can happen because, for example, both  and  embed thep1 p2 p1 p2
same object identity, but each uses a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal, we know that the two proxies denote the same object (because they are identical in all respects); however, if two proxies
compare unequal, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the  module:Ice

PHP

function Ice_proxyIdentityCompare($lhs, $rhs);
function Ice_proxyIdentityAndFacetCompare($lhs, $rhs);

proxyIdentityCompare allows you to correctly compare proxies for identity:
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PHP

$p1 = ...        // Get a proxy...
$p2 = ...        // Get another proxy...

if(Ice_proxyIdentityCompare($p1, $p2) != 0)
    // p1 and p2 denote different objects       // Correct
else
    // p1 and p2 denote the same object         // Correct

The function returns 0 if the identities are equal,  if  is less than , and 1 if  is greater than . (The comparison uses  as the-1 p1 p2 p1 p2 name
major sort key and  as the minor sort key.)category

The  function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

See Also

Interfaces, Operations, and Exceptions
Proxies
Type IDs
PHP Mapping for Operations
Request Contexts
Facets and Versioning
IceStorm



Ice 3.4.2 Documentation

739 Copyright © 2011, ZeroC, Inc.

PHP Mapping for Operations

On this page:

Basic PHP Mapping for Operations
Normal and  Operations in PHPidempotent
Passing Parameters in PHP

In-Parameters in PHP
Out-Parameters in PHP
Parameter Type Mismatches in PHP
Null Parameters in PHP

Exception Handling in PHP

Basic PHP Mapping for Operations

As we saw in the , for each  on an interface, a proxy object narrowed to that type supports aPHP mapping for interfaces operation
corresponding method with the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for
our :file system

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The  operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

PHP

$node = ...             // Initialize proxy
$name = $node->name();  // Get name via RPC

Normal and  Operations in PHPidempotent

You can add an  qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent
 has no effect.idempotent

Passing Parameters in PHP

In-Parameters in PHP

The PHP mapping for  parameters guarantees that the value of a parameter will not be changed by the invocation.in

Here is an interface with operations that pass parameters of various types from client to server:
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Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

A proxy object narrowed to the  interface supports the following methods:ClientToServer

PHP

function op1($i, $f, $b, $s, $_ctx=null);
function op2($ns, $ss, $st, $_ctx=null);
function op3($proxy, $_ctx=null);

Given a proxy to a  interface, the client code can pass parameters as in the following example:ClientToServer

PHP

$p = ...                                 // Get proxy...

$p->op1(42, 3.14, true, "Hello world!"); // Pass simple literals

$i = 42;
$f = 3.14;
$b = true;
$s = "Hello world!";
$p->op1($i, $f, $b, $s);                 // Pass simple variables

$ns = new NumberAndString;
$ns->x = 42;
$ns->str = "The Answer";
$ss = array("Hello world!");
$st = array();
$st[0] = $ns;
$p->op2($ns, $ss, $st);                  // Pass complex variables

$p->op3($p);                             // Pass proxy

Out-Parameters in PHP

Out parameters are passed by reference. Here is the same Slice definition we saw earlier, but this time with all parameters being passed in
the out direction:
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Slice

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The PHP mapping looks the same as it did for the in-parameters version:

PHP

function op1($i, $f, $b, $s, $_ctx=null);
function op2($ns, $ss, $st, $_ctx=null);
function op3($proxy, $_ctx=null);

Given a proxy to a  interface, the client code can receive the results as in the following example:ServerToClient

PHP

$p = ...                 // Get proxy...
$p->op1($i, $f, $b, $s);
$p->op2($ns, $ss, $st);
$p->op3($stcp);

Note that it is not necessary to use the reference operator ( ) before each argument because the Ice run time forces each  parameter to& out
have reference semantics.

Parameter Type Mismatches in PHP

The Ice run time performs validation on the arguments to a proxy invocation and reports any type mismatches as 
.InvalidArgumentException

Null Parameters in PHP

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but thenull
corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass  as anull
parameter or return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or
strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string
element in a large sequence before sending the sequence in order to avoid a run-time error. Note that using null parameters in this way does

 create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only not empty
sequences, dictionaries, and strings do). For example, it makes no difference to the receiver whether you send a string as  or as annull
empty string: either way, the receiver sees an empty string.

Exception Handling in PHP

Any operation invocation may throw a  and, if the operation has an exception specification, may also throw run-time exception user
. Suppose we have the following simple interface:exceptions
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Slice

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as PHP exceptions, so you can simply enclose one or more operation invocations in a  block:try-catch

PHP

$child = ...        // Get child proxy...

try
{
    $child->askToCleanUp();
}
catch(Tantrum $t)
{
    echo "The child says: " . $t->reason . "\n";
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will usually be handled by exception handlers higher in the hierarchy. For example:

PHP

function run()
{
    $child = ...          // Get child proxy...
    try
    {
        $child->askToCleanUp();
    }
    catch(Tantrum $t)
    {
        echo "The child says: " . $t->reason . "\n";
        $child->scold();  // Recover from error...
    }
    $child->praise();     // Give positive feedback...
}

try
{
    // ...
    run();
    // ...
}
catch(Ice_Exception $ex)
{
    echo $ex->__toString() . "\n";
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application in .)Hello World Application

See Also

Operations
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Hello World Application
Slice for a Simple File System
PHP Mapping for Interfaces
PHP Mapping for Exceptions
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Basic PHP Mapping for Classes

A Slice  maps to a Ruby class with the same name. For each Slice data member, the generated class contains a member variable, justclass
as for structures and exceptions. Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The PHP mapping generates the following code for this definition:

PHP

abstract class TimeOfDay extends Ice_ObjectImpl
{
    public function __construct($hour=0, $minute=0, $second=0)
    {
        $this->hour = $hour;
        $this->minute = $minute;
        $this->second = $second;
    }

    abstract public function format();

    public static function ice_staticId()
    {
        return '::TimeOfDay';
    }

    public function __toString()
    {
        // ...
    }

    public $hour;
    public $minute;
    public $second;
}

There are a number of things to note about the generated code:

The generated class  inherits from . This reflects the semantics of Slice classes in that all classesTimeOfDay Ice_ObjectImpl
implicitly inherit from , which is the ultimate ancestor of all classes. Note that  is  the same as .Object Object not Ice_ObjectPrx
In other words, you  pass a class where a proxy is expected and vice versa.cannot
The constructor initializes an instance variable for each Slice data member.
The class includes an abstract function declaration corresponding to the Slice operation .format
The class defines the class method .ice_staticId
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There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from  in PHPObject

Like interfaces, classes implicitly inherit from a common base class, . However, classes inherit from  instead of Ice_Object Ice_Object
, therefore you cannot pass a class where a proxy is expected (and vice versa) because the base types for classes andIce_ObjectPrx

proxies are not compatible.

Ice_Object contains a number of member functions:

PHP

interface Ice_Object
{
    public function ice_isA($id);

    public function ice_ping();

    public function ice_ids();

    public function ice_id();

    public function ice_preMarshal();

    public function ice_postUnmarshal();
}

The member functions of  behave as follows:Ice_Object

ice_isA
This method returns  if the object supports the given , and  otherwise.true type ID false

ice_ping
As for interfaces,  provides a basic reachability test for the object.ice_ping

ice_ids
This method returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This method returns the actual run-time  of the object. If you call  through a reference to a base instance, thetype ID ice_id
returned type ID is the actual (possibly more derived) type ID of the instance.

ice_preMarshal
If the object supports this method, the Ice run time invokes it just prior to marshaling the object's state, providing the opportunity for
the object to validate its declared data members.

ice_postUnmarshal
If the object supports this method, the Ice run time invokes it after unmarshaling the object's state. An object typically defines this
method when it needs to perform additional initialization using the values of its declared data members.

All Slice classes derive from  via the  abstract base class, which provides default implementations of the Ice_Object Ice_ObjectImpl
 methods.Ice_Object

Class Data Members in PHP

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding member variable.

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of thisprotected
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the  class shown below has the  metadata directive appliedTimeOfDay protected
to each of its data members:
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Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

PHP

abstract class TimeOfDay extends Ice_ObjectImpl
{
    public function __construct($hour=0, $minute=0, $second=0)
    {
        $this->hour = $hour;
        $this->minute = $minute;
        $this->second = $second;
    }

    abstract public function format();

    public static function ice_staticId()
    {
        return '::TimeOfDay';
    }

    public function __toString()
    {
        // ...
    }

    protected $hour;
    protected $minute;
    protected $second;
}

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the  class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Class Constructors in PHP

Classes have a constructor that assigns to each data member a default value appropriate for its type. You can also declare different default
 for data members of primitive and enumerated types.values

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order.

Class Operations in PHP
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Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such
as the  operation of our  class), you must provide an implementation of the operation in a class that is derived from theformat TimeOfDay
generated class. For example:

PHP

class TimeOfDayI extends TimeOfDay
{
    public function format()
    {
        return strftime("%X");
    }
}

Class Factories in PHP

Having created a class such as , we have an implementation and we can instantiate the  class, but we cannotTimeOfDayI TimeOfDayI
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. However, get TimeOfDay
 is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a TimeOfDay

 class that implements the abstract  operation of the  abstract class. In other words, we must provide theTimeOfDayI format TimeOfDay
Ice run time with a factory that knows that the  abstract class has a  concrete implementation. The TimeOfDay TimeOfDayI

 interface provides us with the necessary operations:Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must implement the  interface:TimeOfDayI ObjectFactory
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PHP

class ObjectFactory implements Ice_ObjectFactory {
    public function create($type) {
        if ($type == TimeOfDay::ice_staticId())) {
            return new TimeOfDayI;
        }
        assert(false);
        return null;
    }

    public function destroy() {
        // Nothing to do
    }
}

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's create TimeOfDay destroy
method is called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Ourcreate type ID TimeOfDay "::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs,create TimeOfDayI
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string inice_staticId
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we canNoObjectFactoryException ice_staticId
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

PHP

$communicator = ...;
$communicator->addObjectFactory(new ObjectFactory, TimeOfDay::ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the registered "::TimeOfDay" create
 instance.ObjectFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance todestroy
clean up any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator —destroy
if you do, the Ice run time has no idea that this has happened and, depending on what your  implementation is doing, may causedestroy
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with destroy create destroy
, and  will not be called once  has been called.create destroy

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory isaddObjectFactory
registered, the Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes
Type IDs
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slice2php Command-Line Options

The Slice-to-PHP compiler, , offers the following command-line options in addition to the :slice2php standard options

--all
Generate code for all Slice definitions, including those included by the main Slice file.

-n, --namespace
Generate code using PHP namespaces. Note that namespaces are only supported in PHP 5.3 or later. Also note that the Ice
extension for PHP must be built with namespace support enabled.

--checksum
Generate  for Slice definitions.checksums

Compiler Output in PHP

For each Slice file ,  generates PHP code into a file named  in the output directory. The default output directory isX.ice slice2php X.php
the current working directory, but a different directory can be specified using the  option.--output-dir

Include Files in PHP

It is important to understand how  handles include files. In the absence of the  option, the compiler does not generateslice2php --all
PHP code for Slice definitions in included files. Rather, the compiler translates Slice  statements into PHP  statements in#include require
the following manner:

Determine the full pathname of the included file.
Create the shortest possible relative pathname for the included file by iterating over each of the include directories (specified using
the  option) and removing the leading directory from the included file if possible.-I
For example, if the full pathname of an included file is , and we specified the options /opt/App/slice/OS/Process.ice

 and , then the shortest relative pathname is  after removing -I/opt/App -I/opt/App/slice OS/Process.ice
./opt/App/slice

Replace the  extension with . Continuing our example from the previous step, the translated  statement.ice .php require
becomes

require "OS/Process.php";

As a result, you can use  options to tailor the  statements generated by the compiler in order to avoid absolute path-I require
names and match the organizational structure of your application's source files.

See Also

Using the Slice Compilers
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PHP Request Semantics

In PHP terminology, a  is the execution of a PHP script on behalf of a Web client. Each request essentially runs in its own instance ofrequest
the PHP interpreter, isolated from any other requests that may be executing concurrently. Upon the completion of a request, the interpreter
reclaims memory and other resources that were acquired during the request, including objects created by the Ice extension.

Using Communicators in PHP

A communicator represents an instance of the Ice run time. A PHP script that needs to invoke an operation on a remote Ice object must
initialize a communicator, obtain and narrow a proxy, and make the invocation. For example, here is a minimal (but complete) Ice script:
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PHP

<?php
require 'Ice.php';
require 'Hello.php';

$communicator = null;

try
{
    $data = new Ice_InitializationData;
    $data->properties = Ice_createProperties();
    $data->properties->load("props.cfg");
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}

if($communicator)
{
    try
    {
        $communicator->destroy();
    }
    catch(Ice_LocalException $ex)
    {
        // Ignore.
    }
}
?>

By default, the Ice extension automatically destroys any communicator that was created during a request. This means a script can usually
omit the call to  unless there is an application-specific reason to destroy the communicator explicitly. Consequently, we can simplifydestroy
our script to the following:

PHP

<?php
require 'Ice.php';
require 'Hello.php';

try
{
    $data = new Ice_InitializationData;
    $data->properties = Ice_createProperties();
    $data->properties->load("props.cfg");
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}
?>

Now we allow the Ice extension to destroy our communicator automatically. (The extension traps and ignores any exception raised by 
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.)destroy

Although the automatic destruction of communicators is convenient, it is important to consider the performance characteristics of this script.
Specifically, each execution of the script involves the following activities:

Create an Ice property set
Load and parse a property file
Initialize a communicator with the given configuration properties
Obtain a proxy for the remote Ice object
Establish a socket connection to the server
Send a request message and wait for the reply
Destroy the communicator, which closes the socket connection

Of primary concern are the activities that involve system calls, such as opening and reading files, creating and using sockets, and so on. The
overhead incurred by these calls may not matter if the script is only executed infrequently, but for an application with high request rates it is
necessary to minimize this overhead:

A  eliminates the need to parse a property file in each request.pre-configured property set
Timeouts prevent a script from blocking indefinitely in case Ice encounters delays while performing socket operations.
Registering a communicator avoids the need to create and destroy a communicator in every request.
Be aware of the number of "round trips" (request-reply pairs) your script makes. For example, the script above uses checkedCast
to verify that the remote Ice object supports the desired Slice interface. However, calling  causes the Ice run time tocheckedCast
send a request to the server and await its reply, therefore this script is actually making two remote invocations. It is unnecessary to
perform a checked cast if it is safe for the client to assume that the Ice object supports the correct interface, in which case using an 

 instead avoids the extra round trip.uncheckedCast

Managing Property Sets in PHP

A PHP application can manually construct a  for configuring its communicator. The Ice extension also provides a PHP-specificproperty set
property set API that helps to minimize the overhead associated with initializing a communicator, allowing you to configure a default property
set along with an unlimited number of named property sets (or ). You can populate a property set using a configuration file,profiles
command-line options, or both. Property sets are initialized using the normal Ice semantics: command-line options override any settings from
a configuration file.

The Ice extension creates these property sets during web server startup, which means any subsequent changes you might make to the
configuration have no effect until the web server is restarted. Also keep in mind that specifying a relative path name for a configuration file
usually means the path name is evaluated relative to the web server's working directory.

Default Property Set in PHP

The INI directives  and  specify the configuration file and the command-line options for the default property set,ice.config ice.options
respectively. These directives must appear in PHP's configuration file, which is usually named :php.ini

; Snippet from php.ini on Linux
extension=IcePHP.so
ice.config=/opt/MyApp/default.cfg
ice.options="--Ice.Override.Timeout=2000"

Profiles in PHP

Profiles are useful when several unrelated applications execute in the same web server, or when a script needs to choose among multiple
configurations. To configure your profiles, add an  directive to PHP's configuration file. The value of this directive is a fileice.profiles
containing profile definitions:

; Snippet from php.ini on Linux
ice.profiles=/opt/MyApp/profiles

The profile definition file uses INI syntax:
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[Production]
config=/opt/MyApp/prod.cfg
options="..."

[Debug]
config=/opt/MyApp/debug.cfg
options="--Ice.Trace.Network=3 ..."

The name of each profile is enclosed in square brackets. The configuration file and command-line options for each profile are defined using
the  and  entries, respectively.config options

Using Property Sets in PHP

The  function allows a script to obtain a copy of a property set. When called without an argument, or with an emptyIce_getProperties
string, the function returns the default property set. Otherwise, the function expects the name of a configured profile and returns the property
set associated with that profile. The return value is an instance of , or  if no matching profile was found.Ice_Properties null

Note that the Ice extension always creates the default property set, which is empty if the  and  directives are notice.config ice.options
defined. Also note that changes a script might make to a property set returned by this function have no effect on other requests because the
script is modifying a  of the original property set.copy

Now we can modify our script to use  and avoid the need to load a configuration file in each request:Ice_getProperties

PHP

<?php
require 'Ice.php';
require 'Hello.php';

try
{
    $data = new Ice_InitializationData;
    $data->properties = Ice_getProperties();
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}
?>

Security Considerations for Property Sets in PHP

Ice configuration properties may contain sensitive information such as the path name of the private key for an X.509 certificate. If multiple
untrusted PHP applications run in the same web server, avoid the use of the default property set and choose sufficiently unique names for
your named profiles. The Ice extension does not provide a means for enumerating the names of the configured profiles, therefore a
malicious script would have to guess the name of a profile in order to examine its configuration properties.

To prevent a script from using the value of  to open the profile definition file directly, enable the ice.profiles ice.hide_profiles
directive to cause the Ice extension to replace the  setting after it has processed the file. The ice.profiles ice.hide_profiles
directive is enabled by default.

Timeouts in PHP

All twoway remote invocations made by a PHP script have synchronous semantics: the script does not regain control until Ice receives a
reply from the server. As a result, we recommend configuring a suitable  value for all of your proxies as a defensive measure againsttimeout
network delays.
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Registered Communicators in PHP

You can register a communicator to prevent it from being destroyed at the completion of a script. For example, a session-based PHP
application can create a communicator for each new session and register it for reuse in subsequent requests of the same session. Reusing a
communicator in this way avoids the overhead associated with creating and destroying a communicator in each request. Furthermore, it
allows socket connections established by the Ice run time to remain open and available for use in another request.

Limitations of Registered Communicators in PHP

A communicator object is local to the process that created it, which in the case of PHP is usually a web server process. The usefulness of a
registered communicator is therefore limited to situations in which an application can ensure that subsequent page requests are handled by
the same web server process as the one that originally created the registered communicator. For example, registered communicators would
not be appropriate in a typical CGI configuration because the CGI process terminates at the end of each request. A simple (but often
impractical) solution is to configure your web server to use a single persistent process. The topic of configuring a web server to take
advantage of registered communicators is outside the scope of this manual.

Using Registered Communicators in PHP

The API for registered communicators consists of three functions:

Ice_register($communicator, $name, $expires=0)
Registers a communicator with the given name. On success, the function returns true. If another communicator is already registered
with the same name, the function returns false. The  argument specifies a timeout value in minutes; if  is greaterexpires expires
than zero, the Ice extension automatically destroys the communicator if it has not been retrieved (via ) for the specifiedIce_find
number of minutes. The default value (zero) means the communicator never expires, in which case the Ice extension only destroys
the communicator when the current process terminates.
It is legal to register a communicator with more than one name. In that case, the most recent value of expires takes precedence.

Ice_unregister($name)
Removes the registration for a communicator with the given name. Returns true if a match was found or false otherwise. Calling 

 does not cause the communicator to be destroyed; rather, the communicator is destroyed as soon as all pendingIce_unregister
requests that are currently using the communicator have completed. Destroying a registered communicator explicitly also removes
its registration.

Ice_find($name)
Retrieves the communicator associated with the given name. Returns  if no match is found.null

An application typically uses registered communicators as follows:

PHP

<?php
require 'Ice.php';

$communicator = Ice_find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
    $communicator = Ice_initialize(...);
    Ice_register($communicator, 'MyCommunicator', $expires);
}

...
?>

Note that communicators consume resources such as threads, sockets, and memory, therefore an application should be designed to
minimize the number of communicators it registers. Using a suitable expiration timeout prevents registered communicators from
accumulating indefinitely.

A simple application that demonstrates the use of registered communicators can be found in the  subdirectory of the PHPGlacier2/hello
sample programs.

Security Considerations for Registered Communicators in PHP

There are risks associated with allowing untrusted applications to gain access to a registered communicator. For example, if a malicious
script obtains a registered communicator that is configured with SSL credentials, the script could potentially make secure invocations as if it
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were the trusted script.

Registering a communicator with a sufficiently unique name reduces the chance that a malicious script could guess the communicator's
name. For applications that make use of PHP's session facility, the session ID is a reasonable choice for a communicator name. The sample
application in  demonstrates this solution.Glacier2/hello

Lifetime of Object Factories in PHP

PHP reclaims all memory at the end of each request, which means any object factories that a script might have installed in a registered
communicator are destroyed when the request completes even if the communicator is not destroyed. As a result, a script must install its
object factories in a registered communicator for  request, as shown in the example below:every

PHP

<?php
require 'Ice.php';

$communicator = Ice_find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
    $communicator = Ice_initialize(...);
    Ice_register($communicator, 'MyCommunicator', $expires);
}

$communicator->addObjectFactory(new MyFactory, MyClass::ice_staticId());
...
?>

The Ice extension invokes the  method of each factory prior to the completion of a request.destroy

See Also

Properties and Configuration
Connection Timeouts
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Using Slice Checksums in PHP

The Slice compilers can optionally generate  of Slice definitions. For , the  option causes the compiler tochecksums slice2php --checksum
generate code that adds checksums to the global array . The checksums are installed automatically when the PHPIce_sliceChecksums
code is first parsed; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the two array objects using a comparison operator. However, this is
not feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the
local checksums as demonstrated below:

PHP

global $Ice_sliceChecksums;
$serverChecksums = ...
foreach($Ice_sliceChecksums as $key => $value)
{
    if(!isset($serverChecksums[$key]))
        // No match found for type id!
    elseif($Ice_sliceChecksums[$key] != $serverChecksums[$key])
        // Checksum mismatch!
}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

Slice Checksums
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Example of a File System Client in PHP

This page presents a very simple client to access a server that implements the file system we developed in .Slice for a Simple File System
The PHP code shown here hardly differs from the code you would write for an ordinary PHP program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local PHP object. This allows you to put your effort where you
should, namely, into developing your application logic instead of having to struggle with arcane networking APIs.

We now have seen enough of the client-side PHP mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

PHP

<?php
require 'Ice.php';
require 'Filesystem.php';

// Recursively print the contents of directory "dir"
// in tree fashion. For files, show the contents of
// each file. The "depth" parameter is the current
// nesting level (for indentation).

function listRecursive($dir, $depth = 0)
{
    $indent = str_repeat("\t", ++$depth);

    $contents = $dir->_list(); // list is a reserved word in PHP

    foreach ($contents as $i) {
        $dir = Filesystem_DirectoryPrxHelper::checkedCast($i);
        $file = Filesystem_FilePrxHelper::uncheckedCast($i);
        echo $indent . $i->name() . ($dir ? " (directory):" : " (file):") . "\n";
        if ($dir) {
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            listRecursive($dir, $depth);
        } else {
            $text = $file->read();
            foreach ($text as $j)
                echo $indent . "\t" . $j . "\n";
        }
    }
}

$ic = null;
try
{
    // Create a communicator
    //
    $ic = Ice_initialize();

    // Create a proxy for the root directory
    //
    $obj = $ic->stringToProxy("RootDir:default -p 10000");

    // Down-cast the proxy to a Directory proxy
    //
    $rootDir = Filesystem_DirectoryPrxHelper::checkedCast($obj);

    // Recursively list the contents of the root directory
    //
    echo "Contents of root directory:\n";
    listRecursive($rootDir);
}
catch(Ice_LocalException $ex)
{
    print_r($ex);
}

if($ic)
{
    // Clean up
    //
    try
    {
        $ic->destroy();
    }
    catch(Exception $ex)
    {
        print_r($ex);
    }
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1.  

2.  

1.  

2.  

3.  

}
?>

The program first defines the  function, which is a helper function to print the contents of the file system, and the mainlistRecursive
program follows. Let us look at the main program first:

The client first creates a proxy to the root directory of the file system. For this example, we assume that the server runs on the local
host and listens using the default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be .RootDir
The client down-casts the proxy to the  interface and passes that proxy to , which prints the contentsDirectory listRecursive
of the file system.

Most of the work happens in . The function is passed a proxy to a directory to list, and an indent level. (The indent levellistRecursive
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.)  calls the  operation on the directory and iterates over the returned sequence of nodes:listRecursive list

The code uses  to narrow the  proxy to a  proxy, and uses  to narrow the checkedCast Node Directory uncheckedCast Node
proxy to a  proxy. Exactly one of those casts will succeed, so there is no need to call  twice: if the   File checkedCast Node is-a

, the code uses the proxy returned by ; if  fails, we  that the Node  File and,Directory checkedCast checkedCast know is-a
therefore,  is sufficient to get a  proxy. uncheckedCast File
In general, if you know that a down-cast to a specific type will succeed, it is preferable to use  instead of uncheckedCast

 because  does not incur any network traffic.checkedCast uncheckedCast
The code prints the name of the file or directory and then, depending on which cast succeeded, prints  or "(directory)"

 following the name."(file)"
The code checks the type of the node:

If it is a directory, the code recurses, incrementing the indent level.
If it is a file, the code calls the  operation on the file to retrieve the file contents and then iterates over the returnedread
sequence of lines, printing each line.

Assume that we have a small file system consisting of a two files and a a directory as follows:

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client is not very sophisticated:
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The protocol and address information are hard-wired into the code.
The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of  and .IceGrid object life cycle

See Also

Hello World Application
Slice for a Simple File System
Object Life Cycle
IceGrid
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Properties and Configuration
Ice uses a configuration mechanism that allows you to control many aspects of the behavior of your Ice applications at run time, such as the
maximum message size, the number of threads, or whether to produce network trace messages. The configuration mechanism is not only
useful for configuring Ice, but also for configuring your own applications. The configuration mechanism is simple to use with a minimal API,
yet flexible enough to cope with the needs of most applications.

Topics

Properties Overview
Configuration File Syntax
Setting Properties on the Command Line
Using Configuration Files
Alternate Property Stores
Command-Line Parsing and Initialization
The Properties Interface
Reading Properties
Setting Properties
Parsing Properties
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Properties Overview

Ice and its various subsystems are configured by properties. A property is a name-value pair, for example:

Ice.UDP.SndSize=65535

In this example, the  is , and the  is .property name Ice.UDP.SndSize property value 65535

You can find a complete list of the properties used to configure Ice in the .property reference

Note that Ice reads properties that control the Ice run time and its services (that is, properties that start with one of the reserved prefixes,
such as , , etc.) only once on start-up, when you create a communicator. This means that you must set Ice-related propertiesIce Glacier2
to their correct values  you create a communicator. If you change the value of an Ice-related property after that point, it is likely that thebefore
new setting will simply be ignored.

On this page:

Property Categories
Reserved Prefixes for Properties
Property Name Syntax
Property Value Syntax
Unused Properties

Property Categories

By convention, Ice properties use the following naming scheme:

<application>.<category>[.<sub-category>]

Note that the sub-category is optional and not used by all Ice properties.

This two- or three-part naming scheme is by convention only — if you use properties to configure your own applications, you can use
property names with any number of categories.

Reserved Prefixes for Properties

Ice reserves properties with the following prefixes:

Ice
IceBox
IceGrid
IcePatch2
IceSSL
IceStorm
Freeze
Glacier2

You cannot use a property beginning with one of these prefixes to configure your own application.

Property Name Syntax

A property name consists of any number of characters. For example, the following are valid property names:
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foo
Foo
foo.bar
foo bar    White space is allowed
foo=bar    Special characters are allowed
.

Note that there is no special significance to a period in a property name. (Periods are used to make property names more readable and are
not treated specially by the property parser.)

Property names cannot contain leading or trailing white space. (If you create a property name with leading or trailing white space, that white
space is silently stripped.)

Property Value Syntax

A property value consists of any number of characters. The following are examples of property values:

65535
yes
This is a = property value.
../../config

Unused Properties

During the destruction of a communicator, the Ice run time can optionally emit a warning for properties that were set but never read. To
enable this warning, set  to a non-zero value. This property is useful for detecting mis-spelled properties,Ice.Warn.UnusedProperties
such as . By default, the warning is disabled.Filesystem.MaxFilSize

See Also

Property Reference
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Configuration File Syntax

This page describes the syntax of an Ice configuration file.

On this page:

Configuration File Format
Special Characters in Configuration Files

Configuration File Format

A configuration file contains any number of name-value pairs, with each pair on a separate line. Empty lines and lines consisting entirely of
white space characters are ignored. The  character introduces a comment that extends to the end of the current line.#

Configuration files can be ASCII text files or use the UTF?8 character encoding with a byte order marker (BOM) at the beginning of the file.

Here is a simple configuration file:

# Example config file for Ice

Ice.MessageSizeMax = 2048    # Largest message size is 2MB
Ice.Trace.Network=3          # Highest level of tracing for network
Ice.Trace.Protocol=          # Disable protocol tracing

Leading and trailing white space is always ignored for property  (whether the white space is escaped or not), but white space withinnames
property  is preserved.values

For property values, you can preserve leading and trailing white space by escaping the white space with a backslash. For example:

# White space example

My.Prop = a property               # Value is "a property"
My.Prop =     a     property       # Value is "a     property"
My.Prop = \ \ a     property\ \    # Value is "  a     property  "
My.Prop = \ \ a  \ \  property\ \  # Value is "  a     property  "
My.Prop = a \\ property            # Value is "a \ property"

This example shows that leading and trailing white space for property values is ignored unless escaped with a backslash whereas, white
space that is surrounded by non-white space characters is preserved exactly, whether it is escaped or not. As usual, you can insert a literal
backslash into a property value by using a double backslash.

If you set the same property more than once, the last setting prevails and overrides any previous setting. Note that assigning nothing to a
property clears that property (that is, sets it to the empty string).

A property that contains the empty string (such as  in the preceding example) is indistinguishable from a propertyIce.Trace.Protocol
that is not mentioned at all. This is because the API for  returns the empty string for non-existent properties.retrieving a property value

Property values can include characters from non-English alphabets. The Ice run time expects the configuration file to use UTF-8 encoding for
such characters. (With C++, you can specify a  when you read the file.)string converter

Special Characters in Configuration Files

The characters  and  have special meaning in a configuration file:= #

= marks the end of the property name and the beginning of the property value
# starts a comment that extends to the end of the line

These characters must be escaped when they appear in a property name. Consider the following examples:
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foo\=bar=1        # Name is "foo=bar", value is "1"
foo\#bar   = 2    # Name is "foo#bar", value is "2"
foo bar  =3       # Name is "foo bar", value is "3"

In a property value, a  character must be escaped to prevent it from starting a comment, but an  character does not require an escape.# =
Consider these examples:

A=1           # Name is "A", value is "1"
B= 2 3 4      # Name is "B", value is "2 3 4"
C=5=\#6 # 7   # Name is "C", value is "5=#6"

Note that, two successive backslashes in a property value become a single backslash. To get two consecutive backslashes, you must
escape each one with another backslash:

AServer=\\\\server\dir    # Value is "\\server\dir"
BServer=\\server\\dir     # Value is "\server\dir"

The preceding example also illustrates that, if a backslash is not followed by a backslash, , or , the backslash and the character following it# =
are both preserved.

See Also

Using Configuration Files
Reading Properties
Setting Properties on the Command Line
Communicator Initialization
C++ Strings and Character Encoding
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Setting Properties on the Command Line

In addition to setting properties in a , you can also set properties on the command line, for example:configuration file

$ ./server --Ice.UDP.SndSize=65535 --IceSSL.Trace.Security=2

Any command line option that begins with   and is followed by one of the  is read and converted to a property setting-- reserved prefixes
when you create a communicator. Property settings on the command line override settings in a configuration file. If you set the same
property more than once on the same command line, the last setting overrides any previous ones.

For convenience, any property not explicitly set to a value is set to the value  . For example,1

$ ./server --Ice.Trace.Protocol

is equivalent to

$ ./server --Ice.Trace.Protocol=1

Note that this feature only applies to properties that are set on the command line, but not to properties that are set from a configuration file.

You can also clear a property from the command line as follows:

$ ./server --Ice.Trace.Protocol=

As for properties set from a configuration file, assigning nothing to a property clears that property.

See Also

Properties Overview
Using Configuration Files
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Using Configuration Files

The ability to configure an application's properties externally provides a great deal of flexibility: you can use any combination of
command-line options and configuration files to achieve the desired settings, all without having to modify your application. This page
describes two ways of loading property settings from a file.

On this page:

Prerequisites for Using Configuration Files
The  Environment VariableICE_CONFIG
The  PropertyIce.Config

Prerequisites for Using Configuration Files

The Ice run time automatically loads a configuration file during the creation of a , which is an instance of the property set Ice::Properties
interface. Every communicator has its own property set from which it derives its configuration. If an application does not supply a property set
when it calls  (or the equivalent in other language mappings), the Ice run time internally creates a  for theIce::initialize property set
new communicator.

Note however that Ice loads a configuration file automatically only when the application creates a property set using an argument vector.
This occurs when the application passes an argument vector to create a property set explicitly, or when the application passes an argument
vector to .Ice::initialize

Both of the mechanisms described below can also retrieve property settings from .additional sources

The  Environment VariableICE_CONFIG

Ice automatically loads the contents of the configuration file named in the  environment variable (assuming the ICE_CONFIG prerequisites
are met). For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$ ./server

This causes the server to read its property settings from the configuration file in ./usr/local/filesystem/config

If you use the  environment variable together with command-line options for other properties, the settings on the command lineICE_CONFIG
override the settings in the configuration file. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$ ./server --Ice.MessageSizeMax=4096

This sets the value of the  property to  regardless of any setting of this property in Ice.MessageSizeMax 4096
./usr/local/filesystem/config

You can use multiple configuration files by specifying a list of configuration file names separated by commas. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config,./config
$ ./server

This causes property settings to be retrieved from , followed by any settings in the file  in the/usr/local/filesystem/config config
current directory; settings in  override settings ../config /usr/local/filesystem/config

The  PropertyIce.Config

The  property has special meaning to the Ice run time: it determines the path name of a configuration file from which to readIce.Config
property settings. For example:
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$ ./server --Ice.Config=/usr/local/filesystem/config

This causes property settings to be read from the configuration file in ./usr/local/filesystem/config

The  command-line option overrides any setting of the  environment variable, that is, if the --Ice.Config ICE_CONFIG ICE_CONFIG
environment variable is set and you also use the  command-line option, the configuration file specified by the --Ice.Config ICE_CONFIG
environment variable is ignored.

If you use the  command-line option together with settings for other properties, the settings on the command line override the--Ice.Config
settings in the configuration file. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config --Ice.MessageSizeMax=4096

This sets the value of the  property to  regardless of any setting of this property in Ice.MessageSizeMax 4096
. The placement of the  option on the command line has no influence on this/usr/local/filesystem/config --Ice.Config

precedence. For example, the following command is equivalent to the preceding one:

$ ./server --Ice.MessageSizeMax=4096 --Ice.Config=/usr/local/filesystem/config

Settings of the  property inside a configuration file are ignored, that is, you can set  only on the command line.Ice.Config Ice.Config

If you use the  option more than once, only the last setting of the option is used and the preceding ones are ignored. For--Ice.Config
example:

$ ./server --Ice.Config=file1 --Ice.Config=file2

This is equivalent to using:

$ ./server --Ice.Config=file2

You can use multiple configuration files by specifying a list of configuration file names separated by commas. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config,./config

This causes property settings to be retrieved from , followed by any settings in the file  in the/usr/local/filesystem/config config
current directory; settings in  override settings ../config /usr/local/filesystem/config

See Also

Alternate Property Stores
The Properties Interface
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Alternate Property Stores

In addition to regular files, Ice also supports storing property settings in the Windows registry and Java resources.

On this page:

Loading Properties from the Windows Registry
Loading Properties from Java Resources

Loading Properties from the Windows Registry

You can use the Windows registry to store property settings. Property settings must be stored with a key underneath 
. To inform the Ice run time of this key, you must set the  property to the key. For example:HKEY_LOCAL_MACHINE Ice.Config

$ client --Ice.Config=HKLM\MyCompany\MyApp

The Ice run time examines the value of ; if that value begins with , the remainder of the property is taken to be a key to aIce.Config HKLM
number of string values. For the preceding example, the Ice run time looks for the key . TheHKEY_LOCAL_MACHINE\MyCompany\MyApp
string values stored under this key are used to initialize the properties.

The name of each string value is the name of the property (such as ). Note that the value must be a string (even if theIce.Trace.Network
property setting is numeric). For example, to set  to 3, you must store the string "3" as the value, not a binary or Ice.Trace.Network

 value.DWORD

String values in the registry can be regular strings ( ) or expandable strings ( ). Expandable strings allow you toREG_SZ REG_EXPAND_SZ
include symbolic references to environment variables (such as ).%ICE_HOME%

Depending on whether you use 32-bit or 64-bit binaries, you must set the registry keys in the corresponding 32-bit or 64-bit
registry. See  for more information.http://support.microsoft.com/kb/305097

Loading Properties from Java Resources

The Ice run time for Java supports the ability to load a configuration file as a class loader resource, which is especially useful for deploying
an Ice application in a self-contained JAR file. For example, suppose we define  as shown below:ICE_CONFIG

$ export ICE_CONFIG=app_config

During the creation of a property set (which often occurs implicitly when initializing a new communicator), Ice asks the Java run time to
search the application's class path for a file named . This file might reside in the same JAR file as the application's class files,app_config
or in a different JAR file in the class path, or it might be a regular file located in one of the directories in the class path. If Java is unable to
locate the configuration file in the class path, Ice attempts to open the file in the local file system.

The class path resource always takes precedence over a regular file. In other words, if a class path resource and a regular file are both
present with the same path name, Ice always loads the class path resource in preference to the regular file.

The path name for a class path resource uses a relative Unix-like format such as . Java searches for the resource relativesubdir/myfile
to each JAR file or subdirectory in an application's class path.

See Also

Using Configuration Files

http://support.microsoft.com/kb/305097
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Command-Line Parsing and Initialization

On this page:

Parsing Command Line Options
The  PropertyIce.ProgramName

Parsing Command Line Options

When you  by calling  (C++/Ruby),  (Java/C#), initialize the Ice run time Ice::initialize Ice.Util.initialize Ice.initialize
(Python), or  (PHP), you can pass an argument vector to the initialization call.Ice_initialize

For C++,  accepts a C++  to :Ice::initialize reference argc

C++

namespace Ice {
    CommunicatorPtr initialize(int& argc, char* argv[]);
}

Ice::initialize parses the argument vector and initializes its property settings accordingly. In addition, it removes any arguments from 
 that are property settings. For example, assume we invoke a server as:argv

$ ./server --myoption --Ice.Config=config -x a --Ice.Trace.Network=3 -y opt file

Initially,  has the value , and  has ten elements: the first nine elements contain the program name and the arguments, and theargc 9 argv
final element, , contains a null pointer (as required by the ISO C++ standard). When  returns,  has theargv[argc] Ice::initialize argc
value  and  contains the following elements:7 argv

./server
--myoption
-x
a
-y
opt
file
0             # Terminating null pointer

This means that you should initialize the Ice run time before you parse the command line for your application-specific arguments. That way,
the Ice-related options are stripped from the argument vector for you so you do not need to explicitly skip them. If you use the 

 helper class, the  member function is passed an argument vector with the Ice-related options already stripped. TheIce::Application run
same is true for the  member function called by the  helper class.runWithSession Glacier2::Application

For Java,  is overloaded. The signatures are:Ice.Util.initialize
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Java

package Ice;
public final class Util {

    public static Communicator
    initialize();

    public static Communicator
    initialize(String[] args);

    public static Communicator
    initialize(StringSeqHolder args);

    public static Communicator
    initialize(InitializationData id);

    public static Communicator
    initialize(String[] args, InitializationData id);

    public static Communicator
    initialize(StringSeqHolder args, InitializationData id);
    

    // ...
}

The versions that accept an argument vector of type  do not strip Ice-related options for you, so, if you use one of these methods,String[]
your code must ignore options that start with one of the . The versions that accept a  behave like thepreserved prefixes StringSeqHolder
C++ version and strip the Ice-related options from the passed argument vector.

In C#, the argument vector is passed by reference to the  method, allowing it to strip the Ice-related options:initialize

C#

namespace Ice {

    public sealed class Util {

        public static Communicator
        initialize();

        public static Communicator
        initialize(ref string[] args);

        public static Communicator
        initialize(InitializationData id);

        public static Communicator
        initialize(ref string[] args, InitializationData id);

        // ...

    }
}

The Python, Ruby, and PHP implementations of  have the same semantics as C++ and .NET; they expect the argument vectorinitialize
to be passed as a list from which all Ice-related options are removed.

If you use the  helper class, the  method is passed the cleaned-up argument vector. The  classIce.Application run Ice.Application
is described separately for each language mapping.
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The  PropertyIce.ProgramName

For C++, Python, and Ruby,  sets the  property to the name of the current program ( ). In C#, initialize Ice.ProgramName argv[0]
 sets  to the value of . Your application code caninitialize Ice.ProgramName System.AppDomain.CurrentDomain.FriendlyName

 and use it for activities such as logging diagnostic or trace messages.read this property

Even though  is initialized for you, you can still override its value from a  or by setting the property onIce.ProgramName configuration file
the command line.

For Java, the program name is not supplied as part of the argument vector — if you want to use the  property in yourIce.ProgramName
application, you must set it before initializing a communicator.

See Also

Using Configuration Files
Reading Properties
Communicator Initialization
Glacier2 Helper Classes
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The Properties Interface

You can use the same  and  mechanisms to set application-specific properties. For example, we couldconfiguration file command-line
introduce a property to control the maximum file size for our file system application:

# Configuration file for file system application

Filesystem.MaxFileSize=1024    # Max file size in kB

The Ice run time stores the  property like any other property and makes it accessible via the Filesystem.MaxFileSize Properties
interface.

To access property values from within your program, you need to acquire the communicator's properties by calling :getProperties

Slice

module Ice {

    local interface Properties; // Forward declaration

    local interface Communicator {

        Properties getProperties();

        // ...
    };
};

The  interface is shown below:Properties

Slice

module Ice {
    local dictionary<string, string> PropertyDict;

    local interface Properties {

        string getProperty(string key);
        string getPropertyWithDefault(string key, string value);
        int getPropertyAsInt(string key);
        int getPropertyAsIntWithDefault(string key, int value);
        PropertyDict getPropertiesForPrefix(string prefix);

        void setProperty(string key, string value);

        StringSeq getCommandLineOptions();
        StringSeq parseCommandLineOptions(string prefix, StringSeq options);
        StringSeq parseIceCommandLineOptions(StringSeq options);

        void load(string file);

        Properties clone();
    };
};

Most of the operations involve , , and .reading properties setting properties parsing properties

The  interface also provides two utility operations that are useful if you need to work with multiple communicators that useProperties
different property sets:

clone
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This operation makes a copy of an existing property set. The copy contains exactly the same properties and values as the original.

load
This operation accepts a path name to a configuration file and initializes the property set from that file. If the specified file cannot be
read (for example, because it does not exist or the caller does not have read permission), the operation throws a .FileException
In Java, the given path name can refer to a  or a regular file.class loader resource

See Also

Using Configuration Files
Reading Properties
Setting Properties
Parsing Properties
Alternate Property Stores
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Reading Properties

The  interface provides the following operations for reading property values:Properties

string getProperty(string key)
This operation returns the value of the specified property. If the property is not set, the operation returns the empty string.

string getPropertyWithDefault(string key, string value)
This operation returns the value of the specified property. If the property is not set, the operation returns the supplied default value.

int getPropertyAsInt(string key)
This operation returns the value of the specified property as an integer. If the property is not set or contains a string that does not
parse as an integer, the operation returns zero.

int getPropertyAsIntWithDefault(string key, int value)
This operation returns the value of the specified property as an integer. If the property is not set or contains a string that does not
parse as an integer, the operation returns the supplied default value.

PropertyDict getPropertiesForPrefix(string prefix)
This operation returns all properties that begin with the specified prefix as a dictionary of type . This operation isPropertyDict
useful if you want to extract the properties for a specific subsystem. For example,
getPropertiesForPrefix("Filesystem")
returns all properties that start with the prefix , such as . You can then use the usualFilesystem Filesystem.MaxFileSize
dictionary lookup operations to extract the properties of interest from the returned dictionary.

With these operations, using application-specific properties now becomes the simple matter of initializing a communicator as usual, getting
access to the communicator's properties, and examining the desired property value. For example:

C++

// ...

Ice::CommunicatorPtr ic;

// ...

ic = Ice::initialize(argc, argv);

// Get the maximum file size.
//
Ice::PropertiesPtr props = ic->getProperties();
Ice::Int maxSize = props->getPropertyAsIntWithDefault("Filesystem.MaxFileSize", 1024);

// ...

Assuming that you have created a configuration file that sets the  property (and that you have set the Filesystem.MaxFileSize
 variable or the  option accordingly), your application will pick up the configured value of the property.ICE_CONFIG --Ice.Config

The technique shown above allows you to obtain application-specific properties from a . If you also wantconfiguration file
the ability to set application-specific properties on the command line, you will need to  for yourparse command-line options
prefix. (Calling  to create a communicator only parses those command line options having a .)initialize reserved prefix

See Also

The Properties Interface
Using Configuration Files
Setting Properties
Parsing Properties
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Setting Properties

The  operation on the  interface sets a property to the specified value:setProperty Properties

Slice

module Ice {
    local interface Properties {

        void setProperty(string key, string value);

        // ...
    };
};

You can clear a property by setting it to the empty string.

For properties that control the Ice run time and its services (that is, properties that start with one of the ), this operation isreserved prefixes
useful only if you call it  you call . This is because property values are usually read by the Ice run time only once, whenbefore initialize
you call , so the Ice run time does not pay attention to a property value that is changed after you have initialized ainitialize
communicator. Of course, this begs the question of how you can set a property value and have it also recognized by a communicator.

To permit you to set properties before initializing a communicator, the Ice run time provides an overloaded helper function called 
 that creates a property set. In C++, the function is in the  namespace:createProperties Ice

C++

namespace Ice {

PropertiesPtr createProperties(const StringConverterPtr& = 0);
PropertiesPtr createProperties(StringSeq&,
                               const PropertiesPtr& = 0,
                               const StringConverterPtr& = 0);
PropertiesPtr createProperties(int&, char*[],
                               const PropertiesPtr& = 0,
                               const StringConverterPtr& = 0);

}

The  parameter allows you to parse properties whose values contain non-ASCII characters and to correctly convertStringConverter
these characters into the native codeset. The converter that is passed to  remains attached to the returned property setcreateProperties
for the life time of the property set.

The function is overloaded to accept either an /  pair or a , to aid in .argc argv StringSeq parsing properties

In Java, the functions are static methods of the  class inside the  package:Util Ice
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Java

package Ice;

public final class Util
{
    public static Properties
    createProperties();

    public static Properties
    createProperties(StringSeqHolder args);

    public static Properties
    createProperties(StringSeqHolder args, Properties defaults);

    public static Properties
    createProperties(String[] args);

    public static Properties
    createProperties(String[] args, Properties defaults);

    // ...
}

In C#, the  class in the  namespace supplies equivalent methods:Util Ice

C#

namespace Ice {
    public sealed class Util {
        public static Properties createProperties();
        public static Properties createProperties(ref string[] args);
        public static Properties createProperties(ref string[] args, Properties defaults);
    }
}

The Python and Ruby methods reside in the  module:Ice

def createProperties(args=[], defaults=None)

In PHP, use the  method:Ice_createProperties

PHP

function Ice_createProperties(args=array(), defaults=null)

As for ,  strips Ice-related command-line options from the passed argument vector. (For Java, only theinitialize createProperties
versions that accept a  do this.)StringSeqHolder

The functions behave as follows:

The parameter-less version of  simply creates an empty property set. It does  check  for acreateProperties not ICE_CONFIG
configuration file to parse.

The other overloads of  accept an argument vector and a default property set. The returned property setcreateProperties
contains all the property settings that are passed as the default, plus any property settings in the argument vector. If the argument
vector sets a property that is also set in the passed default property set, the setting in the argument vector overrides the default. The
overloads that accept an argument vector also look for the  option; if the argument vector specifies a configuration--Ice.Config
file, the configuration file is parsed. The order of precedence of property settings, from lowest to highest, is:

Property settings passed in the default parameter
Property settings set in the configuration file
Property settings in the argument vector.
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The overloads that accept an argument vector also look for the setting of the  environment variable and, if thatICE_CONFIG
variable specifies a configuration file, parse that file. (However, an explicit  option in the argument vector or--Ice.Config
the  parameter overrides any setting of the  environment variable.)defaults ICE_CONFIG

createProperties is useful if you want to ensure that a property is set to a particular value, regardless of any setting of that property in a
configuration file or in the argument vector. Here is an example:

C++

// Get the initialized property set.
//
Ice::PropertiesPtr props = Ice::createProperties(argc, argv);

// Make sure that network and protocol tracing are off.
//
props->setProperty("Ice.Trace.Network", "0");
props->setProperty("Ice.Trace.Protocol", "0");

// Initialize a communicator with these properties.
//
Ice::InitializationData id;
id.properties = props;
Ice::CommunicatorPtr ic = Ice::initialize(id);

// ...

The equivalent Java code looks as follows:

Java

Ice.StringSeqHolder argsH = new Ice.StringSeqHolder(args);
Ice.Properties properties = Ice.Util.createProperties(argsH);
properties.setProperty("Ice.Warn.Connections", "0");
properties.setProperty("Ice.Trace.Protocol", "0");
Ice.InitializationData id = new Ice.InitializationData();
id.properties = properties;
communicator = Ice.Util.initialize(id);

We first convert the argument array to an initialized . This is necessary so  can strip Ice-specificStringSeqHolder createProperties
settings. In that way, we first obtain an initialized property set, then override the settings for the two tracing properties, and then set the
properties in the  structure.InitializationData

The equivalent Python code is shown next:

Python

props = Ice.createProperties(sys.argv)
props.setProperty("Ice.Trace.Network", "0")
props.setProperty("Ice.Trace.Protocol", "0")
id = Ice.InitializationData()
id.properties = props
ic = Ice.initialize(id)

This is the equivalent code in Ruby:
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Ruby

props = Ice::createProperties(ARGV)
props.setProperty("Ice.Trace.Network", "0")
props.setProperty("Ice.Trace.Protocol", "0")
id = Ice::InitializationData.new
id.properties = props
ic = Ice::initialize(id)

Finally, we present the code in PHP:

PHP

$props = Ice_createProperties($args);
$props->setProperty("Ice.Trace.Network", "0");
$props->setProperty("Ice.Trace.Protocol", "0");
$id = new Ice_InitializationData();
$id->properties = $props;
$ic = Ice_initialize($id);

See Also

The Properties Interface
Using Configuration Files
Command-Line Parsing and Initialization
Reading Properties
Parsing Properties
Communicator Initialization
C++ Strings and Character Encoding
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Parsing Properties

The  interface provides several operations for converting properties to and from command-line options.Properties

On this page:

Converting Properties to Command-Line Options
Converting Command-Line Options to Properties
Converting Reserved Command-Line Options to Properties

Converting Properties to Command-Line Options

The  operation converts an initialized set of properties into a sequence of equivalent command-line options:getCommandLineOptions

Slice

module Ice {
    local interface Properties {

        StringSeq getCommandLineOptions();

        // ...
    };
};

For example, if you have set the  property to 1024 and call , the setting is returnedFilesystem.MaxFileSize getCommandLineOptions
as the string . This operation is useful for diagnostic purposes, for example, to dump the setting of all"Filesystem.MaxFileSize=1024"
properties to a , or if you want to fork a new process with the same property settings as the current process.logging facility

Converting Command-Line Options to Properties

The  operation examines the passed argument vector for command-line options that have the specified prefix:parseCommandLineOptions

Slice

module Ice {
    local interface Properties {

        StringSeq parseCommandLineOptions(string prefix, StringSeq options);

        // ...
    };
};

Any options that match the prefix are converted to property settings (that is, they initialize the corresponding properties). The operation
returns an argument vector that contains all those options that were  converted (that is, those options that did not match the prefix).not

Because  expects a sequence of strings, but C++ programs are used to dealing with  and , IceparseCommandLineOptions argc argv
provides two utility functions that convert an /  vector into a sequence of strings and vice-versa:argc argv
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C++

namespace Ice {

    StringSeq argsToStringSeq(int argc, char* argv[]);

    void stringSeqToArgs(const StringSeq& args, int& argc, char* argv[]);

}

You need to use  (and the utility functions) if you want to permit application-specific properties to be set fromparseCommandLineOptions
the command line. For example, to allow the  option to be used on the command line, we need to initialize--Filesystem.MaxFileSize
our program as follows:

C++

int
main(int argc, char* argv[])
{
    // Create an empty property set.
    //
    Ice::PropertiesPtr props = Ice::createProperties();

    // Convert argc/argv to a string sequence.
    //
    Ice::StringSeq args = Ice::argsToStringSeq(argc, argv);

    // Strip out all options beginning with --Filesystem.
    //
    args = props->parseCommandLineOptions("Filesystem", args);

    // args now contains only those options that were not
    // stripped. Any options beginning with --Filesystem have
    // been converted to properties.

    // Convert remaining arguments back to argc/argv vector.
    //
    Ice::stringSeqToArgs(args, argc, argv);

    // Initialize communicator.
    //
    Ice::InitializationData id;
    id.properties = props;
    Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id);

    // At this point, argc/argv only contain options that
    // set neither an Ice property nor a Filesystem property,
    // so we can parse these options as usual.
    //
    // ...
}

Using this code, any options beginning with  are converted to properties and are available via the property --Filesystem lookup operations
as usual. The call to  then removes any Ice-specific command-line options so, once the communicator is created, /initialize argc argv
only contains options and arguments that are not related to setting either a filesystem or an Ice property.

An easier way to achieve the same thing is to use the overload of  that accepts a string sequence, instead of an /Ice::initialize argc
 pair:argv
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C++

int
main(int argc, char* argv[])
{
    // Create an empty property set.
    //
    Ice::PropertiesPtr props = Ice::createProperties();

    // Convert argc/argv to a string sequence.
    //
    Ice::StringSeq args = Ice::argsToStringSeq(argc, argv);

    // Strip out all options beginning with --Filesystem.
    //
    args = props->parseCommandLineOptions("Filesystem", args);

    // args now contains only those options that were not
    // stripped. Any options beginning with --Filesystem have
    // been converted to properties.

    // Initialize communicator.
    //
    Ice::InitializationData id;
    id.properties = props;
    Ice::CommunicatorPtr ic = Ice::initialize(args, id);

    // At this point, args only contains options that
    // set neither an Ice property nor a Filesystem property,
    // so we can parse these options as usual.
    //
    // ...
}

This version of the code avoids having to convert the string sequence back into an /  pair before calling .argc argv Ice::initialize

Converting Reserved Command-Line Options to Properties

The  operation behaves like , but removes the  Ice-specificparseIceCommandLineOptions parseCommandLineOptions reserved
options from the argument vector:

Slice

module Ice {
    local interface Properties {

        StringSeq parseIceCommandLineOptions(StringSeq options);

        // ...
    };
};

This operation is also used internally by the Ice run time to parse Ice-specific options in .initialize

See Also

Properties Overview
The Properties Interface
Reading Properties
Setting Properties
Command-Line Parsing and Initialization
Logger Facility
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1.  

Threads and Concurrency with C++
Threading and concurrency control vary widely with different operating systems. To make threads programming easier and portable, Ice
provides a simple thread abstraction layer that allows you to write portable source code regardless of the underlying platform.

This section looks at the threading and concurrency control mechanisms in Ice for C++. It explains the threading abstractions provided by
Ice: mutexes, monitors, and threads. Using these APIs allows you to make your code thread safe and to create threads of your own without
having to use non-portable APIs that differ in syntax or semantics across different platforms: Ice not only provides a portable API but also
guarantees that the semantics of the various functions are the same across different platforms. This makes it easier to create thread-safe
applications and lets you move your code between platforms with simple recompilation.

This section assumes you are familiar with light-weight threads and concurrency control. See  for an excellent treatment[1]
of programming with threads. Also see , which provides a language-neutral introduction to the IceThe Ice Threading Model
threading model.

Library Overview

The Ice threading library provides the following thread-related abstractions:

mutexes
recursive mutexes
monitors
a thread abstraction that allows you to create, control, and destroy threads

The synchronization primitives permit you to implement concurrency control at different levels of granularity. In addition, the thread
abstraction allows you to, for example, create a separate thread that can respond to GUI or other asynchronous events. All of the threading
APIs are part of the  namespace.IceUtil

Topics

The C++ Mutex Class
The C++ RecMutex Class
The C++ Monitor Class
The C++ Cond Class
The C++ Thread Classes
Priority Inversion in C++
Portable Signal Handling in C++

References

Butenhof, D. 1996. . Reading, MA: Addison-Wesley.Programming with POSIX Threads

http://amzn.com/0201633922
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The C++ Mutex Class

This page describes how to use mutexes — one of the available synchronization primitives.

On this page:

Mutex Member Functions
Adding Thread Safety to the File System Application in C++
Guaranteed Unlocking of Mutexes in C++

Mutex Member Functions

The class  (defined in ) provides a simple non-recursive mutual exclusion mechanism:IceUtil::Mutex IceUtil/Mutex.h

C++

namespace IceUtil {
    enum MutexProtocol { PrioInherit, PrioNone };

    class Mutex {
    public:
        Mutex();
        Mutex(MutexProtocol p);
        ~Mutex();

        void lock() const;
        bool tryLock() const;
        void unlock() const;

        typedef LockT<Mutex> Lock;
        typedef TryLockT<Mutex> TryLock;
    };
}

The member functions of this class work as follows:

Mutex()
Mutex(MutexProtocol p)
You can optionally specify a mutex protocol when you construct a mutex. The mutex protocol controls how the mutex behaves with
respect to . Default-constructed mutexes use a system-wide default.thread priorities

lock
The  function attempts to acquire the mutex. If the mutex is already locked, it suspends the calling thread until the mutexlock
becomes available. The call returns once the calling thread has acquired the mutex.

tryLock
The  function attempts to acquire the mutex. If the mutex is available, the call returns true with the mutex locked.tryLock
Otherwise, if the mutex is locked by another thread, the call returns false.

unlock
The  function unlocks the mutex.unlock

Note that  is a non-recursive mutex implementation. This means that you must adhere to the following rules:IceUtil::Mutex

Do not call  on the same mutex more than once from a thread. The mutex is not recursive so, if the owner of a mutex attemptslock
to lock it a second time, the behavior is undefined.

Do not call  on a mutex unless the calling thread holds the lock. Calling  on a mutex that is not currently held by anyunlock unlock
thread, or calling  on a mutex that is held by a different thread, results in undefined behavior.unlock

Use the  class if you need recursive semantics.IceUtil::RecMutex

Adding Thread Safety to the File System Application in C++
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Recall that the implementation of the  and  operations for our  is not thread safe:read write file system server

C++

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    return _lines;      // Not thread safe!
}

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
    _lines = text;      // Not thread safe!
}

The problem here is that, if we receive concurrent invocations of  and , one thread will be assigning to the  vector whileread write _lines
another thread is reading that same vector. The outcome of such concurrent data access is undefined; to avoid the problem, we need to
serialize access to the  member with a mutex. We can make the mutex a data member of the  class and lock and unlock it in_lines FileI
the  and  operations:read write

C++

#include <IceUtil/Mutex.h>
// ...

namespace Filesystem {
    // ...

    class FileI : virtual public File,
                  virtual public Filesystem::NodeI {
    public:
        // As before...
    private:
        Lines _lines;
        IceUtil::Mutex _fileMutex;
    };
    // ...
}

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    _fileMutex.lock();
    Lines l = _lines;
    _fileMutex.unlock();
    return l;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice::Current&)
{
    _fileMutex.lock();
    _lines = text;
    _fileMutex.unlock();
}

The  class here is identical to the original implementation, except that we have added the  data member. The  and FileI _fileMutex read
 operations lock and unlock the mutex to ensure that only one thread can read or write the file at a time. Note that, by using awrite

separate mutex for each  instance, it is still possible for multiple threads to concurrently read or write files, as long as they eachFileI
access a  file. Only concurrent accesses to the  file are serialized.different same

The implementation of  is somewhat awkward here: we must make a local copy of the file contents while we are holding the lock andread
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return that copy. Doing so is necessary because we must unlock the mutex before we can return from the function. However, as we will see
in the next section, the copy can be avoided by using a helper class that unlocks the mutex automatically when the function returns.

Guaranteed Unlocking of Mutexes in C++

Using the raw  and  operations on mutexes has an inherent problem: if you forget to unlock a mutex, your program willlock unlock
deadlock. Forgetting to unlock a mutex is easier than you might suspect, for example:

C++

Filesystem::Lines
Filesystem::File::read(const Ice::Current&) const
{
    _fileMutex.lock();                  // Lock the mutex
    Lines l = readFileContents();       // Read from database
    _fileMutex.unlock();                // Unlock the mutex
    return l;
}

Assume that we are keeping the contents of the file on secondary storage, such as a database, and that the  functionreadFileContents
accesses the file. The code is almost identical to the previous example but now contains a latent bug: if  throws anreadFileContents
exception, the  function terminates without ever unlocking the mutex. In other words, this implementation of  is not exception-safe.read read

The same problem can easily arise if you have a larger function with multiple return paths. For example:

C++

void
SomeClass::someFunction(/* params here... */)
{
    _mutex.lock();                      // Lock a mutex

    // Lots of complex code here...

    if (someCondition) {
        // More complex code here...
        return;                         // Oops!!!
    }

    // More code here...

    _mutex.unlock();                    // Unlock the mutex
}

In this example, the early return from the middle of the function leaves the mutex locked. Even though this example makes the problem quite
obvious, in large and complex pieces of code, both exceptions and early returns can cause hard-to-track deadlock problems. To avoid this,
the  class contains two type definitions for helper classes, called  and :Mutex Lock TryLock

C++

namespace IceUtil {

    class Mutex {
        // ...

        typedef LockT<Mutex> Lock;
        typedef TryLockT<Mutex> TryLock;
    };
}

LockT and  are simple templates that primarily consist of a constructor and a destructor; the  constructor calls  on itsTryLockT LockT lock
argument, and the  constructor calls  on its argument. The destructors call  if the mutex is locked when theTryLockT tryLock unlock
template goes out of scope. By instantiating a local variable of type  or , we can avoid the deadlock problem entirely:Lock TryLock
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C++

void
SomeClass::someFunction(/* params here... */)
{
    IceUtil::Mutex::Lock lock(_mutex);  // Lock a mutex

    // Lots of complex code here...

    if (someCondition) {
        // More complex code here...
        return;                         // No problem
    }

    // More code here...

}   // Destructor of lock unlocks the mutex

This is an example of the  ( ) idiom .RAII Resource Acquisition Is Initialization [1]

On entry to , we instantiate a local variable , of type . The constructor of  calls  onsomeFunction lock IceUtil::Mutex::Lock lock lock
the mutex so the remainder of the function is inside a critical region. Eventually,  returns, either via an ordinary return (in thesomeFunction
middle of the function or at the end) or because an exception was thrown somewhere in the function body. Regardless of how the function
terminates, the C++ run time unwinds the stack and calls the destructor of , which unlocks the mutex, so we cannot get trapped by thelock
deadlock problem we had previously.

Both the  and  templates have a few member functions:Lock TryLock

void acquire() const
This function attempts to acquire the lock and blocks the calling thread until the lock becomes available. If the caller calls acquire
on a mutex it has locked previously, the function throws .ThreadLockedException

bool tryAcquire() const
This function attempts to acquire the mutex. If the mutex can be acquired, it returns true with the mutex locked; if the mutex cannot
be acquired, it returns false. If the caller calls  on a mutex it has locked previously, the function throws tryAcquire

.ThreadLockedException

void release() const
This function releases a previously locked mutex. If the caller calls release on a mutex it has unlocked previously, the function
throws .ThreadLockedException

bool acquired() const
This function returns true if the caller has locked the mutex previously, otherwise it returns false. If you use the  template,TryLock
you must call  after instantiating the template to test whether the lock actually was acquired.acquired

These functions are useful if you want to use the  and  templates for guaranteed unlocking, but need to temporarily releaseLock TryLock
the lock:
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C++

{
    IceUtil::Mutex::TryLock m(someMutex);

    if (m.acquired())
    {

        // Got the lock, do processing here...

        if (release_condition) {
            m.release();
        }

        // Mutex is now unlocked, someone else can lock it.
        // ...

        m.acquire(); // Block until mutex becomes available.

        // ...

        if (release_condition) {
            m.release();
        }

        // Mutex is now unlocked, someone else can lock it.

        // ...

        // Spin on the mutex until it becomes available.
        while (!m.tryLock()) {
            // Do some other processing here...
        }

        // Mutex locked again at this point.

        // ...
    }

} // Close scope, m is unlocked by its destructor.

Tip
You should make it a habit to always use the  and  helpers instead of calling  and  directly.Lock TryLock lock unlock
Doing so results in code that is easier to understand and maintain.

Using the  helper, we can rewrite the implementation of our  and  operations as follows:Lock read write
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1.  

C++

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    IceUtil::Mutex::Lock lock(_fileMutex);
    return _lines;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice::Current&)
{
    IceUtil::Mutex::Lock lock(_fileMutex);
    _lines = text;
}

Note that this also eliminates the need to make a copy of the  data member: the return value is initialized under protection of the_lines
mutex and cannot be modified by another thread once the destructor of  unlocks the mutex.lock

See Also

Example of a File System Server in C++
Priority Inversion in C++
The C++ RecMutex Class
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The C++ RecMutex Class

A  cannot be locked more than once, even by the thread that holds the lock. This frequently becomes a problem if anon-recursive mutex
program contains a number of functions, each of which must acquire a mutex, and you want to call one function as part of the
implementation of another function:

C++

IceUtil::Mutex _mutex;

void
f1()
{
    IceUtil::Mutex::Lock lock(_mutex);
    // ...
}

void
f2()
{
    IceUtil::Mutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Deadlock!

    // More code here...
}

f1 and  each correctly lock the mutex before manipulating data but, as part of its implementation,  calls . At that point, the programf2 f2 f1
deadlocks because  already holds the lock that  is trying to acquire. For this simple example, the problem is obvious. However, inf2 f1
complex systems with many functions that acquire and release locks, it can get very difficult to track down this kind of situation: the locking
conventions are not manifest anywhere but in the source code and each caller must know which locks to acquire (or not to acquire) before
calling a function. The resulting complexity can quickly get out of hand.

Ice provides a recursive mutex class  (defined in ) that avoids this problem:RecMutex IceUtil/RecMutex.h

C++

namespace IceUtil {

    class RecMutex {
    public:
        RecMutex();
        RecMutex(MutexProtocol p);
        ~RecMutex();

        void lock() const;
        bool tryLock() const;
        void unlock() const;

        typedef LockT<RecMutex> Lock;
        typedef TryLockT<RecMutex> TryLock;
    };
}

Note that the signatures of the operations are the same as for . However,  implements a recursive mutex:IceUtil::Mutex RecMutex

RecMutex()
RecMutex(MutexProtocol p)
You can optionally specify a mutex protocol when you construct a mutex. The mutex protocol controls how the mutex behaves with
respect to . Default-constructed mutexes use a system-wide default.thread priorities
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lock
The  function attempts to acquire the mutex. If the mutex is already locked by another thread, it suspends the calling threadlock
until the mutex becomes available. If the mutex is available or is already locked by the calling thread, the call returns immediately
with the mutex locked.

tryLock
The  function works like , but, instead of blocking the caller, it returns false if the mutex is locked by another thread.tryLock lock
Otherwise, the return value is true.

unlock
The  function unlocks the mutex.unlock

As for non-recursive mutexes, you must adhere to a few simple rules for recursive mutexes:

Do not call  on a mutex unless the calling thread holds the lock.unlock
You must call  as many times as you called  for the mutex to become available to another thread. (Internally, aunlock lock
recursive mutex is implemented with a counter that is initialized to zero. Each call to  increments the counter and each call to lock

 decrements the counter; the mutex is made available to another thread when the counter returns to zero.)unlock

Using recursive mutexes, the code fragment shown earlier works correctly:

C++

#include <IceUtil/RecMutex.h>
// ...

IceUtil::RecMutex _mutex;       // Recursive mutex

void
f1()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // ...
}

void
f2()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Fine

    // More code here...
}

Note that the type of the mutex is now  instead of , and that we are using the  type definition provided by the RecMutex Mutex Lock
 class, not the one provided by the  class.RecMutex Mutex

See Also

The C++ Mutex Class
Priority Inversion in C++
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The C++ Monitor Class

The  and  mutex classes implement a simple mutual exclusion mechanism that allows only a single thread to berecursive non-recursive
active in a critical region at a time. In particular, for a thread to enter the critical region, another thread must leave it. This means that, with
mutexes, it is impossible to suspend a thread inside a critical region and have that thread wake up again at a later time, for example, when a
condition becomes true.

To address this problem, Ice provides a monitor. Briefly, a monitor is a synchronization mechanism that protects a critical region: as for a
mutex, only one thread may be active at a time inside the critical region. However, a monitor allows you to suspend a thread inside the
critical region; doing so allows another thread to enter the critical region. The second thread can either leave the monitor (thereby unlocking
the monitor), or it can suspend itself inside the monitor; either way, the original thread is woken up and continues execution inside the
monitor. This extends to any number of threads, so several threads can be suspended inside a monitor.

The monitors provided by Ice have  semantics, so called because they were first implemented by the MesaMesa
programming language . Mesa monitors are provided by a number of languages, including Java and Ada. With Mesa[1]
semantics, the signalling thread continues to run and another thread gets to run only once the signalling thread suspends
itself or leaves the monitor.

Monitors provide a more flexible mutual exclusion mechanism than mutexes because they allow a thread to check a condition and, if the
condition is false, put itself to sleep; the thread is woken up by some other thread that has changed the condition.

On this page:

Monitor Member Functions
Using Monitors in C++
Efficient Notification using Monitors in C++

Monitor Member Functions

Ice provides monitors with the  class (defined in ):IceUtil::Monitor IceUtil/Monitor.h

C++

namespace IceUtil {

    template <class T>
    class Monitor {
    public:
        void lock() const;
        void unlock() const;
        bool tryLock() const;

        void wait() const;
        bool timedWait(const Time&) const;
        void notify();
        void notifyAll();

        typedef LockT<Monitor<T> > Lock;
        typedef TryLockT<Monitor<T> > TryLock;
    };
}

Note that  is a template class that requires either  or  as its template parameter. (Instantiating a  with a Monitor Mutex RecMutex Monitor
 makes the monitor recursive.)RecMutex

The member functions behave as follows:

lock
This function attempts to lock the monitor. If the monitor is currently locked by another thread, the calling thread is suspended until
the monitor becomes available. The call returns with the monitor locked.

tryLock
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This function attempts to lock a monitor. If the monitor is available, the call returns true with the monitor locked. If the monitor is
locked by another thread, the call returns false.

unlock
This function unlocks a monitor. If other threads are waiting to enter the monitor (are blocked inside a call to ), one of thelock
threads is woken up and locks the monitor.

wait
This function suspends the calling thread and, at the same time, releases the lock on the monitor. A thread suspended inside a call
to  can be woken up by another thread that calls  or . When the call returns, the suspended threadwait notify notifyAll
resumes execution with the monitor locked.

timedWait
This function suspends the calling thread for up to the specified timeout. If another thread calls  or  and wakesnotify notifyAll
up the suspended thread before the timeout expires, the call returns true and the suspended thread resumes execution with the
monitor locked. Otherwise, if the timeout expires, the function returns false. Wait intervals are represented by instances of the Time
class.

notify
This function wakes up a single thread that is currently suspended in a call to  or . If no thread is suspended in await timedWait
call to  or  at the time  is called, the notification is lost (that is, calls to  are  remembered if therewait timedWait notify notify not
is no thread to be woken up). Note that notifying does not run another thread immediately. Another thread gets to run only once the
notifying thread either calls  or  or unlocks the monitor (Mesa semantics).wait timedWait

notifyAll
This function wakes up all threads that are currently suspended in a call to  or . As for , calls to wait timedWait notify

 are lost if no threads are suspended at the time. Also as for ,  causes other threads to run onlynotifyAll notify notifyAll
once the notifying thread has either called  or  or unlocked the monitor (Mesa semantics).wait timedWait

You must adhere to a few rules for monitors to work correctly:

Do not call  unless you hold the lock. If you instantiate a monitor with a recursive mutex, you get recursive semantics, that is,unlock
you must call  as many times as you have called  (or ) for the monitor to become available.unlock lock tryLock
Do not call  or  unless you hold the lock.wait timedWait
Do not call  or  unless you hold the lock.notify notifyAll
When returning from a  call, you  re-test the condition before proceeding (as shown below).wait must

Using Monitors in C++

To illustrate how to use a monitor, consider a simple unbounded queue of items. A number of producer threads add items to the queue, and
a number of consumer threads remove items from the queue. If the queue becomes empty, consumers must wait until a producer puts a
new item on the queue. The queue itself is a critical region, that is, we cannot allow a producer to put an item on the queue while a consumer
is removing an item. Here is a very simple implementation of a such a queue:

C++

template<class T> class Queue {
public:
    void put(const T& item) {
        _q.push_back(item);
    }

    T get() {
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

As you can see, producers call the  method to enqueue an item, and consumers call the  method to dequeue an item. Obviously, thisput get
implementation of the queue is not thread-safe and there is nothing to stop a consumer from attempting to dequeue an item from an empty
queue.

Here is a version of the queue that uses a monitor to suspend a consumer if the queue is empty:
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1.  

2.  

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

Note that the  class now inherits from , that is,   monitor.Queue IceUtil::Monitor<IceUtil::Mutex> Queue is-a

Both the  and  methods lock the monitor when they are called. As for mutexes, instead of calling  and  directly, we areput get lock unlock
using the  helper which automatically locks the monitor when it is instantiated and unlocks the monitor again when it is destroyed.Lock

The  method first locks the monitor and then, now being in sole possession of the critical region, enqueues an item. Before returningput
(thereby unlocking the monitor),  calls . The call to  will wake up any consumer thread that may be asleep in a  callput notify notify wait
to inform the consumer that an item is available.

The  method also locks the monitor and then, before attempting to dequeue an item, tests whether the queue is empty. If so, theget
consumer calls . This suspends the consumer inside the  call and unlocks the monitor, so a producer can enter the monitor towait wait
enqueue an item. Once that happens, the producer calls , which causes the consumer's  call to complete, with the monitornotify wait
again locked for the consumer. The consumer now dequeues an item and returns (thereby unlocking the monitor).

For this machinery to work correctly, the implementation of  does two things:get

get tests whether the queue is empty  acquiring the lock.after
get re-tests the condition in a loop around the call to ; if the queue is still empty after  returns, the  call is re-entered.wait wait wait

You  always write your code to follow the same pattern:must

Never test a condition unless you hold the lock.
Always re-test the condition in a loop around . If the test still shows the wrong outcome, call  again.wait wait

Not adhering to these conditions will eventually result in a thread accessing shared data when it is not in its expected state, for the following
reasons:

If you test a condition without holding the lock, there is nothing to prevent another thread from entering the monitor and changing its
state before you can acquire the lock. This means that, by the time you get around to locking the monitor, the state of the monitor
may no longer be in agreement with the result of the test.
Some thread implementations suffer from a problem known as : occasionally, more than one thread may wake upspurious wake-up
in response to a call to , or a thread may wake up without any call to  at all. As a result, each thread that returnsnotify notify
from a call to  must re-test the condition to ensure that the monitor is in its expected state: the fact that  returns does wait wait not
indicate that the condition has changed.

Efficient Notification using Monitors in C++

The previous implementation of our  unconditionally notifies a waiting reader whenever a writer deposits an item into thethread-safe queue
queue. If no reader is waiting, the notification is lost and does no harm. However, unless there is only a single reader and writer, many
notifications will be sent unnecessarily, causing unwanted overhead.
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1.  
2.  
3.  
4.  
5.  

Here is one way to fix the problem:

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_q.size() == 1)
            notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

The only difference between this code and the implementation shown earlier is that a writer calls  only if the queue length has justnotify
changed from empty to non-empty. That way, unnecessary  calls are never made. However, this approach works only for a singlenotify
reader thread. To see why, consider the following scenario:

Assume that the queue currently contains a number of items and that we have five reader threads.
The five reader threads continue to call  until the queue becomes empty and all five readers are waiting in .get get
The scheduler schedules a writer thread. The writer finds the queue empty, deposits an item, and wakes up a single reader thread.
The awakened reader thread dequeues the single item on the queue.
The reader calls  a second time, finds the queue empty, and goes to sleep again.get

The net effect of this is that there is a good chance that only one reader thread will ever be active; the other four reader threads end up being
permanently asleep inside the  method.get

One way around this problem is call  instead of  once the queue length exceeds a certain amount, for example:notifyAll notify
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C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_q.size() >= _wakeupThreshold)
            notifyAll();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
    const int _wakeupThreshold = 100;
};

Here, we have added a private data member ; a writer wakes up  waiting readers once the queue length exceeds the_wakeupThreshold all
threshold, in the expectation that all the readers will consume items more quickly than they are produced, thereby reducing the queue length
below the threshold again.

This approach works, but has drawbacks as well:

The appropriate value of  is difficult to determine and sensitive to things such as speed and number of_wakeupThreshold
processors and I/O bandwidth.

If multiple readers are asleep, they are all made runnable by the thread scheduler once a writer calls . On anotifyAll
multiprocessor machine, this may result in all readers running at once (one per CPU). However, as soon as the readers are made
runnable, each of them attempts to reacquire the mutex that protects the monitor before returning from . Of course, only one ofwait
the readers actually succeeds and the remaining readers are suspended again, waiting for the mutex to become available. The net
result is a large number of thread context switches as well as repeated and unnecessary locking of the system bus.

A better option than calling  is to wake up waiting readers one at a time. To do this, we keep track of the number of waitingnotifyAll
readers and call  only if a reader needs to be woken up:notify
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1.  

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    Queue() : _waitingReaders(0) {}

    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_waitingReaders)
            notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0) {
            try {
                ++_waitingReaders;
                wait();
                --_waitingReaders;
            } catch (...) {
                --_waitingReaders;
                throw;
            }
        }
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
    short _waitingReaders;
};

This implementation uses a member variable  to keep track of the number of readers that are suspended. The_waitingReaders
constructor initializes the variable to zero and the implementation of  increments and decrements the variable around the call to .get wait
Note that these statements are enclosed in a -  block; this ensures that the count of waiting readers remains accurate even if try catch wait
throws an exception. Finally,  calls  only if there is a waiting reader.put notify

The advantage of this implementation is that it minimizes contention on the monitor mutex: a writer wakes up only a single reader at a time,
so we do not end up with multiple readers simultaneously trying to lock the mutex. Moreover, the monitor  implementation signals anotify
waiting thread only  it has unlocked the mutex. This means that, when a thread wakes up from its call to  and tries to reacquire theafter wait
mutex, the mutex is likely to be unlocked. This results in more efficient operation because acquiring an unlocked mutex is typically very
efficient, whereas forcefully putting a thread to sleep on a locked mutex is expensive (because it forces a thread context switch).

See Also

The C++ Mutex Class
The C++ RecMutex Class
The C++ Time Class
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The C++ Cond Class

Condition variables are similar to  in that they allow a thread to enter a critical region, test a condition, and sleep inside the criticalmonitors
region while releasing its lock. Another thread then is free to enter the critical region, change the condition, and eventually signal the sleeping
thread, which resumes at the point where it went to sleep and with the critical region once again locked.

Note that condition variables provide a subset of the functionality of monitors, so a monitor can always be used instead of a condition
variable. However, condition variables are smaller, which may be important if you are seriously constrained with respect to memory.

Condition variables are provided by the  class. Here is its interface:IceUtil::Cond

C++

class Cond : private noncopyable {
public:

    Cond();
    ~Cond();

    void signal();
    void broadcast();

    template<typename Lock>
    void wait(const Lock& lock) const;

    template<typename Lock>
    bool timedWait(const Lock& lock, const Time& timeout) const;
};

Using a condition variable is very similar to using a monitor. The main difference in the  interface is that the  and Cond wait timedWait
member functions are template functions, instead of the entire class being a template. The member functions behave as follows:

wait
This function suspends the calling thread and, at the same time, releases the lock of the condition variable. A thread suspended
inside a call to  can be woken up by another thread that calls  or . When  completes, the suspendedwait signal broadcast wait
thread resumes execution with the lock held.

timedWait
This function suspends the calling thread for up to the specified timeout. If another thread calls  or  and wakessignal broadcast
up the suspended thread before the timeout expires, the call returns true and the suspended thread resumes execution with the lock
held. Otherwise, if the timeout expires, the function returns false. Wait intervals are represented by instances of the  class.Time

signal
This function wakes up a single thread that is currently suspended in a call to  or . If no thread is suspended in await timedWait
call to  or  at the time  is called, the signal is lost (that is, calls to  are  remembered if there is nowait timedWait signal signal not
thread to be woken up). Note that signalling does not necessarily run another thread immediately; the thread calling  maysignal
continue to run. However, depending on the underlying thread library,  may also cause an immediate context switch tosignal
another thread.

broadcast
This function wakes up all threads that are currently suspended in a call to  or . As for , calls to wait timedWait signal

 are lost if no threads are suspended at the time.broadcast

You must adhere to a few rules for condition variables to work correctly:

Do not call  or  unless you hold the lock.wait timedWait
When returning from a  call, you   before proceeding, just as for a monitor.wait must re-test the condition

In contrast to monitors, which require you to call  and  with the lock held, condition variables permit you to call notify notifyAll signal
and  without holding the lock. Here is a code example that changes a condition and signals on a condition variable:broadcast
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1.  
2.  

3.  

4.  

C++

Mutex m;
Cond c;

// ...

{
     Mutex::Lock sync(m);

     // Change some condition other threads may be sleeping on...

     c.signal();

     // ...
} // m is unlocked here

This code is correct and will work as intended, but it is potentially inefficient. Consider the code executed by the waiting thread:

C++

{
    Mutex::Lock sync(m);

    while(!condition) {
        c.wait(sync);
    }

    // Condition is now true, do some processing...

} // m is unlocked here

Again, this code is correct and will work as intended. However, consider what can happen once the first thread calls . It is possiblesignal
that the call to  will cause an immediate context switch to the waiting thread. But, even if the thread implementation does not causesignal
such an immediate context switch, it is possible for the signalling thread to be suspended after it has called , but before it unlocks thesignal
mutex  . If this happens, the following sequence of events occurs:m

The waiting thread is still suspended inside the implementation of  and is now woken up by the call to .wait signal
The now-awake thread tries to acquire the mutex   but, because the signalling thread has not yet released the mutex, is suspendedm
again waiting for the mutex to be unlocked.
The signalling thread is scheduled again and leaves the scope enclosing , which unlocks the mutex, making the thread waitingsync
for the mutex runnable.
The thread waiting for the mutex acquires the mutex and retests its condition.

While the preceding scenario is functionally correct, it is inefficient because it incurs two extra context switches between the signalling thread
and the waiting thread. Because context switches are expensive, this can have quite a large impact on run-time performance, especially if
the critical region is small and the condition changes frequently.

You can avoid the inefficiency by unlocking the mutex  calling signal:before
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C++

Mutex m;
Cond c;

// ...

{
     Mutex::Lock sync(m);

     // Change some condition other threads may be sleeping on...

} // m is unlocked here

c.signal(); // Signal with the lock available

By arranging the code as shown, you avoid the additional context switches because, when the waiting thread is woken up by the call to 
, it succeeds in acquiring the mutex before returning from  without being suspended and woken up again first.signal wait

As for monitors, you should exercise caution in using , particularly if you have many threads waiting on a condition. Conditionbroadcast
variables suffer from the same potential problem as monitors with respect to , namely, that all threads that are currentlybroadcast
suspended inside  can immediately attempt to acquire the mutex, but only one of them can succeed and all other threads arewait
suspended again. If your application is sensitive to this condition, you may want to consider .waking threads in a more controlled manner

See Also

The C++ Monitor Class
The C++ Time Class
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The C++ Thread Classes

The server-side Ice run time by default creates a  for you and automatically dispatches each incoming request in its own thread.thread pool
As a result, you usually only need to worry about synchronization among threads to protect critical regions when you implement a server.
However, you may wish to create threads of your own. For example, you might need a dedicated thread that responds to input from a user
interface. And, if you have complex and long-running operations that can exploit parallelism, you might wish to use multiple threads for the
implementation of that operation.

Ice provides a simple thread abstraction that permits you to write portable source code regardless of the native threading platform. This
shields you from the native underlying thread APIs and guarantees uniform semantics regardless of your deployment platform.

On this page:

The C++  ClassThread
Implementing Threads in C++
Creating Threads in C++
The C++  ClassThreadControl
C++ Thread Example

The C++  ClassThread

The basic thread abstraction in Ice is provided by two classes,  and  (defined in ):ThreadControl Thread IceUtil/Thread.h
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C++

namespace IceUtil {

    class Time;

    class ThreadControl {
    public:
#ifdef _WIN32
        typedef DWORD ID;
#else
        typedef pthread_t ID;
#endif

        ThreadControl();
#ifdef _WIN32
        ThreadControl(HANDLE, DWORD);
#else
        ThreadControl(explicit pthread_t);
#endif
        ID id() const;

        void join();
        void detach();

        static void sleep(const Time&);
        static void yield();

        bool operator==(const ThreadControl&) const;
        bool operator!=(const ThreadControl&) const;

    };

    class Thread :virtual public Shared {
    public:
        virtual void run() = 0;

        ThreadControl start(size_t stBytes = 0);
        ThreadControl start(size_t stBytes, int priority);
        ThreadControl getThreadControl() const;
        bool isAlive() const;

        bool operator==(const Thread&) const;
        bool operator!=(const Thread&) const;
        bool operator<(const Thread&) const;
    };
    typedef Handle<Thread> ThreadPtr;
}

The  class is an abstract base class with a pure virtual  method. To create a thread, you must specialize the  class andThread run Thread
implement the  method (which becomes the starting stack frame for the new thread). Note that you must not allow any exceptions torun
escape from . The Ice run time installs an exception handler that calls  if  terminates with an exception.run ::std::terminate run

The remaining member functions behave as follows:

start(size_t stBytes = 0)
start(size_t stBytes, int priority)
This member function starts a newly-created thread (that is, calls the  method). The  parameter specifies a stack sizerun stBytes
(in bytes) for the thread. The default value of zero creates the thread with a default stack size that is determined by the operating
system. 

You can also specify a priority for the thread. (If you do not supply a priority, the thread is created with the system default priority.)
The priority value is system-dependent; on POSIX systems, the value must be a legal value for the  real-time schedulingSCHED_RR
policy. (  requires root privileges.) On Windows systems, the priority value is passed through to the Windows SCHED_RR

 function.  provides information about how you can deal with priority inversion. setThreadPriority Priority Inversion in C++
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The return value is a  object for the new thread. ThreadControl

You can start a thread only once; calling  on an already-started thread raises . start ThreadStartedException

If the calling thread passes an invalid priority or, on POSIX systems, does not have root privileges,  raises start
.ThreadSyscallException

getThreadControl
This member function returns a  object for the thread on which it is invoked. Calling this method before calling ThreadControl

 raises a .start ThreadNotStartedException

id
This method returns the underlying thread ID (  for Windows and  for POSIX threads). This method is providedDWORD pthread_t
mainly for debugging purposes. Note also that  is, strictly-speaking, an opaque type, so you should not make anypthread_t
assumptions about what you can do with a thread ID.

isAlive
This method returns false before a thread's  method has been called and after a thread's  method has completed;start run
otherwise, while the thread is still running, it returns true.  is useful to implement a non-blocking join:isAlive

C++

ThreadPtr p = new MyThread();
// ...
while(p->isAlive()) {
    // Do something else...
}
p->getThreadControl().join(); // Will not block

operator==
operator!=
operator<
These member functions compare the in-memory address of two threads. They are provided so you can use  objects inThread
sorted STL containers.

Note that  also defines the type . This is the usual reference-counted  to guarantee automatic clean-up:IceUtil ThreadPtr smart pointer
the  destructor calls  once its reference count drops to zero.Thread delete this

Implementing Threads in C++

To illustrate how to implement threads, consider the following code fragment:

C++

#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            cout << q.get() << endl;
    }
};

class WriterThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            q.put(i);
    }
};
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1.  
2.  
3.  

4.  

This code fragment defines two classes,  and , that inherit from . Each class implementsReaderThread WriterThread IceUtil::Thread
the pure virtual  method it inherits from its base class. For this simple example, a writer thread places the numbers from 1 to 100 into anrun
instance of the thread-safe  class we defined in our discussion of , and a reader thread retrieves 100 numbers from theQueue monitors
queue and prints them to .stdout

Creating Threads in C++

To create a new thread, we simply instantiate the thread and call its  method:start

C++

IceUtil::ThreadPtr t = new ReaderThread;
t->start();
// ...

Note that we assign the return value from  to a smart pointer of type . This ensures that we do not suffer a memory leak:new ThreadPtr

When the thread is created, its reference count is set to zero.
Prior to calling  (which is called by the  method),  increments the reference count of the thread to 1.run start start
For each  for the thread, the reference count of the thread is incremented by 1, and for each  that isThreadPtr ThreadPtr
destroyed, the reference count is decremented by 1.
When  completes,  decrements the reference count again and then checks its value: if the value is zero at this point, the run start

 object deallocates itself by calling ; if the value is non-zero at this point, there are other smart pointers thatThread delete this
reference this  object and deletion happens when the last smart pointer goes out of scope.Thread

Note that, for all this to work, you  allocate your  objects on the heap — stack-allocated  objects will result inmust Thread Thread
deallocation errors:

C++

ReaderThread thread;
IceUtil::ThreadPtr t = &thread; // Bad news!!!

This is wrong because the destructor of  will eventually call , which has undefined behavior for a stack-allocated object.t delete

Similarly, you  use a  for an allocated thread. Do not attempt to explicitly delete a thread:must ThreadPtr

C++

Thread* t = new ReaderThread();

// ...

delete t; // Disaster!

This will result in a double deallocation of the thread because the thread's destructor will call .delete this

It is legal for a thread to call  on itself from within its own constructor. However, if so, the thread must not be (very) short lived:start
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C++

class ActiveObject : public Thread() {
public:
    ActiveObject() {
        start();
    }

    void done() {
        getThreadControl().join();
    }

    virtual void run() {
        // *Very* short lived...
    }
};
typedef Handle<ActiveObject> ActiveObjectPtr;

// ...

ActiveObjectPtr ao = new ActiveObject;

With this code, it is possible for  to complete before the assignment to the smart pointer  completes; in that case,  will call run ao start
 before it returns and  ends up deleting an already-deleted object. However, note that this problem can arise only if  isdelete this; ao run

indeed very short-lived and moreover, the scheduler allows the newly-created thread to run to completion before the assignment of the
return value of  to  takes place. This is highly unlikely to happen — if you are concerned about this scenario, do not call operator new ao

 from within a thread's own constructor. That way, the smart pointer is assigned first, and the thread started second, so the problemstart
cannot arise.

The C++  ClassThreadControl

The  method returns an object of type . The member functions of  behave as follows:start ThreadControl ThreadControl

ThreadControl
The default constructor returns a  object that refers to the calling thread. This allows you to get a handle to theThreadControl
current (calling) thread even if you had not previously saved a handle to that thread. For example:

C++

IceUtil::ThreadControl self;    // Get handle to self
cout << self.id() << endl;      // Print thread ID

This example also explains why we have two classes,  and : without a separate , it wouldThread ThreadControl ThreadControl
not be possible to obtain a handle to an arbitrary thread. (Note that this code works even if the calling thread was not created by the
Ice run time; for example, you can create a  object for a thread that was created by the operating system.) ThreadControl

The (implicit) copy constructor and assignment operator create a  object that refers to the same underlying threadThreadControl
as the source  object. ThreadControl

Note that the constructor is overloaded. For Windows, the signature is

C++

ThreadControl(HANDLE, DWORD);

For Unix, the signature is

C++

ThreadControl(pthread_t);
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These constructors allow you to create a  object for the specified thread.ThreadControl

join
This method suspends the calling thread until the thread on which  is called has terminated. For example:join

C++

IceUtil::ThreadPtr t = new ReaderThread; // Create a thread
IceUtil::ThreadControl tc = t->start();  // Start it
tc.join();                               // Wait for it

If the reader thread has finished by the time the creating thread calls , the call to  returns immediately; otherwise, thejoin join
creating thread is suspended until the reader thread terminates. 

Note that the  method of a thread must be called from only one other thread, that is, only one thread can wait for anotherjoin
thread to terminate. Calling  on a thread from more than one other thread has undefined behavior. join

Calling  on a thread that was previously joined with or calling  on a detached thread has undefined behavior.join join
You must join with each thread you create; failure to join with a thread has undefined behavior.

detach
This method detaches a thread. Once a thread is detached, it cannot be joined with. 

Calling  on an already detached thread, or calling  on a thread that was previously joined with has undefineddetach detach
behavior. 

Note that, if you have detached a thread, you must ensure that the detached thread has terminated before your program leaves its 
 function. This means that, because detached threads cannot be joined with, they must have a life time that is shorter than thatmain

of the main thread.

sleep
This method suspends the calling thread for the amount of time specified by the  class.Time

yield
This method causes the calling thread to relinquish the CPU, allowing another thread to run.

operator==
operator!=
These operators compare thread IDs. (Note that  is not provided because it cannot be implemented portably.) Theseoperator<
operators yield meaningful results only for threads that have not been detached or joined with.

As for all the synchronization primitives, you must adhere to a few rules when using threads to avoid undefined behavior:

Do not allow  to throw an exception.run
Do not join with or detach a thread that you have not created yourself.
For every thread you create, you must either join with that thread exactly once or detach it exactly once; failure to do so may cause
resource leaks.
Do not call  on a thread from more than one other thread.join
Do not leave  until all other threads you have created have terminated.main
Do not leave  until after you have destroyed all  objects you have created (or use the main Ice::Communicator

 class).Ice::Application
A common mistake is to call  from within a critical region. Doing so is usually pointless because the call to  will look foryield yield
another thread that can be run but, when that thread is run, it will most likely try to enter the critical region that is held by the yielding
thread and go to sleep again. At best, this achieves nothing and, at worst, it causes many additional context switches for no gain. If
you call , do so only in circumstances where there is at least a fair chance that another thread will actually be able to run andyield
do something useful.

C++ Thread Example

Following is a small example that uses the  class we defined in our discussion of . We create five writer and five readerQueue monitors
threads. The writer threads each deposit 100 numbers into the queue, and the reader threads each retrieve 100 numbers and print them to 

:stdout
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C++

#include <vector>
#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            cout << q.get() << endl;
    }
};

class WriterThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            q.put(i);
    }
};

int
main()
{
    vector<IceUtil::ThreadControl> threads;
    int i;

    // Create five reader threads and start them
    //
    for (i = 0; i < 5; ++i) {
        IceUtil::ThreadPtr t = new ReaderThread;
        threads.push_back(t->start());
    }

    // Create five writer threads and start them
    //
    for (i = 0; i < 5; ++i) {
        IceUtil::ThreadPtr t = new WriterThread;
        threads.push_back(t->start());
    }

    // Wait for all threads to finish
    //
    for (vector<IceUtil::ThreadControl>::iterator i = threads.begin();
         i != threads.end(); ++i) {
        i->join();
    }
}

The code uses the  variable, of type , to keep track of the created threads. The codethreads vector<IceUtil::ThreadControl>
creates five reader and five writer threads, storing the  object for each thread in the  vector. Once all the threadsThreadControl threads
are created and running, the code joins with each thread before returning from .main

Note that you must not leave  without first joining with the threads you have created: many threading libraries crash if you return from main
 with other threads still running. (This is also the reason why you must not terminate a program without first calling main

; the  implementation joins with all outstanding threads before it returns.)Communicator::destroy destroy

See Also

Smart Pointers for Classes
The Server-Side main Function in C++
The C++ Monitor Class
The Ice Threading Model
The C++ Time Class
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Priority Inversion in C++

In real-time systems, if you have threads with different priorities, it is possible to encounter a priority inversion. A priority inversion occurs
when a low-priority thread prevents a higher-priority thread from running. This situation arises when a low-priority thread acquires a mutex
and is pre-empted by one or more medium-priority threads that do not relinquish the CPU. If a high-priority thread then attempts to acquire
the mutex locked by the low-priority thread, it will wait (potentially forever) for the medium-priority threads to complete.

One way to deal with this problem is to use a priority inheritance protocol. If a low-priority thread holds a mutex and a high-priority thread
attempts to acquire the mutex, the priority of the thread holding the mutex is temporarily raised to the level of the thread waiting for the
mutex. This allows the low-priority thread to keep running until it releases the mutex; as soon as it does, its priority is reduced back to its
previous level and the high-priority thread acquires the mutex.

Ice supports the priority inheritance protocol on many POSIX platforms. (Windows does not provide such a protocol.)

For POSIX platforms that support the priority inheritance protocol, mutexes by default do not use it. You can use the 
 function to retrieve the current default for your platform:getDefaultMutexProtocol

C++

namespace IceUtil {
    enum MutexProtocol { PrioInherit, PrioNone };

    MutexProtocol getDefaultMutexProtocol();
}

On Posix systems that do not support priority inheritance and on Windows, this function always returns .PrioNone

The return value of  determines whether a default-constructed  or  uses priority inheritance.getDefaultMutexProtocol Mutex RecMutex
By default, this function returns . You can override this default by explicitly specifying a different protocol when you construct a PrioNone

 or . On Windows, if you specify  when you construct a mutex, the setting is ignored and the mutex isMutex RecMutex PrioInherit
constructed as if you had specified .PrioNone

To change the value returned by , you can edit  and modify the value of thegetDefaultMutexProtocol IceUtil/Config.h
preprocessor macro  (or set the macro's value as a compiler option), and then rebuild the ICE_DEFAULT_MUTEX_PROTOCOL IceUtil
library.

See Also

The C++ Mutex Class
The C++ RecMutex Class
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Portable Signal Handling in C++

The  class provides a portable mechanism to handle Ctrl+C and similar signals sent to a C++ process. OnIceUtil::CtrlCHandler
Windows,  is a wrapper for ; on POSIX platforms, it handles ,  andIceUtil::CtrlCHandler SetConsoleCtrlHandler SIGHUP SIGTERM

 with a dedicated thread that waits for these signals using . Signals are handled by a callback function implemented andSIGINT sigwait
registered by the user. The callback is a simple function that takes an  (the signal number) and returns ; it must not throw anyint void
exception:

C++

namespace IceUtil {

    typedef void (*CtrlCHandlerCallback)(int);

    class CtrlCHandler {
    public:
        CtrlCHandler(CtrlCHandlerCallback = 0);
        ~CtrlCHandler();

        void setCallback(CtrlCHandlerCallback);
        CtrlCHandlerCallback getCallback() const;
    };
}

The member functions of  behave as follows:CtrlCHandler

CtrlCHandler
Constructs an instance with a callback function. Only one instance of  can exist in a process at a given moment inCtrlCHandler
time. On POSIX platforms, the constructor masks ,  and , then starts a thread that waits for these signalsSIGHUP SIGTERM SIGINT
using . For signal masking to work properly, it is imperative that the  instance be created before startingsigwait CtrlCHandler
any thread, and in particular before initializing an Ice communicator.

~CtrlCHandler
Destroys the instance, after which the default signal processing behavior is restored on Windows ( ). On POSIXTerminateProcess
platforms, the "sigwait" thread is cancelled and joined, but the signal mask remains unchanged, so subsequent signals are ignored.

setCallback
Sets a new callback function.

getCallback
Gets the current callback function.

It is legal specify a value of zero (0) for the callback function, in which case signals are caught and ignored until a non-zero callback function
is set.

A typical use for  is to shutdown a communicator in an Ice server. For example, the  class uses a CtrlCHandler Ice::Application
 in its implementation.CtrlCHandler

See Also

The Server-Side main Function in C++
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The Ice Run Time in Detail
This section describes in detail the server-side APIs of the Ice run time for synchronous, oneway, and datagram invocations. Communicators
are the main handle to the Ice run time. They provide access to a number of run time resources and allow you to control the life cycle of a
server. Object adapters provide a mapping between abstract Ice objects and concrete servants. Various implementation techniques are at
your disposal to control the trade-off between performance and scalability; in particular, servant locators are a central mechanism that
permits you to choose an implementation technique that matches the requirements of your application.

Ice provides both oneway and datagram invocations. These provide performance gains in situations where an application needs to provide
numerous stateless updates. Batching such invocations permits you to increase performance even further.

The Ice logging mechanism is user extensible, so you can integrate Ice messages into arbitrary logging frameworks, and the Ice::Stats
interface permits you to collect statistics for network bandwidth consumption.

Finally, even though Ice is location transparent, in the interest of efficiency, collocated invocations do not behave in all respects like remote
invocations. You need to be aware of these differences, especially for applications that are sensitive to thread context.

Topics

Communicators
Communicator Initialization
Object Adapters
Object Identity
The Current Object
Servant Locators
Default Servants
Server Implementation Techniques
Servant Evictors
The Ice Threading Model
Using Proxies
Request Contexts
Connection Timeouts
Oneway Invocations
Datagram Invocations
Batched Invocations
Locators
Administrative Facility
Logger Facility
Stats Facility
Location Transparency
Automatic Retries
Dispatch Interceptors
C++ Strings and Character Encoding
Plug-in Facility
Custom Class Loaders
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Communicators

The main entry point to the Ice run time is represented by the local interface . An instance of Ice::Communicator Ice::Communicator
is associated with a number of run-time resources:

Client-side thread pool
The client-side  is used to process replies to asynchronous method invocations (AMI), to avoid deadlocks in callbacks,thread pool
and to process incoming requests on .bidirectional connections

Server-side thread pool
Threads in this  accept incoming connections and handle requests from clients.pool

Configuration properties
Various aspects of the Ice run time can be configured via properties. Each communicator has its own set of such configuration

.properties

Object factories
In order to instantiate  that are derived from a known base type, the communicator maintains a set of object factories thatclasses
can instantiate the class on behalf of the Ice run time. Object factories are discussed in each client-side language mapping.

Logger object
A  object implements the  interface and determines how log messages that are produced by the Ice run timelogger Ice::Logger
are handled.

Statistics object
A  object implements the  interface and is informed about the amount of traffic (bytes sent and received) thatstatistics Ice::Stats
is handled by a communicator.

Default router
A router implements the  interface. Routers are used by  to implement the firewall functionality of Ice.Ice::Router Glacier2

Default locator
A  is an object that resolves an object identity to a proxy. Locator objects are used to build location services, such as .locator IceGrid

Plug-in manager
 are objects that add features to a communicator. For example,  is implemented as a plug-in. Each communicatorPlug-ins IceSSL

has a plug-in manager that implements the  interface and provides access to the set of plug-ins for aIce::PluginManager
communicator.

Object adapters
 dispatch incoming requests and take care of passing each request to the correct servant.Object adapters

Object adapters and objects that use different communicators are completely independent from each other. Specifically:

Each communicator uses its own thread pool. This means that if, for example, one communicator runs out of threads for incoming
requests, only objects using that communicator are affected. Objects using other communicators have their own thread pool and are
therefore unaffected.
Collocated invocations across different communicators are not optimized, whereas collocated invocations using the same
communicator bypass much of the overhead of call dispatch.

Typically, servers use only a single communicator but, occasionally, multiple communicators can be useful. For example, , uses aIceBox
separate communicator for each Ice service it loads to ensure that different services cannot interfere with each other. Multiple
communicators are also useful to avoid thread starvation: if one service runs out of threads, this leaves the remaining services unaffected.

The communicator's interface is defined in Slice. Part of this interface looks as follows:
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Slice

module Ice {
    local interface Communicator {
        string proxyToString(Object* obj);
        Object* stringToProxy(string str);
        PropertyDict proxyToProperty(Object* proxy, string property);
        Object* propertyToProxy(string property);
        Identity stringToIdentity(string str);
        string identityToString(Identity id);
        ObjectAdapter createObjectAdapter(string name);
        ObjectAdapter createObjectAdapterWithEndpoints(string name, string endpoints);
        ObjectAdapter createObjectAdapterWithRouter(string name, Router* rtr);
        void shutdown();
        void waitForShutdown();
        bool isShutdown();
        void destroy();
        // ...
    };
    // ...
};

The communicator offers a number of operations:

proxyToString
 stringToProxy

These operations allow you to convert a proxy into its stringified representation and vice versa. Instead of calling proxyToString
on the communicator, you can also use the   to stringify it. However, you can only stringify non-nullice_toString proxy method
proxies that way — to stringify a null proxy, you must use . (The stringified representation of a null proxy is theproxyToString
empty string.)

proxyToProperty
 propertyToProxy

 returns the set of  for the supplied proxy. The  parameter specifies the base nameproxyToProperty proxy properties property
for the properties in the returned set.   the configuration property with the given name and converts itspropertyToProxy retrieves
value into a proxy. A null proxy is returned if no property is found with the specified name.

identityToString
 stringToIdentity

These operations allow you to convert an  to a string and vice versa.identity

createObjectAdapter
createObjectAdapterWithEndpoints

 createObjectAdapterWithRouter

These operations create a new . Each object adapter is associated with zero or more . Typically,object adapter transport endpoints
an object adapter has a single transport endpoint. However, an object adapter can also offer multiple endpoints. If so, these
endpoints each lead to the same set of objects and represent alternative means of accessing these objects. This is useful, for
example, if a server is behind a firewall but must offer access to its objects to both internal and external clients; by binding the
adapter to both the internal and external interfaces, the objects implemented in the server can be accessed via either interface. 

An object adapter also can have no endpoint at all. In that case, the adapter can only be reached via collocated invocations
originating from the same communicator as is used by the adapter. 

Whereas  determines its transport endpoints from configuration information, createObjectAdapter
 allows you to supply the transport endpoints for the new adapter. Typically, you shouldcreateObjectAdapterWithEndpoints

use  in preference to . Doing so keeps transport-specificcreateObjectAdapter createObjectAdapterWithEndpoints
information, such as host names and port numbers, out of the source code and allows you to reconfigure the application by
changing a property (and so avoid recompilation when a transport endpoint needs to be changed). 

 creates a routed object adapter that allows clients to receive callbacks from servers that arecreateObjectAdapterWithRouter
behind a . router

The newly-created adapter uses its name as a prefix for a collection of  that tailor the adapter's behavior. Byconfiguration properties
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default, the adapter prints a warning if other properties are defined having the same prefix, but you can disable this warning using
the property .Ice.Warn.UnknownProperties

shutdown 

This operation shuts down the server side of the Ice run time:
Operation invocations that are in progress at the time  is called are allowed to complete normally. shutdown shutdown
does  wait for these operations to complete; when  returns, you know that no new incoming requests will benot shutdown
dispatched, but operations that were already in progress at the time you called  may still be running. You canshutdown
wait for still-executing operations to complete by calling .waitForShutdown
Operation invocations that arrive after the server has called  either fail with a  orshutdown ConnectFailedException
are transparently redirected to a new instance of the server (via ).IceGrid
Note that  initiates deactivation of all object adapters associated with the communicator, so attempts to use anshutdown
adapter once  has completed raise an .shutdown ObjectAdapterDeactivatedException

waitForShutdown 

On the server side, this operation suspends the calling thread until the communicator has shut down (that is, until no more
operations are executing in the server). This allows you to wait until the server is idle before you destroy the communicator. 

On the client side,  simply waits until another thread has called  or .waitForShutdown shutdown destroy

isShutdown 

This operation returns true if  has been invoked on the communicator. A return value of true does not necessarily indicateshutdown
that the shutdown process has completed, only that it has been initiated. An application that needs to know whether shutdown is
complete can call . If the blocking nature of  is undesirable, the application can invoke itwaitForShutdown waitForShutdown
from a separate thread.

destroy 

This operation destroys the communicator and all its associated resources, such as threads, communication endpoints, object
adapters, and memory resources. Once you have destroyed the communicator (and therefore destroyed the run time for that
communicator), you must not call any other Ice operation (other than to create another communicator). 

It is imperative that you call  before you leave the  function of your program. Failure to do so results in undefineddestroy main
behavior. 

Calling  before leaving  is necessary because  waits for all running threads to terminate before it returns. Ifdestroy main destroy
you leave  without calling , you will leave  with other threads still running; many threading packages do not allowmain destroy main
you to do this and end up crashing your program. 

If you call  without calling , the call waits for all executing operation invocations to complete before it returnsdestroy shutdown
(that is, the implementation of  implicitly calls  followed by ).  (and, therefore, destroy shutdown waitForShutdown shutdown

) deactivates all object adapters that are associated with the communicator. Since  blocks until all operationdestroy destroy
invocations complete, a servant will deadlock if it invokes  on its own communicator while executing a dispatcheddestroy
operation. 

On the client side, calling  while operations are still executing causes those operations to terminate with a destroy
.CommunicatorDestroyedException

See Also

Properties and Configuration
Object Adapters
Object Adapter Endpoints
Object Identity
Obtaining Proxies
Proxy Methods
Logger Facility
The Ice Threading Model
Bidirectional Connections
IceGrid
IceSSL
Glacier2
IceBox
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Communicator Initialization

During the creation of a communicator, the Ice run time initializes a number of features that affect the communicator's operation. Once set,
these features remain in effect for the life time of the communicator, that is, you cannot change these features after you have created a
communicator. Therefore, if you want to customize these features, you must do so when you create the communicator.

The following features can be customized at communicator creation time:

the property set
the logger object
the statistics object
the narrow and wide  (C++ only)string converters
the thread notification hook
the dispatcher
the  (Java only)class loader

To establish these features, you initialize a structure or class of type  with the relevant settings. For C++ theInitializationData
structure is defined as follows:

C++

namespace Ice {
    struct InitializationData {
        PropertiesPtr properties;
        LoggerPtr logger;
        StatsPtr stats;
        StringConverterPtr stringConverter;
        WstringConverterPtr wstringConverter;
        ThreadNotificationPtr threadHook;
        DispatcherPtr dispatcher;
    };
}

For languages other than C++,  is a class with all data members public. (The data members supported by this classInitializationData
vary with each language mapping.)

For C++,  is overloaded as follows:Ice::initialize

C++

namespace Ice {
    CommunicatorPtr initialize(int&, char*[],
                const InitializationData& = InitializationData(),
                Int = ICE_INT_VERSION);
    CommunicatorPtr initialize(StringSeq&,
                const InitializationData& = InitializationData(),
                Int = ICE_INT_VERSION);
    CommunicatorPtr initialize(
                const InitializationData& = InitializationData()
                Int = ICE_INT_VERSION);
}

The versions of  that accept an argument vector look for Ice-specific command-line options and remove them from theinitialize
argument vector, as described in the . The version without an /  pair is useful if you want to preventC++ language mapping argc argv
property settings for a program from being changed by command-line arguments — you can use the  interface for this purpose.Properties

To set a feature, you set the corresponding field in the  structure and pass the structure to . ForInitializationData initialize
example, to establish a custom logger of type , you can use:MyLogger

Ice::InitializationData id;
id.logger = new MyLoggerI;
Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id);
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For Java, C#, and Objective-C,  is overloaded similarly (as is  for Python, Ice.Util.initialize Ice.initialize Ice::initialize
for Ruby, and  for PHP), so you can pass an  instance either with or without an argument vector.Ice_initialize InitializationData

For , the method name is .Objective-C createCommunicator

Note that you must supply an  if you want  to look for a configuration file in the  environmentargument vector initialize ICE_CONFIG
variable.

See Also

The Server-Side main Function in C++
The Server-Side main Function in Objective-C
Command-Line Parsing and Initialization
The Properties Interface
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Object Adapters

A communicator contains one or more object adapters. An object adapter sits at the boundary between the Ice run time and the server
application code and has a number of responsibilities:

Maps Ice objects to servants for incoming requests and dispatches the requests to the application code in each servant (that is, an
object adapter implements an up-call interface that connects the Ice run time and the application code in the server).
Assists in life cycle operations so Ice objects and servants can be created and existing destroyed without race conditions.
Provides one or more transport endpoints. Clients access the Ice objects provided by the adapter via those endpoints. (It is also
possible to create an object adapter without endpoints. In this case the adapter is used for .bidirectional callbacks

Each object adapter has one or more servants that incarnate Ice objects, as well as one or more transport endpoints. If an object adapter
has more than one endpoint, all servants registered with that adapter respond to incoming requests on any of the endpoints. In other words,
if an object adapter has multiple transport endpoints, those endpoints represent alternative communication paths to the same set of objects
(for example, via different transports).

Each object adapter belongs to exactly one communicator (but a single communicator can have many object adapters). Each object adapter
has a name that distinguishes it from all other object adapters in the same communicator.

Each object adapter can optionally have its own , enabled via the  property. If so, clientthread pool < >.ThreadPool.Sizeadapter-name
invocations for that adapter are dispatched in a thread taken from the adapter's thread pool instead of using a thread from the
communicator's server thread pool.

Servants are the physical manifestation of an Ice object, that is, they are entities that are implemented in a concrete programming language
and instantiated in the server's address space. Servants provide the server-side behavior for operation invocations sent by clients. The same
servant can be registered with one or more object adapters.

Topics

The Active Servant Map
Creating an Object Adapter
Servant Activation and Deactivation
Object Adapter States
Object Adapter Endpoints
Creating Proxies with an Object Adapter
Using Multiple Object Adapters

See Also

Object Adapter Thread Pools
Bidirectional Connections
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The Active Servant Map

Each object adapter maintains a data structure known as the active servant map.

On this page:

Role of the Active Servant Map
Design Considerations for the Active Servant Map

Role of the Active Servant Map

The  (or , for short) is a lookup table that maps object identities to servants: for C++, the lookup value is a smartactive servant map ASM
pointer to the corresponding servant's location in memory; for Java and C#, the lookup value is a reference to the servant. When a client
sends an operation invocation to the server, the request is targeted at a specific transport endpoint. Implicitly, the transport endpoint
identifies the object adapter that is the target of the request (because no two object adapters can be bound to the same endpoint). The proxy
via which the client sends its request contains the  for the corresponding object, and the client-side run time sends this objectobject identity
identity over the wire with the invocation. In turn, the object adapter uses that object identity to look in its ASM for the correct servant to
dispatch the call to, as shown below:

Binding a request to the correct servant.

The process of associating a request via a proxy to the correct servant is known as . The scenario depicted in the illustration showsbinding
direct binding, in which the transport endpoint is embedded in the proxy. Ice also supports an indirect binding mode, in which the correct
transport endpoints are provided by the  service.IceGrid

If a client request contains an object identity for which there is no entry in the adapter's ASM, the adapter returns an 
 to the client (unless you use a  or ).ObjectNotExistException default servant servant locator

Design Considerations for the Active Servant Map

Using an adapter's ASM to map Ice objects to servants has a number of design implications:

Each Ice object is represented by a different servant.

It is possible to register a single servant with multiple identities. However, there is little point in doing so because a 
 achieves the same thing.default servant

All servants for all Ice objects are permanently in memory.

Using a separate servant for each Ice object in this fashion is common to many server implementations: the technique is simple to implement
and provides a natural mapping from Ice objects to servants. Typically, on start-up, the server instantiates a separate servant for each Ice
object, activates each servant, and then calls  on the object adapter to start the flow of requests.activate
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1.  
2.  

There is nothing wrong with the above design, provided that two criteria are met:

The server has sufficient memory available to keep a separate servant instantiated for each Ice object at all times.
The time required to initialize all the servants on start-up is acceptable.

For many servers, neither criterion presents a problem: provided that the number of servants is small enough and that the servants can be
initialized quickly, this is a perfectly acceptable design. However, the design does not scale well: the memory requirements of the server
grow linearly with the number of Ice objects so, if the number of objects gets too large (or if each servant stores too much state), the server
runs out of memory.

Ice offers two APIs that help you scale servers to larger numbers of objects:  and . A  isservant locators default servants default servant
essentially a simplified version of a  that satisfies the majority of use cases, whereas a servant locator provides more flexibilityservant locator
for those applications that require it.

See Also

Servant Locators
Default Servants
IceGrid
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Creating an Object Adapter

An object adapter is an instance of the local interface . You create an object adapter by calling one of several operations onObjectAdapter
a communicator:

Slice

module Ice {
    local interface ObjectAdapter {
        string getName();
        Communicator getCommunicator();

        // ...
    };

    local interface Communicator {
        ObjectAdapter createObjectAdapter(string name);
        ObjectAdapter createObjectAdapterWithEndpoints(string name, string endpoints);
        ObjectAdapter createObjectAdapterWithRouter(string name, Router* rtr);

        // ...
    };
};

The  operations behave as follows:ObjectAdapter

The  operation returns the name of the adapter as passed to one of the  getName communicator operations
, , or .createObjectAdapter createObjectAdapterWithEndpoints createObjectAdapterWithRouter

The  operation returns the communicator that was used to create the adapter.getCommunicator

Note that there are other operations in the  interface; we will explore these throughout the remainder of this discussion.ObjectAdapter

See Also

Communicators
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Servant Activation and Deactivation

The term  refers to making the presence of a servant for a particular Ice object known to the Ice run time. Activating aservant activation
servant adds an entry to the  (ASM). Another way of looking at servant activation is to think of it as creating a linkActive Servant Map
between the  of an Ice object and the corresponding programming-language servant that handles requests for that Ice object. Onceidentity
the Ice run time has knowledge of this link, it can dispatch incoming requests to the correct servant. Without this link, that is, without a
corresponding entry in the ASM, an incoming request for the identity results in an . While a servant isObjectNotExistException
activated, it is said to  the corresponding Ice object.incarnate

The inverse operation is known as . Deactivating a servant removes an entry for a particular identity from the ASM.servant deactivation
Thereafter, incoming requests for that identity are no longer dispatched to the servant and result in an .ObjectNotExistException

The object adapter offers a number of operations for managing servant activation and deactivation:

Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        Object* add(Object servant, Identity id);
        Object* addWithUUID(Object servant);
        Object  remove(Identity id);
        Object  find(Identity id);
        Object  findByProxy(Object* proxy);

        // ...
    };
};

The operations behave as follows:

add 

The  operation adds a servant with the given identity to the ASM. Requests are dispatched to that servant as soon as  isadd add
called. The return value is the proxy for the Ice object incarnated by that servant. The proxy embeds the identity passed to . add

You cannot call  with the same identity more than once: attempts to add an already existing identity to the ASM result in an add
. (It does not make sense to add two servants with the same identity because that would make itAlreadyRegisteredException

ambiguous as to which servant should handle incoming requests for that identity.) 

Note that it is possible to activate the same servant multiple times with different identities. In that case, the same single servant
incarnates multiple Ice objects. We explore the ramifications of this in more detail in our discussion of server implementation

.techniques

addWithUUID 

The  operation behaves the same way as the  operation but does not require you to supply an identity for theaddWithUUID add
servant. Instead,  generates a UUID as the identity for the corresponding Ice object. You can retrieve the generatedaddWithUUID
identity by calling the  operation on the returned proxy.  is useful to create identities for temporaryice_getIdentity addWithUUID
objects, such as short-lived session objects. (You can also use  for persistent objects that do not have a naturaladdWithUUID
identity, as we have done for the file system application.)

remove 

The  operation breaks the association between an identity and its servant by removing the corresponding entry from theremove
ASM; it returns a reference to the removed servant. 

Once the servant is deactivated, new incoming requests for the removed identity cause the client to receive an 
. Requests that are executing inside the servant at the time  is called are allowed to completeObjectNotExistException remove

normally. Once the last request for the servant is complete, the object adapter drops its reference (or smart pointer, for C++) to the
servant. At that point, the servant becomes available for garbage collection (or is destroyed, for C++), provided there are no other
references or smart pointers to the servant. The net effect is that a deactivated servant is destroyed once it becomes idle. 

Deactivating an  implicitly calls  on its active servants.object adapter remove
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find 

The  operation performs a lookup in the ASM and returns the servant for the specified object identity. If no servant with thatfind
identity is registered, the operation returns null. Note that  does not consult any  or .find servant locators default servants

findByProxy 

The  operation performs a lookup in the ASM and returns the servant with the object identity and facet that arefindByProxy
embedded in the proxy. If no such servant is registered, the operation returns null. Note that  does not consult any findByProxy

 or .servant locators default servants

See Also

The Active Servant Map
Object Identity
Object Adapter States
Server Implementation Techniques
Servant Locators
Default Servants
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Object Adapter States

On this page:

Object Adapter State Transitions
Changing Object Adapter States

Object Adapter State Transitions

An object adapter has a number of processing states:

Holding 

In this state, any incoming requests for the adapter are held, that is, not dispatched to servants. 

For TCP/IP (and other stream-oriented protocols), the server-side run time stops reading from the corresponding transport endpoint
while the adapter is in the holding state. In addition, it also does not accept incoming connection requests from clients. This means
that if a client sends a request to an adapter that is in the holding state, the client eventually receives a  or TimeoutException

 (unless the adapter is placed into the active state before the timer expires). ConnectTimeoutException

For UDP, client requests that arrive at an adapter that is in the holding state are thrown away. 

Immediately after creation of an adapter, the adapter is in the holding state. This means that requests are not dispatched until you
place the adapter into the active state. 

Note that  cannot be placed into the holding state. If you call  on a bidirectional adapter, the call doesbidirectional adapters hold
nothing.

Active 

In this state, the adapter accepts incoming requests and dispatches them to servants. A newly-created adapter is initially in the
holding state. The adapter begins dispatching requests as soon as you place it into the active state. 

You can transition between the active and the holding state as many times as you wish. 

Note that  need not be activated. Further, calls to collocated servants (that is, to servants that are activated inbidirectional adapters
the communicator that created the proxy) succeed even if the adapter is not activated, unless you have disabled collocation

.optimization

Inactive 

In this state, the adapter has conceptually been destroyed (or is in the process of being destroyed). Deactivating an adapter
destroys all transport endpoints that are associated with the adapter. Requests that are executing at the time the adapter is placed
into the inactive state are allowed to complete, but no new requests are accepted. (New requests are rejected with an exception).
Any attempt to use a deactivated object adapter results in an .ObjectAdapterDeactivatedException

Changing Object Adapter States

The  interface offers operations that allow you to change the adapter state, as well as to wait for a state change to beObjectAdapter
complete:
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Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        void activate();
        void hold();
        void waitForHold();
        void deactivate();
        void waitForDeactivate();
        void isDeactivated();
        void destroy();

        // ...
    };
};

The operations behave as follows:

activate 

The  operation places the adapter into the  state. Activating an adapter that is already active has no effect. The Iceactivate active
run time starts dispatching requests to servants for the adapter as soon as  is called.activate

hold 

The  operation places the adapter into the  state. Requests that arrive after calling  are held as described above.hold holding hold
Requests that are in progress at the time  is called are allowed to complete normally. Note that  returns immediatelyhold hold
without waiting for currently executing requests to complete.

waitForHold 

The  operation suspends the calling thread until the adapter has completed its transition to the holding state, that is,waitForHold
until all currently executing requests have finished. You can call  from multiple threads, and you can call waitForHold

 while the adapter is in the active state. If you call  on an adapter that is already in the holding state, waitForHold waitForHold
 returns immediately.waitForHold

deactivate 

The  operation initiates deactivation of the adapter: requests that arrive after calling  are rejected, butdeactivate deactivate
currently executing requests are allowed to complete. Once all requests have completed, the adapter enters the  state. Noteinactive
that  returns immediately without waiting for the currently executing requests to complete. A deactivated adapterdeactivate
cannot be reactivated; you can create a new adapter with the same name, but only after calling  on the existing adapter.destroy
Any attempt to use a deactivated object adapter results in an .ObjectAdapterDeactivatedException

waitForDeactivate{ 

The  operation suspends the calling thread until the adapter has completed its transition to the  state,waitForDeactivate inactive
that is, until all currently executing requests have completed. You can call  from multiple threads, and youwaitForDeactivate
can call  while the adapter is in the active or holding state. Calling  on an adapter thatwaitForDeactivate waitForDeactivate
is in the inactive state does nothing and returns immediately.

isDeactivated 

The  operation returns true if  has been invoked on the adapter. A return value of true does notisDeactivated deactivate
necessarily indicate that the adapter has fully transitioned to the inactive state, only that it has begun this transition. Applications that
need to know when deactivation is completed can use .waitForDeactivate

destroy 

The  operation deactivates the adapter and releases all of its resources. Internally,  invokes destroy destroy deactivate
followed by , therefore the operation blocks until all currently executing requests have completed.waitForDeactivate
Furthermore, any servants associated with the adapter are destroyed, all transport endpoints are closed, and the adapter's name
becomes available for reuse. 
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Destroying a communicator implicitly destroys all of its object adapters. Invoking  on an adapter is only necessary whendestroy
you need to ensure that its resources are released prior to the destruction of its communicator.

Placing an adapter into the holding state is useful, for example, if you need to make state changes in the server that require the server (or a
group of servants) to be idle. For example, you could place the implementation of your servants into a dynamic library and upgrade the
implementation by loading a newer version of the library at run time without having to shut down the server.

Similarly, waiting for an adapter to complete its transition to the inactive state is useful if your server needs to perform some final clean-up
work that cannot be carried out until all executing requests have completed.

Note that you can create an object adapter with the same name as a previous object adapter, but only once  on the previousdestroy
adapter has completed.

See Also

Location Transparency
Bidirectional Connections
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Object Adapter Endpoints

An object adapter maintains two sets of transport endpoints. One set identifies the network interfaces on which the adapter listens for new
connections, and the other set is embedded in proxies created by the adapter and used by clients to communicate with it. We will refer to
these sets of endpoints as the  and the , respectively. In most cases these sets are identical, but therephysical endpoints published endpoints
are situations when they must be configured independently.

On this page:

Physical Object Adapter Endpoints
Published Object Adapter Endpoints
Refreshing Object Adapter Endpoints
Timeouts in Object Adapter Endpoints
Discovering Object Adapter Endpoints
A Router's Effect on Object Adapter Endpoints

Physical Object Adapter Endpoints

An object adapter's physical endpoints identify the network interfaces on which it receives requests from clients. These endpoints are
configured via the  property, or they can be specified explicitly when  using the operation .Endpointsname creating an adapter

. The  generally consists of a transport protocol followed by an optional hostcreateObjectAdapterWithEndpoints endpoint syntax
name and port.

If a host name is specified, the object adapter listens only on the network interface associated with that host name. If no host name is
specified but the property  is defined, the object adapter uses the property's value as the host name. Finally, if a hostIce.Default.Host
name is not specified, and the property  is undefined, the object adapter listens on all available network interfaces,Ice.Default.Host
including the loopback interface. You may also force the object adapter to listen on all interfaces by using one of the host names  or0.0.0.0

. The adapter does  expand the list of interfaces when it is initialized. Instead, if no host is specified, or you use  or ,* not -h * -h 0.0.0.0
the adapter binds to  to listen for incoming requests.INADDR_ANY

If you want an adapter to accept requests on certain network interfaces, you must specify a separate endpoint for each interface. For
example, the following property configures a single endpoint for the adapter named :MyAdapter

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999

This endpoint causes the adapter to accept requests on the network interface associated with the IP address  at port . Note10.0.1.1 9999
however that this adapter configuration does not accept requests on the loopback interface (the one associated with address ). If127.0.0.1
both addresses must be supported, then both must be specified explicitly, as shown below:

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999:tcp -h 127.0.0.1 -p 9999

If these are the only two network interfaces available on the host, then a simpler configuration omits the host name altogether, causing the
object adapter to listen on both interfaces automatically:

MyAdapter.Endpoints=tcp -p 9999

If you want to make your configuration more explicit, you can use one of the special host names mentioned earlier:

MyAdapter.Endpoints=tcp -h * -p 9999

One advantage of this last example is that it ensures the object adapter  listens on all interfaces, even if a definition for always
 is later added to your configuration. Without an explicit host name, the addition of  couldIce.Default.Host Ice.Default.Host

potentially change the interfaces on which the adapter is listening. For diagnostic purposes, you can determine the set of local addresses
that Ice substitutes for the wildcard address by setting the property  and reviewing the server's log output.Ice.Trace.Network=3

Careful consideration must also be given to the selection of a port for an endpoint. If no port is specified, the adapter uses a port that is
selected (essentially at random) by the operating system, meaning the adapter will likely be using a different port each time the server is
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restarted. Whether that behavior is desirable depends on the application, but in many applications a client has a proxy containing the
adapter's endpoint and expects that proxy to remain valid indefinitely. Therefore, an endpoint generally should contain a fixed port to ensure
that the adapter is always listening at the same port.

However, there are certain situations where a fixed port is not required. For example, an adapter whose servants are transient does not need
a fixed port, because the proxies for those objects are not expected to remain valid past the lifetime of the server process. Similarly, a server
using indirect binding via  does not need a fixed port because its port is never published.IceGrid

Published Object Adapter Endpoints

An object adapter publishes its endpoints in the proxies it creates, but it is not always appropriate to publish the adapter's physical endpoints
in a proxy. For example, suppose a server is running on a host in a private network, protected from the public network by a firewall that can
forward network traffic to the server. The adapter's physical endpoints must use the private network's address scheme, but a client in the
public network would be unable to use those endpoints if they were published in a proxy. In this scenario, the adapter must publish endpoints
in its proxies that direct the client to the firewall instead.

The published endpoints are configured using the adapter property . If this property is not defined, the.PublishedEndpointsname
adapter publishes its physical endpoints by default, with one exception: endpoints for the loopback address ( ) are not published127.0.0.1
unless the loopback interface is the only interface, or  (or ) is explicitly listed as an endpoint with the  option.127.0.0.1 loopback -h
Otherwise, to force the inclusion of loopback endpoints when they would normally be excluded, you must define name

 explicitly..PublishedEndpoints

As an example, the properties below configure the adapter named  with physical and published endpoints:MyAdapter

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999
MyAdapter.PublishedEndpoints=tcp -h corpfw -p 25000

This example assumes that clients connecting to host  at port  are forwarded to the adapter's endpoint in the private network.corpfw 25000

Another use case of published endpoints is for replicated servers. Suppose we have two instances of a stateless server running on separate
hosts in order to distribute the load between them. We can supply the client with a bootstrap proxy containing the endpoints of both servers,
and the Ice run time in the client will select one of the servers at random when a connection is established. However, should the client invoke
an operation on a server that returns a proxy for another object, that proxy would normally contain only the endpoint of the server that
created it. Invocations on the new proxy would always be directed at the same server, reducing the opportunity for load balancing.

We can alleviate this situation by configuring the adapters to publish the endpoints of both servers. For example, here is a configuration for
the server on host :Sun1

MyAdapter.Endpoints=tcp -h Sun1 -p 9999
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

Similarly, the configuration for host  retains the same published endpoints:Sun2

MyAdapter.Endpoints=tcp -h Sun2 -p 9999
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

For troubleshooting purposes, you can examine the published endpoints for an object adapter by setting the property 
. Note however that this setting generates significant trace information about the Ice run time's network activity,Ice.Trace.Network=3

therefore you may not want to use this setting by default.

Refreshing Object Adapter Endpoints

A host's network interfaces may change over time, for example, if a laptop moves in and out of range of a wireless network. The object
adapter provides an operation to refresh its list of interfaces:
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Slice

local interface ObjectAdapter {
    void refreshPublishedEndpoints();
    // ...
};

Calling  causes the object adapter to update its internal list of available network interfaces and to use thisrefreshPublishedEndpoints
updated information in the  property. This allows you to react to changing network interfaces while an object.PublishedEndpointsname
adapter is in use, but your application code is responsible for determining when it is necessary to call this operation.

Note that  takes effect only for object adapters that specify published endpoints without a host, or that setrefreshPublishedEndpoints
the published endpoints to  or .-h * -h 0.0.0.0

Timeouts in Object Adapter Endpoints

As a defense against hostile clients, we recommend that you specify a timeout for your physical object adapter endpoints. The timeout value
you select affects tasks that the Ice run time normally does not expect to block for any significant amount of time, such as writing a reply
message to a socket or waiting for SSL negotiation to complete. If you do not specify a timeout, the Ice run time waits indefinitely in these
situations. As a result, malicious or misbehaving clients could consume excessive resources such as file descriptors.

Specifying a timeout in an object adapter endpoint is done exactly as in a proxy endpoint, using the  option:-t

MyAdapter.Endpoints=tcp -p 9999 -t 5000

In this example, we specify a timeout of five seconds.

Discovering Object Adapter Endpoints

The object adapter provides operations for retrieving the physical and published endpoints:

Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        EndpointSeq getEndpoints();
        EndpointSeq getPublishedEndpoints();

        // ...
    };
};

The sequences that are returned contain  objects representing the adapter's physical and published endpoints, respectively.Endpoint

A Router's Effect on Object Adapter Endpoints

If an object adapter is configured with a router, the adapter's published endpoints are augmented to reflect the router. See  for moreGlacier2
information on configuring an adapter with a router.

See Also

Proxy and Endpoint Syntax
Ice Object Adapter Properties
Ice Default and Override Properties
IceGrid
Using Connections
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Communicators
Glacier2
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Creating Proxies with an Object Adapter

Proxies are created as a side-effect of using the , but the  of proxies is completely independent fromservant activation operations life cycle
that of servants. The  interface provides several operations for creating a proxy for an object, regardless of whether aObjectAdapter
servant is currently activated for that object's :identity

Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        Object* createProxy(Identity id);
        Object* createDirectProxy(Identity id);
        Object* createIndirectProxy(Identity id);

        // ...
    };
};

These operations are described below:

createProxy 

The  operation returns a new proxy for the object with the given identity. The adapter's configuration determinescreateProxy
whether the return value is a . If the adapter is configured with an , the operation returnsdirect proxy or an indirect proxy adapter ID
an indirect proxy that refers to the adapter ID. If the adapter is also configured with a  ID, the operation returns anreplica group
indirect proxy that refers to the replica group ID. Otherwise, if an adapter ID is not defined,  returns a direct proxycreateProxy
containing the adapter's .published endpoints

createDirectProxy 

The  operation returns a direct proxy containing the adapter's .createDirectProxy published endpoints

createIndirectProxy 

The  operation returns an . If the adapter is configured with an adapter ID, the returned proxycreateIndirectProxy indirect proxy
refers to that adapter ID. Otherwise, the proxy refers only to the object's identity.

In contrast to ,  does not use the replica group ID. Therefore, the returned proxy always refers to acreateProxy createIndirectProxy
specific replica.

After using one of the operations discussed above to create a proxy, you will receive a proxy that is configured by default for twoway
invocations. If you require the proxy to have a different configuration, you can use the  to create a new proxy with theproxy factory methods
desired configuration. As an example, the code below demonstrates how to configure the proxy for oneway invocations:

C++

Ice::ObjectAdapterPtr adapter = ...;
Ice::Identity id = ...;
Ice::ObjectPrx proxy = adapter->createProxy(id)->ice_oneway();

You can also instruct the object adapter to use a different default proxy configuration by setting the property . For.ProxyOptionsname
example, the following property causes the object adapter to return proxies that are configured for oneway invocations by default:

MyAdapter.ProxyOptions=-o

See Also

Servant Activation and Deactivation
Object Life Cycle
Object Identity
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Terminology
Object Adapter Endpoints
Object Adapter Replication
Proxy Methods
Ice Object Adapter Properties
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Using Multiple Object Adapters

A typical server rarely needs to use more than one object adapter. If you are considering using multiple object adapters, we suggest that you
check whether any of the considerations in the list below apply to your situation:

You need fine-grained control over which objects are accessible. For example, you could have an object adapter with only secure
endpoints to restrict access to some administrative objects, and another object adapter with non-secure endpoints for other objects.
Because an object adapter is associated with one or more transport endpoints, you can firewall a particular port, so objects
associated with the corresponding endpoint cannot be reached unless the firewall rules are satisfied.
You need control over the number of threads in the pools for different sets of objects in your application. For example, you may not
need concurrency on the objects connected to a particular object adapter, and multiple object adapters, each with its own thread

, can be useful to solve .pool deadlocks
You want to be able to temporarily disable processing new requests for a set of objects. This can be accomplished by placing an
object adapter in the .holding state
You want to set up different request routing when using an Ice router with .Glacier2

If none of the preceding items apply, chances are that you do not need more than one object adapter.

See Also

Object Adapter Thread Pools
Nested Invocations
Object Adapter States
Glacier2
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1.  

2.  

Object Identity

On this page:

The  TypeIce::Identity
Syntax for Stringified Identities
Identity Helper Functions

The  TypeIce::Identity

Each Ice object has an object identity defined as follows:

Slice

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

As you can see, an object identity consists of a pair of strings, a  and a . The complete object identity is the combination of name category
 and , that is, for two identities to be equal, both  and  must be the same. The  member is usuallyname category name category category

the empty string, unless you are using  or .servant locators default servants

Glacier2 also uses the  member for filtering.category

If  is an empty string,  must be the empty string as well. (An identity with an empty  and a non-empty  isname category name category
illegal.) If a proxy contains an identity in which  is empty, Ice interprets that proxy as a null proxy.name

Object identities can be represented as strings; the category part appears first and is followed by the name; the two components are
separated by a  character, for example:/

Factory/File

In this example,  is the category, and  is the name. If the  or  member themselves contain a  character, theFactory File name category /
stringified representation escapes the  character with a  , for example:/ \

Factories\/Factory/Node\/File

In this example, the category is  and the name is .Factories/Factory Node/File

Syntax for Stringified Identities

You rarely need to write identities as strings because, typically, your code will be using the  identity helper functions identityToString
and , or simply deal with proxies instead of identities. However, on occasion, you will need to use stringified identities instringToIdentity
configuration files. If the identities happen to contain meta-characters (such as a slash or backslash), or characters outside the printable
ASCII range, these characters must be escaped in the stringified representation. Here are rules that the Ice run time applies when parsing a
stringified identity:

The parser scans the stringified identity for an un?escaped slash character ( ). If such a slash character can be found, the/
substrings to the left and right of the slash are parsed as the  and  members of the identity, respectively; if no suchcategory name
slash character can be found, the entire string is parsed as the  member of the identity, and the  member is thename category
empty string.
Each of the  (if present) and  substrings is parsed according to the following rules:category name
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2.  

All characters in the string must be in the ASCII range 32 (space) to 126 (~); characters outside this range cause the parse
to fail.
Any character that is not part of an escape sequence is treated as that character.
The parser recognizes the following escape sequences and replaces them with their equivalent character:

 (backslash)\\
 (single quote)\'
 (double quote)\"
 (space)\b
 (form feed)\f
 (new line)\n
 (carriage return)\r
 (tab)\t

An escape sequence of the form , , or  (where  is a digit in the range 0 to 7) is replaced with the ASCII\o \oo \ooo o
character with the corresponding octal value. Parsing for octal digits allows for at most three consecutive digits, so the string

 is interpreted as the character with octal value 76 ( ) followed by the character  . Parsing for octal digits terminates\0763 > 3
as soon as it encounters a character that is not in the range 0 to 7, so  is the character with octal value 7 (bell) followed\7x
by the character  . Octal escape sequences must be in the range 0 to 255 (octal 000 to 377); escape sequences outsidex
this range cause a parsing error. For example,  is an illegal escape sequence.\539
If a character follows a backslash, but is not part of a recognized escape sequence, the backslash is ignored, so  is the\x
character  .x

Identity Helper Functions

To make conversion of identities to and from strings easier, the  interface provides appropriate conversion functions:Communicator

Slice

local interface Communicator {
    string identityToString(Identity id);
    Identity stringToIdentity(string id);
};

For C++, Ruby, and PHP, the operations on the communicator are the only way to convert between identities and strings. For other
languages, the conversion functions are provided as operations on the communicator as well but, in addition, the language mappings
provide static utility functions. (The utility functions have the advantage that you can call them without holding a reference to the
communicator.)

For C++, the static utility functions are not provided due to the need to apply string conversions, and the string converters
are registered on the communicator.

For Java, the utility functions are in the  class and are defined as:Ice.Util

Java

package Ice;

public final class Util {
    public static String   identityToString(Identity id);
    public static Identity stringToIdentity(String s);
}

For C#, the utility functions are in the  class and are defined as:Ice.Util
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C#

namespace Ice
{
    public sealed class Util
    {
        public static string   identityToString(Identity id);
        public static Identity stringToIdentity(string s);
    }
}

The Python functions are in the  module:Ice

Python

def identityToString(ident)
def stringToIdentity(str)

These functions correctly encode and decode characters that might otherwise cause problems (such as control characters).

As mentioned in , each entry in the ASM for an object adapter must be unique: you cannot add twoServant Activation and Deactivation
servants with the same identity to the ASM.

See Also

Servant Activation and Deactivation
Servant Locators
Default Servants
C++ Strings and Character Encoding
Glacier2



Ice 3.4.2 Documentation

837 Copyright © 2011, ZeroC, Inc.

The Current Object

Up to now, we have tacitly ignored the trailing parameter of type  that is passed to each skeleton operation on the serverIce::Current
side. The  structure is defined as follows:Current

Slice

module Ice {
    local dictionary<string, string> Context;

    enum OperationMode { Normal, \Idempotent };

    local struct Current {
        ObjectAdapter   adapter;
        Connection      con;
        Identity        id;
        string          facet;
        string          operation;
        OperationMode   mode;
        Context         ctx;
        int             requestId;
    };
};

Note that the  value provides access to information about the currently executing request to the implementation of an operation inCurrent
the server:

adapter
The  member provides access to the object adapter via which the request is being dispatched. In turn, the adapteradapter
provides access to its communicator (via the  operation).getCommunicator

con
The  member provides information about the  over which this request was received.con connection

id
The  member provides the  for the current request.id object identity

facet
The  member provides access to the  for the request.facet facet

operation
The  member contains the name of the operation that is being invoked. Note that the operation name may indicate oneoperation
of the , such as  or . (  is invoked if a client performs a .)operations on Ice::Object ice_ping ice_isA ice_isA checkedCast

mode
The  member contains the invocation mode for the operation (  or ), which influences the  ofmode Normal Idempotent retry behavior
the Ice run time.

ctx
The  member contains the current  for the invocation.ctx request context

requestId
The Ice  uses request IDs to associate replies with their corresponding requests. The  member provides this ID.protocol requestId
For oneway requests (which do not have replies), the request ID is  . For collocated requests (which do not use the Ice protocol),0
the request ID is  .-1

If you implement your server such that it uses a separate servant for each Ice object, the contents of  are not particularlyCurrent
interesting. (You would most likely access  to read the  member, for example, to activate or deactivate a servant.)Current adapter
However, as we will see in our discussion of  and , the  object is essential for more sophisticateddefault servants servant locators Current
(and more scalable) servant implementations.

See Also

Object Identity
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Default Servants
Servant Locators
Request Contexts
Facets and Versioning
Using Connections
The Ice Protocol
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Servant Locators

In a nutshell, a servant locator is a local object that you implement and attach to an . Once an adapter has a servant locator, itobject adapter
consults its  to locate a servant for an incoming request as usual. If a servant for the request can be found in theactive servant map (ASM)
ASM, the request is dispatched to that servant. However, if the ASM does not have an entry for the  of the request, the objectobject identity
adapter calls back into the servant locator to ask it to provide a servant for the request. The servant locator either:

instantiates a servant and passes it to the Ice run time, in which case the request is dispatched to that newly-instantiated servant, or
the servant locator indicates failure to locate a servant to the Ice run time, in which case the client receives an 

.ObjectNotExistException

This simple mechanism allows us to scale servers to provide access to an unlimited number of Ice objects: instead of instantiating a
separate servant for each and every Ice object in existence, the server can instantiate servants for only a subset of Ice objects, namely those
that are actually used by clients.

Servant locators are most commonly used by servers that provide access to databases: typically, the number of entries in the database is far
larger than what the server can hold in memory. Servant locators allow the server to only instantiate servants for those Ice objects that are
actually used by clients.

Another common use for servant locators is in servers that are used for process control or network management: in that case, there is no
database but, instead, there is a potentially very large number of devices or network elements that must be controlled via the server.
Otherwise, this scenario is the same as for large databases: the number of Ice objects exceeds the number of servants that the server can
hold in memory and, therefore, requires an approach that allows the number of instantiated servants to be less than the number of Ice
objects.

Topics

The ServantLocator Interface
Threading Guarantees for Servant Locators
Registering a Servant Locator
Servant Locator Example
Using Identity Categories with Servant Locators
Using Cookies with Servant Locators

See Also

Object Adapters
The Active Servant Map
Object Identity
Object Life Cycle
Default Servants
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The ServantLocator Interface

A servant locator has the following interface:

Slice

module Ice {
    local interface ServantLocator {
        ["UserException"]
        Object locate(Current curr, out LocalObject cookie);

        ["UserException"]
        void finished(Current curr, Object servant, LocalObject cookie);

        void deactivate(string category);
    };
};

Note that  is a . To create an actual implementation of a servant locator, you must define a class that isServantLocator local interface
derived from  and provide implementations of the , , and  operations. The Ice runIce::ServantLocator locate finished deactivate
time invokes the operations on your derived class as follows:

locate 

Whenever a request arrives for which no entry exists in the , the Ice run time calls  and suppliesactive servant map (ASM) locate
the  object for the request. The implementation of  (which you provide as part of the derived class) is supposed toCurrent locate
return a servant that can process the incoming request. Your implementation of  can behave in three possible ways: locate

Instantiate and return a servant for the current request. In this case, the Ice run time dispatches the request to the newly
instantiated servant.
Return null. In this case, the Ice run time raises an  in the client.ObjectNotExistException
Throw a run-time exception. In this case, the Ice run time propagates the thrown exception back to the client. Keep in mind
that all run-time exceptions, apart from , , and ObjectNotExistException OperationNotExistException

, are presented as  to the client.FacetNotExistException UnknownLocalException

You can also throw user exceptions from . If the user exception is in the corresponding operation's exception specification,locate
that user exception is returned to the client. User exceptions thrown by  that are not listed in the exception specification oflocate
the corresponding operation are returned to the client as . Non-Ice exceptions are returned to the clientUnknownUserException
as . UnknownException

The  out-parameter to  allows you to return a local object to the object adapter. The object adapter does not carecookie locate
about the contents of that object (and it is legal to return a null cookie). Instead, the Ice run time passes whatever cookie you return
from  back to you when it calls . This allows you to pass an arbitrary amount of state from  to thelocate finished locate
corresponding call to .finished

finished 

If a call to  has returned a servant to the Ice run time, the Ice run time dispatches the incoming request to the servant. Oncelocate
the request is complete (that is, the operation being invoked has completed), the Ice run time calls , passing the servantfinished
whose operation has completed, the  object for the request, and the cookie that was initially created by . ThisCurrent locate
means that every call to  is balanced by a corresponding call to  (provided that  actually returned alocate finished locate
servant). 

If you throw an exception from , the Ice run time propagates the thrown exception back to the client. As for , youfinished locate
can throw user exceptions from . If a user exception is in the corresponding operation's exception specification, that userfinished
exception is returned to the client. User exceptions that are not in the corresponding operation's exception specification are returned
to the client as . UnknownUserException

 can also throw . However, only , ,finished run-time exceptions ObjectNotExistException OperationNotExistException
and  are propagated without change to the client; other run-time exceptions are returned to the clientFacetNotExistException
as . UnknownLocalException

Non-Ice exceptions thrown from  are returned to the client as . finished UnknownException



Ice 3.4.2 Documentation

841 Copyright © 2011, ZeroC, Inc.

If both the operation implementation and  throw a user exception, the exception thrown by  overrides thefinished finished
exception thrown by the operation.

deactivate 

The  operation allows a servant locator to clean up once it is no longer needed. (For example, the locator might close adeactivate
database connection.) The Ice run time passes the category of the servant locator being deactivated to the  operation. deactivate

The run time calls  when destroying the object adapter to which the servant locator is attached. More precisely, deactivate
 is called when you call  on the object adapter, or when you call  on the communicator (whichdeactivate destroy destroy

implicitly calls  on the object adapter). destroy

Once the run time has called , it is guaranteed that no further calls to  or  can happen, that is, deactivate locate finished
 is called exactly once, after all operations dispatched via this servant locator have completed. deactivate

This also explains why  is not called as part of :  deactivate ObjectAdapter::deactivate ObjectAdapter::deactivate
 and returns immediately, so it cannot call  directly, because there might stillinitiates deactivation ServantLocator::deactivate

be outstanding requests dispatched via this servant locator that have to complete first — in turn, this would mean that either 
 could block (which it must not do) or that a call to  could beObjectAdapter::deactivate ServantLocator::deactivate

followed by one or more calls to  (which must not happen either).finished

It is important to realize that the Ice run time does not "remember" the servant that is returned by a particular call to . Instead, the Icelocate
run time simply dispatches an incoming request to the servant returned by  and, once the request is complete, calls . Inlocate finished
particular, if two requests for the same servant arrive more or less simultaneously, the Ice run time calls  and  once forlocate finished
each request. In other words,  establishes the association between an object identity and a servant; that association is valid only forlocate
a single request and is never used by the Ice run time to dispatch a different request.

See Also

The Active Servant Map
The Current Object
Run-Time Exceptions
Object Adapter States
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Threading Guarantees for Servant Locators

The Ice run time guarantees that every operation invocation that involves a  is bracketed by calls to  and ,servant locator locate finished
that is, every call to  is balanced by a corresponding call to  (assuming that the call to  actually returned a servant,locate finished locate
of course).

In addition, the Ice run time guarantees that , the operation, and  are called by the same thread. This guarantee islocate finished
important because it allows you to use  and  to implement thread-specific pre- and post-processing around operationlocate finished
invocations. (For example, you can start a transaction in  and commit or roll back that transaction in , or you can acquire alocate finished
lock in  and release the lock in .locate finished

Both transactions and locks usually are thread-specific, that is, only the thread that started a transaction can commit it or
roll it back, and only the thread that acquired a lock can release the lock.

If you are using , the thread that starts a call is not necessarily the thread that finishes it. Inasynchronous method dispatch
that case,  is called by whatever thread executes the operation implementation, which may be a different threadfinished
than the one that called .locate

The Ice run time also guarantees that  is called when you destroy the object adapter to which the servant locator is attached.deactivate
The  call is made only once all operations that involved the servant locator are finished, that is,  is guaranteed notdeactivate deactivate
to run concurrently with  or , and is guaranteed to be the last call made to a servant locator.locate finished

Beyond this, the Ice run time provides no threading guarantees for servant locators. In particular, it is possible for invocations of:

locate to proceed concurrently (for the same object identity or for different object identities).
finished to proceed concurrently (for the same object identity or for different object identities).
locate and  to proceed concurrently (for the same object identity or for different object identities).finished

These semantics allow you to extract the maximum amount of parallelism from your application code (because the Ice run time does not
serialize invocations when serialization may not be necessary). Of course, this means that you must  from protect access to shared data

 and  with mutual exclusion primitives as necessary.locate finished

See Also

The ServantLocator Interface
The Ice Threading Model
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Registering a Servant Locator

On this page:

Servant Locator Registration
Call Dispatch Semantics for Servant Locators

Servant Locator Registration

An  does not automatically know when you create a . Instead, you must explicitly register a servant locator withobject adapter servant locator
the object adapter:

Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        void addServantLocator(ServantLocator locator, string category);

        ServantLocator removeServantLocator(string category);

        ServantLocator findServantLocator(string category);

        // ...
    };
};

As you can see, the object adapter allows you to add, remove, and find servant locators. Note that, when you register a servant locator, you
must provide an argument for the  parameter. The value of the  parameter controls which  the servantcategory category object identities
locator is responsible for: only object identities with a matching  member trigger a corresponding call to . An incomingcategory locate
request for which no explicit entry exists in the  and with a category for which no servant locator is registeredactive servant map (ASM)
returns an  to the client.ObjectNotExistException

addServantLocator has the following semantics:

You can register exactly one servant locator for a specific category. Attempts to call  for the same categoryaddServantLocator
more than once raise an .AlreadyRegisteredException
You can register different servant locators for different categories, or you can register the same single servant locator multiple times
(each time for a different category). In the former case, the category is implicit in the servant locator instance that is called by the Ice
run time; in the latter case, the implementation of  can find out which category the incoming request is for by examining thelocate
object identity member of the  object that is passed to .Current locate
It is legal to register a servant locator for the empty category. Such a servant locator is known as a : if adefault servant locator
request comes in for which no entry exists in the ASM, and whose category does not match the category of any other registered
servant locator, the Ice run time calls  on the default servant locator.locate

removeServantLocator removes and returns the servant locator for a specific category (including the empty category) with the following
semantics:

If no servant locator is registered for the specified category, the operation raises .NotRegisteredException
Once a servant locator is successfully removed for the specified category, the Ice run time guarantees that no new incoming
requests for that category are dispatched to the servant locator.
A call to  returns immediately without waiting for the completion of any pending requests on that servantremoveServantLocator
locator; such requests still complete normally by calling  on the servant locator.finished
Removing a servant locator does not cause Ice to invoke  on that servant locator, as  is only called whendeactivate deactivate
a registered servant locator's object adapter is destroyed.

findServantLocator allows you to retrieve the servant locator for a specific category (including the empty category). If no match is found,
the operation returns null.

Call Dispatch Semantics for Servant Locators

The preceding rules may seem complicated, so here is a summary of the actions taken by the Ice run time to locate a servant for an
incoming request.
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1.  
2.  

3.  

4.  

5.  

6.  

Every incoming request implicitly identifies a specific object adapter for the request (because the request arrives at a specific transport
endpoint and, therefore, identifies a particular object adapter). The incoming request carries an object identity that must be mapped to a
servant. To locate a servant, the Ice run time goes through the following steps, in the order shown:

Look for the identity in the ASM. If the ASM contains an entry, dispatch the request to the corresponding servant.
If the category of the incoming object identity is non-empty, look for a  that is registered for that category. If such adefault servant
default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is empty, or no default servant could be found for the category in step 2, look for a
default servant that is registered for the empty category. If such a default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is non-empty and no servant could be found in the preceding steps, look for a servant
locator that is registered for that category. If such a servant locator is registered, call  on the servant locator and, if locate locate
returns a servant, dispatch the request to that servant, followed by a call to ; otherwise, if the call to  returns null,finished locate
raise  or  in the client.ObjectNotExistException FacetNotExistException
If the category of the incoming object identity is empty, or no servant locator could be found for the category in step 4, look for a
default servant locator (that is, a servant locator that is registered for the empty category). If a default servant locator is registered,
dispatch the request as for step 4.
Raise  or  in the client. (  is raised if theObjectNotExistException FacetNotExistException ObjectNotExistException
ASM does not contain a servant with the given identity at all,  is raised if the ASM contains a servantFacetNotExistException
with a matching identity, but a non-matching .)facet

It is important to keep these call dispatch semantics in mind because they enable a number of powerful implementation techniques. Each
technique allows you to streamline your server implementation and to precisely control the trade-off between performance, memory
consumption, and scalability. To illustrate the possibilities, we will outline a number of the most common implementation techniques.

See Also

Object Adapters
Object Identity
The Active Servant Map
Default Servants
Facets and Versioning
Servant Locator Example
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Servant Locator Example

To illustrate the  concepts outlined so far, let us examine a (very simple) implementation. Consider that we want to create anservant locator
electronic phone book for the entire world's telephone system (which, clearly, involves a very large number of entries, certainly too many to
hold the entire phone book in memory). The actual phone book entries are kept in a large database. Also assume that we have a search
operation that returns the details of a phone book entry. The Slice definitions for this application might look something like the following:

Slice

struct Details {
    // Lots of details about the entry here...
};

interface PhoneEntry {
    idempotent Details getDetails();
    idempotent void updateDetails(Details d);
    // ...
};

struct SearchCriteria {
    // Fields to permit searching...
};

interface PhoneBook {
    idempotent PhoneEntry* search(SearchCriteria c);
    // ...
};

The details of the application do not really matter here; the important point to note is that each phone book entry is represented as an
interface for which we need to create a servant eventually, but we cannot afford to keep servants for all entries permanently in memory.

Each entry in the phone database has a unique identifier. This identifier might be an internal database identifier, or a combination of field
values, depending on exactly how the database is constructed. The important point is that we can use this database identifier to link the 

 for an Ice object to its persistent state: we simply use the database identifier as the . This means that each proxyproxy object identity
contains the primary access key that is required to locate the persistent state of each Ice object and, therefore, instantiate a servant for that
Ice object.

What follows is an outline implementation in C++. The class definition of our servant locator looks as follows:

C++

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie);

    virtual void finished(const Ice::Current& c, const Ice::ObjectPtr& servant,
                          const Ice::LocalObjectPtr& cookie);

    virtual void deactivate(const std::string& category);
};

Note that  inherits from  and implements the pure virtual functions that are generated by the MyServantLocator Ice::ServantLocator
 compiler for . Of course, as always, you can add additional member functions, such as aslice2cpp the  interfaceIce::ServantLocator

constructor and destructor, and you can add private data members as necessary to support your implementation.

In C++, you can implement the  member function along the following lines:locate
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C++

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;

    // Use the identity to retrieve the state from the database.
    //
    ServantDetails d;
    try {
        d = DB_lookup(name);
    } catch (const DB_error&)
        return 0;
    }

    // We have the state, instantiate a servant and return it.
    //
    return new PhoneEntryI(d);
}

For the time being, the implementations of  and  are empty and do nothing.finished deactivate

The  call in the preceding example is assumed to access the database. If the lookup fails (presumably, because no matchingDB_lookup
record could be found),  throws a  exception. The code catches that exception and returns zero instead; this raises DB_lookup DB_error

 in the client to indicate that the client used a proxy to a .ObjectNotExistException no-longer existent Ice object

Note that  instantiates the servant on the heap and returns it to the Ice run time. This raises the question of when the servant will belocate
destroyed. The answer is that the Ice run time holds onto the servant for as long as necessary, that is, long enough to invoke the operation
on the returned servant and to call  once the operation has completed. Thereafter, the servant is no longer needed and the Ice runfinished
time destroys the smart pointer that was returned by . In turn, because no other smart pointers exist for the same servant, thislocate
causes the destructor of the  instance to be called, and the servant to be destroyed.PhoneEntryI

The upshot of this design is that, for every incoming request, we instantiate a servant and allow the Ice run time to destroy the servant once
the request is complete. Depending on your application, this may be exactly what is needed, or it may be prohibitively expensive — we will
explore designs that avoid creation and destruction of a servant for every request shortly.

In Java, the implementation of our servant locator looks very similar:
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1.  

2.  

3.  

4.  

Java

public class MyServantLocator implements Ice.ServantLocator {

    public Ice.Object locate(Ice.Current c, Ice.LocalObjectHolder cookie)
    {
        // Get the object identity. (We use the name member
        // as the database key.
        String name = c.id.name;

        // Use the identity to retrieve the state
        // from the database.
        //
        ServantDetails d;
        try {
            d = DB.lookup(name);
        } catch (DB.error e) {
            return null;
        }

        // We have the state, instantiate a servant and return it.
        //
        return new PhoneEntryI(d);
    }

    public void finished(Ice.Current c, Ice.Object servant, java.lang.Object cookie)
    {
    }

    public void deactivate(String category)
    {
    }
}

The C# implementation is virtually identical to the Java implementation, so we do not show it here.

All implementations of  follow the pattern illustrated by the previous pseudo-code:locate

Use the  member of the passed  object to obtain the object identity. Typically, only the  member of the identity isid Current name
used to retrieve servant state. The  member is normally used to select a servant locator. (We will explore category use of the

 shortly.)category member
Retrieve the state of the Ice object from secondary storage (or the network) using the object identity as a key.

If the lookup succeeds, you have retrieved the state of the Ice object.
If the lookup fails, return null. In that case, the Ice object for the client's request truly does not exist, presumably, because
that Ice object was deleted earlier, but the client still has a proxy to the now-deleted object.

Instantiate a servant and use the state retrieved from the database to initialize the servant. (In this example, we pass the retrieved
state to the servant constructor.)
Return the servant.

Of course, before we can use our servant locator, we must inform the adapter of its existence prior to activating the adapter, for example (in
Java or C#):

MyServantLocator sl = new MyServantLocator();
adapter.addServantLocator(sl, "");

Note that, in this example, we have installed the servant locator for the empty category. This means that  on our servant locator willlocate
be called for invocations to any of our Ice objects (because the empty category acts as the default). In effect, with this design, we are not
using the  member of the object identity. This is fine, as long as all our servants all have the same, single interface. However, if wecategory
need to support several different interfaces in the same server, this simple strategy is no longer sufficient.

See Also
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Servant Locators
Object Identity
Object Life Cycle
The Current Object
Using Identity Categories with Servant Locators
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Using Identity Categories with Servant Locators

Our  always instantiates a servant of type . In other words, the servant locator implicitly is aware of the type ofsimple example PhoneEntryI
servant the incoming request is for. This is not a very realistic assumption for most servers because, usually, a server provides access to
objects with several different interfaces. This poses a problem for our  implementation: somehow, we need to decide inside locate locate
what type of servant to instantiate. You have several options for solving this problem:

Use a separate object adapter for each interface type and use a separate servant locator for each object adapter. 

This technique works fine, but has the down-side that each object adapter requires a separate transport endpoint, which is wasteful.

Mangle a type identifier into the  component of the . name object identity

This technique uses part of the object identity to denote what type of object to instantiate. For example, in our file system
application, we have directory and file objects. By convention, we could prepend a ' ' to the identity of every directory and prependd
an ' ' to the identity of every file. The servant locator then can use the first letter of the identity to decide what type of servant tof
instantiate:

C++

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;
    std::string realId = c.id.name.substr(1);
    try {
        if (name[0] == 'd') {
            // The request is for a directory.
            //
            DirectoryDetails d = DB_lookup(realId);
            return new DirectoryI(d);
        } else {
            // The request is for a file.
            //
            FileDetails d = DB_lookup(realId);
            return new FileI(d);
        }
    } catch (DatabaseNotFoundException&) {
        return 0;
    }
}

While this works, it is awkward: not only do we need to parse the  member to work out what type of object to instantiate, but wename
also need to modify the implementation of  whenever we add a new type to our application.locate

Use the  member of the object identity to denote the type of servant to instantiate. category

This is the recommended approach: for every interface type, we assign a separate identifier as the value of the  membercategory
of the object identity. (For example, we can use ' ' for directories and ' ' for files.) Instead of registering a single servant locator, wed f
create two different servant locator implementations, one for directories and one for files, and then register each locator for the
appropriate category:
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C++

class DirectoryLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
    {
        // Code to locate and instantiate a directory here...
    }

    virtual void finished(const Ice::Current& c, const Ice::ObjectPtr& servant,
                          const Ice::LocalObjectPtr& cookie)
    {
    }

    virtual void deactivate(const std::string& category)
    {
    }
};

class FileLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
    {
        // Code to locate and instantiate a file here...
    }

    virtual void finished(const Ice::Current& c, const Ice::ObjectPtr& servant,
                          const Ice::LocalObjectPtr& cookie)
    {
    }

    virtual void deactivate(const std::string& category)
    {
    }
};

// ...

// Register two locators, one for directories and
// one for files.
//
adapter->addServantLocator(new DirectoryLocator(), "d");
adapter->addServantLocator(new FileLocator(), "f");

Yet another option is to use the  member of the object identity, but to use a single default servant locator (that is, a locator for thecategory
empty category). With this approach, all invocations go to the single default servant locator, and you can switch on the  valuecategory
inside the implementation of the  operation to determine which type of servant to instantiate. However, this approach is harder tolocate
maintain than the previous one; the  member of the Ice object identity exists specifically to support servant locators, so you mightcategory
as well use it as intended.

See Also

Servant Locator Example
Object Identity



Ice 3.4.2 Documentation

851 Copyright © 2011, ZeroC, Inc.

Using Cookies with Servant Locators

Occasionally, it can be useful for a  to pass information between  and . For example, the implementation of servant locator locate finished
 could choose among a number of alternative database backends, depending on load or availability and, to properly finalize state,locate

the implementation of  might need to know which database was used by . To support such scenarios, you can create afinished locate
cookie in your  implementation; the Ice run time passes the value of the cookie to  after the operation invocation haslocate finished
completed. The cookie must derive from  and can contain whatever state and member functions are useful to yourIce::LocalObject
implementation:

C++

class MyCookie : public virtual Ice::LocalObject {
public:
    // Whatever is useful here...
};

typedef IceUtil::Handle<MyCookie> MyCookiePtr;

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
    {
        // Code as before...

        // Allocate and initialize a cookie.
        //
        cookie = new MyCookie(...);

        return new PhoneEntryI;
    }

    virtual void finished(const Ice::Current& c, const Ice::ObjectPtr& servant,
                          const Ice::LocalObjectPtr& cookie)
    {
        // Down-cast cookie to actual type.
        //
        MyCookiePtr mc = MyCookiePtr::dynamicCast(cookie);

        // Use information in cookie to clean up...
        //
        // ...
    }

    virtual void deactivate(const std::string& category);
};

See Also

Servant Locators
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Default Servants

On this page:

Overview of Default Servants
Default Servant API
Threading Guarantees for Default Servants
Call Dispatch Semantics for Default Servants
Guidelines for Implementing Default Servants

Object Identity is the Key
Minimize Contention
Combine Strategies
Categories Denote Interfaces
Plan for the Future
Throw exceptions
Handle ice_ping
Consider Interceptors
Use a  Default Servant to Forward MessagesBlobject

Overview of Default Servants

The  (ASM) is a simple lookup table that maintains a one-to-one mapping between object identities and servants.Active Servant Map
Although the ASM is easy to understand and offers efficient indexing, it does not scale well when the number of objects is very large.
Scalability is a common problem with object-oriented middleware: servers frequently are used as front ends to large databases that are
accessed remotely by clients. The server's job is to present an object-oriented view to clients of a very large number of records in the
database. Typically, the number of records is far too large to instantiate servants for even a fraction of the database records.

A common technique for solving this problem is to use . A default servant is a servant that, for each request, takes on thedefault servants
persona of a different Ice object. In other words, the servant changes its behavior according to the  that is accessed by aobject identity
request, on a per-request basis. In this way, it is possible to allow clients access to an unlimited number of Ice objects with only a single
servant in memory. A default servant is essentially a specialized version of a  that satisfies the majority of use cases with aservant locator
simpler API, whereas a servant locator provides more flexibility for those applications that require it.

Default servant implementations are attractive not only because of the memory savings they offer, but also because of the simplicity of
implementation: in essence, a default servant is a facade  to the persistent state of an object in the database. This means that the[1]
programming required to implement a default servant is typically minimal: it simply consists of the code required to read and write the
corresponding database records.

A default servant is a regular servant that you implement and register with an . For each incoming request, the object adapterobject adapter
first attempts to locate a servant in its ASM. If no servant is found, the object adapter dispatches the request to a default servant. With this
design, a default servant is the object adapter's servant of last resort if no match was found in the ASM.

Implementing a default servant requires a somewhat different mindset than the typical "one servant per Ice object" strategy used in less
advanced applications. The most important quality of a default servant is its statelessness: it must be prepared to dispatch multiple requests
simultaneously for different objects. The price we have to pay for the unlimited scalability and reduced memory footprint is performance:
default servants typically make a database access for every invoked operation, which is obviously slower than caching state in memory as
part of a servant that has been added to the ASM. However, this does not mean that default servants carry an unacceptable performance
penalty: databases often provide sophisticated caching, so even though the operation implementations read and write the database, as long
as they access cached state, performance may be entirely acceptable.

Default Servant API

The default servant API consists of the following operations in the object adapter interface:
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Slice

module Ice {
    local interface ObjectAdapter {
        void addDefaultServant(Object servant, string category);
        Object removeDefaultServant(string category);
        Object findDefaultServant(string category);

        // ...
    };
};

As you can see, the object adapter allows you to add, remove, and find default servants. Note that, when you register a default servant, you
must provide an argument for the  parameter. The value of the  parameter controls which object identities the defaultcategory category
servant is responsible for: only object identities with a matching  member trigger a dispatch to this default servant. An incomingcategory
request for which no explicit entry exists in the ASM and with a category for which no default servant is registered returns an 

 to the client.ObjectNotExistException

addDefaultServant has the following semantics:

You can register exactly one default servant for a specific category. Attempts to call  for the same categoryaddDefaultServant
more than once raise an .AlreadyRegisteredException
You can register different default servants for different categories, or you can register the same single default servant multiple times
(each time for a different category). In the former case, the category is implicit in the default servant instance that is called by the Ice
run time; in the latter case, the servant can find out which category the incoming request is for by examining the object identity
member of the  object that is passed to the dispatched operation.Current
It is legal to register a default servant for the empty category. Such a servant is used if a request comes in for which no entry exists
in the ASM, and whose category does not match the category of any other registered default servant.

removeDefaultServant removes the default servant for the specified category. Attempts to remove a non-existent default servant raise 
. The operation returns the removed default servant. Once a default servant is successfully removed for theNotRegisteredException

specified category, the Ice run time guarantees that no new incoming requests for that category are dispatched to the servant.

The  operation allows you to retrieve the default servant for a specific category (including the empty category). If nofindDefaultServant
default servant is registered for the specified category,  returns null.findDefaultServant

Threading Guarantees for Default Servants

The threading semantics for a default servant are no different than for a servant registered in the ASM: operations may be dispatched on a
default servant concurrently, for the same object identity or for different object identities. If you have configured the communicator with
multiple , your default servant must protect access to shared data with appropriate locks.dispatch threads

Call Dispatch Semantics for Default Servants

This section summarizes the actions taken by the Ice run time to locate a servant for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the request (because the request arrives at a specific transport
 and, therefore, identifies a particular object adapter). The incoming request carries an object identity that must be mapped to aendpoint

servant. To locate a servant, the Ice run time goes through the following steps, in the order shown:

Look for the identity in the ASM. If the ASM contains an entry, dispatch the request to the corresponding servant.
If the category of the incoming object identity is non-empty, look for a default servant that is registered for that category. If such a
default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is empty, or no default servant could be found for the category in step 2, look for a
default servant that is registered for the empty category. If such a default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is non-empty and no servant could be found in the preceding steps, look for a servant

 that is registered for that category. If such a servant locator is registered, call  on the servant locator and, if locator locate locate
returns a servant, dispatch the request to that servant, followed by a call to ; otherwise, if the call to  returns null,finished locate
raise  or  in the client. (  is raised if theObjectNotExistException FacetNotExistException ObjectNotExistException
ASM does not contain a servant with the given identity at all,  is raised if the ASM contains a servantFacetNotExistException
with a matching identity, but a non-matching .)facet
If the category of the incoming object identity is empty, or no servant locator could be found for the category in step 4, look for a
default servant locator (that is, a servant locator that is registered for the empty category). If a default servant locator is registered,
dispatch the request as for step 4.
Raise  or  in the client. (  is raised if theObjectNotExistException FacetNotExistException ObjectNotExistException
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6.  

ASM does not contain a servant with the given identity at all,  is raised if the ASM contains a servantFacetNotExistException
with a matching identity, but a non-matching .)facet

It is important to keep these call dispatch semantics in mind because they enable a number of powerful implementation techniques. Each
technique allows you to streamline your server implementation and to precisely control the trade-off between performance, memory
consumption, and scalability.

Guidelines for Implementing Default Servants

This section provides some guidelines to assist you in implementing default servants effectively.

Object Identity is the Key

When an incoming request is dispatched to the default servant, the target object identity is provided in the  argument. The Current name
field of the identity typically supplies everything the default servant requires in order to satisfy the request. For instance, it may serve as the
key in a database query, or even hold an encoded structure in some proprietary format that your application uses to convey more than just a
string.

Naturally, the client can also pass arguments to the operation that assist the default servant in retrieving whatever state it requires. However,
this approach can easily introduce implementation artifacts into your Slice interfaces, and in most cases the client should not need to know
that the server is implemented with a default servant. If at all possible, use only the object identity.

Minimize Contention

For better scalability, the default servant's implementation should strive to eliminate contention among the dispatch threads. As an example,
when a database holds the default servant's state, each of the servant's operations usually begins with a query. Assuming that the database
API is thread-safe, the servant needs to perform no explicit locking of its own. With a copy of the state in hand, the implementation can work
with function-local data to satisfy the request.

Combine Strategies

The ASM still plays a useful role even in applications that are ideally suited for default servants. For example, there is no need to implement
a singleton object as a default servant: if there can only be one instance of the object, implementing it as a default servant does nothing to
improve your application's scalability.

Applications often install a handful of servants in the ASM while servicing the majority of requests in a default servant. For example, a
database application might install a singleton query object in the ASM while using a default servant to process all invocations on the
database records.

Categories Denote Interfaces

In general, all of the objects serviced by a default servant must have the same interface. If you only need a default servant for one interface,
you can register the default servant with an empty category string. However, to implement several interfaces, you will need a default servant
implementation for each one. Furthermore, you must take steps to ensure that the object adapter dispatches an incoming request to the
appropriate default servant. The  field of the object identity is intended to serve this purpose.category

For example, a process control system might have interfaces named  and . To direct requests to the proper default servant,Sensor Switch
the application uses the symbol  or  as the category of each object's identity, and registers corresponding default servantsSensor Switch
having those same categories with the object adapter.

Plan for the Future

If you suspect that you might eventually need to implement more than one interface with default servants, we recommend using a non-empty
category even if you start out having only one default servant. Adding another default servant later becomes much easier if the application is
already designed to operate correctly with categories.

Throw exceptions

If a request arrives for an object that no longer exists, it is the default servant's responsibility to raise  toObjectNotExistException
properly manage .object life cycles

Handle ice_ping
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1.  

One issue you need to be aware of with default servants is the need to override : the default implementation of  that theice_ping ice_ping
servant inherits from its skeleton class always succeeds. For servants that are registered with the ASM, this is exactly what we want;
however, for default servants,  must fail if a client uses a proxy to an Ice object that . To avoid getting successful ice_ping no longer exists

 invocations for non-existent Ice objects, you must override  in the default servant. The implementation must checkice_ping ice_ping
whether the object identity for the request denotes a still-existing Ice object and, if not, raise .ObjectNotExistException

It is good practice to override  if you are using default servants. Because you cannot override operations on  usingice_ping Ice::Object
a Java or C# tie servant (or an Objective-C delegate servant), you must implement default servants by deriving from the generated skeleton
class if you choose to override .ice_ping

Consider Interceptors

A  is often installed as a default servant.dispatch interceptor

Use a  Default Servant to Forward MessagesBlobject

Message forwarding services, such as , can be implemented simply and efficiently with a  default servant. Such a servantGlacier2 Blobject
simply chooses a destination to forward a request to, without decoding any of the parameters.

See Also

The Active Servant Map
Object Identity
Servant Locators
Object Adapters
The Current Object
The Ice Threading Model
Facets and Versioning
Dispatch Interceptors
Dynamic Invocation and Dispatch Overview
Glacier2
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Server Implementation Techniques

As mentioned in , instantiating a servant for each Ice object on server start-up is a viable design, provided that you canServant Locators
afford the amount of memory required by the servants, as well as the delay in start-up of the server. However, Ice supports more flexible
mappings between Ice objects and servants; these alternate mappings allow you to precisely control the trade-off between memory
consumption, scalability, and performance. We outline a few of the more common implementation techniques here.

On this page:

Incremental Server Initialization
Implementing a Server using Default Servants

Overriding ice_ping
Combining Server Implementation Techniques

Incremental Server Initialization

If you use a , the servant returned by  is used only for the current request, that is, the Ice run time does not add theservant locator locate
servant to the  (ASM). Of course, this means that if another request comes in for the same Ice object,  mustActive Servant Map locate
again retrieve the object state and instantiate a servant. A common implementation technique is to add each servant to the ASM as part of 

. This means that only the first request for each Ice object triggers a call to ; thereafter, the servant for the corresponding Icelocate locate
object can be found in the ASM and the Ice run time can immediately dispatch another incoming request for the same Ice object without
having to call the servant locator.

An implementation of  to do this would look something like the following:locate

C++

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c, Ice::LocalObjectPtr&)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;

    // Use the identity to retrieve the state from the database.
    //
    ServantDetails d;
    try {
        d = DB_lookup(name);
    } catch (const DB_error&)
        return 0;
    }

    // We have the state, instantiate a servant.
    //
    Ice::ObjectPtr servant = new PhoneEntryI(d);

    // Add the servant to the ASM.
    //
    c.adapter->add(servant, c.id);      // NOTE: Incorrect!

    return servant;
}

This is almost identical to the implementation seen in our  — the only difference is that we also earlier example add the servant to the ASM
by calling . Unfortunately, this implementation is wrong because it suffers from a race condition. Consider theObjectAdapter::add
situation where we do not have a servant for a particular Ice object in the ASM, and two clients more or less simultaneously send a request
for the same Ice object. It is entirely possible for the thread scheduler to schedule the two incoming requests such that the Ice run time
completes the lookup in the ASM for both requests and, for each request, concludes that no servant is in memory. The net effect is that 

 will be called twice for the same Ice object, and our servant locator will instantiate two servants instead of a single servant. Becauselocate
the second call to  will raise an , only one of the two servants will be added to theObjectAdapter::add AlreadyRegisteredException
ASM.
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Of course, this is hardly the behavior we expect. To avoid the race condition, our implementation of  must check whether alocate
concurrent invocation has already instantiated a servant for the incoming request and, if so, return that servant instead of instantiating a new
one. The Ice run time provides the  operation to allow us to test whether an entry for a specific identity alreadyObjectAdapter::find
exists in the ASM:

Slice

module Ice {
    local interface ObjectAdapter {
        // ...

        Object find(Identity id);

        // ...
    };
};

find returns the servant if it exists in the ASM and null, otherwise. Using this lookup function, together with a mutex, allows us to correctly
implement . The class definition of our servant locator now has a private mutex so we can establish a critical region inside :locate locate

C++

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr&);

    // Declaration of finished() and deactivate() here...

private:
    IceUtil::Mutex _m;
};

The  member locks the mutex and tests whether a servant is already in the ASM: if so, it returns that servant; otherwise, itlocate
instantiates a new servant and adds it to the ASM as before:



Ice 3.4.2 Documentation

858 Copyright © 2011, ZeroC, Inc.

C++

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c, Ice::LocalObjectPtr&)
{
    IceUtil::Mutex::Lock lock(_m);

    // Check if we have instantiated a servant already.
    //
    Ice::ObjectPtr servant = c.adapter.find(c.id);

    if (!servant) {     // We don't have a servant already

        // Instantiate a servant.
        //
        ServantDetails d;
        try {
           d = DB_lookup(c.id.name);
        } catch (const DB_error&) {
           return 0;
        }
        servant = new PhoneEntryI(d);

        // Add the servant to the ASM.
        //
        c.adapter->add(servant, c.id);
    }

    return servant;
}

The Java version of this locator is almost identical, but we use the  qualifier instead of a mutex to make  a criticalsynchronized locate
region:

Java

synchronized public Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{
    // Check if we have instantiated a servant already.
    //
    Ice.Object servant = c.adapter.find(c.id);

    if (servant == null) { // We don't have a servant already

        // Instantiate a servant
        //
        ServantDetails d;
        try {
            d = DB.lookup(c.id.name);
        } catch (DB.error&) {
            return null;
        }
        servant = new PhoneEntryI(d);

        // Add the servant to the ASM.
        //
        c.adapter.add(servant, c.id);
    }

    return servant;
}
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1.  
2.  

3.  

In C#, you can place the body of  into a  statement.locate lock(this)

Using a servant locator that adds the servant to the ASM has a number of advantages:

Servants are instantiated on demand, so the cost of initializing the servants is spread out over many invocations instead of being
incurred all at once during server start-up.
The memory requirements for the server are reduced because servants are instantiated only for those Ice objects that are actually
accessed by clients. If clients only access a subset of the total number of Ice objects, the memory savings can be substantial.

In general, incremental initialization is beneficial if instantiating servants during start-up is too slow. The memory savings can be worthwhile
as well but, as a rule, are realized only for comparatively short-lived servers: for long-running servers, chances are that, sooner or later,
every Ice object will be accessed by some client or another; in that case, there are no memory savings because we end up with an
instantiated servant for every Ice object regardless.

Implementing a Server using Default Servants

Default servants are a very effective tool for conserving memory when a server hosts a large number of Ice objects.

To create a default servant implementation, we need as many default servants as there are non-abstract interfaces in the system. For
example, for our , we require two default servants, one for directories and one for files. In addition, the file system application object identities
we create use the  member of the object identity to encode the type of interface of the corresponding Ice object. The value of thecategory
category field can be anything that identifies the interface, such as the ' ' and ' ' convention we . Alternatively, you couldd f suggested earlier
use  and , or use the type ID of the corresponding interface, such as  and "Directory" "File" "::Filesystem::Directory"

. The  member of the object identity must be set to whatever identifier we can use to retrieve the persistent"::Filesystem::File" name
state of each directory and file from secondary storage. (For our file system application, we used a UUID as a unique identifier.)

Registration of the default servants is as follows:

C++

adapter->addDefaultServant(new DirectoryI, "d");
adapter->addDefaultServant(new FileI, "f");

All the action happens in the implementation of the operations, using the following steps for each operation:

Use the passed  object to get the identity for the current request.Current
Use the  member of the identity to locate the persistent state of the servant on secondary storage. If no record can be found forname
the identity, throw an .ObjectNotExistException
Implement the operation to operate on that retrieved state (returning the state or updating the state as appropriate for the operation).

This might look something like the following:
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C++

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c) const
{
    // Use the identity of the directory to retrieve
    // its contents.
    DirectoryContents dc;
    try {
        dc = DB_getDirectory(c.id.name);
    } catch(const DB_error&) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }

    // Use the records retrieved from the database to
    // initialize return value.
    //
    FileSystem::NodeSeq ns;
    // ...

    return ns;
}

Note that the servant implementation is completely stateless: the only state it operates on is the identity of the Ice object for the current
request (and that identity is passed as part of the  parameter).Current

Overriding ice_ping

We  that a default servant implementation take steps to preserve the semantics of the  operation, which is used torecommended ice_ping
test whether an Ice object exists. If a default servant fails to override , clients may mistakenly believe that a non-existent Ice objectice_ping
still exists. The code below demonstrates how we can override the operation in our file system application:

C++

void
Filesystem::DirectoryI::ice_ping(const Ice::Current& c) const
{
    try {
       d = DB_lookup(c.id.name);
    } catch (const DB_error&) {
       throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }
}

It is good practice to override  if you are using default servants.ice_ping

Combining Server Implementation Techniques

Depending on the nature of your application, you may be able to steer a middle path that provides better performance while keeping memory
requirements low: if your application has a number of frequently-accessed objects that are performance-critical, you can add servants for
those objects to the ASM. If you store the state of these objects in data members inside the servants, you effectively have a cache of these
objects.

The remaining, less-frequently accessed objects can be implemented with a default servant. For example, in our file system implementation,
we could choose to instantiate directory servants permanently, but to have file objects implemented with a default servant. This provides
efficient navigation through the directory tree and incurs slower performance only for the (presumably less frequent) file accesses.

This technique could be augmented with a cache of recently-accessed files, along similar lines to the buffer pool used by the Unix kernel .[1]
The point is that you can combine use of the ASM with servant locators and default servants to precisely control the trade-offs among
scalability, memory consumption, and performance to suit the needs of your application.

See Also
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Servant Evictors

A particularly interesting use of a  is as an  . An evictor is a servant locator that maintains a cache of servants:servant locator evictor [1]

Whenever a request arrives (that is,  is called by the Ice run time), the evictor checks to see whether it can find a servant forlocate
the request in its cache. If so, it returns the servant that is already instantiated in the cache; otherwise, it instantiates a servant and
adds it to the cache.
The cache is a queue that is maintained in least-recently used (LRU) order: the least-recently used servant is at the tail of the
queue, and the most-recently used servant is at the head of the queue. Whenever a servant is returned from or added to the cache,
it is moved from its current queue position to the head of the queue, that is, the "newest" servant is always at the head, and the
"oldest" servant is always at the tail.
The queue has a configurable length that corresponds to how many servants will be held in the cache; if a request arrives for an Ice
object that does not have a servant in memory and the cache is full, the evictor removes the least-recently used servant at the tail of
the queue from the cache in order to make room for the servant about to be instantiated at the head of the queue.

The figure below illustrates an evictor with a cache size of five after five invocations have been made, for object identities 1 to 5, in that order.

An evictor after five invocations for object identities 1 to 5.

At this point, the evictor has instantiated five servants, and has placed each servant onto the evictor queue. Because requests were sent by
the client for object identities 1 to 5 (in that order), servant 5 ends up at the head of the queue (at the most-recently used position), and
servant 1 ends up at the tail of the queue (at the least-recently used position).

Assume that the client now sends a request for servant 3. In this case, the servant is found on the evictor queue and moved to the head
position. The resulting ordering is shown below:

The evictor after accessing servant 3.

Assume that the next client request is for object identity 6. The evictor queue is fully populated, so the evictor creates a servant for object
identity 6, places that servant at the head of the queue, and evicts the servant with identity 1 (the least-recently used servant) at the tail of
the queue, as you can see here:
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1.  

The evictor after evicting servant 1.

The evictor pattern combines the advantages of the ASM with the advantages of a : provided that the cache size is sufficientdefault servant
to hold the working set of servants in memory, most requests are served by an already instantiated servant, without incurring the overhead of
creating a servant and accessing the database to initialize servant state. By setting the cache size, you can control the trade-off between
performance and memory consumption as appropriate for your application.

The following pages show how to implement an evictor in several languages. (You can also find the source code for the evictor with the code
examples for this manual in the Ice distribution.)

Topics

Implementing a Servant Evictor in C++
Implementing a Servant Evictor in Java
Implementing a Servant Evictor in C-Sharp
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Default Servants
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Implementing a Servant Evictor in C++

On this page:

The  Class in C++EvictorBase
Using Servant Evictors in C++

The  Class in C++EvictorBase

The  we show here is designed as an abstract base class: in order to use it, you derive a class from the  base classevictor EvictorBase
and implement two methods that are called by the evictor when it needs to add or evict a servant. This leads to a class definition as follows:

C++

class EvictorBase : public Ice::ServantLocator {
public:
    EvictorBase(int size = 1000);

    virtual Ice::ObjectPtr locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie);

    virtual void finished(const Ice::Current& c, const Ice::ObjectPtr&,
                          const Ice::LocalObjectPtr& cookie);

    virtual void deactivate(const std::string&);

protected:
    virtual Ice::ObjectPtr add(const Ice::Current&, Ice::LocalObjectPtr&) = 0;

    virtual void evict(const Ice::ObjectPtr&, const Ice::LocalObjectPtr&) = 0;

private:
    // ...
};

typedef IceUtil::Handle<EvictorBase> EvictorBasePtr;

Note that the evictor has a constructor that sets the size of the queue, with a default argument to set the size to 1000.

The , , and  functions are inherited from the  base class; these functions implement thelocate finished deactivate ServantLocator
logic to maintain the queue in LRU order and to add and evict servants as needed.

The  and  functions are called by the evictor when it needs to add a new servant to the queue and when it evicts a servant fromadd evict
the queue. Note that these functions are pure virtual, so they must be implemented in a derived class. The job of  is to instantiate andadd
initialize a servant for use by the evictor. The  function is called by the evictor when it evicts a servant, allowing the subclass toevict
perform any cleanup. Note that  can return a cookie that the evictor passes to , so you can move context information from  to add evict add

.evict

Next, we need to consider the data structures that are needed to support our evictor implementation. We require two main data structures:

A map that maps  to servants, so we can efficiently decide whether we have a servant for an incoming request inobject identities
memory or not.
A list that implements the evictor queue. The list is kept in LRU order at all times.

The evictor map not only stores servants but also keeps track of some administrative information:

The map stores the cookie that is returned from , so we can pass that same cookie to .add evict
The map stores an iterator into the evictor queue that marks the position of the servant in the queue. Storing the queue position is
not strictly necessary — we store the position for efficiency reasons because it allows us to locate a servant's position in the queue
in constant time instead of having to search through the queue in order to maintain its LRU property.
The map stores a use count that is incremented whenever an operation is dispatched into a servant, and decremented whenever an
operation completes.

The need for the use count deserves some extra explanation: suppose a client invokes a long-running operation on an Ice object with
identity . In response, the evictor adds a servant for  to the evictor queue. While the original invocation is still executing, other clients invokeI I
operations on various Ice objects, which leads to more servants for other object identities being added to the queue. As a result, the servant
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for identity  gradually migrates toward the tail of the queue. If enough client requests for other Ice objects arrive while the operation on objectI
 is still executing, the servant for  could be evicted while it is still executing the original request.I I

By itself, this will not do any harm. However, if the servant is evicted and a client then invokes another request on object , the evictor wouldI
have no idea that a servant for  is still around and would add a second servant for . However, having two servants for the same Ice object inI I
memory is likely to cause problems, especially if the servant's operation implementations write to a database.

The use count allows us to avoid this problem: we keep track of how many requests are currently executing inside each servant and, while a
servant is busy, avoid evicting that servant. As a result, the queue size is not a hard upper limit: long-running operations can temporarily
cause more servants than the limit to appear in the queue. However, as soon as excess servants become idle, they are evicted as usual.

The evictor queue does not store the identity of the servant. Instead, the entries on the queue are iterators into the evictor map. This is useful
when the time comes to evict a servant: instead of having to search the map for the identity of the servant to be evicted, we can simply
delete the map entry that is pointed at by the iterator at the tail of the queue. We can get away with storing an iterator into the evictor queue
as part of the map, and storing an iterator into the evictor map as part of the queue because both  and  do notstd::list std::map
invalidate forward iterators when we add or delete entries (except for invalidating iterators that point at a deleted entry, of course).

Reverse iterators  be invalidated by modification of list entries: if a reverse iterator points at  and the element atcan rend
the head of the list is erased, the iterator pointing at  is invalidated.rend

Finally, our  and  implementations will need to exchange a cookie that contains a smart pointer to the entry in the evictorlocate finished
map. This is necessary so that  can decrement the servant's use count.finished

This leads to the following definitions in the private section of our evictor:

C++

class EvictorBase : public Ice::ServantLocator {
    // ...

private:

    struct EvictorEntry;
    typedef IceUtil::Handle<EvictorEntry> EvictorEntryPtr;

    typedef std::map<Ice::Identity, EvictorEntryPtr> EvictorMap;
    typedef std::list<EvictorMap::iterator> EvictorQueue;

    struct EvictorEntry : public Ice::LocalObject
    {
        Ice::ObjectPtr servant;
        Ice::LocalObjectPtr userCookie;
        EvictorQueue::iterator queuePos;
        int useCount;
    };

    EvictorMap _map;
    EvictorQueue _queue;
    Ice::Int _size;

    IceUtil::Mutex _mutex;

    void evictServants();
};

Note that the evictor stores the evictor map, queue, and the queue size in the private data members , , and . In addition,_map _queue _size
we use a private  data member so we can correctly serialize access to the evictor's data structures._mutex

The  member function takes care of evicting servants when the queue length exceeds its limit — we will discuss thisevictServants
function in more detail shortly.

The  structure serves as the cookie that we pass from  to ; it stores the servant, the servant's position inEvictorEntry locate finished
the evictor queue, the servant's use count, and the cookie that we pass from  to .add evict

The implementation of the constructor is trivial. The only point of note is that we ignore negative sizes:
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C++

EvictorBase::EvictorBase(Ice::Int size) : _size(size)
{
    if (_size < 0)
        _size = 1000;
}

We could have stored the size as a  instead. However, for consistency with the Java implementation, which cannotsize_t
use unsigned integers, we use  to store the size.Ice::Int

Almost all the action of the evictor takes place in the implementation of :locate

C++

Ice::ObjectPtr
EvictorBase::locate(const Ice::Current& c, Ice::LocalObjectPtr& cookie)
{
    IceUtil::Mutex::Lock lock(_mutex);

    //
    // Check if we have a servant in the map already.
    //
    EvictorEntryPtr entry;
    EvictorMap::iterator i = _map.find(c.id);
    if (i != _map.end()) {
        //
        // Got an entry already, dequeue the entry from
        // its current position.
        //
        entry = i->second;
        _queue.erase(entry->queuePos);
    } else {
        //
        // We do not have an entry. Ask the derived class to
        // instantiate a servant and add a new entry to the map.
        //
        entry = new EvictorEntry;
        entry->servant = add(c, entry->userCookie); // Down-call
        if (!entry->servant) {
            return 0;
        }
        entry->useCount = 0;
        i = _map.insert(std::make_pair(c.id, entry)).first;
    }

    //
    // Increment the use count of the servant and enqueue
    // the entry at the front, so we get LRU order.
    //
    ++(entry->useCount);
    entry->queuePos = _queue.insert(_queue.begin(), i);

    cookie = entry;

    return entry->servant;
}

The first step in  is to lock the  data member. This protects the evictor's data structures from concurrent access. The nextlocate _mutex
step is to instantiate a smart pointer to an . That smart pointer acts as the cookie that is returned from  and will beEvictorEntry locate
passed by the Ice run time to the corresponding call to . That same smart pointer is also the value type of our map entries, so wefinished
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do not store two copies of the same information redundantly — instead, smart pointers ensure that a single copy of each EvictorEntry
structure is shared by both the cookie and the map.

The next step is to look in the evictor map to see whether we already have an entry for this object identity. If so, we remove the entry from its
current queue position.

Otherwise, we do not have an entry for this object identity yet, so we have to create one. The code creates a new evictor entry, and then
calls  to get a new servant. This is a down-call to the concrete class that will be derived from . The implementation of add EvictorBase add
must attempt to locate the object state for the Ice object with the identity passed inside the  object and either return a servant asCurrent
usual, or return null or throw an exception to indicate failure. If  returns null, we return zero to let the Ice run time know that no servantadd
could be found for the current request. If  succeeds, we initialize the entry's use count to zero and insert the entry into the evictor map.add

The last few lines of  add the entry for the current request to the head of the evictor queue to maintain its LRU property, incrementlocate
the use count of the entry, set the cookie that is returned from locate to point at the , and finally return the servant to the IceEvictorEntry
run time.

The implementation of  is comparatively simple. It decrements the use count of the entry and then calls  to getfinished evictServants
rid of any servants that might need to be evicted:

C++

void
EvictorBase::finished(const Ice::Current&,
                      const Ice::ObjectPtr&,
                      const Ice::LocalObjectPtr& cookie)
{
    IceUtil::Mutex::Lock lock(_mutex);

    EvictorCookiePtr ec = EvictorCookiePtr::dynamicCast(cookie);

    // Decrement use count and check if
    // there is something to evict.
    //
    --(ec->entry->useCount);
    evictServants();
}

In turn,  examines the evictor queue: if the queue length exceeds the evictor's size, the excess entries are scanned. AnyevictServants
entries with a zero use count are then evicted:

C++

void
EvictorBase::evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    EvictorQueue::reverse_iterator p = _queue.rbegin();
    int excessEntries = static_cast<int>(_map.size() - _size);

    for (int i = 0; i < excessEntries; ++i) {
        EvictorMap::iterator mapPos = *p;
        if (mapPos->second->useCount == 0) {
            evict(mapPos->second->servant, mapPos->second->userCookie);
            p = EvictorQueue::reverse_iterator(_queue.erase(mapPos->second->queuePos));
            _map.erase(mapPos);
        }
        else
            ++p;
    }
}
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The code scans the excess entries, starting at the tail of the evictor queue. If an entry has a zero use count, it is evicted: after calling the 
 member function in the derived class, the code removes the evicted entry from both the map and the queue.evict

Finally, the implementation of  sets the evictor size to zero and then calls . This results in eviction of alldeactivate evictServants
servants. The Ice run time  to call  only once no more requests are executing in an object adapter; as a result, it isguarantees deactivate
guaranteed that all entries in the evictor will be idle and therefore will be evicted.

C++

void
EvictorBase::deactivate(const std::string& category)
{
    IceUtil::Mutex::Lock lock(_mutex);

    _size = 0;
    evictServants();
}

Note that, with this implementation of , we only scan the tail section of the evictor queue for servants to evict. If we haveevictServants
long-running operations, this allows the number of servants in the queue to remain above the evictor size if the servants in the tail section
have a non-zero use count. This means that, even immediately after calling , the queue length can still exceed the evictorevictServants
size.

We can adopt a more aggressive strategy for eviction: instead of scanning only the excess entries in the queue, if, after looking in the tail
section of the queue, we still have more servants in the queue than the queue size, we keep scanning for servants with a zero use count
until the queue size drops below the limit. This alternative version of  looks as follows:evictServants

C++

void
EvictorBase::evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // try to evict servants until the length drops
    // below the limit.
    //
    EvictorQueue::reverse_iterator p = _queue.rbegin();
    int numEntries = static_cast<int>_map.size();

    for (int i = 0; i < numEntries && _map.size() > _size; ++i) {
        EvictorMap::iterator mapPos = *p;
        if (mapPos->second->useCount == 0) {
            evict(mapPos->second->servant, mapPos->second->userCookie);
            p = EvictorQueue::reverse_iterator(_queue.erase(mapPos->second->queuePos));
            _map.erase(mapPos);
        }
        else
            ++p;
    }
}

The only difference in this version is that the terminating condition for the -loop has changed: instead of scanning only the excess entriesfor
for servants with a use count, this version keeps scanning until the evictor size drops below the limit.

Which version is more appropriate depends on your application: if locating and evicting servants is expensive, and memory is not at a
premium, the first version (which only scans the tail section) is more appropriate; if you want to keep memory consumption to a minimum, the
second version is more appropriate. Also keep in mind that the difference between the two versions is significant only if you have
long-running operations and many concurrent invocations from clients; otherwise, there is no point in more aggressively scanning for
servants to remove because they are going to become idle again very quickly and get evicted as soon as the next request arrives.

Using Servant Evictors in C++

Using a servant evictor is simply a matter of deriving a class from  and implementing the  and  methods. You canEvictorBase add evict
turn a servant locator into an evictor by simply taking the code that you wrote for  and placing it into  —  thenlocate add EvictorBase
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takes care of maintaining the cache in least-recently used order and evicting servants as necessary. Unless you have clean-up requirements
for your servants (such as closing network connections or database handles), the implementation of  can be left empty.evict

One of the nice aspects of evictors is that you do not need to change anything in your servant implementation: the servants are ignorant of
the fact that an evictor is in use. This makes it very easy to add an evictor to an already existing code base with little disturbance of the
source code.

Evictors can provide substantial performance improvements over : especially if initialization of servants is expensive (fordefault servants
example, because servant state must be initialized by reading from a network), an evictor performs much better than a default servant, while
keeping memory requirements low.

See Also

Servant Evictors
Object Identity
Default Servants
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Implementing a Servant Evictor in Java

On this page:

The  Class in JavaEvictorBase
Using Servant Evictors in Java

The  Class in JavaEvictorBase

The  we show here is designed as an abstract base class: in order to use it, you derive a class from the evictor Evictor.EvictorBase
base class and implement two methods that are called by the evictor when it needs to add or evict a servant. This leads to a class definition
as follows:

Java

package Evictor;

public abstract class EvictorBase implements Ice.ServantLocator
{
    public
    EvictorBase()
    {
        _size = 1000;
    }

    public
    EvictorBase(int size)
    {
        _size = size < 0 ? 1000 : size;
    }

    public abstract Ice.Object
    add(Ice.Current c, Ice.LocalObjectHolder cookie);

    public abstract void
    evict(Ice.Object servant, java.lang.Object cookie);

    synchronized public final Ice.Object
    locate(Ice.Current c, Ice.LocalObjectHolder cookie)
    {
        // ...
    }

    synchronized public final void
    finished(Ice.Current c, Ice.Object o, java.lang.Object cookie)
    {
        // ...
    }

    synchronized public final void
    deactivate(String category)
    {
        // ...
    }

    // ...

    private int _size;
}

Note that the evictor has constructors to set the size of the queue, with a default size of 1000.

The , , and  methods are inherited from the  base class; these methods implement thelocate finished deactivate ServantLocator
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logic to maintain the queue in LRU order and to add and evict servants as needed. The methods are synchronized, so the evictor's internal
data structures are protected from concurrent access.

The  and  methods are called by the evictor when it needs to add a new servant to the queue and when it evicts a servant fromadd evict
the queue. Note that these functions are abstract, so they must be implemented in a derived class. The job of  is to instantiate andadd
initialize a servant for use by the evictor. The  function is called by the evictor when it evicts a servant, allowing the subclass toevict
perform any cleanup. Note that  can return a cookie that the evictor passes to , so you can move context information from  to add evict add

.evict

Next, we need to consider the data structures that are needed to support our evictor implementation. We require two main data structures:

A map that maps  to servants, so we can efficiently decide whether we have a servant for an incoming request inobject identities
memory or not.
A list that implements the evictor queue. The list is kept in LRU order at all times.

The evictor map not only stores servants but also keeps track of some administrative information:

The map stores the cookie that is returned from , so we can pass that same cookie to .add evict
The map stores an iterator into the evictor queue that marks the position of the servant in the queue.
The map stores a use count that is incremented whenever an operation is dispatched into a servant, and decremented whenever an
operation completes.

The last two points deserve some extra explanation.

The evictor queue must be maintained in least-recently used order, that is, every time an invocation arrives and we find an entry for
the identity in the evictor map, we also must locate the servant's identity on the evictor queue and move it to the front of the queue.
However, scanning for that entry is inefficient because it requires ( ) time. To get around this, we store an iterator in the evictorO n
map that marks the corresponding entry's position in the evictor queue. This allows us to dequeue the entry from its current position
and enqueue it at the head of the queue in (1) time. O

Unfortunately, the various lists provided by  do not allow us to keep an iterator to a list position without invalidating thatjava.util
iterator as the list is updated. To deal with this, we use a special-purpose linked list implementation, , thatEvictor.LinkedList
does not have this limitation.  has an interface similar to  but does not invalidate iteratorsLinkedList java.util.LinkedList
other than iterators that point at an element that is removed. For brevity, we do not show the implementation of this list here — you
can find the implementation in the code examples for this manual in the Ice distribution.

We maintain a use count as part of the map in order to avoid incorrect eviction of servants. Suppose a client invokes a long-running
operation on an Ice object with identity  . In response, the evictor adds a servant for   to the evictor queue. While the originalI I
invocation is still executing, other clients invoke operations on various Ice objects, which leads to more servants for other object
identities being added to the queue. As a result, the servant for identity   gradually migrates toward the tail of the queue. If enoughI
client requests for other Ice objects arrive while the operation on object   is still executing, the servant for   could be evicted while it isI I
still executing the original request. 

By itself, this will not do any harm. However, if the servant is evicted and a client then invokes another request on object  , theI
evictor would have no idea that a servant for   is still around and would add a second servant for  . However, having two servants forI I
the same Ice object in memory is likely to cause problems, especially if the servant's operation implementations write to a database. 

The use count allows us to avoid this problem: we keep track of how many requests are currently executing inside each servant and,
while a servant is busy, avoid evicting that servant. As a result, the queue size is not a hard upper limit: long-running operations can
temporarily cause more servants than the limit to appear in the queue. However, as soon as excess servants become idle, they are
evicted as usual.

Finally, our  and  implementations will need to exchange a cookie that contains a smart pointer to the entry in the evictorlocate finished
map. This is necessary so that  can decrement the servant's use count.finished

This leads to the following definitions in the private section of our evictor:
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Java

package Evictor;

public abstract class EvictorBase implements Ice.ServantLocator
{
    // ...

    private class EvictorEntry
    {
        Ice.Object servant;
        java.lang.Object userCookie;
        java.util.Iterator<Ice.Identity> queuePos;
        int useCount;
    }

    private void evictServants()
    {
        // ...
    }

    private java.util.Map<Ice.Identity, EvictorEntry> _map =
        new java.util.HashMap<Ice.Identity, EvictorEntry>();
    private Evictor.LinkedList<Ice.Identity> _queue =
        new Evictor.LinkedList<Ice.Identity>();
    private int _size;
}

Note that the evictor stores the evictor map, queue, and the queue size in the private data members , , and . The map_map _queue _size
key is the identity of the Ice object, and the lookup value is of type . The queue simply stores identities, of type EvictorEntry

.Ice::Identity

The  member function takes care of evicting servants when the queue length exceeds its limit — we will discuss thisevictServants
function in more detail shortly.

Almost all the action of the evictor takes place in the implementation of :locate
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Java

synchronized public final Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{
    //
    // Check if we have a servant in the map already.
    //
    EvictorEntry entry = _map.get(c.id);
    if (entry != null) {
        //
        // Got an entry already, dequeue the entry from
        // its current position.
        //
        entry.queuePos.remove();
    } else {
        //
        // We do not have entry. Ask the derived class to
        // instantiate a servant and add a new entry to the map.
        //
        entry = new EvictorEntry();
        Ice.LocalObjectHolder cookieHolder = new Ice.LocalObjectHolder();
        entry.servant = add(c, cookieHolder); // Down-call
        if (entry.servant == null) {
            return null;
        }
        entry.userCookie = cookieHolder.value;
        entry.useCount = 0;
        _map.put(c.id, entry);
    }

    //
    // Increment the use count of the servant and enqueue
    // the entry at the front, so we get LRU order.
    //
    ++(entry.useCount);
    _queue.addFirst(c.id);
    entry.queuePos = _queue.iterator();
    entry.queuePos.next(); // Position iterator on the element.

    cookie.value = entry;
    return entry.servant;
}

The code uses an  as the cookie that is returned from  and will be passed by the Ice run time to the correspondingEvictorEntry locate
call to .finished

We first look for an existing entry in the evictor map, using the object identity as the key. If we have an entry in the map already, we dequeue
the corresponding identity from the evictor queue. (The  member of  is an iterator that marks that entry's positionqueuePos EvictorEntry
in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and call the  method. This is a down-call to the concrete classadd
that will be derived from . The implementation of  must attempt to locate the object state for the Ice object with the identityEvictorBase add
passed inside the  object and either return a servant as usual, or return null or throw an exception to indicate failure. If  returnsCurrent add
null, we return null to let the Ice run time know that no servant could be found for the current request. If  succeeds, we initialize theadd
entry's use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry's use count, add the entry at the head of the evictor queue, store the entry's position in the
queue, and assign the entry to the cookie that is returned from , before returning the servant to the Ice run time.locate

The implementation of  is comparatively simple. It decrements the use count of the entry and then calls  to getfinished evictServants
rid of any servants that might need to be evicted:
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Java

synchronized public final void
finished(Ice.Current c, Ice.Object o, java.lang.Object cookie)
{
    EvictorEntry entry = (EvictorEntry)cookie;

    // Decrement use count and check if
    // there is something to evict.
    //
    --(entry.useCount);
    evictServants();
}

In turn,  examines the evictor queue: if the queue length exceeds the evictor's size, the excess entries are scanned. AnyevictServants
entries with a zero use count are then evicted:

Java

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    java.util.Iterator<Ice.Identity> p = _queue.riterator();
    int excessEntries = _map.size() - _size;
    for (int i = 0; i < excessEntries; ++i) {
        Ice.Identity id = p.next();
        EvictorEntry e = _map.get(id);
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            e.queuePos.remove();
            _map.remove(id);
        }
    }
}

The code scans the excess entries, starting at the tail of the evictor queue. If an entry has a zero use count, it is evicted: after calling the 
 member function in the derived class, the code removes the evicted entry from both the map and the queue.evict

Finally, the implementation of  sets the evictor size to zero and then calls . This results in eviction of alldeactivate evictServants
servants. The Ice run time  to call  only once no more requests are executing in an object adapter; as a result, it isguarantees deactivate
guaranteed that all entries in the evictor will be idle and therefore will be evicted.

Java

synchronized public final void
deactivate(String category)
{
    _size = 0;
    evictServants();
}

Note that, with this implementation of , we only scan the tail section of the evictor queue for servants to evict. If we haveevictServants
long-running operations, this allows the number of servants in the queue to remain above the evictor size if the servants in the tail section
have a non-zero use count. This means that, even immediately after calling , the queue length can still exceed the evictorevictServants
size.

We can adopt a more aggressive strategy for eviction: instead of scanning only the excess entries in the queue, if, after looking in the tail
section of the queue, we still have more servants in the queue than the queue size, we keep scanning for servants with a zero use count
until the queue size drops below the limit. This alternative version of  looks as follows:evictServants
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Java

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    java.util.Iterator<Ice.Identity> p = _queue.riterator();
    int numEntries = _map.size();
    for (int i = 0; i < excessEntries && _map.size() > _size;
         ++i) {
        Ice.Identity id = p.next();
        EvictorEntry e = _map.get(id);
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            e.queuePos.remove();
            _map.remove(id);
        }
    }
}

The only difference in this version is that the terminating condition for the -loop has changed: instead of scanning only the excess entriesfor
for servants with a use count, this version keeps scanning until the evictor size drops below the limit.

Which version is more appropriate depends on your application: if locating and evicting servants is expensive, and memory is not at a
premium, the first version (which only scans the tail section) is more appropriate; if you want to keep memory consumption to a minimum, the
second version is more appropriate. Also keep in mind that the difference between the two versions is significant only if you have
long-running operations and many concurrent invocations from clients; otherwise, there is no point in more aggressively scanning for
servants to remove because they are going be become idle again very quickly and get evicted as soon as the next request arrives.

Using Servant Evictors in Java

Using a servant evictor is simply a matter of deriving a class from  and implementing the  and  methods. You canEvictorBase add evict
turn a servant locator into an evictor by simply taking the code that you wrote for  and placing it into  —  thenlocate add EvictorBase
takes care of maintaining the cache in least-recently used order and evicting servants as necessary. Unless you have clean-up requirements
for your servants (such as closing network connections or database handles), the implementation of  can be left empty.evict

One of the nice aspects of evictors is that you do not need to change anything in your servant implementation: the servants are ignorant of
the fact that an evictor is in use. This makes it very easy to add an evictor to an already existing code base with little disturbance of the
source code.

Evictors can provide substantial performance improvements over : especially if initialization of servants is expensive (fordefault servants
example, because servant state must be initialized by reading from a network), an evictor performs much better than a default servant, while
keeping memory requirements low.

See Also

Servant Evictors
Object Identity
Default Servants
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Implementing a Servant Evictor in C-Sharp

On this page:

A Linked List to Support Eviction in C#
The  Class in C#EvictorBase
Using Servant Evictors in C#

A Linked List to Support Eviction in C#

The  classes do not provide a container that does not invalidate iterators when we modify the contents of theSystem.Collections
container but, to efficiently implement an , we need such a container. To deal with this, we use a special-purpose linked listevictor
implementation, , that does not invalidate iterators when we delete or add an element. For brevity, we only show theEvictor.LinkedList
interface of  here — you can find the implementation in the code examples for this manual in the Ice distribution.LinkedList

C#

namespace Evictor
{
    public class LinkedList<T> : ICollection<T>, ICollection, ICloneable
    {
        public LinkedList();

        public int Count { get; }

        public void Add(T value);
        public void AddFirst(T value);
        public void Clear();
        public bool Contains(T value);
        public bool Remove(T value);

        public IEnumerator GetEnumerator();

        public class Enumerator : IEnumerator<T>, IEnumerator, IDisposable
        {
            public void Reset();

            public T Current { get; }

            public bool MoveNext();
            public bool MovePrev();
            public void Remove();
            public void Dispose();
        }

        public void CopyTo(T[] array, int index);
        public void CopyTo(Array array, int index);

        public object Clone();

        public bool IsReadOnly { get; }
        public bool IsSynchronized { get; }
        public object SyncRoot { get; }
    }
}

The  method appends an element to the list, and the  method prepends an element to the list.  returns anAdd AddFirst GetEnumerator
enumerator for the list elements; immediately after calling , the enumerator does not point at any element until you callGetEnumerator
either  or , which position the enumerator at the first and last element, respectively.  returns the element at theMoveNext MovePrev Current
enumerator position, and  deletes the element at the current position and leaves the enumerator pointing at no element. Calling Remove

 or  after calling  positions the enumerator at the element following or preceding the deleted element,MoveNext MovePrev Remove
respectively.  and  return true if they have positioned the enumerator on an element; otherwise, they return false andMoveNext MovePrev
leave the enumerator position on the last and first element, respectively.
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The  Class in C#EvictorBase

Given this , we can implement the evictor. The evictor we show here is designed as an abstract base class: in order to use it,LinkedList
you derive a class from the  base class and implement two methods that are called by the evictor when it needs toEvictor.EvictorBase
add or evict a servant. This leads to a class definition as follows:

C#

namespace Evictor
{
    public abstract class EvictorBase : Ice.ServantLocator
    {
        public EvictorBase()
        {
            _size = 1000;
        }

        public EvictorBase(int size)
        {
            _size = size < 0 ? 1000 : size;
        }

        protected abstract Ice.Object add(Ice.Current c, out object cookie);

        protected abstract void evict(Ice.Object servant, object cookie);

        public Ice.Object locate(Ice.Current c, out object cookie)
        {
            lock(this)
            {
                // ...
            }
        }

        public void finished(Ice.Current c, Ice.Object o, object cookie)
        {
            lock(this)
            {
                // ...
            }
        }

        public void deactivate(string category)
        {
            lock(this)
            {
                // ...
            }
        }

        private int _size;
    }
}

Note that the evictor has constructors to set the size of the queue, with a default size of 1000.

The , , and  methods are inherited from the  base class; these methods implement thelocate finished deactivate ServantLocator
logic to maintain the queue in LRU order and to add and evict servants as needed. The methods use a  statement for theirlock(this)
body, so the evictor's internal data structures are protected from concurrent access.

The  and  methods are called by the evictor when it needs to add a new servant to the queue and when it evicts a servant fromadd evict
the queue. Note that these functions are abstract, so they must be implemented in a derived class. The job of  is to instantiate andadd
initialize a servant for use by the evictor. The  function is called by the evictor when it evicts a servant, allowing the subclass toevict
perform any cleanup. Note that  can return a cookie that the evictor passes to , so you can move context information from  to add evict add

.evict
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Next, we need to consider the data structures that are needed to support our evictor implementation. We require two main data structures:

A map that maps  to servants, so we can efficiently decide whether we have a servant for an incoming request inobject identities
memory or not.
A list that implements the evictor queue. The list is kept in LRU order at all times.

The evictor map not only stores servants but also keeps track of some administrative information:

The map stores the cookie that is returned from , so we can pass that same cookie to .add evict
The map stores an iterator into the evictor queue that marks the position of the servant in the queue.
The map stores a use count that is incremented whenever an operation is dispatched into a servant, and decremented whenever an
operation completes.

The last two points deserve some extra explanation.

The evictor queue must be maintained in least-recently used order, that is, every time an invocation arrives and we find an entry for
the identity in the evictor map, we also must locate the servant's identity on the evictor queue and move it to the front of the queue.
However, scanning for that entry is inefficient because it requires ( ) time. To get around this, we store an iterator in the evictorO n
map that marks the corresponding entry's position in the evictor queue. This allows us to dequeue the entry from its current position
and enqueue it at the head of the queue in (1) time, using the  implementation.O Evictor.LinkedList

We maintain a use count as part of the map in order to avoid incorrect eviction of servants. Suppose a client invokes a long-running
operation on an Ice object with identity  . In response, the evictor adds a servant for   to the evictor queue. While the originalI I
invocation is still executing, other clients invoke operations on various Ice objects, which leads to more servants for other object
identities being added to the queue. As a result, the servant for identity   gradually migrates toward the tail of the queue. If enoughI
client requests for other Ice objects arrive while the operation on object   is still executing, the servant for   could be evicted while it isI I
still executing the original request. 

By itself, this will not do any harm. However, if the servant is evicted and a client then invokes another request on object  , theI
evictor would have no idea that a servant for   is still around and would add a second servant for  . However, having two servants forI I
the same Ice object in memory is likely to cause problems, especially if the servant's operation implementations write to a database. 

The use count allows us to avoid this problem: we keep track of how many requests are currently executing inside each servant and,
while a servant is busy, avoid evicting that servant. As a result, the queue size is not a hard upper limit: long-running operations can
temporarily cause more servants than the limit to appear in the queue. However, as soon as excess servants become idle, they are
evicted as usual.

Finally, our  and  implementations will need to exchange a cookie that contains a reference to the entry in the evictor map.locate finished
This is necessary so that  can decrement the servant's use count.finished

This leads to the following definitions in the private section of our evictor:
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C#

namespace Evictor
{
    using System.Collections.Generic;

    public abstract class EvictorBase : Ice.ServantLocator
    {
        // ...

        private class EvictorEntry
        {
            internal Ice.Object servant;
            internal object userCookie;
            internal LinkedList<Ice.Identity>.Enumerator queuePos;
            internal int useCount;
        }

        private void evictServants()
        {
            // ...
        }

        private Dictionary<Ice.Identity, EvictorEntry> _map =
            new Dictionary<Ice.Identity, EvictorEntry>();
        private LinkedList<Ice.Identity> _queue =
            new LinkedList<Ice.Identity>();
        private int _size;
    }
}

Note that the evictor stores the evictor map, queue, and the queue size in the private data members , , and . The map_map _queue _size
key is the identity of the Ice object, and the lookup value is of type . The queue simply stores identities, of type EvictorEntry

.Ice.Identity

The  member function takes care of evicting servants when the queue length exceeds its limit — we will discuss thisevictServants
function in more detail shortly.

Almost all the action of the evictor takes place in the implementation of :locate
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C#

public Ice.Object locate(Ice.Current c, out object cookie)
{
    lock(this)
    {
        //
        // Check if we a servant in the map already.
        //
        EvictorEntry entry = _map[c.id];
        if (entry != null) {
            //
            // Got an entry already, dequeue the entry from
            // its current position.
            //
            entry.queuePos.Remove();
        } else {
            //
            // We do not have an entry. Ask the derived class to
            // instantiate a servant and add an entry to the map.
            //
            entry = new EvictorEntry();
            entry.servant = add(c, out entry.userCookie);
            if (entry.servant == null) {
                cookie = null;
                return null;
            }
            entry.useCount = 0;
            _map[c.id] = entry;
        }

        //
        // Increment the use count of the servant and enqueue
        // the entry at the front, so we get LRU order.
        //
        ++(entry.useCount);
        _queue.AddFirst(c.id);
        entry.queuePos = (LinkedList<Ice.Identity>.Enumerator)_queue.GetEnumerator();
        entry.queuePos.MoveNext();

        cookie = entry;

        return entry.servant;
    }
}

The code uses an  as the cookie that is returned from  and will be passed by the Ice run time to the correspondingEvictorEntry locate
call to .finished

We first look for an existing entry in the evictor map, using the object identity as the key. If we have an entry in the map already, we dequeue
the corresponding identity from the evictor queue. (The  member of  is an iterator that marks that entry's positionqueuePos EvictorEntry
in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and call the  method. This is a down-call to the concrete classadd
that will be derived from . The implementation of  must attempt to locate the object state for the Ice object with the identityEvictorBase add
passed inside the  object and either return a servant as usual, or return null or throw an exception to indicate failure. If  returnsCurrent add
null, we return null to let the Ice run time know that no servant could be found for the current request. If  succeeds, we initialize theadd
entry's use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry's use count, add the entry at the head of the evictor queue, store the entry's position in the
queue, and initialize the cookie that is returned from , before returning the servant to the Ice run time.locate

The implementation of  is comparatively simple. It decrements the use count of the entry and then calls  to getfinished evictServants
rid of any servants that might need to be evicted:
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C#

public void finished(Ice.Current c, Ice.Object o, object cookie)
{
    lock(this)
    {
        EvictorEntry entry = (EvictorEntry)cookie;

        //
        // Decrement use count and check if
        // there is something to evict.
        //
        --(entry.useCount);
        evictServants();
    }
}

In turn,  examines the evictor queue: if the queue length exceeds the evictor's size, the excess entries are scanned. AnyevictServants
entries with a zero use count are then evicted:

C#

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    LinkedList<Ice.Identity>.Enumerator p =
        (LinkedList<Ice.Identity>.Enumerator)_queue.GetEnumerator();
    int excessEntries = _map.Count - _size;
    for (int i = 0; i < excessEntries; ++i) {
        p.MovePrev();
        Ice.Identity id = p.Current;
        EvictorEntry e = _map[id];
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            p.Remove();
            _map.Remove(id);
        }
    }
}

The code scans the excess entries, starting at the tail of the evictor queue. If an entry has a zero use count, it is evicted: after calling the 
 member function in the derived class, the code removes the evicted entry from both the map and the queue.evict

Finally, the implementation of  sets the evictor size to zero and then calls . This results in eviction of alldeactivate evictServants
servants. The Ice run time  to call  only once no more requests are executing in an object adapter; as a result, it isguarantees deactivate
guaranteed that all entries in the evictor will be idle and therefore will be evicted.

C#

public void deactivate(string category)
{
    lock(this)
    {
        _size = 0;
        evictServants();
    }
}
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Note that, with this implementation of , we only scan the tail section of the evictor queue for servants to evict. If we haveevictServants
long-running operations, this allows the number of servants in the queue to remain above the evictor size if the servants in the tail section
have a non-zero use count. This means that, even immediately after calling , the queue length can still exceed the evictorevictServants
size.

We can adopt a more aggressive strategy for eviction: instead of scanning only the excess entries in the queue, if, after looking in the tail
section of the queue, we still have more servants in the queue than the queue size, we keep scanning for servants with a zero use count
until the queue size drops below the limit. This alternative version of  looks as follows:evictServants

C#

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    LinkedList<Ice.Identity>.Enumerator p =
        (LinkedList<Ice.Identity>.Enumerator)_queue.GetEnumerator();
    int numEntries = _map.Count;
    for (int i = 0; i < numEntries && _map.Count > _size; ++i) {
        p.MovePrev();
        Ice.Identity id = p.Current;
        EvictorEntry e = _map[id];
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            p.Remove();
            _map.Remove(id);
        }
    }
}

The only difference in this version is that the terminating condition for the -loop has changed: instead of scanning only the excess entriesfor
for servants with a use count, this version keeps scanning until the evictor size drops below the limit.

Which version is more appropriate depends on your application: if locating and evicting servants is expensive, and memory is not at a
premium, the first version (which only scans the tail section) is more appropriate; if you want to keep memory consumption to a minimum, the
second version is more appropriate. Also keep in mind that the difference between the two versions is significant only if you have
long-running operations and many concurrent invocations from clients; otherwise, there is no point in more aggressively scanning for
servants to remove because they are going be become idle again very quickly and get evicted as soon as the next request arrives.

Using Servant Evictors in C#

Using a servant evictor is simply a matter of deriving a class from  and implementing the  and  methods. You canEvictorBase add evict
turn a servant locator into an evictor by simply taking the code that you wrote for  and placing it into  —  thenlocate add EvictorBase
takes care of maintaining the cache in least-recently used order and evicting servants as necessary. Unless you have clean-up requirements
for your servants (such as closing network connections or database handles), the implementation of  can be left empty.evict

One of the nice aspects of evictors is that you do not need to change anything in your servant implementation: the servants are ignorant of
the fact that an evictor is in use. This makes it very easy to add an evictor to an already existing code base with little disturbance of the
source code.

Evictors can provide substantial performance improvements over : especially if initialization of servants is expensive (fordefault servants
example, because servant state must be initialized by reading from a network), an evictor performs much better than a default servant, while
keeping memory requirements low.

See Also

Servant Evictors
Object Identity
Default Servants
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The Ice Threading Model

Ice is inherently a multi-threaded platform. There is no such thing as a single-threaded server in Ice. As a result, you must concern yourself
with concurrency issues: if a thread reads a data structure while another thread updates the same data structure, havoc will ensue unless
you protect the data structure with appropriate locks. In order to build Ice applications that behave correctly, it is important that you
understand the threading semantics of the Ice run time. Here we discuss Ice's  concurrency model and provide guidelines forthread pool
writing thread-safe Ice applications.

Topics

Thread Pools
Object Adapter Thread Pools
Thread Pool Design Considerations
Nested Invocations
Thread Safety
Dispatching Invocations to User Threads
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Thread Pools

A thread pool is a collection of threads that the Ice run time draws upon to perform specific tasks.

On this page:

Introduction to Thread Pools
Configuring Thread Pools
Dynamic Thread Pools

Introduction to Thread Pools

Each communicator creates two thread pools:

The  services outgoing connections, which primarily involves handling the replies to outgoing requests and includesclient thread pool
notifying AMI callback objects. If a connection is used in , the client thread pool also dispatches incoming callbackbidirectional mode
requests.
The  services incoming connections. It dispatches incoming requests and, for bidirectional connections, processesserver thread pool
replies to outgoing requests.

By default, these two thread pools are shared by all of the communicator's . If necessary, you can configure individual objectobject adapters
adapters to use a  instead.private thread pool

If a thread pool is exhausted because all threads are currently dispatching a request, additional incoming requests are transparently delayed
until a request completes and relinquishes its thread; that thread is then used to dispatch the next pending request. Ice minimizes thread
context switches in a thread pool by using a leader-follower implementation .[1]

Configuring Thread Pools

Each thread pool has a unique name that serves as the prefix for its configuration properties:

.Sizename
This property specifies the initial size of the thread pool. If not defined, the default value is one.

.SizeMaxname
This property specifies the maximum size of the thread pool. If not defined, the default value is one. If the value of this property is
less than that of , this property is adjusted to be equal to ..Sizename .Sizename

.SizeWarnname
This property sets a high water mark; when the number of threads in a pool reaches this value, the Ice run time logs a warning
message. If you see this warning message frequently, it could indicate that you need to increase the value of . The.SizeMaxname
default value is zero, which disables the warning.

.StackSizename
This property specifies the number of bytes to use as the stack size of threads in the thread pool. The operating system's default is
used if this property is not defined or is set to zero.

.Serializename
Setting this property to a value greater than zero forces the thread pool to serialize all messages received over a connection. It is
unnecessary to enable serialization for a thread pool whose maximum size is one because such a thread pool is already limited to
processing one message at a time. For thread pools with more than one thread, serialization has a negative impact on latency and
throughput. If not defined, the default value is zero. We discuss this feature in more detail in .Thread Pool Design Considerations

.ThreadIdleTimename
This property specifies the number of seconds that a thread in the thread pool must be idle before it terminates. The default value is
60 seconds if this property is not defined. Setting it to zero disables the termination of idle threads.

For configuration purposes, the names of the client and server thread pools are  and Ice.ThreadPool.Client
, respectively. As an example, the following properties establish the initial and maximum sizes for these threadIce.ThreadPool.Server

pools:

Ice.ThreadPool.Client.Size=1
Ice.ThreadPool.Client.SizeMax=10
Ice.ThreadPool.Server.Size=1
Ice.ThreadPool.Server.SizeMax=10
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1.  

To monitor the thread pool activities of the Ice run time, you can enable the  property. Setting this property to aIce.Trace.ThreadPool
non-zero value causes the Ice run time to log a message when it creates a thread pool, as well as each time the size of a thread pool
increases or decreases.

Dynamic Thread Pools

A  thread pool can grow and shrink when necessary in response to changes in an application's work load. All thread pools have atdynamic
least one thread, but a dynamic thread pool can grow as the demand for threads increases, up to the pool's maximum size. Threads may
also be terminated automatically when they have been idle for some time.

The dynamic nature of a thread pool is determined by the configuration properties , , and .Sizename .SizeMaxname name
. A thread pool is not dynamic in its default configuration because  and  are both set to one,.ThreadIdleTime .Sizename .SizeMaxname

meaning the pool can never grow to contain more than a single thread. To configure a dynamic thread pool, you must set at least one of 
 or  to a value greater than one. We can use several configuration scenarios to explore the semantics of.Sizename .SizeMaxname

dynamic thread pools in greater detail:

.SizeMax=5name  

This thread pool initially contains a single thread because  has a default value of one, and Ice can grow the pool up to.Sizename
the maximum of five threads. During periods of inactivity, idle threads terminate after 60 seconds (the default value for name

) until the pool contains just one thread again..ThreadIdleTime

.Size=3name
 .SizeMax=5name

This thread pool starts with three active threads but otherwise behaves the same as in the previous configuration. The pool can still
shrink to a size of one as threads become idle.

.Size=3name
 .ThreadIdleTime=10name

This thread pool starts with three active threads and shrinks quickly to one thread during periods of inactivity. As demand increases
again, the thread pool can return to its maximum size of three threads (  defaults to the value of )..SizeMaxname .Sizename

.SizeMax=5name
 .ThreadIdleTime=0name

This thread pool can grow from its initial size of one thread to contain up to five threads, but it will never shrink because name
 is set to zero..ThreadIdleTime

.Size=5name
 .ThreadIdleTime=0name

This thread pool starts with five threads and can neither grow nor shrink.

To summarize, the value of  determines whether (and how quickly) a thread pool can shrink to a size of one. A.ThreadIdleTimename
thread pool that shrinks can also grow to its maximum size. Finally, setting  to a value larger than  allows a.SizeMaxname .Sizename
thread pool to grow beyond its initial capacity.

See Also

Thread Pool Design Considerations
Bidirectional Connections
Object Adapters
Object Adapter Thread Pools
Ice Thread Pool Properties
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Object Adapter Thread Pools

The default behavior of an  is to share the  of its communicator and, for many applications, this behavior is entirelyobject adapter thread pools
sufficient. However, the ability to configure an object adapter with its own thread pool is useful in certain situations:

When the concurrency requirements of an object adapter does not match those of its communicator. In a server with multiple object
adapters, the configuration of the communicator's client and server thread pools may be a good match for some object adapters, but
others may have different requirements. For example, the servants hosted by one object adapter may not support concurrent
access, in which case limiting that object adapter to a single-threaded pool eliminates the need for synchronization in those
servants. On the other hand, another object adapter might need a multi-threaded pool for better performance.

To ensure that a minimum number of threads is available for dispatching requests to an adapter's servants. This is especially
important for eliminating the possibility of deadlocks when using .nested invocations

An object adapter's thread pool supports all of the properties described in . For configuration purposes, the name ofConfiguring Thread Pools
an adapter's thread pool is , where  is the name of the adapter..ThreadPooladapter adapter

An adapter creates its own thread pool when at least one of the following properties has a value greater than zero:

.ThreadPool.Sizeadapter

.ThreadPool.SizeMaxadapter

These properties have the same semantics as those described earlier except they both have a default value of zero, meaning that an
adapter uses the communicator's thread pools by default.

As an example, the properties shown below configure a thread pool for the object adapter named :PrinterAdapter

PrinterAdapter.ThreadPool.Size=3
PrinterAdapter.ThreadPool.SizeMax=15
PrinterAdapter.ThreadPool.SizeWarn=14

See Also

Thread Pools
Object Adapters
Nested Invocations
Ice Object Adapter Properties
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1.  
2.  

Thread Pool Design Considerations

Improper configuration of a  can have a serious impact on the performance of your application. This page discusses some issuesthread pool
that you should consider when designing and configuring your applications.

On this page:

Single-Threaded Pool
Multi-Threaded Pool
Serializing Requests in a Multi-Threaded Pool

Single-Threaded Pool

There are several implications of using a thread pool with a maximum size of one thread:

Only one message can be dispatched at a time. 

This can be convenient because it lets you avoid (or postpone) dealing with  in your application. However, it alsothread-safety issues
eliminates the possibility of dispatching requests concurrently, which can be a bottleneck for applications running on multi-CPU
systems or that perform blocking operations. Another option is to enable  in a multi-threaded pool.serialization

Only one AMI reply can be processed at a time. 

An application must increase the size of the client thread pool in order to process multiple AMI callbacks in parallel.

Nested twoway invocations are limited. 

At most one level of  is possible.nested twoway invocations

It is important to remember that a communicator's client and server thread pools have a default maximum size of one thread, therefore these
limitations also apply to any object adapter that shares the communicator's thread pools.

Multi-Threaded Pool

Configuring a thread pool to support multiple threads implies that the application is prepared for the Ice run time to dispatch operation
invocations or AMI callbacks concurrently. Although greater effort is required to design a thread-safe application, you are rewarded with the
ability to improve the application's scalability and throughput.

Choosing an appropriate maximum size for a thread pool requires careful analysis of your application. For example, in compute-bound
applications it is best to limit the number of threads to the number of physical processors in the host machine; adding any more threads only
increases context switches and reduces performance. Increasing the size of the pool beyond the number of processors can improve
responsiveness when threads can become blocked while waiting for the operating system to complete a task, such as a network or file
operation. On the other hand, a thread pool configured with too many threads can have the opposite effect and negatively impact
performance. Testing your application in a realistic environment is the recommended way of determining the optimum size for a thread pool.

If your application uses , it is very important that you evaluate whether it is possible for thread starvation to cause anested invocations
deadlock. Increasing the size of a thread pool can lessen the chance of a deadlock, but other design solutions are usually preferred.

Serializing Requests in a Multi-Threaded Pool

When using a multi-threaded pool, the nondeterministic nature of thread scheduling means that requests from the same connection may not
be dispatched in the order they were received. Some applications cannot tolerate this behavior, such as a transaction processing server that
must guarantee that requests are executed in order. There are two ways of satisfying this requirement:

Use a single-threaded pool.
Configure a multi-threaded pool to serialize requests using its  property.Serialize

At first glance these two options may seem equivalent, but there is a significant difference: a single-threaded pool can only dispatch one
request at a time and therefore serializes requests from  connections, whereas a multi-threaded pool configured for serialization canall
dispatch requests from different connections concurrently while serializing requests from the same connection.

You can obtain the same behavior from a multi-threaded pool without enabling serialization, but only if you design the clients so that they do
not send requests from multiple threads, do not send requests over more than one connection, and only use synchronous twoway
invocations. In general, however, it is better to avoid such tight coupling between the implementations of the client and server.

Enabling serialization can improve responsiveness and performance compared to a single-threaded pool, but there is an associated cost.
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The extra synchronization that the pool must perform to serialize requests adds significant overhead and results in higher latency and
reduced throughput.

As you can see, thread pool serialization is not a feature that you should enable without analyzing whether the benefits are worthwhile. For
example, it might be an inappropriate choice for a server with long-running operations when the client needs the ability to have several
operations in progress simultaneously. If serialization was enabled in this situation, the client would be forced to work around it by opening

 to the server, which again tightly couples the client and server implementations. If the server must keep track of theseveral connections
order of client requests, a better solution would be to use serialization in conjunction with  to queue the incomingasynchronous dispatch
requests for execution by other threads.

See Also

Thread Pools
Nested Invocations
Thread Safety
Connection Establishment
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Nested Invocations

A  is one that is made within the context of another Ice operation. For instance, the implementation of an operation in anested invocation
servant might need to make a nested invocation on some other object, or an AMI callback object might invoke an operation in the course of
processing a reply to an asynchronous request. It is also possible for one of these invocations to result in a nested callback to the originating
process. The maximum depth of such invocations is determined by the size of the thread pools used by the communicating parties.

On this page:

Deadlocks with Nested Invocations
Analyzing an Application for Nested Invocations

Deadlocks with Nested Invocations

Applications that use nested invocations must be carefully designed to avoid the potential for deadlock, which can easily occur when
invocations take a circular path. For example, this illustration presents a deadlock scenario when using the default thread pool configuration:

Nested invocation deadlock.

In this diagram, the implementation of  makes a nested twoway invocation of , but the implementation of  causes a deadlockopA opB opB
when it tries to make a nested callback. As mentioned in , the communicator's thread pools have a maximum size of one threadThread Pools
unless explicitly configured otherwise. In Server A, the only thread in the server thread pool is busy waiting for its invocation of  toopB
complete, and therefore no threads remain to handle the callback from Server B. The client is now blocked because Server A is blocked, and
they remain blocked indefinitely unless timeouts are used.

There are several ways to avoid a deadlock in this scenario:

Increase the maximum size of the server thread pool in Server A. 

Configuring the server thread pool in Server A to support more than one thread allows the nested callback to proceed. This is the
simplest solution, but it requires that you know in advance how deeply nested the invocations may occur, or that you set the
maximum size to a sufficiently large value that exhausting the pool becomes unlikely. For example, setting the maximum size to two
avoids a deadlock when a single client is involved, but a deadlock could easily occur again if multiple clients invoke opA
simultaneously. Furthermore, setting the maximum size too large can cause its own .set of problems

Use a oneway invocation. 

If Server A called  using a , it would no longer need to wait for a response and therefore  could complete,opB oneway invocation opA
making a thread available to handle the callback from Server B. However, we have made a significant change in the semantics of 

 because now there is no guarantee that  has completed before  returns, and it is still possible for the oneway invocationopA opB opA
of  to block.opB

Create another object adapter for the callbacks. 

No deadlock occurs if the callback from Server B is directed to a different object adapter that is configured with its .own thread pool
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Implement  using asynchronous dispatch and invocation.opA  

By declaring  as an AMD operation and invoking  using AMI, Server A can avoid blocking the thread pool's thread while itopA opB
waits for  to complete. This technique, known as , is used extensively in Ice services such asopB asynchronous request chaining
IceGrid and Glacier2 to eliminate the possibility of deadlocks.

As another example, consider a client that makes a nested invocation from an AMI callback object using the default thread pool
configuration. The (one and only) thread in the client thread pool receives the reply to the asynchronous request and invokes its callback
object. If the callback object in turn makes a nested twoway invocation, a deadlock occurs because no more threads are available in the
client thread pool to process the reply to the nested invocation. The solutions are similar to some of those presented in the above illustration:
increase the maximum size of the client thread pool, use a oneway invocation, or call the nested invocation using AMI.

Analyzing an Application for Nested Invocations

A number of factors must be considered when evaluating whether an application is properly designed and configured for nested invocations:

The thread pool configurations in use by all communicating parties have a significant impact on an application's ability to use nested
invocations. While analyzing the path of circular invocations, you must pay careful attention to the threads involved to determine
whether sufficient threads are available to avoid deadlock. This includes not just the threads that dispatch requests, but also the
threads that make the requests and process the replies. Enabling the  property can give you a betterIce.Trace.ThreadPool
understanding of the thread pool behavior in your application.
Bidirectional connections are another complication, since you must be aware of which threads are used on either end of the
connection.
Finally, the synchronization activities of the communicating parties must also be scrutinized. For example, a deadlock is much more
likely when a lock is held while making an invocation.

As you can imagine, tracing the call flow of a distributed application to ensure there is no possibility of deadlock can quickly become a
complex and tedious process. In general, it is best to avoid circular invocations if at all possible.

See Also

Thread Pools
Object Adapter Thread Pools
Thread Pool Design Considerations
Oneway Invocations
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Thread Safety

The Ice run time itself is fully thread safe, meaning multiple application threads can safely call methods on objects such as communicators,
object adapters, and proxies without synchronization problems. As a developer, you must also be concerned with thread safety because the
Ice run time can dispatch multiple invocations concurrently in a server. In fact, it is possible for multiple requests to proceed in parallel within
the same servant and within the same operation on that servant. It follows that, if the operation implementation manipulates non-stack
storage (such as member variables of the servant or global or static data), you must interlock access to this data to avoid data corruption.

The need for thread safety in an application depends on its configuration. Using the default  configuration typically makesthread pool
synchronization unnecessary because at most one operation can be dispatched at a time. Thread safety becomes an issue once you
increase the maximum size of a thread pool.

Ice uses the native synchronization and threading primitives of each platform. For C++ users, Ice provides a collection of convenient and
portable  for use by Ice applications.wrapper classes

On this page:

Threading Issues with Marshaling
Thread Creation and Destruction Hooks
Installing Thread Hooks with a Plug-in

Threading Issues with Marshaling

The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. In
C++, the only relevant case is returning an instance of a Slice class, either directly or nested as a member of another type. In Java, .NET,
and the scripting languages, Slice structures, sequences, and dictionaries are also affected.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For
example, consider the following Java implementation:

Java

public class GridI extends _GridDisp
{
    GridI()
    {
        _grid = // ...
    }

    public int[][]
    getGrid(Ice.Current curr)
    {
        return _grid;
    }

    public void
    setValue(int x, int y, int val, Ice.Current curr)
    {
        _grid[x][y] = val;
    }

    private int[][] _grid;
}

Suppose that a client invoked the  operation. While the Ice run time marshals the returned array in preparation to send a replygetGrid
message, it is possible for another thread to dispatch the  operation on the same servant. This race condition can result in severalsetValue
unexpected outcomes, including a failure during marshaling or inconsistent data in the reply to . Synchronizing the  and getGrid getGrid

 operations would not fix the race condition because the Ice run time performs its marshaling outside of this synchronization.setValue

One solution is to implement accessor operations, such as , so that they return copies of any data that might change. There aregetGrid
several drawbacks to this approach:

Excessive copying can have an adverse affect on performance.
The operations must return deep copies in order to avoid similar problems with nested values.
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The code to create deep copies is tedious and error-prone to write.

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below,  replaces setValue
 with a copy that contains the new element, leaving the previous contents of  unchanged:_grid _grid

Java

public class GridI extends _GridDisp
{
    ...

    public synchronized int[][]
    getGrid(Ice.Current curr)
    {
        return _grid;
    }

    public synchronized void
    setValue(int x, int y, int val, Ice.Current curr)
    {
        int[][] newGrid = // shallow copy...
        newGrid[x][y] = val;
        _grid = newGrid;
    }

    ...
}

This allows the Ice run time to safely marshal the return value of  because the array is never modified again. For applications wheregetGrid
data is read more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to
make copies. Furthermore, intelligent use of shallow copying can minimize the overhead in mutating operations.

Finally, a third approach changes accessor operations to use AMD in order to regain control over marshaling. After annotating the getGrid
operation with  metadata, we can revise the servant as follows:amd

Java

public class GridI extends _GridDisp
{
    ...

    public synchronized void
    getGrid_async(AMD_Grid_getGrid cb, Ice.Current curr)
    {
        cb.ice_response(_grid);
    }

    public synchronized void
    setValue(int x, int y, int val, Ice.Current curr)
    {
        _grid[x][y] = val;
    }

    ...
}

Normally, AMD is used in situations where the servant needs to delay its response to the client without blocking the calling thread. For 
, that is not the goal; instead, as a side-effect, AMD provides the desired marshaling behavior. Specifically, the Ice run timegetGrid

marshals the reply to an asynchronous request at the time the servant invokes  on the AMD callback object. Because ice_response
 and  are synchronized, this guarantees that the data remains in a consistent state during marshaling.getGrid setValue

Thread Creation and Destruction Hooks
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On occasion, it is necessary to intercept the creation and destruction of threads created by the Ice run time, for example, to interoperate with
libraries that require applications to make thread-specific initialization and finalization calls (such as COM's  and CoInitializeEx

). Ice provides callbacks to inform an application when each run-time thread is created and destroyed. For C++, theCoUninitialize
callback class looks as follows:

C++

class ThreadNotification : public IceUtil::Shared {
public:
    virtual void start() = 0;
    virtual void stop() = 0;
};
typedef IceUtil::Handle<ThreadNotification> ThreadNotificationPtr;

To receive notification of thread creation and destruction, you must derive a class from  and implement the ThreadNotification start
and  member functions. These functions will be called by the Ice run by each thread as soon as it is created, and just before it exits.stop
You must install your callback class in the Ice run time when you  by setting the  member of the create a communicator threadHook

 structure.InitializationData

For example, you could define a callback class and register it with the Ice run time as follows:

C++

class MyHook : public virtual Ice::ThreadNotification {
public:
    void start()
    {
        cout << "start: id = " << ThreadControl().id() << endl;
    }
    void stop()
    {
        cout << "stop: id = " << ThreadControl().id() << endl;
    }
};

int
main(int argc, char* argv[])
{
    // ...

    Ice::InitializationData id;
    id.threadHook = new MyHook;
    communicator = Ice::initialize(argc, argv, id);

    // ...
}

The implementation of your  and  methods can make whatever thread-specific calls are required by your application.start stop

For Java and C#,  is an interface:Ice.ThreadNotification

Java/C#

public interface ThreadNotification {
    void start();
    void stop();
}

To receive the thread creation and destruction callbacks, you must derive a class from this interface that implements the  and start stop
methods, and register an instance of that class when you create the communicator. (The code to do this is analogous to the C++ version.)

For Python, the interface is:
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Python

class ThreadNotification(object):
    def __init__(self):
        pass

    # def start():
    # def stop():

The Ice run time calls the  and  methods of the class instance you provide to  when it creates and destroysstart stop Ice.initialize
threads.

Installing Thread Hooks with a Plug-in

The thread hook facility described  requires that you modify a program's source code in order to receive callbacks when threads in theabove
Ice run time are created and destroyed. It is also possible to install thread hooks using the , which is useful for addingIce plug-in facility
thread hooks to an existing program that you cannot (or prefer not to) modify.

Ice provides a base class named  for C++, Java, and C# that supplies the necessary functionality. The C++ classThreadHookPlugin
definition is shown below:

C++

namespace Ice {
class ThreadHookPlugin : public Ice::Plugin {
public:

    ThreadHookPlugin(const CommunicatorPtr& communicator, const ThreadNotificationPtr&);

    virtual void initialize();

    virtual void destroy();
};
}

The equivalent definitions for Java and C# are quite similar and therefore not presented here.

The  constructor installs the given  object into the specified communicator. The ThreadHookPlugin ThreadNotification initialize
and  methods are empty, but you can subclass  and override these methods if necessary.destroy ThreadHookPlugin

In order to create a thread hook plug-in, you must do the following:

Define and export a factory class (for Java and C#) or factory function (for C++) that returns an instance of , asThreadHookPlugin
described in the .plug-in API
Implement the  object that you will pass to the  constructor.ThreadNotification ThreadHookPlugin
Package your code into a format that is suitable for dynamic loading, such as a shared library or DLL for C++ or an assembly for C#.

To install your plug-in, use a configuration property like the one shown below:

Ice.Plugin.MyThreadHookPlugin=MyHooks:createPlugin ...

The first component of the property value represents the plug-in's entry point. For C++, this value includes the abbreviated name of the
shared library or DLL ( ) and the name of a factory function ( ).MyHooks createPlugin

If your property value is language-specific and the configuration file containing this property is shared by programs in multiple implementation
languages, you can use an alternate syntax that is loaded only by the Ice run time for a certain language. For example, here is the
C++-specific version:

Ice.Plugin.MyThreadHookPlugin.cpp=MyHooks:createPlugin ...
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For more information, see .Ice Plug-In Properties

See Also

Communicator Initialization
Threads and Concurrency with C++
Plug-in Facility
Plug-in API
Ice Plug-In Properties
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Dispatching Invocations to User Threads

By default, operation invocations and AMI callbacks are executed by a thread from a . This behavior is simple and convenient forthread pool
applications because they need not concern themselves with thread creation and destruction. However, there are situations where it is
necessary to respond to operation invocations or AMI callbacks in a particular thread. For example, in a server, you might need to update a
database that does not permit concurrent access from different threads or, in a client, you might need to update a user interface with the
results of an invocation. (Many UI frameworks require all UI updates to be made by a specific thread.)

In Ice for C++, Java, .NET, and Objective-C, you can control which thread receives operation invocations and AMI callbacks, so you can
ensure that all updates are made by a thread you choose. The implementation techniques vary slightly for each language and are explained
in the sections that follow.

On this page:

C++ Dispatcher API
Java Dispatcher API
C# Dispatcher API
Objective-C Dispatcher API
Dispatcher Implementation Notes

C++ Dispatcher API

To install a dispatcher, you must instantiate a class that derives from  and  with that instance inIce::Dispatcher initialize a communicator
the  structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:InitializationData

C++

class MyDispatcher : public Ice::Dispatcher /*, ... */
    // ...
};

int
main(int argc, char* argv[])
{
    Ice::CommunicatorPtr communicator;

    try {
        Ice::InitializationData initData;
        initData.properties = Ice::createProperties(argc, argv);
        initData.dispatcher = new MyDispatcher();
        communicator = Ice::initialize(argc, argv, initData);
        
        // ...
    } catch (const Ice::Exception& ex) {
        // ...
    }

    // ...
}

The  abstract base class has the following interface:Ice::Dispatcher

C++

class Dispatcher : virtual public IceUtil::Shared
{
public:
    virtual void dispatch(const DispatcherCallPtr&, const ConnectionPtr&) = 0;
};

typedef IceUtil::Handle<Dispatcher> DispatcherPtr;
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The Ice run time invokes the  method whenever an operation invocation arrives or an AMI invocation completes, passing andispatch
instance of  and the connection via which the invocation arrived. The job of  is to pass the incoming invocationDispatcherCall dispatch
to an operation implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value
may be nil if no connection currently exists.

You can write  such that it blocks and waits for completion of the invocation because  is called by a thread in thedispatch dispatch
server-side thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The  instance encapsulates all the details of the incoming call. It is another abstract base class with the followingDispatcherCall
interface:

C++

class DispatcherCall : virtual public IceUtil::Shared
{
public:
    virtual ~DispatcherCall() { }

    virtual void run() = 0;
};

typedef IceUtil::Handle<DispatcherCall> DispatcherCallPtr;

Your implementation of  is expected to call  on the  instance (or, more commonly, to cause  to bedispatch run DispatcherCall run
called some time later). When you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement  would be as follows:dispatch

C++

class MyDispatcher : public Ice::Dispatcher
public:
    virtual void dispatch(const Ice::DispatcherCallPtr& d, const Ice::ConnectionPtr)
    {
        d->run(); // Does not throw, blocks until op completes.
    }
};

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls  which, indispatch
turn, calls  on the  instance.run DispatcherCall

With this simple example,  immediately calls , and  does not return until the corresponding operation invocation isdispatch run run
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing aasynchronous method invocation
"Submit" button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's begin_
method. This is guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run
time invokes an AMI callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done
from the UI thread. By using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can
arrange for AMI callbacks to be passed to the UI thread with MFC:
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C++

class MyDialog : public CDialog { ... };

class MyDispatcher : public Ice::Dispatcher {
public:
    MyDispatcher(MyDialog* dialog) : _dialog(dialog)
    {
    }

    virtual void 
    dispatch(const Ice::DispatcherCallPtr& call, const Ice::ConnectionPtr&)
    {
        _dialog->PostMessage(WM_AMI_CALLBACK, 0,
                             reinterpret_cast<LPARAM>(new Ice::DispatcherCallPtr(call)));
    }

private:
    MyDialog* _dialog;
};

The  class simply stores the  handle for the UI and calls , passing the  instance.MyDispatcher CDialog PostMessage DispatcherCall
In turn, this causes the UI thread to receive an event and invoke the UI callback method that was registered to respond to 

 events.WM_AMI_CALLBACK

In turn, the implementation of the callback method calls :run

C++

LRESULT
MyDialog::OnAMICallback(WPARAM, LPARAM lParam)
{
    try {
        Ice::DispatcherCallPtr* call = reinterpret_cast<Ice::DispatcherCallPtr*>(lParam);
        (*call)->run();
        delete call;
    } catch (const Ice::Exception& ex) {
        // ...
    }
    return 0;
}

The Ice run time calls  once the asynchronous operation invocation is complete. In turn, this causes the  todispatch OnAMICallback
trigger, which calls . Because the operation has completed already,  does not block, so the UI remains responsive.run run

Please see the  demo in your Ice distribution for a fully-functional UI client that uses this technique.MFC

Java Dispatcher API

To install a dispatcher, you must instantiate a class that implements  and  with that instance inIce.Dispatcher initialize a communicator
the  structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:InitializationData
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Java

public class MyDispatcher implements Ice.Dispatcher
{
    // ...
}

public class Server
{
    public static void
    main(String[] args)
    {
        Ice.Communicator communicator;

        try {
            Ice.InitializationData initData = new Ice.InitializationData();
            initData.properties = Ice.Util.createProperties(args);
            initData.dispatcher = new MyDispatcher();
            communicator = Ice.Util.initialize(args, initData);

            // ...
        } catch (Ice.LocalException & ex) { {
            // ...
        }

        // ...
    }

    // ...
}

The  interface looks as follows:Ice.Dispatcher

Java

public interface Dispatcher
{
    void dispatch(Runnable runnable, Ice.Connection con);
}

The Ice run time invokes the  method whenever an operation invocation arrives, passing a  and the connection viadispatch Runnable
which the invocation arrived. The job of  is to pass the incoming invocation to an operation implementation.dispatch

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value
may be null if no connection currently exists.

You can write  such that it blocks and waits for completion of the invocation because  is called by a thread in thedispatch dispatch
server-side thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

Your implementation of  is expected to call  on the  instance (or, more commonly, to cause  to be called somedispatch run Runnable run
time later). When you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement  would be as follows:dispatch
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Java

public class MyDispatcher implements Ice.Dispatcher
{
    public void
    dispatch(Runnable runnable, Ice.Connection connection)
    {
        // Does not throw, blocks until op completes.
        runnable.run();
    }
}

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls  which, indispatch
turn, calls  on the  instance.run Runnable

With this simple example,  immediately calls , and  does not return until the corresponding operation invocation isdispatch run run
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing aasynchronous method invocation
"Submit" button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's begin_
method. This is guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run
time invokes an AMI  callback from one of the threads in its thread pool. That callback now has to update the UI, but that can onlyresponse
be done from the UI thread. By using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you
can arrange for AMI callbacks to be passed to the UI thread with Swing:



Ice 3.4.2 Documentation

901 Copyright © 2011, ZeroC, Inc.

Java

public class Client extends JFrame
{
    public static void main(final String[] args)
    {
        SwingUtilities.invokeLater(new Runnable()
        {
            public void run()
            {
                try {
                    new Client(args);
                } catch (Ice.LocalException e) {
                    JOptionPane.showMessageDialog(
                        null, e.toString(),
                        "Initialization failed",
                        JOptionPane.ERROR_MESSAGE);
                }
            }
        });
    }

    Client(String[] args)
    {
        Ice.Communicator communicator;

        try {
            Ice.InitializationData initData = new Ice.InitializationData();
            initData.dispatcher = new Ice.Dispatcher()
            {
                public void
                dispatch(Runnable runnable, Ice.Connection connection)
                {
                    SwingUtilities.invokeLater(runnable);
                }
            };
            communicator = Ice.Util.initialize(args, initData);
        }
        catch(Throwable ex)
        {
            // ...
        }
        // ...
    }

    // ...
}

The  method simply delays the call to  by calling , passing it the  that is provided by the Ice run time.dispatch run invokeLater Runnable
This causes the Swing UI thread to eventually make the call to . Because the Ice run time does not call  until therun dispatch
asynchronous invocation is complete, that call to  does not block and the UI remains responsive.run

Please see the  demo in your Ice distribution for a fully-functional UI client that uses this technique.swing

C# Dispatcher API

To install a dispatcher, you must  with a delegate of type  in the initialize a communicator Ice.Dispatcher InitializationData
structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:
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C#

public class Server
{
    public static void Main(string[] args)
    {
        Ice.Communicator communicator = null;
        
        try {
            Ice.InitializationData initData = new Ice.InitializationData();
            initData.dispatcher = new MyDispatcher().dispatch;
            communicator = Ice.Util.initialize(ref args, initData);
            // ...
        } catch (System.Exception ex) {
            // ...
        }
        
        // ...
    }

    // ...
}

The  delegate is defined as follows:Ice.Dispatcher

C#

public delegate void Dispatcher(System.Action call, Connection con);

The Ice run time calls your delegate whenever an operation invocation arrives, passing a  delegate and the connection viaSystem.Action
which the invocation arrived. The job of your delegate is to pass the incoming invocation to an operation implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value
may be null if no connection currently exists.

In this example, the delegate calls a method  on an instance of a  class. You can write  such that itdispatch MyDispatcher dispatch
blocks and waits for completion of the invocation because  is called by a thread in the server-side thread pool (for incomingdispatch
operation invocations) or the client-side thread pool (for AMI callbacks).

Your implementation of  is expected to invoke the  delegate (or, more commonly, to cause it to be invoked some time later).dispatch call
When you invoke the  delegate, the Ice run time processes the invocation in the thread that invokes the delegate.call

A very simple way to implement  would be as follows:dispatch

C#

public class MyDispatcher
{
    public void
    dispatch(System.Action call, Ice.Connection con)
    {
        // Does not throw, blocks until op completes.
        call();
    }
};

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls  which, indispatch
turn, invokes the  delegate.call

With this simple example,  immediately invokes the delegate, and that call does not return until the corresponding operationdispatch
invocation is complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
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mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing aasynchronous method invocation
"Submit" button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's begin_
method. This is guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run
time invokes an AMI callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done
from the UI thread. By using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can
arrange for AMI callbacks to be passed to the UI thread with WPF:

C#

public partial class MyWindow : Window
{
    private void Window_Loaded(object sender, EventArgs e)
    {
        Ice.Communicator communicator = null;

        try
        {
            Ice.InitializationData initData = new Ice.InitializationData();
            initData.dispatcher =
                    delegate(System.Action action, Ice.Connection connection)
            {
                Dispatcher.BeginInvoke(DispatcherPriority.Normal, action);
            };
            communicator = Ice.Util.initialize(initData);
        }
        catch(Ice.LocalException ex)
        {
            // ...
        }
    }

    // ...
}

The delegate calls  on the  delegate. This causes WPF to queue the actual asynchronous invocation ofDispatcher.BeginInvoke action
 for later execution by the UI thread. Because the Ice run time does not invoke your delegate until an asynchronous operationaction

invocation is complete, when the UI thread executes the corresponding call to the  method, that call does not block and the UIEndInvoke
remains responsive.

The net effect is that you can invoke an operation asynchronously from a UI callback method without the risk of blocking the UI thread. For
example:
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C#

public partical class MyWindow : Window
{
    private void someOp_Click(object sender, RoutedEventArgs e)
    {
        MyIntfPrx p = ...;

        // Call remote operation asynchronously.
        // Response is processed in UI thread.
        p.begin_someOp().whenCompleted(this.opResponse, this.opException);
    }

    public void opResponse()
    {
        // Update UI...
    }

    public void opException(Ice.Exception ex)
    {
        // Update UI...
    }
}

Please see the  demo in your Ice distribution for a fully-functional UI client that uses this technique.wpf

Objective-C Dispatcher API

To install a dispatcher, you must  with a callback (as an Objective-C block) in the initialize a communicator ICEInitializationData
structure. All invocations that arrive for this communicator are made via the specified callback. For example:

Objective-C

int
main(int argc, char* argv[])
{
    objc_startCollectorThread();
    id<ICECommunicator> communicator = nil;
    @try
    {
        ICEInitializationData* initData = [ICEInitializationData initializationData];
        initData.dispatcher =
            ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
            {
                // ...
            };
        communicator = [ICEUtil createCommunicator:&argc argv:argv initData:initData];
        // ...
    }
    @catch(ICELocalException* ex)
    {
        // ...
    }

    // ...
}

The type of the dispatcher callback must match the following block signature:
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Objective-C

void(^)(id<ICEDispatcherCall> call, id<ICEConnection> connection)

The Ice run time invokes the dispatcher callback whenever an operation invocation arrives, passing an object implementing the 
 protocol and the connection via which the invocation arrived. The job of your callback implementation is to executeICEDispatcherCall

the given call.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value
may be nil if no connection currently exists.

You can write the callback such that it blocks and waits for completion of the invocation because the callback is called by a thread in the
server-side thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The  protocol defines how to execute the incoming call:ICEDispatcherCall

Objective-C

@protocol ICEDispatcherCall <NSObject>
-(void) run;
@end

Your callback is expected to call  on the  instance (or, more commonly, to cause run to be called some time later).run ICEDispatcherCall
When you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement the dispatcher callback would be as follows:

Objective-C

void(^myDispatcher)(id<ICEDispatcherCall>, id<ICEConnection>) =
    ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
    {
        // Does not throw, blocks until op completes.
        [call run];
    };

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls the dispatcher callback
which, in turn, invokes the run method on the call.

With this simple example, the dispatcher callback immediately invokes , and  does not return until the corresponding operationrun run
invocation is complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing aasynchronous method invocation
"Submit" button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's begin_
method. This is guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run
time invokes an AMI callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done
from the UI thread. By using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can
arrange for AMI callbacks to be passed to Cocoa or Cocoa Touch main thread:
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Objective-C

-(void)viewDidLoad
{
    ICEInitializationData* initData = [ICEInitializationData initializationData];
    initData.dispatcher =
        ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
        {
            dispatch_sync(dispatch_get_main_queue(), ^ { [call run]; });
        };

    communicator = [[ICEUtil createCommunicator:initData] retain];

    // ....
}

The dispatcher callback calls  on the main queue. This queues the actual call for later execution by the main thread.dispatch_sync
Because the Ice run time does not invoke the dispatcher callback until an asynchronous operation invocation is complete, when the UI
thread executes the corresponding call, that call does not block and the UI remains responsive.

The net effect is that you can invoke an operation asynchronously from a UI callback method without the risk of blocking the UI thread. For
example:

Objective-C

-(void)someOp:(id)sender
{
    id<MyIntfPrx> p = ...;
    [p begin_someOp:^{ [self response]; }
          exception:^(ICEException* ex) { [self exception:ex]; }];
}

-(void) response
{
    // Update UI...
}

-(void) exception:(ICEException* ex)
{
    // Update UI...
}

Please see the Cocoa or iPhone demos in your Ice Touch distribution for fully-functional UI clients that use this technique.

Dispatcher Implementation Notes

An application that uses a custom dispatcher must adhere to the following rules to avoid a deadlock:

Dispatcher implementations must ensure that all requests are dispatched. Failing to dispatch all requests will cause 
 to hang indefinitely. If a dispatcher has resources that must be reclaimed (e.g., joining with a helperCommunicator::destroy

thread), it can safely do so after  has completed.Communicator::destroy

Never make a blocking invocation from the dispatch thread, such as a synchronous proxy operation or a proxy method that can
potentially block, such as . These invocations depend on the dispatcher for their own completion, thereforeice_getConnection
blocking the dispatch thread will inevitably lead to deadlock.

See Also

Asynchronous Method Invocation (AMI) in C++
Asynchronous Method Invocation (AMI) in Java
Asynchronous Method Invocation (AMI) in C-Sharp
Asynchronous Method Invocation (AMI) in Objective-C
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Using Proxies

The introduction to proxies provided in  describes a proxy as a local artifact that makes a remote invocation as easy to use as aTerminology
regular function call. In fact, processing remote invocations is just one of a proxy's many responsibilities. A proxy also encapsulates the
information necessary to contact the object, including its  and addressing details such as .  provide access toidentity endpoints Proxy methods
configuration and connection information, and act as factories for creating new proxies. Finally, a proxy initiates the establishment of a new

 when necessary.connection

Topics

Obtaining Proxies
Proxy Methods
Proxy Endpoints
Filtering Proxy Endpoints
Proxy Defaults and Overrides
Proxy and Endpoint Syntax

See Also

Terminology
Object Identity
Proxy Methods
Connection Establishment
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Obtaining Proxies

This page describes the ways an application can obtain a proxy.

On this page:

Obtaining a Proxy from a String
Obtaining a Proxy from Properties
Obtaining a Proxy using Factory Methods
Obtaining a Proxy by Invoking Operations

Obtaining a Proxy from a String

The communicator operation  creates a proxy from its , as shown in the following C++ example:stringToProxy stringified representation

C++

Ice::ObjectPrx p = communicator->stringToProxy("ident:tcp -p 5000");

Obtaining a Proxy from Properties

Rather than hard-coding a stringified proxy as the previous example demonstrated, an application can gain more flexibility by externalizing
the proxy in a configuration property. For example, we can define a property that contains our stringified proxy as follows:

MyApp.Proxy=ident:tcp -p 5000

We can use the communicator operation  to convert the property's value into a proxy, as shown below in Java:propertyToProxy

Java

Ice.ObjectPrx p = communicator.propertyToProxy("MyApp.Proxy");

As an added convenience,  allows you to define subordinate properties that configure the proxy's local settings. ThepropertyToProxy
properties below demonstrate this feature:

MyApp.Proxy=ident:tcp -p 5000
MyApp.Proxy.PreferSecure=1
MyApp.Proxy.EndpointSelection=Ordered

These additional properties simplify the task of customizing a proxy (as you can with ) without the need to change theproxy methods
application's code. The properties shown above are equivalent to the following statements:

Java

Ice.ObjectPrx p = communicator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpointSelection(Ice.EndpointSelectionType.Ordered);

The list of  includes the most commonly-used proxy settings. The communicator prints a warning by default if itsupported proxy properties
does not recognize a subordinate property. You can disable this warning using the property .Ice.Warn.UnknownProperties

Note that proxy properties can themselves have proxy properties. For example, the following sets the  property on thePreferSecure
default locator's router:

Ice.Default.Locator.Router.PreferSecure=1
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Obtaining a Proxy using Factory Methods

Proxy factory methods allow you to modify aspects of an existing proxy. Since proxies are immutable, factory methods always return a new
proxy if the desired modification differs from the proxy's current configuration. Consider the following C# example:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
p = p.ice_oneway();

ice_oneway is considered a factory method because it returns a proxy configured to use oneway invocations. If the original proxy uses a
different invocation mode, the return value of  is a new proxy object.ice_oneway

The  and  methods can also be considered factory methods because they return new proxies that arecheckedCast uncheckedCast
narrowed to a particular Slice interface. A call to  or  typically follows the use of other factory methods, ascheckedCast uncheckedCast
shown below:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx loc = Ice.LocatorPrxHelper.checkedCast(p.ice_secure(true));

Note however that, once a proxy has been narrowed to a Slice interface, it is not normally necessary to perform another down-cast after
using a factory method. For example, we can rewrite this example as follows:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx loc = Ice.LocatorPrxHelper.checkedCast(p);
loc = (Ice.LocatorPrx)p.ice_secure(true);

A language-specific cast may be necessary, as shown here for C#, because the factory methods are declared to return the type ObjectPrx
, but the proxy object itself retains its narrowed type. The only exceptions are the factory methods  and . Calls toice_facet ice_identity
either of these methods may produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must
subsequently down-cast to an appropriate type.

Obtaining a Proxy by Invoking Operations

An application can also obtain a proxy as the result of an Ice invocation. Consider the following Slice definitions:

Slice

interface Account { ... };
interface Bank {
    Account* findAccount(string id);
};

Invoking the  operation returns a proxy for an  object. There is no need to use  or findAccount Account checkedCast uncheckedCast
on this proxy because it has already been narrowed to the  interface. The C++ code below demonstrates how to invoke Account

:findAccount

C++

BankPrx bank = ...
AccountPrx acct = bank->findAccount(id);

Of course, the application must have already obtained a proxy for the bank object using one of the techniques shown above.

See Also
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Communicators
Proxy and Endpoint Syntax
Proxy Methods
Ice Proxy Properties
Ice Warning Properties
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Proxy Methods

Although the core proxy functionality is supplied by a language-specific base class, we can describe the proxy methods in terms of Slice
operations as shown below:

Slice

bool ice_isA(string id);
void ice_ping();
StringSeq ice_ids();
string ice_id();
int ice_getHash();
Communicator ice_getCommunicator();
string ice_toString();
Object* ice_identity(Identity id);
Identity ice_getIdentity();
Object* ice_adapterId(string id);
string ice_getAdapterId();
Object* ice_endpoints(EndpointSeq endpoints);
EndpointSeq ice_getEndpoints();
Object* ice_endpointSelection(EndpointSelectionType t);
EndpointSelectionType ice_getEndpointSelection();
Object* ice_context(Context ctx);
Context ice_getContext();
Object* ice_defaultContext();
Object* ice_facet(string facet);
string ice_getFacet();
Object* ice_twoway();
bool ice_isTwoway();
Object* ice_oneway();
bool ice_isOneway();
Object* ice_batchOneway();
bool ice_isBatchOneway();
Object* ice_datagram();
bool ice_isDatagram();
Object* ice_batchDatagram();
bool ice_isBatchDatagram();
Object* ice_secure(bool b);
bool ice_isSecure();
Object* ice_preferSecure(bool b);
bool ice_isPreferSecure();
Object* ice_compress(bool b);
Object* ice_timeout(int timeout);
Object* ice_router(Router* rtr);
Router* ice_getRouter();
Object* ice_locator(Locator* loc);
Locator* ice_getLocator();
Object* ice_locatorCacheTimeout(int seconds);
int ice_getLocatorCacheTimeout();
Object* ice_collocationOptimized(bool b);
bool ice_isCollocationOptimized();
Object* ice_connectionId(string id);
string ice_getConnectionId();
Connection ice_getConnection();
Connection ice_getCachedConnection();
Object* ice_connectionCached(bool b);
bool ice_isConnectionCached();
void ice_flushBatchRequests();
bool ice_invoke(string operation, OperationMode mode,
                ByteSeq inParams, out ByteSeq outParams);

These methods can be categorized as follows:

Remote inspection: methods that return information about the remote object. These methods make remote invocations and
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therefore accept an optional trailing argument of type .Ice::Context
Local inspection: methods that return information about the proxy's local configuration.
Factory: methods that return new proxy instances configured with different features.
Request processing: methods that flush batch requests and send "dynamic" Ice invocations.

Proxies are immutable, so factory methods allow an application to obtain a new proxy with the desired configuration. Factory methods
essentially clone the original proxy and modify one or more features of the new proxy.

Many of the factory methods are not supported by , which are used in conjunction with . Attempting tofixed proxies bidirectional connections
invoke one of these methods causes the Ice run time to raise .FixedProxyException

The core proxy methods are explained in greater detail in the following table:

Method Description Remote

ice_isA Returns  if the remote object supports the type indicated by the  argument,true id
otherwise . This method can only be invoked on a twoway proxy.false

Yes

ice_ping Determines whether the remote object is reachable. Does not return a value. Yes

ice_ids Returns the  of the types supported by the remote object. The return value istype IDs
an array of strings. This method can only be invoked on a twoway proxy.

Yes

ice_id Returns the  of the most-derived type supported by the remote object. Thistype ID
method can only be invoked on a twoway proxy.

Yes

ice_getHash Returns a hash value for the proxy for C++. For other language mappings, use the
built-in hash method.

No

ice_getCommunicator Returns the  that was used to create this proxy.communicator No

ice_toString Returns the string representation of the proxy. No

ice_identity Returns a new proxy having the given .identity No

ice_getIdentity Returns the  of the Ice object represented by the proxy.identity No

ice_adapterId Returns a new proxy having the given .adapter ID No

ice_getAdapterId Returns the proxy's , or an empty string if no adapter ID is configured.adapter ID No

ice_endpoints Returns a new proxy having the given .endpoints No

ice_getEndpoints Returns a sequence of  objects representing the .Endpoint proxy's endpoints No

ice_endpointSelection Returns a new proxy having the given  policy (random or ordered).endpoint selection No

ice_getEndpointSelection Returns the  policy for the proxy.endpoint selection No

ice_context Returns a new proxy having the given .request context No

ice_getContext Returns the  associated with the proxy.request context No

ice_facet Returns a new proxy having the given .facet name No

ice_getFacet Returns the name of the  associated with the proxy, or an empty string if no facetfacet
has been set.

No

ice_twoway Returns a new proxy for making twoway invocations. No

ice_isTwoway Returns  if the proxy uses twoway invocations, otherwise .true false No

ice_oneway Returns a new proxy for making .oneway invocations No

ice_isOneway Returns  if the proxy uses , otherwise .true oneway invocations false No

ice_batchOneway Returns a new proxy for making .batch oneway invocations No

ice_isBatchOneway Returns  if the proxy uses batch oneway invocations, otherwise .true false No

ice_datagram Returns a new proxy for making .datagram invocations No
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ice_isDatagram Returns  if the proxy uses , otherwise .true datagram invocations false No

ice_batchDatagram Returns a new proxy for making .batch datagram invocations No

ice_isBatchDatagram Returns  if the proxy uses , otherwise .true batch datagram invocations false No

ice_secure Returns a new proxy whose endpoints may be  depending on the booleanfiltered
argument. If , only endpoints using secure transports are allowed, otherwise alltrue
endpoints are allowed.

No

ice_isSecure Returns  if the proxy uses only secure endpoints, otherwise .true false No

ice_preferSecure Returns a new proxy whose endpoints are  depending on the boolean argument.filtered
If , endpoints using secure transports are given precedence over endpoints usingtrue
non-secure transports. If , the default behavior gives precedence to endpointsfalse
using non-secure transports.

No

ice_isPreferSecure Returns  if the proxy prefers secure endpoints, otherwise .true false No

ice_compress Returns a new proxy whose  capability is determined by theprotocol compression
boolean argument. If , the proxy uses protocol compression if it is supported bytrue
the endpoint. If , protocol compression is never used.false

No

ice_timeout Returns a new proxy with the given  value in milliseconds. A value of timeout -1
disables timeouts.

No

ice_router Returns a new proxy configured with the given  proxy.router No

ice_getRouter Returns the  that is configured for the proxy (null if no router is configured).router No

ice_locator Returns a new proxy with the specified .locator No

ice_getLocator Returns the  that is configured for the proxy (null if no locator is configured).locator No

ice_locatorCacheTimeout Returns a new proxy with the specified  timeout. When binding a proxy tolocator cache
an endpoint, the run time caches the proxy returned by the locator and uses the cached
proxy while the cached proxy has been in the cache for less than the timeout. Proxies
older than the timeout cause the run time to rebind via the locator. A value of 0 disables
caching entirely, and a value of -1 means that cached proxies never expire. The default
value is -1.

No

ice_getLocatorCacheTimeout Returns the  timeout value in seconds.locator cache No

ice_collocationOptimized Returns a new proxy configured for . If , collocatedcollocation optimization true
optimizations are enabled. The default value is .true

No

ice_isCollocationOptimized Returns  if the proxy uses , otherwise .true collocation optimization false No

ice_connectionId Returns a new proxy having the given .connection ID No

ice_getConnectionId Returns the , or an empty string if no connection ID has been configured.connection ID No

ice_getConnection Returns an object representing the  used by the proxy. If the proxy is notconnection
currently associated with a connection, the Ice run time attempts to establish a
connection first.

No

ice_getCachedConnection Returns an object representing the  used by the proxy, or null if the proxy isconnection
not currently associated with a connection.

No

ice_connectionCached Enables or disables  for the proxy.connection caching No

ice_isConnectionCached Returns  if the proxy uses , otherwise .true connection caching false No

ice_flushBatchRequests
begin_ice_flushBatchRequests

Sends a  of operation invocations synchronously or asynchronously.batch Yes

ice_invoke
begin_ice_invoke

Allows dynamic invocation of an operation without the need for compiled Slice
definitions. Requests can be sent  or .synchronously asynchronously

Yes

See Also
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Request Contexts
Oneway Invocations
Batched Invocations
Facets and Versioning
Connection Timeouts
Connection Establishment
Using Connections
Dynamic Invocation and Dispatch
Asynchronous Dynamic Invocation and Dispatch
Bidirectional Connections
Glacier2
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Proxy Endpoints

Proxy endpoints are the client-side equivalent of . A proxy endpoint identifies the protocol information used toobject adapter endpoints
contact a remote object, as shown in the following example:

tcp -h www.zeroc.com -p 10000

This endpoint states that an object is reachable via TCP on the host  and the port .www.zeroc.com 10000

A proxy must have, or be able to obtain, at least one endpoint in order to be useful. A  contains one or more endpoints:direct proxy

MyObject:tcp -h www.zeroc.com -p 10000:ssl -h www.zeroc.com -p 10001

In this example the object with the identity  is available at two separate endpoints, one using TCP and the other using SSL.MyObject

If a direct proxy does not contain the  option (that is, no host is specified), the Ice run time uses the value of the -h Ice.Default.Host
property. If  is not defined, the localhost interface is used.Ice.Default.Host

An  uses a  to retrieve the endpoints dynamically. One style of indirect proxy contains an adapter identifier:indirect proxy locator

MyObject @ MyAdapter

When this proxy requires the endpoints associated with , it requests them from the locator.MyAdapter

See Also

Terminology
Object Adapter Endpoints
Locators
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Filtering Proxy Endpoints

A proxy's configuration determines how its  are used. For example, a proxy configured for secure communication will only useendpoints
endpoints having a secure protocol, such as SSL.

The  listed in the table below allow applications to manipulate endpoints indirectly. Calling one of these methods returns afactory methods
new proxy whose endpoints are used in accordance with the proxy's new configuration.

Method Description

ice_secure Selects only endpoints using a secure protocol (e.g., SSL).

ice_datagram Selects only endpoints using a datagram protocol (e.g., UDP).

ice_batchDatagram Selects only endpoints using a datagram protocol (e.g., UDP).

ice_twoway Selects only endpoints capable of making twoway invocations (e.g., TCP, SSL). For example, this disables
datagram endpoints.

ice_oneway Selects only endpoints capable of making reliable oneway invocations (e.g., TCP, SSL). For example, this
disables datagram endpoints.

ice_batchOneway Selects only endpoints capable of making reliable oneway batch invocations (e.g., TCP, SSL). For example, this
disables datagram endpoints.

Upon return, the set of endpoints in the new proxy is unchanged from the old one. However, the new proxy's configuration drives a filtering
process that the Ice run time performs during .connection establishment

The factory methods do not raise an exception if they produce a proxy with no viable endpoints. For example, the C++ statement below
creates such a proxy:

C++

proxy = comm->stringToProxy("id:tcp -p 10000")->ice_datagram();

It is always possible that a proxy could become viable after additional factory methods are invoked, therefore the Ice run time does not raise
an exception until connection establishment is attempted. At that point, the application can expect to receive  if theNoEndpointException
filtering process eliminates all endpoints.

An application can also create a proxy with a specific set of endpoints using the  factory method, whose only argument is aice_endpoints
sequence of  objects. At present, an application is not able to create new instances of , but rather canIce::Endpoint Ice::Endpoint
only incorporate instances obtained by calling  on a proxy. Note that  may return an emptyice_getEndpoints ice_getEndpoints
sequence if the proxy has no endpoints, as is the case with an .indirect proxy

See Also

Proxy Endpoints
Proxy Methods
Connection Establishment
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Proxy Defaults and Overrides

It is important to understand how proxies are influenced by Ice configuration properties and settings. The relevant properties can be
classified into two categories: defaults and overrides.

On this page:

Proxy Default Properties
Proxy Override Properties

Proxy Default Properties

Default properties affect proxies created as the result of an Ice invocation, or by calling  or  on a stringToProxy propertyToProxy
. These properties do not influence proxies created by .communicator proxy factory methods

For example, suppose we define the following default property:

Ice.Default.PreferSecure=1

We can verify that the property has the desired affect using the following C++ code:

C++

Ice::ObjectPrx p = communicator->stringToProxy(...);
assert(p->ice_isPreferSecure());

Furthermore, we can verify that the property does not affect proxies returned by factory methods:

Ice::ObjectPrx p2 = p->ice_preferSecure(false);
assert(!p2->ice_isPreferSecure());
Ice::ObjectPrx p3 = p2->ice_oneway();
assert(!p3->ice_isPreferSecure());

Proxy Override Properties

Defining an  causes the Ice run time to ignore any equivalent proxy setting and use the override property value instead. Foroverride property
example, consider the following property definition:

Ice.Override.Secure=1

This property instructs the Ice run time to use only secure endpoints, producing the same semantics as calling  onice_secure(true)
every proxy. However, the property does not alter the settings of an existing proxy, but rather directs the Ice run time to use secure
endpoints regardless of the proxy's security setting. We can verify that this is the case using the following C++ code:

C++

Ice::ObjectPrx p = communicator->stringToProxy(...);
p = p->ice_secure(false);
assert(!p->ice_isSecure()); // The security setting is retained.

See Also

Communicators
Ice Default and Override Properties
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Proxy and Endpoint Syntax

On this page:

Syntax for Stringified Proxies
Syntax for Stringified Endpoints

Address Syntax
TCP Endpoint Syntax
UDP Endpoint Syntax
SSL Endpoint Syntax
Opaque Endpoint Syntax

Syntax for Stringified Proxies

Synopsis

 -f  -t -o -O -d -D -s @  : identity facet adapter_id endpoints

Description

A stringified proxy consists of an identity, proxy options, and an optional object adapter identifier or endpoint list. White space (the space, tab
( ), line feed ( ), and carriage return ( ) characters) act as token delimiters; if a white space character appears as part of a component\t \n \r
of a stringified proxy (such as the identity), it must be quoted or escaped as described below.

A proxy containing an identity with no endpoints, or an identity with an object adapter identifier, represents an indirect proxy that will be
resolved using the .Ice locator

Proxy options configure the invocation mode:

 -f facet Select a facet of the Ice object.

-t Configures the proxy for twoway invocations (default).

-o Configures the proxy for oneway invocations.

-O Configures the proxy for batch oneway invocations.

-d Configures the proxy for datagram invocations.

-D Configures the proxy for batch datagram invocations.

-s Configures the proxy for secure invocations.

The proxy options , , , , and  are mutually exclusive.-t -o -O -d -D

The object identity  is structured as , where the  component and slash separator are optional. If identity [ /]category name category
 contains white space or either of the characters  or , it must be enclosed in single or double quotes. The  and identity : @ category name

components are UTF-8 strings that use the encoding described below. Any occurrence of a slash ( ) in  or  must be/ category name
escaped with a backslash (i.e., ).\/

The  argument of the  option represents a  name. If  contains white space, it must be enclosed in single or doublefacet -f facet facet
quotes. A facet name is a UTF-8 string that uses the encoding described below.

The object adapter identifier  is a UTF-8 string that uses the encoding described below. If  contains white space, itadapter_id adapter_id
must be enclosed in single or double quotes.

Single or double quotes can be used to prevent white space characters from being interpreted as delimiters. Double quotes prevent
interpretation of a single quote a as an opening or closing quote, for example:

"a string with a ' quote"

Single quotes prevent interpretation of a double quote as an opening or closing quote. For example:
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1.  
2.  

'a string with a " quote'

Escape sequences such as  are interpreted within single and double quotes.\b

UTF-8 strings are encoded using ASCII characters for the ordinal range 32--126 (inclusive). Characters outside this range must be encoded
using escape sequences ( , , , , ) or octal notation (e.g., ). Single and double quotes can be escaped using a backslash, as\b \f \n \r \t \007
can the backslash itself.

If  are specified, they must be separated with a colon ( ) and formatted as described in the . The order ofendpoints : endpoint syntax
endpoints in the stringified proxy is not necessarily the order in which connections are attempted during binding: when a stringified proxy is
converted into a proxy instance, by default, the endpoint list is randomized as a form of load balancing. You can change this default behavior
using the properties  and .Ice.Default.EndpointSelection .EndpointSelectionname

If the  option is specified, only those endpoints that support secure invocations are considered during binding. If no valid endpoints are-s
found, the application receives .Ice::NoEndpointException

Otherwise, if the  option is not specified, the endpoint list is ordered so that non-secure endpoints have priority over secure endpoints-s
during binding. In other words, connections are attempted on all non-secure endpoints before any secure endpoints are attempted.

If an unknown option is specified, or the stringified proxy is malformed, the application receives . If anIce::ProxyParseException
endpoint is malformed, the application receives .Ice::EndpointParseException

Syntax for Stringified Endpoints

Synopsis

 : endpoint endpoint

Description

An endpoint list comprises one or more endpoints separated by a colon ( ).:

An endpoint has the following format:

 protocol option

The supported protocols are , , , and . If  is used, it is replaced by the value of the tcp udp ssl default default Ice.Default.Protocol
property. If an endpoint is malformed, or an unknown protocol is specified, the application receives . TheIce::EndpointParseException

 protocol is only available if the  plug-in is installed.ssl IceSSL

Ice uses endpoints for two similar but distinct purposes:

In a client context (that is, in a proxy), endpoints determine how Ice establishes a connection to a server.
In a server context (that is, in an object adapter's configuration), endpoints define the addresses and transports over which new
incoming connections are accepted. These endpoints are also embedded in the proxies created by the object adapter, unless a
separate set of "published" endpoints are explicitly configured.

The sections that follow discuss the addressing component of endpoints, as well as the protocols and their supported options.

See  for examples.Object Adapter Endpoints

Address Syntax

Synopsis

 :  |  (IPv4)host hostname x.x.x.x
 :  |  (IPv6)host hostname ":x:x:x:x:x:x:x"

Description

Ice supports Internet Protocol (IP) versions 4 and 6 in all language mappings.
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IPv6 is not supported when using Ice for Java on Windows due to a  in the JVM.limitation

Support for these protocols is configured using the properties  (enabled by default) and  (disabled by default).Ice.IPv4 Ice.IPv6

In the endpoint descriptions below, the  parameter represents either a host name that is resolved via the Domain Name System (DNS),host
an IPv4 address in dotted quad notation, or an IPv6 address in 128-bit hexadecimal format and enclosed in double quotes. Due to limitation
of the DNS infrastructure, host and domain names are restricted to the ASCII character set.

The presence (or absence) of the  parameter has a significant influence on the behavior of the Ice run time. The table below describeshost
these semantics:

Value Client Semantics Server Semantics

None If  is not specified in a proxy, Ice useshost
the value of the Ice.Default.Host
property. If that property is not defined,
outgoing connections are only attempted
over loopback interfaces.

If  is not specified in an object adapter endpoint, Ice uses the value of the host
 property. If that property is not defined, the adapterIce.Default.Host

behaves as if the wildcard symbol * was specified (see below).

Host
name

The host name is resolved via DNS.
Outgoing connections are attempted to
each address returned by the DNS query.

The host name is resolved via DNS, and the object adapter listens on the
network interfaces corresponding to each address returned by the DNS query.
The specified host name is embedded in proxies created by the adapter.

IPv4
address

An outgoing connection is attempted to the
given address.

The object adapter listens on the network interface corresponding to the
address. The specified address is embedded in proxies created by the adapter.

IPv6
address

An outgoing connection is attempted to the
given address.

The object adapter listens on the network interface corresponding to the
address. The specified address is embedded in proxies created by the adapter.

0.0.0.0
(IPv4)

A "wildcard" IPv4 address that causes Ice to
try all local interfaces when establishing an
outgoing connection.

Equivalent to * (see below).

"::"
(IPv6)

A "wildcard" IPv6 address that causes Ice to
try all local interfaces when establishing an
outgoing connection.

Equivalent to * (see below).

 (IPv4,*
IPv6)

Not supported in proxies. The adapter listens on all network interfaces (including the loopback interface),
that is, binds to INADDR_ANY for the enabled protocols (IPv4 and/or IPv6).
Endpoints for all addresses except loopback and IPv6 link-local are published in
proxies (unless loopback is the only available interface, in which case only
loopback is published). 
Using Mono, proxies created by an object adapter listening on the IPv6 wildcard
address contain only the IPv6 loopback address unless published endpoints are
configured.

There is one additional benefit in specifying a wildcard address for  (or not specifying it at all) in an object adapter's endpoint: if the listhost
of network interfaces on a host may change while the application is running, using a wildcard address for  ensures that the objecthost
adapter automatically includes the updated interfaces. Note however that the list of published endpoints is not changed automatically; rather,
the application must explicitly . For diagnostic purposes, you can set the configuration property refresh the object adapter's endpoints

 to cause Ice to log the current list of local addresses that it is substituting for the wildcard address.Ice.Trace.Network=3

When IPv4 and IPv6 are enabled, an object adapter endpoint that uses an IPv6 (or wildcard) address can accept both IPv4 and IPv6
connections. This is true for all supported platforms except Windows XP and Windows Server 2003, where you must define separate IPv4
and IPv6 endpoints if you want the object adapter to accept both types of connections.

Java's default network stack always accepts both IPv4 and IPv6 connections regardless of the settings of  and . YouIce.IPv4 Ice.IPv6
can configure the Java run time to use only IPv4 by starting your application with the following JVM option:

Java

java -Djava.net.preferIPv4Stack=true ...

TCP Endpoint Syntax

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6230761
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Synopsis

tcp -h  -p  -t  -zhost port timeout

Description

A  endpoint supports the following options:tcp

Option Description Client Semantics Server Semantics

 -h host Specifies the host
name or IP address
of the endpoint. If not
specified, the value
of 
Ice.Default.Host
is used instead.

See .Address Syntax See .Address Syntax

 -p port Specifies the port
number of the
endpoint.

Determines the port to which a connection
attempt is made (required).

The port will be selected by the operating system if
this option is not specified or  is zero.port

 -t
timeout

Specifies the
endpoint timeout in
milliseconds.

If  is greater than zero, it specifies thetimeout
timeout used by the client to open or close
connections and to read or write data. It also
specifies how long the run time waits for an
invocation to complete. If a timeout occurs, the
application receives 
Ice::TimeoutException

If  is greater than zero, it specifies thetimeout
timeout used by the server to accept or close
connections and to read or write data (see 

 and Timeouts in Object Adapter Endpoints
).  also controls theConnection Timeouts timeout

timeout that is published in proxies created by the
object adapter.

-z Specifies bzip2
compression.

Determines whether compressed requests are
sent.

Determines whether compression is advertised in
proxies created by the adapter.

UDP Endpoint Syntax

Synopsis

udp -v  -e  -h  -p  -z --ttl  --interface major.minor major.minor host port TTL INTF

Description

A udp} endpoint supports either unicast or multicast delivery; the address resolved by the {{host
argument determines the delivery mode. To use multicast in IPv4, select an IP address in the range 233.0.0.0 }} to

. In IPv6, use an address that begins with , such as .{{239.255.255.255 ff ff01::1:1

A  endpoint supports the following options:udp

Option Description Client Semantics Server Semantics

 -v major.
minor

Specifies the protocol
major and highest minor
version number to be used
for this endpoint. If not
specified, the protocol
major version and highest
supported minor version of
the client-side Ice run time
is used.

Determines the protocol major version and
highest minor version used by the client side
when sending messages to this endpoint. The
protocol major version number must match
the protocol major version number of the
server; the protocol minor version number
must not be higher than the highest minor
version number supported by the server.

Determines the protocol major version and
highest minor version advertised by the
server side for this endpoint. The protocol
major version number must match the
protocol major version number of the
server; the protocol minor version number
must not be higher than the highest minor
version number supported by the server.

 -e major.
minor

Specifies the encoding
major and highest minor
version number to be used
for this endpoint. If not
specified, the encoding
major version and highest
supported minor version of
the client-side Ice run time
is used.

Determines the encoding major version and
highest minor version used by the client side
when sending messages to this endpoint. The
encoding major version number must match
the encoding major version number of the
server; the encoding minor version number
must not be higher than the highest minor
version number supported by the server.

Determines the encoding version and
highest minor version advertised by the
server side for this endpoint. The protocol
major version number must match the
protocol major version number of the
server; the protocol minor version number
must not be higher than the highest minor
version number supported by the server.
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 -h host Specifies the host name or
IP address of the endpoint.
If not specified, the value
of  isIce.Default.Host
used instead.

See .Address Syntax See .Address Syntax

 -p port Specifies the port number
of the endpoint.

Determines the port to which datagrams are
sent (required).

The port will be selected by the operating
system if this option is not specified or port
is zero.

-z Specifies bzip2
compression.

Determines whether compressed requests
are sent.

Determines whether compression is
advertised in proxies created by the
adapter.

 --ttl TTL Specifies the time-to-live
(also known as "hops") of
multicast messages.

Determines whether multicast messages are
forwarded beyond the local network. If not
specified, or the value of  is , multicastTTL -1
messages are not forwarded. The maximum
value is .255

N/A

--interface
INTF

Specifies the network
interface or group for
multicast messages (see
below).

Selects the network interface for outgoing
multicast messages. If not specified, multicast
messages are sent using the default interface.

Selects the network interface to use when
joining the multicast group. If not specified,
the group is joined on the default network
interface.

Multicast Interfaces

When  denotes a multicast address, the   option selects a particular network interface to be used forhost --interface INTF
communication. The format of  depends on the language and IP version:INTF

C++ and .NET (IPv4)
 can be an interface name, such as , or an IP address. Interface names on Windows may contain spaces, such as INTF eth0 Local

, therefore they must be enclosed in double quotes.Area Connection

C++ and .NET (IPv6)
 can be an interface name, such as , or an interface index.INTF eth0

Java
 can be an interface name, such as , or an IP address. On Windows, Java maps interface names to Unix-styleINTF eth0

nicknames.

SSL Endpoint Syntax

Synopsis

ssl -h  -p  -t  -zhost port timeout

Description

An  endpoint supports the following options:ssl

Option Description Client Semantics Server Semantics

 -h host Specifies the host
name or IP address
of the endpoint. If not
specified, the value
of 
Ice.Default.Host
is used instead.

See .Address Syntax See .Address Syntax

 -p port Specifies the port
number of the
endpoint.

Determines the port to which a connection
attempt is made (required).

The port will be selected by the operating system if
this option is not specified or port is zero.
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 -t
timeout

Specifies the
endpoint timeout in
milliseconds.

If  is greater than zero, it specifies thetimeout
timeout used by the client to open or close
connections and to read or write data. It also
specifies how long the run time waits for an
invocation to complete. If a timeout occurs, the
application receives 

.Ice::TimeoutException

If  is greater than zero, it specifies thetimeout
timeout used by the server to accept or close
connections and to read or write data (see 

 and Timeouts in Object Adapter Endpoints
).  also controls theConnection Timeouts timeout

timeout that is published in proxies created by the
object adapter.

-z Specifies bzip2
compression.

Determines whether compressed requests are
sent.

Determines whether compression is advertised in
proxies created by the adapter.

Opaque Endpoint Syntax

Synopsis

opaque -t  -v type value

Description

Proxies can contain endpoints that are not universally understood by Ice processes. For example, a proxy can contain an SSL endpoint; if
that proxy is marshaled to a receiver without the IceSSL plug-in, the SSL endpoint does not make sense to the receiver.

Ice preserves such unknown endpoints when they are received over the wire. For the preceding example, if the receiver remarshals the
proxy and sends it back to an Ice process that does have the IceSSL plug-in, that process can invoke on the proxy using its SSL transport.
This mechanism allows proxies containing endpoints for arbitrary transports to pass through processes that do not understand these
endpoints without losing information.

If an Ice process stringifies a proxy containing an unknown endpoint, it writes the endpoint as an opaque endpoint. For example:

opaque -t 2 -v CTEyNy4wLjAuMREnAAD/////AA==

This is how a process without the IceSSL plug-in stringifies an SSL endpoint. When a process with the IceSSL plug-in unstringifies this
endpoint and converts it back into a string, it produces:

ssl -h 127.0.0.1 -p 10001

An  endpoint supports the following options:opaque

Option Description

 -t type Specifies the transport for the endpoint. Transports are indicated by positive integers (1 for TCP, 2 for SSL, and 3 for UDP).

 -v value Specifies the marshaled encoding of the endpoint (including its enclosing encapsulation) in base-64 encoding.

Exactly one each of the  and  options must be present in an opaque endpoint.-t -v

See Also

The Ice Protocol
Object Adapter Endpoints
Connection Timeouts
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Request Contexts

Methods on a proxy are overloaded with a trailing parameter representing a . The Slice definition of this parameter is asrequest context
follows:

Slice

module Ice {
    local dictionary<string, string> Context;
};

As you can see, a context is a dictionary that maps strings to strings or, conceptually, a context is a collection of name-value pairs. The
contents of this dictionary (if any) are implicitly marshaled with every request to the server, that is, if the client populates a context with a
number of name-value pairs and uses that context for an invocation, the name-value pairs that are sent by the client are available to the
server.

On the server side, the operation implementation can access the received  via the  member of the  parameterContext ctx Ice::Current
and extract the name-value pairs that were sent by the client.

Context names beginning with an underscore are reserved for use by Ice.

Topics

Explicit Request Contexts
Per-Proxy Request Contexts
Implicit Request Contexts
Design Considerations for Request Contexts

See Also

The Current Object



Ice 3.4.2 Documentation

925 Copyright © 2011, ZeroC, Inc.

Explicit Request Contexts

Request contexts provide a means of sending an unlimited number of parameters from client to server without having to mention these
parameters in the signature of an operation. For example, consider the following definition:

Slice

struct Address {
    // ...
};

interface Person {
    string setAddress(Address a);
    // ...
};

Assuming that the client has a proxy to a  object, it could do something along the following lines:Person

C++

PersonPrx p = ...;
Address a = ...;

Ice::Context ctx;
ctx["write policy"] = "immediate";

p->setAddress(a, ctx);

In Java, the same code would looks as follows:

Java

PersonPrx p = ...;
Address a = ...;

java.util.Map<String, String> ctx = new java.util.HashMap<String, String>();
ctx.put("write policy", "immediate");

p.setAddress(a, ctx);

In C#, the code is almost identical:

C#

using System.Collections.Generic;

PersonPrx p = ...;
Address a = ...;

Dictionary<string, string> ctx = new Dictionary<string, string>();
ctx["write policy"] = "immediate";

p.setAddress(a, ctx);

On the server side, we can extract the policy value set from the  object to influence how the implementation of  works.Current setAddress
A C++ implementation might look like this:
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C++

void
PersonI::setAddress(const Address& a, const Ice::Current& c)
{
    Ice::Context::const_iterator i = c.ctx.find("write policy");
    if (i != c.ctx.end() && i->second == "immediate") {

        // Update the address details and write through to the 
        // data base immediately...

    } else {
    
        // Write policy was not set (or had a bad value), use
        // some other database write strategy.
    }
}

For this example, the server examines the value of the context with the key  and, if that value is , writes the"write policy" "immediate"
update sent by the client straight away; if the write policy is not set or contains a value that is not recognized, the server presumably applies
a more lenient write policy (such as caching the update in memory and writing it later).

See Also

Request Contexts
The Current Object
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Per-Proxy Request Contexts

Instead of passing a context  with an invocation, you can also use a . Per-proxy contexts allow you to set a contextexplicitly per-proxy context
on a particular proxy once and, thereafter, whenever you use that proxy to invoke an operation, the previously-set context is sent with each
invocation. The   and  set and retrieve the context, respectively. The Slice definitions ofproxy methods ice_context ice_getContext
these methods would look as follows:

Slice

Object* ice_context(Context ctx);
Context ice_getContext();

ice_context creates a new proxy that stores the given context. Calling  returns the stored context, or an emptyice_getContext
dictionary if no per-proxy context has been configured for the proxy.

Here is an example in C++:

C++

Ice::Context ctx;
ctx["write policy"] = "immediate";

PersonPrx p1 = ...;
PersonPrx p2 = p1->ice_context(ctx);

Address a = ...;

p1->setAddress(a);       // Sends no context

p2->setAddress(a);       // Sends ctx implicitly

Ice::Context ctx2;
ctx2["write policy"] = "delayed";

p2->setAddress(a, ctx2); // Sends ctx2 instead

As the example illustrates, once we have created the  proxy, any invocation via  automatically sends the configured context. The finalp2 p2
line of the example shows that it is also possible to explicitly send a context for an invocation even if the proxy is configured with a context —
an explicit context always overrides any per-proxy context.

Note that, once you have set a per-proxy context, that context becomes immutable: if you subsequently change the context you have passed
to , such a change does not affect the per-proxy context of any proxies you previously created with that context because eachice_context
proxy on which you set a per-proxy context stores its own copy of the dictionary.

See Also

Explicit Request Contexts
Proxy Methods
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Implicit Request Contexts

On this page:

Using Implicit Request Contexts
Scope of the Implicit Context

Using Implicit Request Contexts

In addition to  and  request contexts, you can also establish an implicit context on a communicator. This implicit context isexplicit per-proxy
sent with all invocations made via proxies created by that communicator, provided that you do not supply an explicit context with the call.

Access to this implicit context is provided by the  interface:Communicator

Slice

module Ice {
    local interface Communicator
    {
        ImplicitContext getImplicitContext();

        // ...
    };
};

getImplicitContext returns the implicit context object. If a communicator has no implicit context, the operation returns null.

You can manipulate the contents of the implicit context via the  interface:ImplicitContext

Slice

local interface ImplicitContext
{
    Context getContext();
    void    setContext(Context newContext);

    string get(string key);
    string put(string key, string value);
    string remove(string key);
    bool   containsKey(string key);
};

The  operation returns the currently-set context dictionary. The  operation replaces the currently-set context in itsgetContext setContext
entirety.

The remaining operations allow you to manipulate specific entries:

get
This operation returns the value associated with . If  was not previously set, the operation returns the empty string.key key

put
This operation adds the key-value pair specified by  and . It returns the previous value associated with ; if no valuekey value key
was previously associated with , it returns the empty string. It is legal to add the empty string as a value.key

remove
This operation removes the key-value pair specified by . It returns the previously-set value (or the empty string if  was notkey key
previously set).

containsKey
This operation returns true if  is currently set and false, otherwise. You can use this operation to distinguish between a key-valuekey
pair that was explicitly added with an empty string as a value, and a key-value pair that was never added at all.

Scope of the Implicit Context
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You establish the implicit context on a communicator by setting a property, . This property controls whether aIce.ImplicitContext
communicator has an implicit context and, if so, at what scope the context applies. The property can be set to the following values:

None
With this setting (or if  is not set at all), the communicator has no implicit context, and Ice.ImplicitContext

 returns null.getImplicitContext

Shared
The communicator has a single implicit context that is shared by all threads. Access to the context via its ImplicitContext
interface is interlocked, so different threads can concurrently manipulate the context without risking data corruption or reading stale
values.

PerThread
The communicator maintains a separate implicit context for each thread. This allows you to propagate contexts that depend on the
sending thread (for example, to send per-thread transaction IDs).

See Also

Explicit Request Contexts
Per-Proxy Request Contexts
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Design Considerations for Request Contexts

On this page:

Request Context Interactions
Request Context Use Cases
Recommendations for Request Contexts

Request Context Interactions

If you use , , and  contexts, it is important to be aware of their interactions:explicit per-proxy implicit

If you send an explicit context with an invocation,  that context is sent with the call, regardless of whether the proxy has aonly
per-proxy context and whether the communicator has an implicit context.
If you send an invocation via a proxy that has a per-proxy context, and the communicator also has an implicit context, the contents
of the per-proxy and implicit context dictionaries are combined, so the  of context entries of both contexts is transmittedcombination
to the server. If the per-proxy context and the implicit context contain the same key, but with different values, the  valueper-proxy
takes precedence.

Request Context Use Cases

The purpose of  is to permit services to be added to Ice that require some contextual information with every request.Ice::Context
Contextual information can be used by services such as a transaction service (to provide the context of a currently established transaction)
or a security service (to provide an authorization token to the server).  uses the context to provide an optional  parameter toIceStorm cost
the service that influences how the service propagates messages to down-stream subscribers.

In general, services that require such contextual information can be implemented much more elegantly using contexts because this hides
explicit Slice parameters that would otherwise have to be supplied by the application programmer with every call.

In addition, contexts, because they are optional, permit a single Slice definition to apply to implementations that use the context, as well as to
implementations that do not use it. In this way, to add transactional semantics to an existing service, you do not need to modify the Slice
definitions to add an extra parameter to each operation. (Adding an extra parameter would not only be inconvenient for clients, but would
also split the type system into two halves: without contexts, we would need different Slice definitions for transactional and non-transactional
implementations of (conceptually) a single service.)

Finally, per-proxy contexts permit context information to be passed through intermediate parts of your program without cooperation of those
intermediate parts. For example, suppose you set a per-proxy context on a proxy and then pass that proxy to another function. When that
function uses the proxy to invoke an operation, the per-proxy context will still be sent. In other words, per-proxy contexts allow you to
transparently propagate information via intermediaries that are ignorant of the presence of any context.

Keep in mind though that this works only within a single process. If you stringify a proxy or transmit it as a parameter over the wire, the
per-proxy context is  preserved. (Ice does not write the per-proxy context into stringified proxies and does not marshal the per-proxynot
context when a proxy is marshaled.)

Recommendations for Request Contexts

Contexts are a powerful mechanism for transparent propagation of context information, . In particular, you may be tempted toif used correctly
use contexts as a means of versioning an application as it evolves over time. For example, version 2 of your application may accept two
parameters on an operation that, in version 1, used to accept only a single parameter. Using contexts, you could supply the second
parameter as a name-value pair to the server and avoid changing the Slice definition of the operation in order to maintain backward
compatibility.

We  urge you to resist any temptation to use contexts in this manner. The strategy is fraught with problems:strongly

Missing context
There is nothing that would compel a client to actually send a context when the server expects to receive a context: if a client forgets
to send a context, the server, somehow, has to make do without it (or throw an exception).

Missing or incorrect keys
Even if the client does send a context, there is no guarantee that it has set the correct key. (For example, a simple spelling error can
cause the client to send a value with the wrong key.)

Incorrect values
The value of a context is a string, but the application data that is to be sent might be a number, or it might be something more
complex, such as a structure with several members. This forces you to encode the value into a string and decode the value again on
the server side. Such parsing is tedious and error prone, and far less efficient than sending strongly-typed parameters. In addition,
the server has to deal with string values that fail to decode correctly (for example, because of an encoding error made by the client).
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None of the preceding problems can arise if you use proper Slice parameters: parameters cannot be accidentally omitted and they are
strongly typed, making it much less likely for the client to accidentally send a meaningless value.

If you are concerned about how to evolve an application over time without breaking backward compatibility, Ice  are better suited tofacets
this task. Contexts are meant to be used to transmit simple tokens (such as a transaction identifier) for services that cannot be reasonably
implemented without them; you should restrict your use of contexts to that purpose and resist any temptation to use contexts for any other
purpose.

Finally, be aware that, if a request is routed via one or more Ice routers, contexts may be dropped by intermediate routers if they consider
them illegal. This means that, in general, you cannot rely on an arbitrary context value that is created by an application to actually still be
present when a request arrives at the server — only those context values that are known to routers and that are considered legitimate are
passed on. It follows that you should not abuse contexts to pass things that really should be passed as parameters.

See Also

Explicit Request Contexts
Per-Proxy Request Contexts
Implicit Request Contexts
Facets and Versioning
IceStorm
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Connection Timeouts

A synchronous remote invocation does not complete on the client side until the server has finished processing it. Occasionally, it is useful to
be able to force an invocation to terminate after some time, even if it has not completed. The   is provided forice_timeout factory method
this purpose. The Slice definition of  would look as follows:ice_timeout

Slice

Object* ice_timeout(int t);

This method returns a new proxy with the configured timeout. For example:

C++

Filesystem::FilePrx myFile = ...;
FileSystem::FilePrx timeoutFile = myFile->ice_timeout(5000);

try {
    Lines text = timeoutFile->read();   // Read with timeout
} catch(const Ice::TimeoutException&) {
    cerr << "invocation timed out" << endl;
}

Lines text = myFile->read();            // Read without timeout

The parameter to  determines the timeout value in milliseconds. A value of   indicates no timeout. In the preceding example,ice_timeout -1
the timeout is set to five seconds; if an invocation of  via the  proxy does not complete within five seconds, the operationread timeoutFile
terminates with an . On the other hand, invocations via the  proxy are unaffected by the timeout, that is, Ice::TimeoutException myFile

 sets the timeout on a per-proxy basis.ice_timeout

The timeout value set on a proxy affects all networking operations: reading and writing of data as well as opening and closing of connections.
If any of these operations does not complete within the timeout, the client receives an exception. Note that, if the Ice run time encounters a
recoverable error condition and transparently retries an invocation, this means that the timeout applies separately to each attempt. Similarly,
if a large amount of data is sent with an operation invocation in several  system calls, the timeout applies to each write, not to thewrite
invocation overall.

Timeouts that expire during reading or writing of data are indicated by a . For opening and closing of connections, theTimeoutException
Ice run time uses more specific exceptions:

ConnectTimeoutException
This exception indicates that a connection could not be established within the specified time.

CloseTimeoutException
This exception indicates that a connection could not be closed within the specified time.

An application normally configures a proxy's timeout using the  method. However, a proxy that originated from a string mayice_timeout
already have a timeout specified, as shown in the following example:

C++

string s = "ident:tcp -h somehost -t 5000:ssl -h somehost -t 5000";

In this case, both the TCP and SSL endpoints define a timeout of five seconds. When the Ice run time establishes a connection using one of
these endpoints, it uses the endpoint's timeout unless one was specified explicitly via .ice_timeout

The Ice run time also supports two configuration properties that override the timeouts of every proxy regardless of the settings established
via  or the options defined in stringified proxies:ice_timeout

Ice.Override.ConnectTimeout
This property defines a timeout that is only used for connection establishment. If not defined, its default value is  (no timeout). If a-1
proxy has multiple endpoints, the timeout applies to each endpoint separately.
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Ice.Override.Timeout
This property defines the timeout for invocations. If no value is defined for , the value of Ice.Override.ConnectTimeout

 is also used as the timeout for connection establishment. If not defined, the default value is  (noIce.Override.Timeout -1
timeout).

Note that timeouts are "soft" timeouts, in the sense that they are not precise, real-time timeouts. (The precision is limited by the capabilities
of the underlying operating system.) You should also be aware that timeouts are considered fatal error conditions by the Ice run time and
result in connection closure on the client side. Furthermore, any other requests pending on the  also fail with an exception.same connection
Timeouts are meant to be used to prevent a client from blocking indefinitely in case something has gone wrong with the server; they are not
meant as a mechanism to routinely abort requests that take longer than intended.

See Also

Proxy Methods
Connection Establishment
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Oneway Invocations

On this page:

Design Considerations for Oneway Invocations
Creating Oneway Proxies

Design Considerations for Oneway Invocations

A  is sent on the client side by writing the request to the client's local transport buffers; the invocation completes andoneway invocation
returns control to the application code as soon as it has been accepted by the local transport. Of course, this means that a oneway
invocation is unreliable: it may never be sent (for example, because of a network failure) or it may not be accepted in the server (for
example, because the target object does not exist).

This is an issue in particular if you use  (ACM): if a server closes a connection at the wrong moment, it isActive Connection Management
possible for the client to lose already-buffered oneway requests. We therefore recommend that you disable active connection management
for the server side if clients use oneway (or ) requests. In addition, if clients use oneway requests and your applicationbatched oneway
initiates server shutdown, it is the responsibility of your application to ensure either that it can cope with the potential loss of buffered oneway
requests, or that it does not shut down the server at the wrong moment (while clients still have oneway requests that are buffered, but not yet
sent).

If anything goes wrong with a oneway request, the client-side application code does not receive any notification of the failure; the only errors
that are reported to the client are local errors that occur on the client side during call invocation (such as failure to establish a connection, for
example).

As a consequence of oneway invocation, if you call  on a oneway proxy, successful completion does  indicate that the targetice_ping not
object exists and could successfully be contacted — you will receive an exception only if something goes wrong on the client side, but not if
something goes wrong on the server side. Therefore, if you want to use  with a oneway proxy and be certain that the target objectice_ping
exists and can successfully be contacted, you must first convert the oneway proxy into a twoway proxy. For example, in C++:

C++

SomeObjectPrx onewayPrx = ...; // Get a oneway proxy

try {
    onewayPrx->ice_twoway()->ice_ping();
} catch(const Ice::Exception&)
    cerr << "object not reachable" << endl;
}

Oneway invocations are received and processed on the server side like any other incoming request. If necessary, a server can distinguish a
oneway invocation by examining the  member of : a non-zero value denotes a twoway request, whereas a valuerequestId Ice::Current
of zero indicates a oneway request.

Oneway invocations do not incur any return traffic from the server to the client: the server never sends a  in response to areply message
oneway invocation. This means that oneway invocations can result in large efficiency gains, especially for large numbers of small messages,
because the client does not have to wait for the reply to each message to arrive before it can send the next message.

In order to be able to invoke an operation as oneway, two conditions must be met:

The operation must have a  return type, must not have any out-parameters, and must not have an exception specification. void

This requirement reflects the fact that the server does not send a reply for a oneway invocation to the client: without such a reply,
there is no way to return any values or exceptions to the client. If you attempt to invoke an operation that returns values to the client
as a oneway operation, the Ice run time throws a .TwowayOnlyException

The proxy on which the operation is invoked must support a stream-oriented transport (such as TCP or SSL). 

Oneway invocations require a stream-oriented transport. (To get something like a oneway invocation for datagram transports, you
need to use a .) If you attempt to create a oneway proxy for an object that does not offer a stream-orienteddatagram invocation
transport, the Ice run time throws a .NoEndpointException

Despite their theoretical unreliablity, in practice, oneway invocations are reliable (but not infallible ): they are sent via a stream-oriented[1]
transport, so they cannot get lost except when the connection is  or fails entirely. In particular, the transport uses its usual flowshutting down
control, so the client cannot overrun the server with messages. On the client-side, the Ice run time will block if the client's transport buffers fill
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up, so the client-side application code cannot overrun its local transport.

Consequently, oneway invocations normally do not block the client-side application code and return immediately, provided that the client
does not consistently generate messages faster than the server can process them. If the rate at which the client invokes operations exceeds
the rate at which the server can process them, the client-side application code will eventually block in an operation invocation until sufficient
room is available in the client's transport buffers to accept the invocation. If your application requires that oneway requests never block the
calling thread, you can use asynchronous oneway invocations instead.

Regardless of whether the client exceeds the rate at which the server can process incoming oneway invocations, the execution of oneway
invocations in the server proceeds asynchronously: the client's invocation completes before the message even arrives at the server.

One thing you need to keep in mind about oneway invocations is that they may appear to be reordered in the server: because oneway
invocations are sent via a stream-oriented transport, they are guaranteed to be received in the order in which they were sent. However, the
server's  may dispatch each invocation in its own thread; because threads are scheduled preemptively, this may cause anthread pool
invocation sent later by the client to be dispatched and executed before an invocation that was sent earlier. If oneway requests must be
dispatched in order, you can use one of the serialization techniques described in .Thread Pool Design Considerations

For these reasons, oneway invocations are usually best suited to simple updates that are otherwise stateless (that is, do not depend on the
surrounding context or the state established by previous invocations).

Creating Oneway Proxies

Ice selects between twoway, oneway, and  via the proxy that is used to invoke the operation. By default, all proxies aredatagram invocations
created as twoway proxies. To invoke an operation as oneway, you must create a new proxy configured specifically for oneway invocations.
The   is provided for this purpose. The Slice definition of  would look as follows:ice_oneway factory method ice_oneway

Slice

Object* ice_oneway();

We can call  to create a oneway proxy and then use the proxy to invoke an operation as follows:ice_oneway

C++

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a oneway proxy.
//
Ice::ObjectPrx oneway;
try {
    oneway = o->ice_oneway();
} catch (const Ice::NoEndpointException&) {
    cerr << "No endpoint for oneway invocations" << endl;
}

// Down-cast to actual type.
//
PersonPrx onewayPerson = PersonPrx::uncheckedCast(oneway);

// Invoke an operation as oneway.
//
try {
    onewayPerson->someOp();
} catch (const Ice::TwowayOnlyException&) {
    cerr << "someOp() is not oneway" << endl;
}

Note that we use an  to down-cast the proxy from  to : for a oneway proxy, we cannot use a uncheckedCast ObjectPrx PersonPrx
 because a  requires a reply from the server but, of course, a oneway proxy does not permit that reply. IfcheckedCast checkedCast

instead you want to use a safe down-cast, you can first down-cast the twoway proxy to the actual object type and then obtain the oneway
proxy:
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1.  

C++

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Safe down-cast to actual type.
//
PersonPrx person = PersonPrx::checkedCast(o);

if (person) {
    // Get a oneway proxy.
    //
    PersonPrx onewayPerson;
    try {
        onewayPerson = person->ice_oneway();
    } catch (const Ice::NoEndpointException&) {
        cerr << "No endpoint for oneway invocations" << endl;
    }

    // Invoke an operation as oneway.
    //
    try {
        onewayPerson->someOp();
    } catch (const Ice::TwowayOnlyException&) {
        cerr << "someOp() is not oneway" << endl;
    }
}

Note that, while the second version of this code is somewhat safer (because it uses a safe down-cast), it is also slower (because the safe
down-cast incurs the cost of an additional twoway message).

See Also

Terminology
Active Connection Management
Batched Invocations
The Current Object
The Ice Threading Model
Datagram Invocations
The Ice Protocol
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Datagram Invocations

On this page:

Design Considerations for Datagram Invocations
Creating Datagram Proxies

Design Considerations for Datagram Invocations

Datagram invocations are the equivalent of  for datagram transports. As for oneway invocations, datagram invocationsoneway invocations
can be sent only for operations that have a  return type and do not have out-parameters or an exception specification. Attempts to usevoid
a datagram invocation with an operation that does not meet these criteria result in a . In addition, datagramTwowayOnlyException
invocations can only be used if the proxy's endpoints include at least one UDP transport; otherwise, the Ice run time throws a 

.NoEndpointException

The semantics of datagram invocations are similar to oneway invocations: no return traffic flows from the server to the client and proceed
asynchronously with respect to the client; a datagram invocation completes as soon as the client's transport has accepted the invocation into
its buffers. However, datagram invocations differ in one respect from oneway invocations in that datagram invocations optionally support
multicast semantics. Furthermore, datagram invocations have additional error semantics:

Individual invocations may be lost or received out of order. 

On the wire, datagram invocations are sent as true datagrams, that is, individual datagrams may be lost, or arrive at the server out
of order. As a result, not only may operations be dispatched out of order, an individual invocation out of a series of invocations may
be lost. (This cannot happen for oneway invocations because, if a connection fails,  invocations are lost once the connectionall
breaks down.)

UDP packets may be duplicated by the transport. 

Because of the nature of UDP routing, it is possible for datagrams to arrive in duplicate at the server. This means that, for datagram
invocations, Ice does  guarantee : if UDP datagrams are duplicated, the same invocation may benot at-most-once semantics
dispatched more than once in the server.

UDP packets are limited in size. 

The maximum size of an IP datagram is 65,535 bytes. Of that, the IP header consumes 20 bytes, and the UDP header consumes
8 bytes, leaving 65,507 bytes as the maximum payload. If the marshaled form of an invocation, including the Ice request header
exceeds that size, the invocation is lost. (Exceeding the size limit for a UDP datagram is indicated to the application by a 

.)DatagramLimitException

Because of their unreliable nature, datagram invocations are best suited to simple update messages that are otherwise stateless. In addition,
due to the high probability of loss of datagram invocations over wide area networks, you should restrict use of datagram invocations to local
area networks, where they are less likely to be lost. (Of course, regardless of the probability of loss, you must design your application such
that it can tolerate lost or duplicated messages.)

Creating Datagram Proxies

To invoke an operation as datagram, you must create a new proxy configured specifically for datagram invocations. The  ice_datagram
 is provided for this purpose. The Slice definition of  would look as follows:factory method ice_datagram

Slice

Object* ice_datagram();

We can call  to create a oneway proxy and then use the proxy to invoke an operation as follows:ice_datagram
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C++

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a datagram proxy.
//
Ice::ObjectPrx datagram;
try {
    datagram = o->ice_datagram();
} catch (const Ice::NoEndpointException&) {
    cerr << "No endpoint for datagram invocations" << endl;
}

// Down-cast to actual type.
//
PersonPrx datagramPerson = PersonPrx::uncheckedCast(datagram);

// Invoke an operation as a datagram.
//
try {
    datagramPerson->someOp();
} catch (const Ice::TwowayOnlyException&) {
    cerr << "someOp() is not oneway" << endl;
}

As for the , you can alternatively choose to first do a safe down-cast to the actual type of interface and then obtain theoneway example
datagram proxy, rather than relying on an unsafe down-cast, as shown above. However, doing so may be disadvantageous for two reasons:

Safe down-casts are sent via a stream-oriented transport. This means that using a safe down-cast will result in opening a
connection for the sole purpose of verifying that the target object has the correct type. This is expensive if all the other traffic to the
object is sent via datagrams.
If the proxy does not offer a stream-oriented transport, the  fails with a , so you can use thischeckedCast NoEndpointException
approach only for proxies that offer both a UDP endpoint and a TCP/IP and/or SSL endpoint.

See Also

Terminology
Oneway Invocations
The Ice Protocol
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Batched Invocations

Oneway and  invocations are normally sent as individual messages, that is, the Ice run time sends the oneway or datagramdatagram
invocation to the server immediately, as soon as the client makes the call. If a client sends a number of oneway or datagram invocations in
succession, the client-side run time traps into the OS kernel for each message, which is expensive. In addition, each message is sent with its
own , that is, for  messages, the bandwidth for  message headers is consumed. In situations where a client sends amessage header N N
number of oneway or datagram invocations, the additional overhead can be considerable.

To avoid the overhead of sending many small messages, you can send oneway and datagram invocations in a batch: instead of being sent
as a separate message, a batch invocation is placed into a client-side buffer by the Ice run time. Successive batch invocations are added to
the buffer and accumulated on the client side until they are flushed, either explicitly by the client or automatically by the Ice run time.

On this page:

Proxy Methods for Batched Invocations
Automatically Flushing Batched Invocations
Flushing Batched Invocations for Communicators and Connections
Considerations for Batched Datagrams
Compressing Batched Invocations
Active Connection Management and Batched Invocations

Proxy Methods for Batched Invocations

Several  support the use of batched invocations. In Slice, these methods would look as follows:proxy methods

Slice

Object* ice_batchOneway();
Object* ice_batchDatagram();
void ice_flushBatchRequests();

The  and  methods create a new proxy configured for batch invocations. Once you obtain a batchice_batchOneway ice_batchDatagram
proxy, messages sent via that proxy are buffered in the client-side run time instead of being sent immediately. Once the client has invoked
one or more operations on a batch proxy, it can call  to explicitly flush the batched invocations. This causes theice_flushBatchRequests
batched messages to be sent "in bulk", preceded by a single message header. On the server side, batched messages are dispatched by a
single thread, in the order in which they were written into the batch. This means that messages from a single batch cannot appear to be
reordered in the server. Moreover, either all messages in a batch are delivered or none of them. (This is true even for batched datagrams.)

Asynchronous versions of  are also available; see the relevant language mapping for more information.ice_flushBatchRequests

Automatically Flushing Batched Invocations

The default behavior of the Ice run time, as governed by the configuration property , automatically flushes batchedIce.BatchAutoFlush
invocations as soon as a batched request causes the accumulated message to exceed the maximum allowable size. When this occurs, the
Ice run time immediately flushes the existing batch of requests and begins a new batch with this latest request as its first element.

For batched oneway invocations, the maximum message size is established by the property , which defaults to 1MB.Ice.MessageSizeMax
In the case of batched datagram invocations, the maximum message size is the smaller of the system's maximum size for datagram packets
and the value of .Ice.MessageSizeMax

A client that sends batch requests cannot determine the size of the message that the Ice run time is accumulating for it; automatic flushing is
enabled by default as a convenience for clients that unknowingly exceed the maximum message size. A client that requires more
deterministic behavior should flush batched requests explicitly at regular intervals.

Flushing Batched Invocations for Communicators and Connections

The  and  interfaces support synchronous and asynchronous versions of . As youCommunicator Connection flushBatchRequests
might expect, the  operation flushes all batch requests queued for a particular connection, and the Connection::flushBatchRequests

 operation flushes the batch requests of every connection created by a communicator.Communicator::flushBatchRequests

The synchronous versions of  block the calling thread until the batch requests have been successfully written to theflushBatchRequests
local transport. To avoid the risk of blocking, you must use the asynchronous versions instead (assuming they are supported by your chosen
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language mapping). Note also that the asynchronous version of  never raises an exception, evenCommunicator::flushBatchRequests
if an error occurs while flushing one of its connections.

Considerations for Batched Datagrams

For batched datagram invocations, you need to keep in mind that, if the data for the invocations in a batch substantially exceeds the PDU
size of the network, it becomes increasingly likely for an individual UDP packet to get lost due to fragmentation. In turn, loss of even a single
packet causes the entire batch to be lost. For this reason, batched datagram invocations are most suitable for simple interfaces with a
number of operations that each set an attribute of the target object (or interfaces with similar semantics). Batched oneway invocations do not
suffer from this risk because they are sent over stream-oriented transports, so individual packets cannot be lost.

Compressing Batched Invocations

Batched invocations are more efficient if you also enable  for the transport: many isolated and small messages are unlikely tocompression
compress well, whereas batched messages are likely to provide better compression because the compression algorithm has more data to
work with.

Regardless of whether you used batched messages or not, you should enable compression only on lower-speed links. For
high-speed LAN connections, the CPU time spent doing the compression and decompression is typically longer than the
time it takes to just transmit the uncompressed data.

Active Connection Management and Batched Invocations

As for , you should disable server-side  (ACM) when using batched invocations overoneway invocations Active Connection Management
TCP/IP or SSL. With server-side ACM enabled, it is possible for a server to close the connection at the wrong moment and not process a
batch (with no indication being returned to the client that the batch was lost).

See Also

Oneway Invocations
Datagram Invocations
Communicators
Using Connections
The Ice Protocol
Protocol Compression
Active Connection Management
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Locators

In , we described briefly how the Ice run time uses an intermediary, known as a , to convert the symbolicTerminology location service
information in an indirect proxy into an endpoint that it can use to communicate with a server. This section expands on that introduction to
explain in more detail how the Ice run time interacts with a location service. You can create your own location service or you can use ,IceGrid
which is an implementation of a location service and provides many other useful features as well. Describing how to implement a location
service is outside the scope of this manual.

A  is an Ice object that is implemented by a location service. A locator object must support the Slice interface , whichlocator Ice::Locator
defines operations that satisfy the location requirements of the Ice run time. Applications do not normally use these operations directly, but
the locator object may support an implementation-specific interface derived from  that provides additional functionality. ForIce::Locator
example, IceGrid's locator object implements the derived interface  to allow applications to perform IceGrid::Query more sophisticated

.queries

Topics

Locator Semantics for Clients
Locator Configuration for a Client
Locator Semantics for Servers
Locator Configuration for a Server

See Also

Terminology
IceGrid
[Queries
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Locator Semantics for Clients

On this page:

Invocations with an Indirect Proxy
Replication with a Locator
Locator Cache
Locator Cache Timeout
Proxy Connection Caching
Simple Load Balancing
Load Balancing with a Locator

Invocations with an Indirect Proxy

On the first use of an indirect proxy in an application, the Ice run time may issue a remote invocation on the locator object. This activity is
transparent to the application, as shown below:

Locating an object.

The client invokes the operation  on an indirect proxy.initialOp
The Ice run time checks an internal cache (called the ) to determine whether a query has already been issued for thelocator cache
symbolic information in the proxy. If so, the cached endpoint is used and an invocation on the locator object is avoided. Otherwise,
the Ice run time issues a locate request to the locator.
If the object is successfully located, the locator returns its current endpoints. The Ice run time in the client caches this information, 

 to one of the endpoints, and proceeds to send the invocation as usual.establishes a connection
If the object's endpoints cannot be determined, the client receives an exception.  is raised when anNotRegisteredException
identity, object adapter identifier or replica group identifier is not known. A client may also receive  if theNoEndpointException
location service failed to determine the current endpoints.

As far as the Ice run time is concerned, the locator simply converts the information in an indirect proxy into usable endpoints. Whether the
locator's implementation is more sophisticated than a simple lookup table is irrelevant to the Ice run time. However, the act of performing this
conversion may have additional semantics that the application must be prepared to accept.

For example, when using IceGrid as your location service, the target server may be launched automatically if it is not currently running, and
the locate request does not complete until that server is started and ready to receive requests. As a result, the initial request on an indirect
proxy may incur additional overhead as all of this activity occurs.

Replication with a Locator

An indirect proxy may substitute a  identifier in place of the object adapter identifier. In fact, the Ice run time does not distinguishreplica group
between these two cases and considers a replica group identifier as equivalent to an object adapter identifier for the purposes of resolving
the proxy. The location service implementation must be able to distinguish between replica groups and object adapters using only this
identifier.
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The location service may return multiple endpoints in response to a locate request for an adapter or replica group identifier. These endpoints
might all correspond to a single object adapter that is available at several addresses, or to multiple object adapters each listening at a single
address, or some combination thereof. The Ice run time attaches no semantics to the collection of endpoints, but the application can make
assumptions based on its knowledge of the location service's behavior.

When a location service returns more than one endpoint, the Ice run time behaves exactly as if the proxy had contained several endpoints.
As always, the goal of the Ice run time is to  to one of the endpoints and deliver the client's request. By default, allestablish a connection
requests made via the proxy that initiated the connection are sent to the same server until that connection is closed.

After the connection is closed, such as by  (ACM), subsequent use of the proxy causes the Ice run time toActive Connection Management
obtain another connection. Whether that connection uses a different endpoint than previous connections depends on a number of factors,
but it is possible for the client to connect to a different server than for previous requests.

Locator Cache

After successfully resolving an indirect proxy, the location service must return at least one endpoint. How the service derives the list of
endpoints that corresponds to the proxy is entirely implementation dependent. For example, IceGrid's location service can be configured to
respond in a variety of ways; one possibility uses a simple round-robin scheme, while another selects endpoints based on the system load of
the target hosts.

A locate request has the potential to significantly increase the latency of the application's invocation with a proxy, and this is especially true if
the locate request triggers additional implicit actions such as starting a new server process. Fortunately, this overhead is normally incurred
only during the application's initial invocation on the proxy, but this impact is influenced by the Ice run time's caching behavior.

To minimize the number of locate requests, the Ice run time caches the results of previous requests. By default, the results are cached
indefinitely, so that once the Ice run time has obtained the endpoints associated with an indirect proxy, it never issues another locate request
for that proxy. Furthermore, the default behavior of a proxy is to , that is, once a proxy has obtained a connection, itcache its connection
continues to use that connection indefinitely.

Taken together, these two caching characteristics represent the Ice run time's best efforts to optimize an application's use of a location
service: after a proxy is associated with a connection, all future invocations on that proxy are sent on the same connection without any need
for cache lookups, locate requests, or new connections.

If a proxy's connection is closed, the next invocation on the proxy prompts the Ice run time to consult its locator cache to obtain the endpoints
from the prior locate request. Next, the Ice run time searches for an  to any of those endpoints and uses that if possible,existing connection
otherwise it attempts to establish a new connection to each of the endpoints until one succeeds. Only if that process fails does the Ice run
time clear the entry from its cache and issue a new locate request with the expectation that a usable endpoint is returned.

The Ice run time's default behavior is optimized for applications that require minimal interaction with the location service, but some
applications can benefit from more frequent locate requests. Normally this is desirable when implementing a load-balancing strategy, as we
discuss in more detail below. In order to increase the frequency of locate requests, an application must configure a timeout for the locator
cache and manipulate the connections of its proxies.

Locator Cache Timeout

An application can define a timeout to control the lifetime of entries in the locator cache. This timeout can be specified globally using the 
 property and for individual proxies using the  . TheIce.Default.LocatorCacheTimeout proxy method ice_locatorCacheTimeout

Ice run time's default behavior is equivalent to a timeout value of , meaning the cache entries never expire. Using a timeout value greater-1
than zero causes the cache entries to expire after the specified number of seconds. Finally, a timeout value of zero disables the locator
cache altogether.

The previous section explained the circumstances in which the Ice run time consults the locator cache. Briefly, this occurs only when the
application has invoked an operation on a proxy and the proxy is not currently associated with a connection. If the timeout is set to zero, the
Ice run time issues a new locate request immediately. Otherwise, for a non-zero timeout, the Ice run time examines the locator cache to
determine whether the endpoints from the previous locate request have expired. If so, the Ice run time discards them and issues a new
locate request.

Given this behavior, if your goal is to force a proxy invocation to issue locate requests more frequently, you can do so only when the proxy is
not associated with a connection. You can accomplish that in several ways:

create a new proxy, which is inherently not connected by default
explicitly close the proxy's existing connection
disabling the proxy's connection caching behavior

Of these choices, the last is the most common.
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Proxy Connection Caching

By default a proxy remembers its connection and uses it for all invocations until that connection is closed. You can prevent a proxy from
caching its connection by calling the   with an argument of false. Once connection caching isice_connectionCached proxy method
disabled, each invocation on a proxy causes the Ice run time to execute its connection establishment process.

Note that each invocation on such a proxy does not necessarily cause the Ice run time to establish a new connection. It only means that the
Ice run time does not assume that it can reuse the connection of the proxy's previous invocation. Whether the Ice run time actually needs to 

 for the next invocation depends on several factors.establish a new connection

As with any feature, you should only use it when the benefits outweigh the risks. With respect to a proxy's connection caching behavior,
there is certainly a small amount of computational overhead associated with executing the connection establishment process for each
invocation, as well as the risk of significant overhead each time a new connection is actually created.

Simple Load Balancing

Several forms of load balancing are available to Ice applications. The simplest form uses only the endpoints contained in a direct proxy and
does not require a location service. In this configuration, the application can configure the proxy to use the desired endpoint selection type
and  behavior to achieve the desired results.connection caching

For example, suppose that a proxy contains several endpoints. In its default configuration, it uses the  endpoint selection type andRandom
caches its connection. Upon the first invocation, the Ice run time selects one of the proxy's endpoints at random and uses that connection for
all subsequent invocations until the connection is closed. For some applications, this form of load balancing may be sufficient.

Suppose now that we use the  endpoint selection type instead. In this case, the Ice run time always attempts to establishOrdered
connections using the endpoints in the order they appear in the proxy. Normally an application uses this configuration when there is a
preferred order to the servers. Again, once connected, the application uses whichever connection was chosen indefinitely.

By disabling the proxy's connection caching behavior, the semantics undergo a significant change. Using the  endpoint selectionRandom
type, the Ice run time selects one of the endpoints at random and establishes a connection to it if one is not already established, and this
process is repeated prior to each subsequent invocation. This is called  because each request can be directed toper-request load balancing
a different server. Using the  endpoint selection type is not as common in this scenario; its main purpose would be to fall back on aOrdered
secondary server if the primary server is not available, but it causes the Ice run time to attempt to contact the primary server during each
request.

Load Balancing with a Locator

A disadvantage of relying solely on the simple form of load balancing described above is that the client cannot make any intelligent decisions
based on the status of the servers. If you want to distribute your requests in a more sophisticated way, you must either modify your clients to
query the servers directly, or use a location service that can transparently direct a client to an appropriate server. For example, the IceGrid
location service can monitor the system load on each server host and use that information when responding to locate requests.

The location service may return only one endpoint, which presumably represents the best server (at that moment) for the client to use. With
only one endpoint available, changing the proxy's endpoint selection type makes no difference. However, by disabling connection caching
and modifying the locator cache timeout, the application can force the Ice run time to periodically retrieve an updated endpoint from the
location service. For example, an application can set a locator cache timeout of thirty seconds and communicate with the selected server for
that period. After the timeout has expired, the next invocation prompts the Ice run time to issue a new locate request, at which point the client
might be directed to a different server.

If the location service returns multiple endpoints, the application must be designed with knowledge of how to interpret them. For instance, the
location service may attach semantics to the order of the endpoints (such as least-loaded to most-loaded) and intend that the application use
the endpoints in the order provided. Alternatively, the client may be free to select any of the endpoints. As a result, the application and the
location service must cooperate to achieve the desired results.

You can combine the simple form of load balancing described in the previous section with an intelligent location service to gain even more
flexibility. For example, suppose an application expects to receive multiple endpoints from the location service and has configured its proxy
to disable connection caching and set a locator cache timeout. For each invocation, Ice run time selects one of the endpoints provided by the
location service. When the timeout expires, the Ice run time issues a new locate request and obtains a fresh set of endpoints from which to
choose.

See Also

Terminology
Proxy Methods
Connection Establishment
Active Connection Management
Ice Default and Override Properties
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Locator Configuration for a Client

An Ice client application must supply a proxy for the  object, which it can do in several ways:locator

by explicitly configuring an indirect proxy using the  ice_locator proxy method
by calling  on a communicator, after which all new proxies use the given locator by defaultsetDefaultLocator
by defining the  configuration property, which causes all proxies to use the given locator by defaultIce.Default.Locator

The Ice run time's efforts to resolve an indirect proxy can be traced by setting the following configuration properties:

Ice.Trace.Network=2
Ice.Trace.Protocol=1
Ice.Trace.Locator=2

See  for more information on these properties.Ice Trace Properties

See Also

Locator Semantics for Clients
Proxy Methods
Ice Default and Override Properties
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Locator Semantics for Servers

A location service must know the endpoints of any  whose identifier can be used in an indirect proxy. For example, suppose aobject adapter
client uses the following proxy:

Object1@PublicAdapter

The Ice run time in the client includes the identifier  in its  and expects to receive the associated endpoints.PublicAdapter locate request
The only way the location service can know these endpoints is if it is given them. When you consider that an object adapter's endpoints may
not specify fixed ports, and therefore the endpoint addresses may change each time the object adapter is activated, it is clear that the best
source of endpoint information is the object adapter itself. As a result, an object adapter that is  contacts the locatorproperly configured
during activation to supply its identifier and current endpoints. More specifically, the object adapter registers itself with an object
implementing the  interface, whose proxy the object adapter obtains from the locator.Ice::LocatorRegistry

A location service may require that all object adapters be pre-registered via some implementation-specific mechanism. (  behaves thisIceGrid
way by default.) This implies that activation can fail if the object adapter supplies an identifier that is unknown to the location service. In such
a situation, the object adapter's  operation raises .activate NotRegisteredException

In a similar manner, an object adapter that participates in a  includes the group's identifier in the locator request that is sentreplica group
during activation. If the location service requires replica group members to be configured in advance,  raises activate

 if the object adapter's identifier is not one of the group's .NotRegisteredException registered participants

See Also

Object Adapters
Locator Semantics for Clients
Locator Configuration for a Server
IceGrid
Terminology
Object Adapter Replication
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Locator Configuration for a Server

On this page:

Configuring an Object Adapter with a Locator
Registering a Process with a Locator

Configuring an Object Adapter with a Locator

An  must be able to obtain a  proxy in order to register itself with a location service. Each object adapter can beobject adapter locator
configured with its own locator proxy by defining its  property, as shown in the example below for the object adapter named Locator

:SampleAdapter

SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Alternatively, a server may call  on the object adapter prior to activation. If the object adapter is not explicitly configured with asetLocator
locator proxy, it uses the  as provided by its communicator.default locator

Two other configuration properties influence an object adapter's interactions with a location service during activation:

AdapterId
Configuring a non-empty identifier for the  property causes the object adapter to register itself with the location service.AdapterId
A locator proxy must also be configured.

ReplicaGroupId
Configuring a non-empty identifier for the  property indicates that the object adapter is a member of a ReplicaGroupId replica

. For this property to have an effect,  must also be configured with a non-empty value.group AdapterId

We can use these properties as shown below:

SampleAdapter.AdapterId=SampleAdapterId
SampleAdapter.ReplicaGroupId=SampleGroupId
SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Note that a location service may enforce .pre-registration requirements

Registering a Process with a Locator

An activation service, such as an  node, needs a reliable way to gracefully deactivate a server. One approach is to use aIceGrid
platform-specific mechanism, such as POSIX signals. This works well on POSIX platforms when the server is prepared to intercept signals
and react appropriately. On Windows platforms, it works less reliably for C++ servers, and not at all for Java servers. For these reasons, Ice
provides an alternative that is both portable and reliable:

Slice

module Ice {
interface Process {
    void shutdown();
    void writeMessage(string message, int fd);
};
};

The Slice interface  allows an activation service to request a graceful shutdown of the server. When  is invoked, theProcess shutdown
object implementing this interface is expected to initiate the termination of its server process. The activation service may expect the server to
terminate within a certain period of time, after which it may terminate the server abruptly.

One of the benefits of the Ice  is that it creates an implementation of  and makes it available via anadministrative facility Process
administrative object adapter. Furthermore, IceGrid automatically enables this facility on the servers that it activates.

See Also
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Object Adapters
Locators
Locator Configuration for a Client
Locator Semantics for Servers
Portable Signal Handling in C++
The Process Facet
Administrative Facility
IceGrid
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Administrative Facility

Ice applications often require remote administration, such as when an IceGrid node needs to  a running server. The Icegracefully deactivate
run time provides an extensible, centralized facility for exporting administrative functionality. This facility consists of an  named object adapter

, an Ice object activated on this adapter, and configuration properties that enable the facility and specify its features.Ice.Admin

Topics

The admin Object
The Administrative Object Adapter
Using the admin Object
The Process Facet
The Properties Facet
Filtering Administrative Facets
Custom Administrative Facets
Security Considerations for Administrative Facets

See Also

Locator Configuration for a Server
Object Adapters
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The admin Object

On this page:

Overview of the admin Object
Facets of the admin Object

Overview of the admin Object

The  hosts a single object whose  name is . Although this identity name cannot be changed, you object adapterIce.Admin identity admin
can define the identity category using the configuration property . If you enable the  object adapterIce.Admin.InstanceName Ice.Admin
without defining this property, the category uses a UUID by default and therefore the object's identity changes with each instance of the
process.

In this manual, we refer to the administrative object as the . objectadmin

Facets of the admin Object

An Ice object is actually a collection of sub-objects known as  whose types are not necessarily related. Although facets are typicallyfacets
used for extending and versioning types, they also allow a group of interfaces with a common purpose to be consolidated into a single Ice
object with an established interface for navigation. These qualities make facets an excellent match for the requirements of the administrative
facility.

Each facet of the  object represents a distinct administrative capability. The object does not have a default facet (that is, a facet withadmin
an empty name). However, the Ice run time implements two built-in facets that it adds to the  object:admin

the  facetProcess
the  facetProperties

An application can  with a configuration property. An application can also  if necessary.control which facets are installed install its own facets
Administrative facets are not required to inherit from a common Slice interface.

See Also

The Administrative Object Adapter
Object Identity
Facets and Versioning
The Process Facet
The Properties Facet
Filtering Administrative Facets
Custom Administrative Facets
Ice Administrative Properties
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The Administrative Object Adapter

The administrative facility is disabled by default. To enable it, you must specify endpoints for the administrative object adapter using the
property . In addition, you must do one of the following:Ice.Admin.Endpoints

Define the  property. If you do not supply a value for , Ice uses a UUIDIce.Admin.InstanceName Ice.Admin.InstanceName
by default.
Define the  and  properties.Ice.Admin.ServerId Ice.Default.Locator

The  and  properties are typically used in conjunction with an  such asIce.Admin.ServerId Ice.Default.Locator activation service
IceGrid.

The administrative facility introduces additional , therefore the endpoints for the  adaptersecurity considerations Ice.Admin
must be chosen with caution.

It may be necessary to postpone the creation of the administrative object adapter until all facets are installed or other initialization activities
have taken place. In this situation, you can enable the  property. When set to a non-zero value, theIce.Admin.DelayCreation
administrative facility is disabled until the application invokes the  operation on the communicator.getAdmin

See Also

Ice Administrative Properties
IceGrid and the Administrative Facility
Security Considerations for Administrative Facets
Using the admin Object
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Using the admin Object

A program can obtain a proxy for its  object by calling the  operation on a communicator:admin getAdmin

Slice

module Ice {
local interface Communicator {
    // ...
    Object* getAdmin();
};
};

This operation returns a null proxy if the administrative facility is disabled. The proxy returned by  cannot be used for invokinggetAdmin
operations because it refers to the default facet and, as we mentioned , the  object does not support a default facet. Apreviously admin
program must first obtain a new version of the proxy that is configured with the name of a particular administrative facet before invoking
operations on it. Although it cannot be used for invocations, the original proxy is still useful because it contains the endpoints of the 

 ( ) and therefore the program may elect to export that proxy to a remote client.administrative object adapter Ice.Admin

To administer a program remotely, somehow you must obtain a proxy for the program's  object. There are several ways for theadmin
administrative client to accomplish this:

Construct the proxy itself, assuming that it knows the  object's identity, facets, and endpoints. The format of the admin stringified
 is as follows:proxy

/admin -f :instance-name admin-facet admin-endpoints
The identity category, represented here by , is the value of the  property or a UUID ifinstance-name Ice.Admin.InstanceName
that property is not defined. (Clearly, the use of a UUID makes the proxy much more difficult for a client to construct on its own.) The
name of the administrative facet is supplied as the value of the  option, and the endpoints of the  adapter appear last-f Ice.Admin
in the proxy.
Invoke an application-specific interface for retrieving the  object's proxy.admin
Use the  operation on the  interface, if the remote program was activated by IceGrid (see getServerAdmin IceGrid::Admin

).Configuring Automatic Retries

Having obtained the proxy, the administrative client must select a facet before invoking any operations. For example, the code below shows
how to obtain the configuration properties of the remote program:

C++

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin = Ice::PropertiesAdminPrx::checkedCast(adminObj, "Properties");
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

Here we used an overloaded version of  to supply the facet name of interest ( ). We could have selected thecheckedCast Properties
facet using the   instead, as shown below:proxy method ice_facet

C++

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin = Ice::PropertiesAdminPrx::checkedCast(
    adminObj->ice_facet("Properties"));
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

This code is functionally equivalent to the first example.

A remote client must also know (or be able to determine) which facets are available in the target server. Typically this information is statically
configured in the client, since the client must also know the interface types of any facets that it uses. If an invocation on a facet raises 

, the client may have used an incorrect facet name, or the server may have disabled the facet in question.FacetNotExistException

See Also
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The admin Object
The Administrative Object Adapter
Ice Administrative Properties
Proxy and Endpoint Syntax
Automatic Retries
Facets and Versioning
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The Process Facet

An activation service, such as an  node, needs a reliable way to gracefully deactivate a server. One approach is to use aIceGrid
platform-specific mechanism, such as POSIX signals. This works well on POSIX platforms when the server is prepared to intercept signals
and react appropriately. On Windows platforms, it works less reliably for C++ servers, and not at all for Java servers. For these reasons, the 

 facet provides an alternative that is both portable and reliable.Process

Be aware of the  associated with enabling the  facet.security considerations Process

On this page:

The  InterfaceProcess
Application Requirements for the Process Facet
Replacing the Process Facet
Integrating the Process Facet with an Activation Service

The  InterfaceProcess

The Slice interface  allows an activation service to request a graceful shutdown of the program:Ice::Process

Slice

module Ice {
interface Process {
    void shutdown();
    void writeMessage(string message, int fd);
};
};

When  is invoked, the object implementing this interface is expected to initiate the termination of its process. The activationshutdown
service may expect the program to terminate within a certain period of time, after which it may terminate the program abruptly.

The  operation allows remote clients to print a message to the program's standard output (  == 1) or standard error (  ==writeMessage fd fd
2) channels.

Application Requirements for the Process Facet

The default implementation of the  facet requires cooperation from an application in order to successfully terminate a process.Process
Specifically, the facet invokes  on its  and assumes that the application uses this event as a signal to commence itsshutdown communicator
termination procedure. For example, an application typically uses a thread (often the main thread) to call the communicator operation 

, which blocks the calling thread until the communicator is shut down or destroyed. After  returns,waitForShutdown waitForShutdown
the calling thread can initiate a graceful shutdown of its process.

Replacing the Process Facet

You can replace the default  facet if your application requires a different scheme for gracefully shutting itself down. To define yourProcess
own facet, create a servant that implements the  interface. As an example, the servant definition shown below duplicates theIce::Process
functionality of the default  facet:Process
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C++

class ProcessI : public Ice::Process {
public:
    ProcessI(const Ice::CommunicatorPtr& communicator) : _communicator(communicator)
    {}

    void shutdown(const Ice::Current&)
    {
        _communicator->shutdown();
    }

    void writeMessage(const string& msg, Ice::Int fd, const Ice::Current&)
    {
        if(fd == 1) cout << msg << endl;
        else if(fd == 2) cerr << msg << endl;
    }

private:
    const Ice::CommunicatorPtr _communicator;
};

As you can see, the default implementation of  simply shuts down the communicator, which initiates an orderly termination of theshutdown
Ice run time's server-side components and prevents object adapters from dispatching any new requests. You can add your own
application-specific behavior to the  method to ensure that your program terminates in a timely manner.shutdown

A servant  on its communicator while executing a dispatched operation.must not invoke destroy

To avoid the risk of a race condition, the recommended strategy for replacing the  facet is to delay creation of the administrativeProcess
facets so that your application has a chance to replace the facet:

Ice.Admin.DelayCreation=1

With  enabled, the application can safely remove the default  facet and install its own:Ice.Admin.DelayCreation Process

C++

Ice::CommunicatorPtr communicator = ...
communicator->removeAdminFacet("Process");
Ice::ProcessPtr myProcessFacet = new MyProcessFacet(...);
communicator->addAdminFacet(myProcessFacet, "Process");

The final step is to activate the administrative facility by calling  on the communicator:getAdmin

C++

communicator->getAdmin();

Integrating the Process Facet with an Activation Service

If the  and  properties are defined, the Ice run time performs the following steps afterIce.Admin.ServerId Ice.Default.Locator
creating the : object adapterIce.Admin

Obtains proxies for the  facet and the default locatorProcess
Invokes  on the proxy to obtain a proxy for the locator registrygetRegistry
Invokes  on the locator registry and supplies the value of  along with a proxy forsetServerProcessProxy Ice.Admin.ServerId
the  facetProcess
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The identifier specified by  must uniquely identify the process within the locator registry.Ice.Admin.ServerId

In the case of , the node defines the  and  properties for each deployed server. TheIceGrid Ice.Admin.ServerId Ice.Default.Locator
node also supplies a value for  if the property is not defined by the server.Ice.Admin.Endpoints

See Also

Communicators
Facets and Versioning
Portable Signal Handling in C++
Security Considerations for Administrative Facets
Object Adapters
The Administrative Object Adapter
Ice Administrative Properties
IceGrid
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The Properties Facet

An administrator may find it useful to be able to view the configuration properties of a remote Ice application. For example, the IceGrid
administrative tools allow you to query the properties of active servers. The  facet supplies this functionality.Properties

The  interface provides access to the communicator's :Ice::PropertiesAdmin configuration properties

Slice

module Ice {
interface PropertiesAdmin {
    string getProperty(string key);
    PropertyDict getPropertiesForPrefix(string prefix);
};
};

The  operation retrieves the value of a single property, and the  operation returns a dictionary ofgetProperty getPropertiesForPrefix
properties whose keys match the given prefix. These operations have the same semantics as those in the . interfaceIce::Properties

See Also

Properties and Configuration
Facets and Versioning
IceGrid
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Filtering Administrative Facets

The Ice run time enables all of its built-in  by default, and an application may install its own . You canadministrative facets custom facets
control which facets the Ice run time enables using the  property. For example, the following property definition enablesIce.Admin.Facets
the  facet and leaves the  facet (and any application-defined facets) disabled:Properties Process

Ice.Admin.Facets=Properties

To specify more than one facet, separate them with a comma or white space. A facet whose name contains white space must be enclosed in
single or double quotes.

See Also

The Process Facet
The Properties Facet
Custom Administrative Facets
Ice Administrative Properties
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Custom Administrative Facets

An application can add and remove administrative facets using the  operations shown below:Communicator

Slice

module Ice {
local interface Communicator {
    // ...
    void addAdminFacet(Object servant, string facet);
    Object removeAdminFacet(string facet);
};
};

The  operation installs a new facet with the given name, or raises  if a facet alreadyaddAdminFacet AlreadyRegisteredException
exists with the same name. The  operation removes (and returns) the facet with the given name, or raises removeAdminFacet

 if no matching facet is found.NotRegisteredException

The mechanism for  also applies to application-defined facets. If you call  while a filter is infiltering administrative facets addAdminFacet
effect, and the name of your custom facet does not match the filter, the Ice run time will not expose your facet but instead keeps a reference
to it so that a subsequent call to  is possible.removeAdminFacet

We provide an example of using these communicator operations in our discussion of the  facet.Process

See Also

Filtering Administrative Facets
The Process Facet
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Security Considerations for Administrative Facets

Exposing administrative functionality naturally makes a program vulnerable, therefore it is important that proper precautions are taken. With
respect to the default functionality, the  facet could expose sensitive configuration information, and the  facet supportsProperties Process
a  operation that opens the door for a denial-of-service attack. Developers should carefully consider the security implications ofshutdown
any additional administrative facets that an application installs.

There are several approaches you can take to mitigate the possibility of abuse:

Disable the administrative facility 

The administrative facility is disabled by default, and remains disabled as long as its  are not met. Note that prerequisites IceGrid
enables the facility in servers that it activates for the following reasons:

The  facet allows the IceGrid node to gracefully terminate the process.Process
The  facet enables IceGrid administrative clients to obtain configuration information about activated servers.Properties

You could disable a facet using filtering, but doing so may disrupt IceGrid's normal operation.

Select a proper endpoint 

A reasonably secure value for the  property is one that uses the local host interface ( ),Ice.Admin.Endpoints -h 127.0.0.1
which restricts access to clients that run on the same host. Incidentally, this is the default value that IceGrid defines for its servers,
although you can override that if you like. Note that using a local host endpoint does not preclude  for IceGridremote administration
servers because IceGrid transparently routes requests on  objects to the appropriate server via its node. If your applicationadmin
must support administration from non-local hosts, we recommend the use of  and certificate-based access control.SSL

Filter the facets 

After choosing a suitable endpoint, you can minimize risks by filtering the facets to enable only the functionality that is required. For
example, if you are not using IceGrid's  feature and do not require the ability to remotely terminate a program, youserver activation
should disable the  facet using the .Process filtering mechanism

Consider the object's identity 

The default  of the  has a UUID for its category, which makes it difficult for a hostile client to guess. Dependingidentity  objectadmin
on your requirements, the use of a UUID may be an advantage or a disadvantage. For example, in a trusted environment, the use of
a UUID may create additional work, such as the need to add an interface that an administrative client can use to obtain the identity
or proxy of a remote  object. An obscure identity might be more of a hindrance in this situation, and therefore specifying aadmin
static category via the  property is a reasonable alternative. In general, however, we recommend usingIce.Admin.InstanceName
the default behavior.

See Also

The admin Object
The Properties Facet
The Process Facet
The Administrative Object Adapter
IceGrid and the Administrative Facility
Filtering Administrative Facets
Ice Administrative Properties
IceGrid
IceSSL



Ice 3.4.2 Documentation

962 Copyright © 2011, ZeroC, Inc.

Logger Facility

Depending on the setting of , the Ice run time produces trace, warning, or error messages. These messages are written viavarious properties
the  interface:Ice::Logger

Slice

module Ice {
    local interface Logger {
        void print(string message);
        void trace(string category, string message);
        void warning(string message);
        void error(string message);
        Logger cloneWithPrefix(string prefix);
    };
};

The  operation returns a new logger that logs to the same destination but with a different prefix. (The prefix is used to,cloneWithPrefix
for example, provide the name of the process writing the log messages.)

Topics

The Default Logger
Custom Loggers
Built-in Loggers
Logger Plug-ins
The Per-Process Logger
C++ Logger Utility Classes

See Also

Properties and Configuration
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The Default Logger

A default  is instantiated when you create a communicator. The default logger writes its messages to the standard error output. The logger
 operation accepts a  parameter in addition to the error message; this allows you to separate trace output from differenttrace category

subsystems by sending the output through a filter.

You can obtain the logger that is attached to a communicator using the  operation:getLogger

Slice

module Ice {
    local interface Communicator {
        Logger getLogger();
        // ...
    };
};

See Also

Logger Facility
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Custom Loggers

You have several options if you wish to install a logger other than the default one:

Select one of the other , which allow you to log to a file, to the  on Unix, and to the Windows event logbuilt-in loggers syslog
Supply your own logger implementation in an  when you create a communicator parameterInitializationData
Load a logger implementation dynamically via the Ice plug-in facility

Changing the  object that is attached to a communicator allows you to integrate Ice messages into your own message handlingLogger
system. For example, for a complex application, you might have an existing logging framework. To integrate Ice messages into that
framework, you can create your own  implementation that logs messages to the existing framework.Logger

When you destroy a communicator, its logger is  destroyed. This means that you can safely use a logger even beyond the lifetime of itsnot
communicator.

See Also

Built-in Loggers
Communicator Initialization
Logger Plug-ins
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Built-in Loggers

Ice provides a file-based logger as well as Unix- and Windows-specific logger implementations. For .NET, the default Ice logger uses a 
 and so can be customized at run time via configuration.TraceListener

On this page:

File Logger
Syslog Logger
Windows Logger
.NET Logger

File Logger

The file-based logger is enabled via the  property. This logger is available for all supported languages and platforms.Ice.LogFile

Syslog Logger

You can activate a logger that logs via the Unix  implementation by setting the  property. This logger is available insyslog Ice.UseSyslog
Ice for C++, Java, and C#, as well as for scripting languages based on Ice for C++.

Windows Logger

On Windows, subclasses of  use the Windows application event log by default. The event log implementation is available forIce::Service
C++ applications.

.NET Logger

The default logger in Ice for .NET writes its messages using the  facility. By default, the Ice run timeSystem.Diagnostics.Trace
registers a  that writes to . You can disable the logging of messages via this trace listener by setting theConsoleTraceListener stderr
property  to zero.Ice.ConsoleListener

You can change the trace listener for your application via the application's configuration file. For example:

<configuration>
  <system.diagnostics>
    <trace autoflush="true" indentsize="4">
      <listeners>
        <add name="Console"
             type="System.Diagnostics.EventLogTraceListener"
             initializeData="true"/>
      </listeners>
    </trace>
  </system.diagnostics>
</configuration>

This configures a trace listener that logs to the Windows event log.

See Also

The Server-Side main Function in C++
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Logger Plug-ins

Installing a  using the Ice plug-in facility has several advantages. Because the logger plug-in is specified by a configurationcustom logger
property and loaded dynamically by the Ice run time, an application requires no code changes in order to utilize a custom logger
implementation. Furthermore, a logger plug-in takes precedence over the  and the logger supplied in the per-process logger

 argument during , meaning you can use a logger plug-in to override the logger that anInitializationData communicator initialization
application installs by default.

On this page:

Installing a C++ Logger Plug-in
Installing a Java Logger Plug-in
Installing a C# Logger Plug-in

Installing a C++ Logger Plug-in

To install a logger plug-in in C++, you must first define a subclass of :Ice::Logger

C++

class MyLoggerI : public Ice::Logger {
public:

    virtual void print(const std::string& message);
    virtual void trace(const std::string& category, const std::string& message);
    virtual void warning(const std::string& message);
    virtual void error(const std::string& message);
    virtual LoggerPtr void cloneWithPrefix(const string& prefix);

    // ...
};

Next, supply a factory function that installs your custom logger by returning an instance of :Ice::LoggerPlugin

C++

extern "C"
{

ICE_DECLSPEC_EXPORT Ice::Plugin*
createLogger(const Ice::CommunicatorPtr& communicator,
             const std::string& name,
             const Ice::StringSeq& args)
{
    Ice::LoggerPtr logger = new MyLoggerI;
    return new Ice::LoggerPlugin(communicator, logger);
}

}

The factory function can have any name you wish; we used  in this example. Refer to the  for more information oncreateLogger plug-in API
plug-in factories.

The definition of  is shown below:LoggerPlugin
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C++

namespace Ice {
class LoggerPlugin {
public:
    LoggerPlugin(const CommunicatorPtr&, const LoggerPtr&);

    virtual void initialize();
    virtual void destroy();
};
}

The constructor installs your logger into the given communicator. The  and  methods are empty, but you can subclassinitialize destroy
 and override these methods if necessary.LoggerPlugin

Finally, define a  that loads your plug-in into an application:configuration property

Ice.Plugin.MyLogger=mylogger:createLogger

The plug-in's name in this example is ; again, you can use any name you wish. The value of the property represents the plug-in'sMyLogger
entry point, in which  is the abbreviated form of its shared library or DLL, and  is the name of the factory function.mylogger createLogger

If the configuration file containing this property is shared by programs in multiple implementation languages, you can use an alternate syntax
that is loaded only by the Ice for C++ run time:

Ice.Plugin.MyLogger.cpp=mylogger:createLogger

Installing a Java Logger Plug-in

To install a logger plug-in in Java, you must first define a subclass of :Ice.Logger

Java

public class MyLoggerI implements Ice.Logger {

    public void print(String message) { ... }
    public void trace(String category, String message) { ... }
    public void warning(String message) { ... }
    public void error(String message) { ... }
    public Logger cloneWithPrefix(String prefix) { ... }

    // ...
}

Next, define a factory class that installs your custom logger by returning an instance of :Ice.LoggerPlugin

Java

public class MyLoggerPluginFactoryI implements Ice.PluginFactory {
    public Ice.Plugin create(Ice.Communicator communicator,
                             String name, String[] args)
    {
        Ice.Logger logger = new MyLoggerI();
        return new Ice.LoggerPlugin(communicator, logger);
    }
}

The factory class can have any name you wish; in this example, we used . Refer to the  for moreMyLoggerPluginFactoryI plug-in API
information on plug-in factories.
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The definition of  is shown below:LoggerPlugin

Java

package Ice;

public class LoggerPlugin implements Plugin {
    public LoggerPlugin(Communicator communicator, Logger logger)
    {
        // ...
    }

    public void initialize() { }

    public void destroy() { }
}

The constructor installs your logger into the given communicator. The  and  methods are empty, but you can subclassinitialize destroy
 and override these methods if necessary.LoggerPlugin

Finally, define a  that loads your plug-in into an application:configuration property

Ice.Plugin.MyLogger=MyLoggerPluginFactoryI

The plug-in's name in this example is ; again, you can use any name you wish. The value of the property is the name of theMyLogger
factory class.

If the configuration file containing this property is shared by programs in multiple implementation languages, you can use an alternate syntax
that is loaded only by the Ice for Java run time:

Ice.Plugin.MyLogger.java=MyLoggerPluginFactoryI

Installing a C# Logger Plug-in

To install a logger plug-in in .NET, you must first define a subclass of :Ice.Logger

C#

public class MyLoggerI : Ice.Logger {

    public void print(string message) { ... }
    public void trace(string category, string message) { ... }
    public void warning(string message) { ... }
    public void error(string message) { ... }
    public Logger cloneWithPrefix(string prefix) { ... }

    // ...
}

Next, define a factory class that installs your custom logger by returning an instance of :Ice.LoggerPlugin
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C#

public class MyLoggerPluginFactoryI : Ice.PluginFactory {
    public Ice.Plugin create(Ice.Communicator communicator,
                             string name, string[] args)
    {
        Ice.Logger logger = new MyLoggerI();
        return new Ice.LoggerPlugin(communicator, logger);
    }
}

The factory class can have any name you wish; in this example, we used . Refer to the  for moreMyLoggerPluginFactoryI plug-in API
information on plug-in factories. Typically the logger implementation and the factory are compiled into a single assembly.

The definition of  is shown below:LoggerPlugin

C#

namespace Ice {
public partial class LoggerPlugin : Plugin {
    public LoggerPlugin(Communicator communicator, Logger logger)
    {
        // ...
    }

    public void initialize() { }

    public void destroy() { }
}
}

The constructor installs your logger into the given communicator. The  and  methods are empty, but you can subclassinitialize destroy
 and override these methods if necessary.LoggerPlugin

Finally, define a  that loads your plug-in into an application:configuration property

Ice.Plugin.MyLogger=mylogger.dll:MyLoggerPluginFactoryI

The plug-in's name in this example is ; again, you can use any name you wish. The value of the property is the entry point for theMyLogger
factory, consisting of an assembly name followed by the name of the factory class.

If the configuration file containing this property is shared by programs in multiple implementation languages, you can use an alternate syntax
that is loaded only by the Ice for .NET run time:

Ice.Plugin.MyLogger.clr=mylogger.dll:MyLoggerPluginFactoryI

See Also

Custom Loggers
The Per-Process Logger
Communicator Initialization
Plug-in API
Ice Plug-In Properties



Ice 3.4.2 Documentation

970 Copyright © 2011, ZeroC, Inc.

The Per-Process Logger

Ice allows you to install a per-process . This logger is used by all communicators that do not have their own specific loggercustom logger
established at the time a .communicator is created

You can set a per-process logger in C++ by calling , and you can retrieve the per-process logger by calling Ice::setProcessLogger
:Ice::getProcessLogger

C++

LoggerPtr getProcessLogger();
void setProcessLogger(const LoggerPtr&);

If you call  without having called  first, the Ice run time installs a default per-process logger. NotegetProcessLogger setProcessLogger
that if you call , only communicators created after that point will use this per-process logger; communicators createdsetProcessLogger
earlier use the logger that was in effect at the time they were created. (This also means that you can call  multiplesetProcessLogger
times; communicators created after that point will use whatever logger was established by the last call to .)setProcessLogger

getProcessLogger and  are language-specific APIs that are not defined in Slice. Therefore, for Java and C#, thesesetProcessLogger
methods appear in the  class.Ice.Util

For applications that use the  or  convenience classes and do not explicitly configure a logger, these classes set aApplication Service
default per-process logger that uses the  property as a prefix for log messages. The  class is described inIce.ProgramName Application
the server-side language mapping chapters; more information on the  class can be found in .Service The  ClassIce::Service

See Also

Custom Loggers
Communicator Initialization
The Server-Side main Function in C++
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C++ Logger Utility Classes

The Ice run time supplies a collection of utility classes that make use of the  simpler and more convenient. Each of the logger facility Logger
interface's four operations has a corresponding helper class:

C++

namespace Ice {
class Print {
public:
    Print(const LoggerPtr&);
    void flush();
    ...
};

class Trace {
public:
    Trace(const LoggerPtr&, const std::string&);
    void flush();
    ...
};

class Warning {
public:
    Warning(const LoggerPtr&);
    void flush();
    ...
};

class Error {
public:
    Error(const LoggerPtr&);
    void flush();
    ...
};
}

The only notable difference among these classes is the extra argument to the  constructor; this argument represents the traceTrace
category.

To use one of the helper classes in your application, you simply instantiate it and compose your message:

C++

if (errorCondition) {
    Error err(communicator->getLogger());
    err << "encountered error condition: " << errorCondition;
}

The Ice run time defines the necessary stream insertion operators so that you can treat an instance of a helper class as if it were a standard
C++ output stream. When the helper object is destroyed, its destructor logs the message you have composed. If you want to log more than
one message using the same helper object, invoke the  method on the object to log what you have composed so far and reset theflush
object for a new message.

The helper classes also supply insertion operators to simplify the task of logging an exception. The operators accept instances of 
 (from which all Ice exceptions derive) and log the string returned by the  method. If you are using GCC, you canstd::exception what

also enable the configuration property , which causes the helper classes to log the stack trace of the exception inIce.PrintStackTraces
addition to the value of .what

See Also

Logger Facility
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Stats Facility

The Ice run time uses the  interface to report the number of bytes sent and received over the wire on every operationIce::Stats
invocation:

Slice

module Ice {
    local interface Stats {
        void bytesSent(string protocol, int num);
        void bytesReceived(string protocol, int num);
    };

    local interface Communicator {
        Stats getStats();
        // ...
    };
};

The Ice run time calls  as it reads data from the network and  as it writes data to the network. A very simplebytesReceived bytesSent
implementation of the  interface could look as follows:Stats

C++

class MyStats : public virtual Ice::Stats {
public:
    virtual void bytesSent(const string& prot, Ice::Int num)
    {
        cerr << prot << ": sent " << num << " bytes" << endl;
    }

    virtual void bytesReceived(const string& prot, Ice::Int)
    {
        cerr << prot << ": received " << num << " bytes" << endl;
    }
};

To register your implementation, you must pass it in an  parameter when you :InitializationData initialize a communicator

C++

Ice::InitializationData id;
id.stats = new MyStats;
Ice::CommunicatorPtr ic = Ice::initialize(id);

You can install a  object on either the client or the server side (or both). Here is some example output produced by installing a Stats
 object in a simple server:MyStats

tcp: received 14 bytes
tcp: received 32 bytes
tcp: sent 26 bytes
tcp: received 14 bytes
tcp: received 33 bytes
tcp: sent 25 bytes
...

In practice, your  implementation will probably be a bit more sophisticated: for example, the object can accumulate statistics inStats
member variables and make the accumulated statistics available via member functions, instead of simply printing everything to the standard
error output.
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See Also

Communicator Initialization
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Location Transparency

One of the useful features of the Ice run time is that it is : the client does not need to know where the implementation oflocation transparent
an Ice object resides; an invocation on an object automatically is directed to the correct target, whether the object is implemented in the local
address space, in another address space on the same machine, or in another address space on a remote machine. Location transparency is
important because it allows us to change the location of an object implementation without breaking client programs and, by using ,IceGrid
addressing information such as host names and port numbers can be externalized so they do not appear in stringified proxies.

For invocations that cross address space boundaries (or more accurately, cross communicator boundaries), the Ice run time dispatches
requests via the appropriate transport. However, for a proxy invocation in which the proxy and the servant that processes the invocation
share the same communicator (so-called  invocations), the Ice run time, by default, does not send the invocation via the transportcollocated
specified in the proxy. Instead, collocated invocations take a short-cut inside the Ice run time and are dispatched directly.

Note that if the proxy and the servant do not use the same communicator, the invocation is  collocated, even thoughnot
caller and callee are in the same address space.

The reason for this is if collocated invocations were sent via TCP/IP, for example, invocations would still be sent via the operating system
kernel (using the back plane instead of a network) and would incur the full cost of creating TCP/IP connections, marshaling requests into
packets, trapping in and out of the kernel, and so on. By optimizing collocated requests, much of this overhead can be avoided, so collocated
invocations are almost as fast as a local function call.

For efficiency reasons, collocated invocations are not completely location transparent, that is, a collocated call has semantics that differ in
some ways from calls that cross address-space boundaries. Specifically, collocated invocations differ from ordinary invocations in the
following respects:

Collocated invocations are dispatched in the calling thread instead of being dispatched using the server's concurrency model.
The object adapter holding state is ignored: collocated invocations proceed normally even if the target object's adapter is in the
holding state.
For collocated invocations, classes and exceptions are never sliced. Instead, the receiver always receives a class or exception as
the derived type that was sent by the sender.
If a collocated invocation throws an exception that is not in an operation's exception specification, the original exception is raised in
the client instead of . (This applies to the C++ mapping only.)UnknownUserException
Class factories are ignored for collocated invocations.
Timeouts on invocations are ignored.
If an operation implementation uses an in parameter that is passed by reference as a temporary variable, the change affects the
value of the in parameter in the caller (instead of modifying a temporary copy of the parameter on the callee side only).

In practice, these differences rarely matter. The most likely cause of surprises with collocated invocations is dispatch in the calling thread,
that is, a collocated invocation behaves like a local, synchronous procedure call. This can cause problems if, for example, the calling thread
acquires a lock that an operation implementation tries to acquire as well: unless you use , this will cause deadlock.recursive mutexes

The Ice run time uses the following semantics to determine whether a proxy is eligible for the collocated optimization:

For an indirect proxy, collocation optimization is used if the proxy's adapter ID matches the adapter ID or replica group ID of an
object adapter in the same communicator.
For a well-known proxy, the Ice run time queries each object adapter to determine if the servant is local.
For a direct proxy, the Ice run time performs an endpoint search using the proxy's endpoints.

When an endpoint search is required, the Ice run time compares each of the proxy's endpoints against the endpoints of the communicator's
object adapters. Only the transport, address and port are considered; other attributes of an endpoint, such as timeout settings, are not
considered during this search. If a match is found, the invocation is dispatched using collocation optimization. Normally this search is
executed only once, during the proxy's first invocation, although the proxy's  setting influences this behavior.connection caching

Collocation optimization is enabled by default, but you can disable it for all proxies by setting the property 
. You can also disable the optimization for an individual proxy using the  Ice.Default.CollocationOptimized=0 factory method

. Finally, for proxies  using , the property ice_collocationOptimized(false) created from a property propertyToProxy name
configures the default setting for the proxy. .CollocationOptimized

See Also

IceGrid
Threads and Concurrency with C++
Connection Establishment
Proxy Methods
Obtaining Proxies
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Automatic Retries

Ice may automatically retry a proxy invocation after a failure. This is a powerful feature that, when used in the proper situations, can
significantly improve the robustness of your application without any additional programming effort. The retry facility is governed by one
overriding principle: always respect at-most-once semantics.  dictate that the Ice run time in the client must neverAt-most-once semantics
retry a failed proxy invocation unless Ice guarantees that the server has not already received the request, or unless the application declares
that it is safe for Ice to violate at-most-once semantics for the request.

To understand the importance of obeying at-most-once semantics, consider the following Slice definition:

Slice

interface Account {
    long withdraw(long amount);
};

The  operation removes funds from an account. If an invocation of  fails, automatically retrying the request introduceswithdraw withdraw
the risk of a duplicate withdrawal unless Ice is absolutely sure that the server has not already executed the request.

This page examines automatic retries in more detail.

On this page:

Automatic Retries for Request Failures
Automatic Retries for Idempotent Operations
Configuring Automatic Retries

Retry Intervals
Retry Logging

Timeouts and Automatic Retries
Connections and Automatic Retries

Connection Errors
Connection Status

Automatic Retries for Request Failures

Ice considers a request to have failed if any of the following conditions are true:

A connection could not be established
A connection was lost before the reply was received
A timeout expired
An exception occurred while sending the request or receiving the reply
An error occurred in the server while dispatching the request that causes the server to return an  or UnknownException
RequestFailedException

Ice considers an invocation that results in a user exception to be successful and therefore excludes it from consideration
for automatic retries.

Ice must determine the answers to several questions to decide whether to retry a failed request:

1. What kind of error caused the request to fail?

Ice does not bother retrying a request if it knows the same error is going to occur again. For example, Ice never retries an invocation that
raises a , which indicates that there was a problem while encoding or decoding a message. Retrying such anMarshalException
invocation is unlikely to change the outcome.

Ice also never retries exceptions that derive from  because they indicate a permanent failure. One suchRequestFailedException
subclass is , whose occurrence signals a serious problem in the application. For instance, it might meanOperationNotExistException
that the client and server are using incompatible Slice definitions, or that the client is trying to invoke operations on the wrong object. The
exception to this rule is , which Ice does consider to be worthy of retry if the proxy in question is ObjectNotExistException indirect
because it gives an application the ability to transparently migrate an Ice object.

In addition to user exceptions and subclasses of , a server can also return an instance of RequestFailedException UnknownException
, , or  to indicate that it encountered an unexpected exception while dispatching theUnknownLocalException UnknownUserException
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request. These exceptions  eligible for retry.are

2. When did the error occur?

If the error is still a candidate for retry, Ice needs to know whether the server has received the request. Naturally, the Ice run time in the client
cannot possibly know that information until the server confirms it by sending a reply. However, to be conservative Ice assumes that the
server has received the request as soon as Ice has written the  protocol message to the client's local transport buffers. If the errorentire
occurred before Ice managed to write the complete message, retrying the request would not violate at-most-once semantics.

The Ice run time in the server also has the ability to notify the client that a request was not dispatched and therefore that it is safe for the Ice
run time in the client to retry the request without violating at-most-once semantics. For example, this situation can occur when the server is
shutting down while there are pending requests that have yet to be executed. Sending this notification allows a client to transparently fail
over to another server.

3. Does the application require strict adherence to at-most-once semantics for this request?

An application can grant permission for Ice to violate at-most-once semantics for certain Slice operations by marking them as ,idempotent
causing Ice to retry a request that otherwise would be ineligible because the server has already received it. We discuss idempotent
operations in more detail .below

If Ice determines that an invocation cannot be retried, it raises the exception that caused the request failure to the application. On the other
hand, if Ice does retry the invocation and the subsequent retries also fail, Ice raises the  exception to the application. For example, if thelast
first attempt fails with  and the retry fails with , the invocation raises ConnectionRefusedException ConnectTimeoutException

 to the application.ConnectTimeoutException

Automatic Retries for Idempotent Operations

Annotating a Slice operation with the  keyword notifies Ice that it can safely violate at-most-once semantics:idempotent

Slice

interface Account {
    long withdraw(long amount);
    idempotent long getBalance();
};

Although  clearly requires the stricter treatment, there is no harm in automatically retrying the  operation even if thewithdraw getBalance
server executes the same request more than once.

In general, "read-only" operations are good candidates for the  keyword whereas many mutating operations are not. However,idempotent
the risk of duplicate requests is acceptable even for some kinds of mutating operations:

Slice

interface Account {
    long withdraw(long amount);
    idempotent long getBalance();
    idempotent void changeAddress(string newAddress);
};

Here we have marked  as idempotent because executing the request twice has the same effect as executing it only once.changeAddress

The benefit of the  keyword and the associated relaxation of retry semantics is that an invocation that otherwise might haveidempotent
raised an exception has at least one more chance to succeed. Furthermore, the application does not need to initiate the retry, and in fact the
retry activities are completely transparent: if a subsequent retry succeeds, the application receives its results as if nothing went wrong. The
invocation only raises an exception once Ice has reached its configured retry limits.

Configuring Automatic Retries

Retry Intervals

The  property configures the retry behavior for a communicator and affects invocations on every proxy created byIce.RetryIntervals
that communicator. (Retry behavior cannot be configured on a per-proxy basis.) The value of this property consists of a series of integers
separated by whitespace. The number of integers determines how many retry attempts Ice makes, and the value of each entry represents a
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delay in milliseconds. If this property is not defined, the default behavior is to retry once immediately after the first failure, which is equivalent
to the following property definition:

Ice.RetryIntervals=0

You may want a more elaborate configuration for your application, such as a gradual increase in the delay between retries:

Ice.RetryIntervals=0 100 500 1000

With this setting, Ice retries immediately as in the default case. If the first retry attempt also fails, Ice waits 100 milliseconds before trying
again, then 500 milliseconds, and finally tries one more time after waiting one second.

In some situations you may need to disable retries completely. For example, an application might implement its own retry logic and therefore
require immediate notification when a failure occurs. Clients that establish a session with a  also need to disable retries. ToGlacier2 router
prevent automatic retries, use a value of :-1

Ice.RetryIntervals=-1

Retry Logging

To monitor Ice's retry activities, configure your program with the property  set to a non-zero value:Ice.Trace.Retry

Ice.Trace.Retry=1

When retry tracing is enabled, Ice logs a message each time it attempts a retry; the log message includes a description of the exception that
prompted the retry. Ice also logs a message when it reaches the retry limit.

You can configure Ice to log even more information about retries by setting the property to :2

Ice.Trace.Retry=2

This setting prompts Ice to include additional details about connections and endpoints.

Timeouts and Automatic Retries

If a proxy invocation fails due to a , the application must be prepared for Ice to raise a . However, a developertimeout TimeoutException
that is testing timeouts in an application may be initially confused to discover that it is taking twice as long as expected for Ice to raise the 

. Automatic retries are usually the reason for this situation.TimeoutException

For example, suppose that a proxy is configured with a one-second timeout and automatic retries are enabled with the default setting. If an
invocation on that proxy fails due to a timeout and Ice determines that the invocation is eligible for retry (using the criteria described ),above
Ice immediately tries the invocation again and waits for another timeout period to expire before finally raising . From theTimeoutException
application's perspective, the invocation fails after approximately two seconds.

Consequently, you can compute an approximate worst-case timeout value as follows:

T = t * (N + 1) + D

where  is the timeout value,  is the number of retry intervals, and  is the sum of the retry intervals (the total delay between retries).t N D
Consider our example again:

Ice.RetryIntervals=0 100 500 1000

Using this configuration with a one-second timeout, our approximate worst-case timeout is  seconds.1 * 5 + 1.6 = 6.6
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Connections and Automatic Retries

The behavior of automatic retries is intimately tied to the presence (and absence) of connections. This section describes the errors that
cause Ice to close connections, and provides more details about how connections influence retries.

Connection Errors

Ice automatically closes a connection in response to certain fatal error conditions. Of these, the one that is the most likely to affect Ice
applications is a . Other errors that prompt Ice to close a connection include the following:timeout

a socket failure while performing I/O on the connection
receiving an improperly formatted message
dispatching an operation to a Java servant raises  or OutOfMemoryError AssertionError

When Ice closes a connection in response to one of these errors, all other outstanding requests on the same connection also fail and may be
retried if eligible.

Connection Status

One factor that influences retry behavior is the status of the connection on which the failed request was attempted. If the failure caused Ice to
close the connection (as discussed in the previous section), or if the request failed because Ice could not , Ice must tryestablish a connection
to obtain another connection before it can retry the request.

It is also important to understand that Ice may not retry the invocation on the original endpoint even if the connection that was used for the
. The retry behavior in this case depends on several criteria:initial request remains open

whether the proxy caches its connection
whether the proxy contains multiple endpoints
whether other connections exist to any of the proxy's endpoints
the proxy's configured endpoint selection type

Generally speaking, you must configure your application carefully if you need fine-grained control over Ice's retry behavior.

See Also

Terminology
Operations
Connection Timeouts
Connection Establishment
Getting Started with Glacier2
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Dispatch Interceptors

A dispatch interceptor is a server-side mechanism that allows you to intercept incoming client requests before they are given to a servant.
The interceptor can examine the incoming request; in particular, it can see whether the request dispatch is collocation-optimized and
examine the  information for the request.Current

A dispatch interceptor can dispatch a request to a servant and check whether the dispatch was successful; if not, the interceptor can choose
to retry the dispatch. This functionality is useful to automatically retry requests that have failed due to a recoverable error condition, such as
a database deadlock exception. (Freeze uses dispatch interceptors for this purpose in its .)evictor implementations

On this page:

Dispatch Interceptor API
Objective-C Mapping for Dispatch Interceptors

Using a Dispatch Interceptor

Dispatch Interceptor API

Dispatch interceptors are not defined in Slice, but are provided as an API that is specific to each programming language. The remainder of
this section presents the interceptor API for C++; for Java and .NET, the API is analogous, so we do not show it here.

In C++, a dispatch interceptor has the following interface:

C++

namespace Ice {
    class DispatchInterceptor : public virtual Object {
    public:
        virtual DispatchStatus dispatch(Request&) = 0;
    };

    typedef IceInternal::Handle<DispatchInterceptor> DispatchInterceptorPtr;
}

Note that a   , that is, you use a dispatch interceptor as a servant.DispatchInterceptor is-a Object

To create a dispatch interceptor, you must derive a class from  and provide an implementation of the pure virtual DispatchInterceptor
 function. The job of  is to pass the request to the servant and to return a dispatch status, defined as follows:dispatch dispatch

C++

namespace Ice {
    enum DispatchStatus {
        DispatchOK, DispatchUserException, DispatchAsync
    };
}

The enumerators indicate how the request was dispatched:

DispatchOK
The request was dispatched synchronously and completed without an exception.

DispatchUserException
The request was dispatched synchronously and raised a user exception.

DispatchAsync
The request was dispatched successfully as an asynchronous request; the result of the request is not available to the interceptor
because the result is delivered to the AMD callback when the request completes.

The Ice run time provides basic information about the request to the  function in the form of a  object:dispatch Request
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C++

namespace Ice {
    class Request {
    public:
        virtual bool isCollocated();
        virtual const Current& getCurrent();
    };
}

isCollocated returns true if the dispatch is directly into the target servant as a . If the dispatch iscollocation-optimized dispatch
not collocation-optimized, the function returns false.
getCurrent provides access to the  object for the request, which provides access to information about the request, suchCurrent
as the object identity of the target object, the object adapter used to dispatch the request, and the operation name.

Note that , for performance reasons, is  thread-safe. This means that you must not concurrently dispatch from different threadsRequest not
using the same  object. (Concurrent dispatch for different requests does not cause any problems.)Request

To use a dispatch interceptor, you instantiate your derived class and register it as a servant with the Ice run time in the usual way, such as
by adding the interceptor to the  (ASM), or returning the interceptor as a servant from a call to  on a Active Servant Map locate servant

.locator

Objective-C Mapping for Dispatch Interceptors

The Objective-C mapping in Ice Touch does not support AMD, therefore the return type of the  method is simplified to a boolean:dispatch

Objective-C

@protocol ICEDispatchInterceptor <ICEObject>
-(BOOL) dispatch:(id<ICERequest>)request;
@end

A return value of  is equivalent to  and indicates that the request completed without an exception. A return value of  isYES DispatchOK NO
equivalent to .DispatchUserException

Similarly, the  protocol omits the  method because collocation optimization is not supported.ICERequest isCollocated

Using a Dispatch Interceptor

Your implementation of the  function must dispatch the request to the actual servant. Here is a very simple exampledispatch
implementation of an interceptor that dispatches the request to the servant passed to the interceptor's constructor:

C++

class InterceptorI : public Ice::DispatchInterceptor {
public:
    InterceptorI(const Ice::ObjectPtr& servant)
        : _servant(servant) {}

    virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
        return _servant->ice_dispatch(request);
    }

    Ice::ObjectPtr _servant;
};

Note that our implementation of  calls  on the target servant to dispatch the request.  does thedispatch ice_dispatch ice_dispatch
work of actually (synchronously) invoking the operation.

Also note that  returns whatever is returned by . For synchronous dispatch, you should always implement yourdispatch ice_dispatch
interceptor in this way and not change this return value.
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We can use this interceptor to intercept requests to a servant of any type as follows:

C++

ExampleIPtr servant = new ExampleI;
Ice::DispatchInterceptorPtr interceptor = new InterceptorI(servant);
adapter->add(interceptor, communicator->stringToIdentity("ExampleServant"));

Note that, because dispatch interceptor  servant, this means that the servant to which the interceptor dispatches need not be the actualis-a
servant. Instead, it could be another dispatch interceptor that ends up dispatching to the real servant. In other words, you can chain dispatch
interceptors; each interceptor's  function is called until, eventually, the last interceptor in the chain dispatches to the actualdispatch
servant.

A more interesting use of a dispatch interceptor is to retry a call if it fails due to a recoverable error condition. Here is an example that retries
a request if it raises a local exception defined in Slice as follows:

Slice

local exception DeadlockException { /* ... */ };

Note that this is a  exception. Local exceptions that are thrown by the servant propagate to  and can be caught there. Alocal dispatch
database might throw such an exception if the database detects a locking conflict during an update. We can retry the request in response to
this exception using the following  implementation:dispatch

C++

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
    while (true) {
        try {
            return _servant->ice_dispatch(request);
        } catch (const DeadlockException&) {
            // Happens occasionally
        }
    }
}

Of course, a more robust implementation might limit the number of retries and possibly add a delay before retrying.

You can also retry an asynchronous dispatch. In this case, each asynchronous dispatch attempt creates a new AMD callback object.

If the response for the retried request has been sent already, the interceptor receives a . YourResponseSentException
interceptor must either not handle this exception (or rethrow it) or return .DispatchAsync
If the response for the request has not been sent yet, the Ice run time ignores any call to  or  onice_response ice_exception
the old AMD callback.

If an operation throws a user exception (as opposed to a local exception), the user exception cannot be caught by  as andispatch
exception but, instead, is reported by the return value of : a return value of  indicates that theice_dispatch DispatchUserException
operation raised a user exception. You can retry a request in response to a user exception as follows:

C++

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
    Ice::DispatchStatus d;
    do {
        d = _servant->ice_dispatch(request);
    } while (d == Ice::DispatchUserException);
    return d;
}

This is fine as far as it goes, but not particularly useful because the preceding code retries if  kind of user exception is thrown. However,any
typically, we want to retry a request only if a  user exception is thrown. The problem here is that the  function does notspecific dispatch
have direct access to the actual exception that was thrown — all it knows is that  user exception was thrown, but not which one.some
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To retry a request for a specific user exception, you need to implement your servants such that they leave some "footprint" behind if they
throw the exception of interest. This allows your request interceptor to test whether the user exception should trigger a retry. There are
various techniques you can use to achieve this. For example, you can use thread-specific storage to test a retry flag that is set by the servant
if it throws the exception or, if you use transactions, you can attach the retry flag to the transaction context. However, doing so is more
complex; the intended use case is to permit retry of requests in response to local exceptions, so we suggest you retry requests only for local
exceptions.

The most common use case for a dispatch interceptor is as a . Rather than having an explicit interceptor for individualdefault servant
servants, you can register a dispatch interceptor as default servant. You can then choose the "real" servant to which to dispatch the request
inside , prior to calling . This allows you to intercept and selectively retry requests based on their outcome, whichdispatch ice_dispatch
cannot be done using a servant locator.

See Also

The Current Object
Location Transparency
The Active Servant Map
Servant Locators
Freeze Evictors
Default Servants
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C++ Strings and Character Encoding

On the wire, Ice  all strings as Unicode strings in UTF-8 encoding. For languages other than C++, Ice uses strings in theirtransmits
language-native Unicode representation and converts automatically to and from UTF-8 for transmission, so applications can transparently
use characters from non-English alphabets.

However, for C++, how strings are represented inside a process depends on the platform as well as the mapping that is chosen for a
particular string: the default mapping to , or the  to .std::string alternative mapping std::wstring

This discussion is only relevant for C++. For scripting language mappings based on Ice for C++, it is possible to use Ice's
 and to .default string converter plug-in install your own string converter plug-in

We will explore how strings are encoded by the Ice for C++ run time, and how you can achieve automatic conversion of strings in their native
representation to and from UTF-8. For an example of using string converters in C++, refer to the sample program provided in the 

 subdirectory of your Ice distribution.demo/Ice/converter

By default, the Ice run time encodes strings as follows:

Narrow strings (that is, strings mapped to ) are presented to the application in UTF-8 encoding and, similarly, thestd::string
application is expected to provide narrow strings in UTF-8 encoding to the Ice run time for transmission. 

With this default behavior, the application code is responsible for converting between the native codeset for 8-bit characters and
UTF-8. For example, if the native codeset is ISO Latin-1, the application is responsible for converting between UTF-8 and narrow
(8-bit) characters in ISO Latin-1 encoding. 

Also note that the default behavior does not require the application to do anything if it only uses characters in the ASCII range. (This
is because a string containing only characters in the (7-bit) ASCII range is also a valid UTF-8 string.)

Wide strings (that is, strings mapped to ) are automatically encoded as Unicode by the Ice run time as appropriatestd::wstring
for the platform. For example, for Windows, the Ice run time converts between UTF-8 and UTF-16 in little-endian representation
whereas, for Linux, the Ice run time converts between UTF-8 and UTF-32 in the endian-ness appropriate for the host CPU. 

With this default behavior, wide strings are transparently converted between their on-the-wire representation and their native C++
representation as appropriate, so application code need not do anything special. (The exception is if an application uses a
non-Unicode encoding, such as Shift-JIS, as its native  codeset.)wstring

Topics

Installing String Converters
UTF-8 Conversion
String Parameters in Local Calls
Built-in String Converters
String Conversion Convenience Functions
The iconv String Converter
The Ice String Converter Plug-in
Custom String Converter Plug-ins

See Also

The Ice Protocol
C++ Mapping for Built-In Types
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Installing String Converters

The default behavior of the run time can be changed by providing application-specific string converters. If you install such converters, all
Slice strings will be passed to the appropriate converter when they are marshaled and unmarshaled. Therefore, the string converters allow
you to convert all strings transparently into their native representation without having to insert explicit conversion calls whenever a string
crosses a Slice interface boundary.

You can install string converters on a per-communicator basis when you  by setting the  and create a communicator stringConverter
 members of the  structure. Any strings that use the default ( ) mapping arewstringConverter InitializationData std::string

passed through the specified , and any strings that use the wide ( ) mapping are passed through thestringConverter std::wstring
specified .wstringConverter

The string converters are defined as follows:

C++

namespace Ice {

class UTF8Buffer {
public:
    virtual Byte* getMoreBytes(size_t howMany, Byte* firstUnused) = 0;
    virtual ~UTF8Buffer() {}
};

template<typename charT>
class BasicStringConverter : public IceUtil::Shared {
public:
    virtual Byte* toUTF8(const charT* sourceStart, const charT* sourceEnd,
                         UTF8Buffer&) const = 0;

    virtual void fromUTF8(const Byte* sourceStart,
                          const Byte* sourceEnd,
                          std::basic_string<charT>& target) const;
};

typedef BasicStringConverter<char> StringConverter;
typedef IceUtil::Handle<StringConverter> StringConverterPtr;

typedef BasicStringConverter<wchar_t> WstringConverter;
typedef IceUtil::Handle<WstringConverter> WstringConverterPtr;

}

As you can see, both narrow and wide string converters are simply templates with either a narrow or a wide character (  or ) aschar wchar_t
the template parameter.

See Also

Communicator Initialization
C++ Mapping for Built-In Types
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UTF-8 Conversion

On this page:

Converting to UTF-8
Converting from UTF-8

Converting to UTF-8

If you have , the Ice run time calls the converter's  function whenever it needs to convert a native stringinstalled a string converter toUTF8
into UTF?8 representation for transmission. The  and  pointers point at the first byte and one-beyond-the-last bytesourceStart sourceEnd
of the source string, respectively. The implementation of  must return a pointer to the first unused byte following the converted string.toUTF8

Your implementation of  must allocate the returned string by calling the  member function of the  classtoUTF8 getMoreBytes UTF8Buffer
that is passed as the third argument. (  throws a  if it cannot allocate enough memory.) The getMoreBytes MemoryLimitException

 parameter must point at the first unused byte of the allocated memory region. You can make several calls to firstUnused getMoreBytes
to incrementally allocate memory for the converted string. If you do,  may relocate the buffer in memory. (If it does, it copiesgetMoreBytes
the part of the string that was converted so far into the new memory region.) The function returns a pointer to the first unused byte of the
(possibly relocated) memory.

Conversion with  can fail because  can cause the message size to exceed . In this case,toUTF8 getMoreBytes Ice.MessageSizeMax
you should let the  thrown by  propagate to the caller.MemoryLimitException getMoreBytes

Conversion can also fail because the encoding of the source string is internally incorrect. In that case, you should throw a 
 exception from .StringConversionFailed toUTF8

After it has marshaled the returned string into an internal marshaling buffer, the Ice run time deallocates the string.

Converting from UTF-8

During unmarshaling, the Ice run time calls the  member function on the corresponding string converter. The function converts afromUTF8
UTF?8 string into its native form as a . (The string into which the function must place the converted characters is passed to std::string

 as the  parameter.)fromUTF8 target

See Also

Installing String Converters
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String Parameters in Local Calls

In C++, and indirectly in Python, Ruby, and PHP, all Ice local APIs are narrow-string based, meaning you could not for example recompile 
 to get property names and values as wide strings.Properties.ice

Installing a narrow-string converter could cause trouble for these local calls if UTF-8 conversion occurs in the underlying implementation. For
example, the  operation creates an intermediary UTF-8 string. If this string contains characters that are not in yourstringToIdentity
native codeset (as determined by the narrow-string converter), the  call will fail.stringToIdentity

Likewise, when Ice reads  from a configuration file, it converts the input (UTF-8 characters) into native strings. This conversion canproperties
also fail if the native encoding cannot convert some characters.

Most strings in local calls are never problematic because Ice does not perform any conversion, for example:

adapter names in createObjectAdapter
property names and values in Properties
ObjectAdapter::createProxy, where the identity conversion occurs only when the proxy is marshaled

Finally, consider the Slice type , which is mapped in C++ as a . The mapping for  cannotIce::Context map<string, string> Context
be changed to , therefore you cannot send or receive any context entry that is not in your narrow-string nativemap<wstring, wstring>
encoding when a narrow-string converter is installed.

See Also

Object Identity
Properties and Configuration
Request Contexts
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Built-in String Converters

Ice provides three string converters to cover common conversion requirements:

UnicodeWstringConverter
This is a string converter that converts between Unicode wide strings and UTF-8 strings. Unless you install a different string
converter, this is the default converter that is used for wide strings.

IconvStringConverter (Linux and Unix only)
The  converts strings using the Linux and Unix  conversion facility. It can be used to convert either string convertericonv iconv
wide or narrow strings.

WindowsStringConverter (Windows only)
This string converter converts between multi-byte and UTF-8 strings and uses  and MultiByteToWideChar

 for its implementation.WideCharToMultiByte

These string converters are defined in the  namespace.Ice

See Also

The iconv String Converter
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String Conversion Convenience Functions

The  namespace provides four convenience functions that make it easy to  to and from UTF?8:Ice convert strings

C++

namespace Ice {

std::string nativeToUTF8(const Ice::StringConverterPtr&, const std::string&);

std::string nativeToUTF8(const Ice::CommunicatorPtr&, const std::string&);

std::string UTF8ToNative(const Ice::StringConverterPtr&, const std::string&);

std::string UTF8ToNative(const Ice::CommunicatorPtr&, const std::string&);

}

The overloads allow you to either use the string converter that is configured on a communicator or to explicitly pass a specific string
converter that performs the conversion.

See Also

UTF-8 Conversion



Ice 3.4.2 Documentation

991 Copyright © 2011, ZeroC, Inc.

The iconv String Converter

For Linux and Unix platforms, Ice provides an  template class that uses the  conversion facility to convertIconvStringConverter iconv
between the native encoding and UTF-8. The only member function of interest is the constructor:

C++

template<typename charT>
class IconvStringConverter : public Ice::BasicStringConverter<charT>
{
public:
    IconvStringConverter(const char* = nl_langinfo(CODESET));

    // ...
};

To use this string converter, you specify whether the conversion you want is for narrow or wide characters via the template argument, and
you specify the corresponding native encoding with the constructor argument. For example, to create a converter that converts between ISO
Latin-1 and UTF-8, you can instantiate the converter as follows:

C++

InitializationData id;
id.stringConverter = new IconvStringConverter<char>("ISO-8859-1");

Similarly, to convert between the internal wide character encoding and UTF-8, you can instantiate a converter as follows:

C++

InititializationData id;
id.stringConverter = new IconvStringConverter<wchar_t>("WCHAR_T");

The string you pass to the constructor must be one of the values returned by , which lists all the available character encodings foriconv -l
your machine.

Using the  template makes it easy to install code converters for any available encoding without having to explicitlyIconvStringConverter
write (or call) conversion routines, whose implementation is typically non-trivial.

See Also

Installing String Converters
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The Ice String Converter Plug-in

The Ice run time includes a plug-in that supports  between UTF-8 and native encodings on Unix and Windows platforms. You canconversion
use this plug-in to install converters for narrow and wide strings into the communicator of an existing program. This feature is primarily
intended for use in scripting language extensions such as Ice for Python; if you need to use string converters in your C++ application, we
recommend using the technique described in  instead.Installing String Converters

Note that an application must be designed to operate correctly in the presence of a string converter. A string converter assumes that it
converts strings in the native encoding into the UTF-8 encoding, and vice versa. An application that performs its own conversions on strings
that cross a Slice interface boundary can cause encoding errors when those strings are processed by a converter.

Configuring the Ice String Converter Plug-in

You can install the plug-in using a  like the one shown below:configuration property

Ice.Plugin.Converter=Ice:createStringConverter iconv=encoding[,encoding] windows=code-page

You can use any name you wish for the plug-in; in this example, we used . The first component of the property value representsConverter
the plug-in's , which includes the abbreviated name of the shared library or DLL ( ) and the name of a factory function (entry point Ice

).createStringConverter

The plug-in accepts the following arguments:

iconv=encoding[,encoding] 
This argument is optional on Unix platforms and ignored on Windows platforms. If specified, it defines the  names of theiconv
narrow string encoding and the optional wide-string encoding. If this argument is not specified, the plug-in installs a narrow string
converter that uses the default locale-dependent encoding.

windows=code-page
This argument is required on Windows platforms and ignored on Unix platforms. The  value represents a code pagecode-page
number, such as .1252

The plug-in's argument semantics are designed so that the same configuration property can be used on both Windows and Unix platforms,
as shown in the following example:

Ice.Plugin.Converter=Ice:createStringConverter iconv=ISO8859-1 windows=1252

If the configuration file containing this property is shared by programs in multiple implementation languages, you can use an alternate syntax
that is loaded only by the Ice for C++ run time:

Ice.Plugin.Converter.cpp=Ice:createStringConverter iconv=ISO8859-1 windows=1252

See Also

UTF-8 Conversion
Installing String Converters
Plug-in Configuration
Ice Plug-In Properties
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Custom String Converter Plug-ins

If the  does not satisfy your requirements, you can implement your own solution with help from the default string converter plug-in
 class:StringConverterPlugin

C++

namespace Ice {
class StringConverterPlugin : public Ice::Plugin {
public:

    StringConverterPlugin(const CommunicatorPtr& communicator, 
                          const StringConverterPtr&,
                          const WstringConverterPtr& = 0);

    virtual void initialize();

    virtual void destroy();
};
}

The converters are installed by the  constructor (you can supply an argument of  for either converter if you doStringConverterPlugin 0
not wish to install it). The  and  methods are empty, but you can subclass  and overrideinitialize destroy StringConverterPlugin
these methods if necessary.

In order to create a string converter plug-in, you must do the following:

Define and export a  that returns an instance of .factory function StringConverterPlugin
Implement the converter(s) that you will pass to the  constructor, or use the ones .StringConverterPlugin included with Ice
Package your code into a shared library or DLL.

To install your plug-in, use a  like the one shown below:configuration property

Ice.Plugin.MyConverterPlugin=myconverter:createConverter ...

The first component of the property value represents the plug-in's , which includes the abbreviated name of the shared library orentry point
DLL ( ) and the name of a factory function ( ).myconverter createConverter

If the configuration file containing this property is shared by programs in multiple implementation languages, you can use an alternate syntax
that is loaded only by the Ice for C++ run time:

Ice.Plugin.MyConverterPlugin.cpp=myconverter:createConverter ...

See Also

The Ice String Converter Plug-in
Plug-in API
Ice Plug-In Properties
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Plug-in Facility

Ice supports a plug-in facility that allows you to add new features and install application-specific customizations. Plug-ins are defined using
configuration properties and loaded dynamically by the Ice run time, making it possible to install a plug-in into an existing program without
modification.

Ice uses the plug-in facility to implement some of its own features. Most well-known is , a plug-in that adds a secure transport for IceIceSSL
communication. Other examples include the  and the .logger plug-in string converter plug-in

This section describes the plug-in facility in more detail and demonstrates how to implement an Ice plug-in.

Topics

Plug-in API
Plug-in Configuration
Advanced Plug-in Topics

See Also

IceSSL
Logger Plug-ins
The Ice String Converter Plug-in
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Plug-in API

On this page:

The  InterfacePlugin
C++ Plug-in Factory
Java Plug-in Factory
C# Plug-in Factory

The  InterfacePlugin

The plug-in facility defines a  Slice interface that all plug-ins must implement:local

Slice

module Ice {
local interface Plugin {
    void initialize();
    void destroy();
};
};

The lifecycle of an Ice plug-in is structured to accommodate dependencies between plug-ins, such as when a logger plug-in needs to use
IceSSL for its logging activities. Consequently, a plug-in object's lifecycle consists of four phases:

Construction
The Ice run time uses a language-specific factory API for instantiating plug-ins. During construction, a plug-in can acquire resources
but must not spawn new threads or perform activities that depend on other plug-ins.

Initialization
After all plug-ins have been constructed, the Ice run time invokes  on each plug-in. The order in which plug-ins areinitialize
initialized is undefined by default but can be  using a configuration property. If a plug-in has a dependency on anothercustomized
plug-in, you must configure the Ice run time so that initialization occurs in the proper order. In this phase it is safe for a plug-in to
spawn new threads; it is also safe for a plug-in to interact with other plug-ins and use their services, as long as those plug-ins have
already been initialized. If  raises an exception, the Ice run time invokes  on all plug-ins that wereinitialize destroy
successfully initialized (in the reverse order of initialization) and raises the original exception to the application.

Active
The active phase spans the time between initialization and destruction. Plug-ins must be designed to operate safely in the context of
multiple threads.

Destruction
The Ice run time invokes  on each plug-in in the reverse order of initialization.destroy

This lifecycle is repeated for each new communicator that an application creates and destroys.

C++ Plug-in Factory

In C++, the plug-in factory is an exported function with C linkage having the following signature:

C++

extern "C"
{
ICE_DECLSPEC_EXPORT Ice::Plugin*
functionName(const Ice::CommunicatorPtr& communicator,
             const std::string& name,
             const Ice::StringSeq& args);
}

You can define the function with any name you wish. We recommend that you use the  macro to ensure that theICE_DECLSPEC_EXPORT
function is exported correctly on all platforms. Since the function uses C linkage, it must return the plug-in object as a regular C++ pointer
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and not as an Ice smart pointer. Furthermore, the function must not raise C++ exceptions; if an error occurs, the function must return zero.

The arguments to the function consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and
any arguments that were specified in the .plug-in's configuration

Java Plug-in Factory

In Java, a plug-in factory must implement the  interface:Ice.PluginFactory

Java

package Ice;

public interface PluginFactory {
    Plugin create(Communicator communicator, String name, String[] args);
}

The arguments to the  method consist of the communicator that is in the process of being initialized, the name assigned to thecreate
plug-in, and any arguments that were specified in the .plug-in's configuration

The  method can return  to indicate that a general error occurred, or it can raise  tocreate null PluginInitializationException
provide more detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of 

.PluginInitializationException

C# Plug-in Factory

In .NET, a plug-in factory must implement the  interface:Ice.PluginFactory

C#

namespace Ice {
    public interface PluginFactory
    {
        Plugin create(Communicator communicator, string name, string[] args);
    }
}

The arguments to the  method consist of the communicator that is in the process of being initialized, the name assigned to thecreate
plug-in, and any arguments that were specified in the .plug-in's configuration

The  method can return  to indicate that a general error occurred, or it can raise  tocreate null PluginInitializationException
provide more detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of 

.PluginInitializationException

See Also

Plug-in Configuration
Advanced Plug-in Topics
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Plug-in Configuration

Plug-ins are installed using a  of the following form:configuration property

Ice.Plugin.Name=entry_point [arg ...]

In most cases you can assign an arbitrary name to a plug-in. In the case of , however, the plug-in requires that its name be .IceSSL IceSSL

The value of  is a language-specific representation of the plug-in's factory. In C++, it consists of the name of the shared libraryentry_point
or DLL containing the factory function, along with the name of the factory function. In Java, the entry point is the name of the factory class,
while in .NET the entry point also includes the assembly.

The language-specific nature of plug-in properties can present a problem when applications that are written in multiple implementation
languages attempt to share a configuration file. Ice supports an alternate syntax for plug-in properties that alleviates this issue:

Ice.Plugin.name.cpp=...    # C++ plug-in
Ice.Plugin.name.java=...   # Java plug-in
Ice.Plugin.name.clr=...    # .NET (Common Language Runtime) plug-in

Plug-in properties having a suffix of , , or  are loaded only by the appropriate Ice run time and ignored by others..cpp .java .clr

See Also

Ice Plug-In Properties
IceSSL
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Advanced Plug-in Topics

This page discusses additional aspects of the Ice plug-in facility that may be of use to applications with special requirements.

On this page:

Plug-in Dependencies
The Plug-in Manager
Delayed Plug-in Initialization

Plug-in Dependencies

If a plug-in has a dependency on another plug-in, you must ensure that Ice initializes the plug-ins in the proper order. Suppose that a custom
logger implementation depends on ; for example, the logger may need to transmit log messages securely to another server. We startIceSSL
with the following C++ configuration:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyLogger=MyLogger:createMyLogger

The problem with this configuration is that it does not specify the order in which the plug-ins should be loaded and initialized. If the Ice run
time happens to initialize  first, the plug-in's  method will fail if it attempts to use the services of the uninitializedMyLogger initialize
IceSSL plug-in.

To remedy the situation, we need to add one more property:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyLogger=MyLogger:createMyLogger
Ice.PluginLoadOrder=IceSSL, MyLogger

Using the  property we can guarantee that the plug-ins are loaded in the correct order.Ice.PluginLoadOrder

The Plug-in Manager

PluginManager is the name of an internal Ice object that is responsible for managing all aspects of Ice plug-ins. This object supports a 
 Slice interface of the same name, and an application can obtain a reference to this object using the following communicator operation:local

Slice

module Ice {
local interface Communicator {
    PluginManager getPluginManager();
    // ...
};
};

The  interface offers three operations:PluginManager

Slice

module Ice {
local interface PluginManager {
    void initializePlugins();
    Plugin getPlugin(string name);
    void addPlugin(string name, Plugin pi);
};
};

The  operation is used in special cases when an application needs to manually initialize one or more plug-ins, asinitializePlugins
discussed in the next section.
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The  operation returns a reference to a specific plug-in. The  argument must match an installed plug-in, otherwise thegetPlugin name
operation raises . This operation is useful when a plug-in exports an interface that an application can use toNotRegisteredException
query or customize its attributes or behavior.

Finally,  provides a way for an application to install a plug-in directly, without the use of a configuration property.addPlugin

Delayed Plug-in Initialization

It is sometimes necessary for an application to manually configure a plug-in prior to its initialization. For example, SSL keys are often
protected by a passphrase, but a developer may be understandably reluctant to specify that passphrase in a configuration file because it
would be exposed in clear text. The developer would likely prefer to configure the IceSSL plug-in with a password callback instead; however,
this must be done before the plug-in is initialized and attempts to load the SSL key. The solution is to configure the Ice run time so that it
postpones the initialization of its plug-ins:

Ice.InitPlugins=0

When  is set to zero, initializing plug-ins becomes the application's responsibility. The example below demonstrates howIce.InitPlugins
to perform this initialization:

C++

Ice::CommunicatorPtr ic = ...
Ice::PluginManagerPtr pm = ic->getPluginManager();
IceSSL::PluginPtr ssl = pm->getPlugin("IceSSL");
ssl->setPasswordPrompt(...);
pm->initializePlugins();

After obtaining the IceSSL plug-in and establishing the password callback, the application invokes  on the plug-ininitializePlugins
manager object to commence plug-in initialization.

See Also

IceSSL
Ice Plug-In Properties
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Custom Class Loaders

Certain features of the Ice for Java run-time necessitate dynamic class loading. Applications with special requirements can supply a custom
class loader for Ice to use in the following situations:

Unmarshaling  and instances of concrete Slice user exceptions classes
Loading Ice plug-ins
Loading  certificate verifiers and password callbacksIceSSL

If an application does not supply a class loader (or if the application-supplied class loader fails to locate a class), the Ice run time attempts to
load the class using class loaders in the following order:

system class loader
current thread's class loader
default class loader (that is, by calling )Class.forName

Note that an application must install  for any abstract Slice classes it might receive, regardless of whether the application alsoobject factories
installs a custom class loader.

To install a custom class loader, set the  member of  prior to :classLoader Ice.InitializationData creating a communicator

Java

Ice.InitializationData initData = new Ice.InitializationData();
initData.classLoader = new MyClassLoader();
Ice.Communicator communicator = Ice.Util.initialize(args, initData);

See Also

Java Mapping for Exceptions
Java Mapping for Classes
Plug-in Facility
IceSSL
Communicator Initialization
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Facets and Versioning
Facets provide a general-purpose mechanism for non-intrusively extending the type system of an application, by loosely coupling new type
instances to existing ones. This shifts the type selection process from compile to run time and implements a form of late binding. This is
particularly useful for versioning an application.

Due to their loose coupling among each other, facets are better suited to solve the versioning problem than other approaches. However,
facets are not a panacea that would solve the versioning problem for free, and careful design is still necessary to come up with versioned
systems that remain understandable and maintain consistent semantics.

Topics

Facet Concepts
The Versioning Problem
Versioning with Facets
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Facet Concepts

On this page:

Ice Objects as Collections of Facets
Server-Side Facet Operations
Client-Side Facet Operations
Facet Exception Semantics

Ice Objects as Collections of Facets

Up to this point, we have presented an Ice object as a single conceptual entity, that is, as an object with a single most-derived interface and
a single , with the object being implemented by a single servant. However, an Ice object is more correctly viewed as a collection ofidentity
one or more sub-objects known as facets, as shown below:

An Ice object with five facets sharing a single object identity.

The diagram above shows a single Ice object with five facets. Each facet has a name, known as the . Within a single Ice object,facet name
all facets must have unique names. Facet names are arbitrary strings that are assigned by the server that implements an Ice object. A facet
with an empty facet name is legal and known as the . Unless you arrange otherwise, an Ice object has a single default facet; bydefault facet
default, operations that involve Ice objects and servants operate on the default facet.

Note that all the facets of an Ice object share the same single identity, but have different facet names. Recall the definition of 
 once more:Ice::Current
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Slice

module Ice {
    local dictionary<string, string> Context;

    enum OperationMode { Normal, \Nonmutating, \Idempotent };

    local struct Current {
        ObjectAdapter   adapter;
        Identity        id;
        string          facet;
        string          operation;
        OperationMode   mode;
        Context         ctx;
        int             requestId;
    };
};

By definition, if two facets have the same  field, they are part of the same Ice object. Also by definition, if two facets have the same id id
field, their  fields have different values.facet

Even though Ice objects usually consist of just the default facet, it is entirely legal for an Ice object to consist of facets that all have
non-empty names (that is, it is legal for an Ice object not to have a default facet).

Each facet has a single most-derived interface. There is no need for the interface types of the facets of an Ice object to be unique. It is legal
for two facets of an Ice object to implement the same most-derived interface.

Each facet is implemented by a servant. All the usual implementation techniques for servants are available to implement facets — for
example, you can implement a facet using a servant locator. Typically, each facet of an Ice object has a separate servant, although, if two
facets of an Ice object have the same type, they can also be implemented by a single servant (for example, using a ).default servant

Server-Side Facet Operations

On the server side, the  offers a number of operations to support facets:object adapter

Slice

namespace Ice {
  dictionary<string, Object> FacetMap;

  local interface ObjectAdapter {
     Object*  addFacet(Object servant, Identity id, string facet);
     Object*  addFacetWithUUID(Object servant, string facet);
     Object   removeFacet(Identity id, string facet);
     Object   findFacet(Identity id, string facet);

     FacetMap findAllFacets(Identity id);
     FacetMap removeAllFacets(Identity id);
     // ...
  };
};

These operations have the same semantics as the corresponding "normal" operations for  ( , servant activation and deactivation add
, , and ), but also accept a facet name. The corresponding "normal" operations are simply convenienceaddWithUUID remove find

operations that supply an empty facet name. For example,  is equivalent to , that is, remove(id) removeFacet(id, "") remove(id)
operates on the default facet.

findAllFacets returns a dictionary of  pairs that contains all the facets for the given identity.<facet-name, servant>

removeAllFacets removes all facets for a given identity from the active servant map, that is, it removes the corresponding Ice object
entirely. The operation returns a dictionary of  pairs that contains all the removed facets.<facet-name, servant>

These operations are sufficient for the server to create Ice objects with any number of facets. For example, assume that we have the
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following Slice definitions:

Slice

module Filesystem {
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

module FilesystemExtensions {
    // ...

    class DateTime extends TimeOfDay {
        // ...
    };

    struct Times {
        DateTime createdDate;
        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface Stat {
        idempotent Times getTimes();
    };
};

Here, we have a  interface that provides operations to read and write a file, and a  interface that provides access to the fileFile Stat
creation, access, and modification time. (Note that the  interface is defined in a different module and could also be defined in a differentStat
source file.) If the server wants to create an Ice object that contains a  instance as the default facet and a  instance that providesFile Stat
access to the time details of the file, it could do so as follows:

C++

// Create a File instance.
//
Filesystem::FilePtr file = new FileI;

// Create a Stat instance.
//
FilesystemExctensions::DateTimePtr dt = new FilesystemExtensions::DateTime;
FilesystemExtensions::Times times;
times.createdDate = dt;
times.accessedDate = dt;
times.modifiedDate = dt;
FilesystemExtensions::StatPtr stat = new StatI(times);

// Register the File instance as the default facet.
//
Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file);

// Register the Stat instance as a facet with name "Stat".
//
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

The first few lines simply create and initialize a  and  instance. (The details of this do not matter here.) All the action is in theFileI StatI
last two statements:
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C++

Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file);
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

This registers the  instance with the object adapter as usual. (In this case, we let the Ice run time generate a UUID as the objectFileI
identity.) Because we are calling  (as opposed to ), the instance becomes the default facet.addWithUUID addFacetWithUUID

The second line adds a facet to the instance with the facet name . Note that we call  on the  proxy to pass anStat ice_getIdentity File
object identity to . This guarantees that the two facets share the same object identity.addFacet

Note that, in general, it is a good idea to use  to obtain the identity of an existing facet when adding a new facet. Thatice_getIdentity
way, it is guaranteed that the facets share the same identity. (If you accidentally pass a different identity to , you will not add aaddFacet
facet to an existing Ice object, but instead register a new Ice object; using  makes this mistake impossible.)ice_getIdentity

Client-Side Facet Operations

On the client side, which facet a request is addressed to is implicit in the proxy that is used to send the request. For an application that does
not use facets, the facet name is always empty so, by default, requests are sent to the default facet.

The client can use a  to obtain a proxy for a particular facet. For example, assume that the client obtains a proxy to a checkedCast File
instance as shown . The client can cast between the  facet and the  facet (and back) as follows:above File Stat

C++

// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Get the Stat facet.
//
FilesystemExtensions::StatPrx stat =
    FilesystemExtensions::StatPrx::checkedCast(file, "Stat");

// Go back from the Stat facet to the File facet.
//
Filesystem::FilePrx file2 = Filesystem::FilePrx::checkedCast(stat, "");

assert(file2 == file); // The two proxies are identical.

This example illustrates that, given any facet of an Ice object, the client can navigate to any other facet by using a  with thecheckedCast
facet name.

If an Ice object does not provide the specified facet,  returns null:checkedCast

C++

FilesystemExtensions::StatPrx stat =
    FilesystemExtensions::StatPrx::checkedCast(file, "Stat");

if (!stat) {
    // No Stat facet on this object, handle error...
} else {
    FilesystemExtensions::Times times = stat->getTimes();

    // Use times struct...
}

Note that  also returns a null proxy if a facet exists, but the cast is to the wrong type. For example:checkedCast
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C++

// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Cast to the wrong type.
//
SomeTypePrx prx = SomeTypePrx::checkedCast(file, "Stat");

assert(!prx); // checkedCast returns a null proxy.

If you want to distinguish between non-existence of a facet and the facet being of the incorrect type, you can first obtain the facet as type 
 and then down-cast to the correct type:Object

C++

// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Get the facet as type Object.
//
Ice::ObjectPrx obj = Ice::ObjectPrx::checkedCast(file, "Stat");
if (!obj) {
    // No facet with name "Stat" on this Ice object.
} else {
    FilesystemExtensions::StatPrx stat =
        FilesystemExtensions::StatPrx::checkedCast(file);
    if (!stat) {
        // There is a facet with name "Stat", but it is not
        // of type FilesystemExtensions::Stat.
    } else {
        // Use stat...
    }
}

This last example also illustrates that

C++

StatPrx::checkedCast(prx, "")

is  the same asnot

C++

StatPrx::checkedCast(prx)

The first version explicitly requests a cast to the default facet. This means that the Ice run time first looks for a facet with the empty name and
then attempts to down-cast that facet (if it exists) to the type .Stat

The second version requests a down-cast that  whatever facet is currently effective in the proxy. For example, if the  proxypreserves prx
currently holds the facet name "Joe", then (if  points at an object of type ) the run time returns a proxy of type  that alsoprx Stat StatPrx
stores the facet name "Joe".

It follows that, to navigate between facets, you must always use the two-argument version of , whereas, to down-cast tocheckedCast
another type while preserving the facet name, you must always use the single-argument version of .checkedCast

You can always check what the current facet of a proxy is by calling :ice_getFacet
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C++

Ice::ObjectPrx obj = ...;

cout << obj->ice_getFacet() << endl; // Print facet name

This prints the facet name. (For the default facet,  returns the empty string.)ice_getFacet

Facet Exception Semantics

The   and  have the following semantics:common exceptions ObjectNotExistException FacetNotExistException

ObjectNotExistException
This exception is raised only if no facets exist at all for a given object identity.

FacetNotExistException
This exception is raised only if at least one facet exists for a given object identity, but not the specific facet that is the target of an
operation invocation.

If you are using  or , you must take care to preserve these semantics. In particular, if you return null from aservant locators default servants
servant locator's  operation, this appears to the client as an . If the object identity for a request islocate ObjectNotExistException
known (that is, there is at least one facet with that identity), but no facet with the specified name exists, you must explicitly throw a 

 from  instead of simply returning null.FacetNotExistException locate

See Also

Object Identity
Run-Time Exceptions
Object Adapters
Servant Locators
Default Servants
The Current Object
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The Versioning Problem

Once you have developed and deployed a distributed application, and once the application has been in use for some time, it is likely that you
will want to make some changes to the application. For example, you may want to add new functionality to a later version of the application,
or you may want to change some existing aspect of the application. Of course, ideally, such changes are accomplished without breaking
already deployed software, that is, the changes should be backward compatible. Evolving an application in this way is generally known as 

.versioning

Versioning is an aspect that previous middleware technologies have addressed only poorly (if at all). One of the purposes of facets is to
allow you to cleanly create new versions of an application without compromising compatibility with older, already deployed versions.

On this page:

Versioning by Addition
Versioning by Derivation
Explicit Versioning

Versioning by Addition

Suppose that we have deployed our  application and want to add extra functionality to a new version. Specifically, let us assumefile system
that the original version (version 1) only provides the basic functionality to use files, but does not provide extra information, such as the
modification date or the file size. The question is then, how can we upgrade the existing application with this new functionality? Here is a
small excerpt of the original (version 1) Slice definitions once more:

Slice

// Version 1

module Filesystem {
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

Your first attempt at upgrading the application might look as follows:
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Slice

// Version 2

module Filesystem {
    // ...

    class DateTime extends TimeOfDay {  // New in version 2
        // ...
    };

    struct Times {                      // New in version 2
        DateTime createdDate;
        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;

        idempotent Times getTimes();    // New in version 2
    };
};

Note that the version 2 definition does not change anything that was present in version 1; instead, it only adds two new types and adds an
operation to the  interface. Version 1 clients can continue to work with both version 1 and version 2  objects because version 1File File
clients do not know about the  operation and therefore will not call it; version 2 clients, on the other hand, can take advantage ofgetTimes
the new functionality. The reason this works is that the Ice protocol invokes an operation by sending the operation name as a string on the
wire (rather than using an ordinal number or hash value to identify the operation). Ice guarantees that any future version of the protocol will
retain this behavior, so it is safe to add a new operation to an existing interface without recompiling all clients.

However, this approach contains a pitfall: the tacit assumption built into this approach is that no version 2 client will ever use a version 1
object. If the assumption is violated (that is, a version 2 client uses a version 1 object), the version 2 client will receive an 

 when it invokes the new  operation because that operation is supported only by version 2OperationNotExistException getTimes
objects.

Whether you can make this assumption depends on your application. In some cases, it may be possible to ensure that version 2 clients will
never access a version 1 object, for example, by simultaneously upgrading all servers from version 1 to version 2, or by taking advantage of
application-specific constraints that ensure that version 2 clients only contact version 2 objects. However, for some applications, doing this is
impractical.

Note that you could write version 2 clients to catch and react to an  when they invoke the OperationNotExistException getTimes
operation: if the operation succeeds, the client is dealing with a version 2 object, and if the operation raises 

, the client is dealing with a version 1 object. However, doing this can be rather intrusive to the code,OperationNotExistsException
loses static type safety, and is rather inelegant. (There is no other way to tell a version 1 object from a version 2 object because both
versions have the same type ID.)

In general, versioning by addition makes sense when you need to add an operation or two to an interface, and you can be sure that
version 2 clients do not access version 1 objects. Otherwise, other approaches are needed.

Versioning by Derivation

Given the limitations of the preceding approach, you may decide instead to upgrade the application as follows:
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Slice

module Filesystem {     // Version 1
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

module FilesystemV2 {   // New in version 2
    // ...

    class DateTime extends TimeOfDay {
        // ...
    };

    struct Times {
        DateTime createdDate;
        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface File extends Filesystem::File {
        idempotent Times getTimes();
    };
};

The idea is to present the new functionality in an interface that is derived from the version 1 interface. The version 1 types are unchanged
and the new functionality is presented via new types that are backward compatible: a version 2  object can be passed where aFile
version 1  object is expected because  is derived from . Even better, if a version 2File FilesystemV2::File Filesystem::File
component of the system receives a proxy of formal type , it can determine at run time whether the actual run-time typeFilesystem::File
is  by attempting a down-cast: if the down-cast succeeds, it is dealing with a version 2 object; if the down-cast fails, itFilesystemV2::File
is dealing with a version 1 object. This is essentially the same as versioning by addition, but it is cleaner as far as the type system is
concerned because the two different versions can be distinguished via their type IDs.

At this point, you may think that versioning by derivation solves the problem elegantly. Unfortunately, the truth turns out to be a little harsher:

As the system evolves further, and new versions are added, each new version adds a level of derivation to the inheritance tree. After
a few versions, particularly if your application also uses inheritance for its own purposes, the resulting inheritance graph very quickly
turns into a complex mess. (This becomes most obvious if the application uses multiple inheritance — after a few versioning steps,
the resulting inheritance hierarchy is usually so complex that it exceeds the ability of humans to comprehend it.)

Real-life versioning requirements are not as simple as adding a new operation to an object. Frequently, versioning requires changes
such as adding a field to a structure, adding a parameter to an operation, changing the type of a field or a parameter, renaming an
operation, or adding a new exception to an operation. However, versioning by derivation (and versioning by addition) can handle
none of these changes.

Quite often, functionality that is present in an earlier version needs to be removed for a later version (for example, because the older
functionality has been supplanted by a different mechanism or turned out to be inappropriate). However, there is no way to remove
functionality through versioning by derivation. The best you can do is to re-implement a base operation in the derived
implementation of an interface and throw an exception. However, the deprecated operation may not have an exception specification,
or if it does, the exception specification may not include a suitable exception. And, of course, doing this perverts the type system:
after all, if an interface has an operation that throws an exception whenever the operation is invoked, why does the operation exist in
the first place?

There are other, more subtle reasons why versioning by derivation is unsuitable in real-life situations. Suffice it to say here that experience
has shown the idea to be unworkable: projects that have tried to use this technique for anything but the most trivial versioning requirements
have inevitably failed.

Explicit Versioning

Yet another twist on the versioning theme is to explicitly version everything, for example:
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Slice

module Filesystem {
    // ...

    interface FileV1 extends NodeV1 {
        idempotent LinesV1 read();
        idempotent void write(LinesV1 text) throws GenericErrorV1;
    };

    class DateTimeV2 extends TimeOfDayV2 {
        // ...
    };

    struct TimesV2 {
        DateTimeV2 createdDate;
        DateTimeV2 accessedDate;
        DateTimeV2 modifiedDate;
    };

    interface FileV2 extends NodeV2 {
        idempotent LinesV2 read();
        idempotent void write(LinesV2 text) throws GenericErrorV2;
        idempotent TimesV2 getTimes();
    };
};

In essence, this approach creates as many separate definitions of each data type, interface, and operation as there are versions. It is easy to
see that this approach does not work very well:

Because, at the time version 1 is produced, it is unknown what might need to change for version 2 and later versions,  haseverything
to be tagged with a version number. This very quickly leads to an incomprehensible type system.

Because every version uses its own set of separate types, there is no type compatibility. For example, a version 2 type cannot be
passed where a version 1 type is expected without explicit copying.

Client code must be written to explicitly deal with each separate version. This pollutes the source code at all points where a remote
call is made or a Slice data type is passed; the resulting code quickly becomes incomprehensible.

Other approaches, such as placing the definitions for each version into a separate module (that is, versioning the enclosing module instead
of each individual type) do little to mitigate these problems; the type incompatibility issues and the need to explicitly deal with versioning
remain.

See Also

Slice for a Simple File System
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Versioning with Facets

We described several ways that a user might try to solve . A negative aspect of all these approaches is that theythe versioning problem
change the type system in intrusive ways. In turn, this forces unacceptable programming contortions on clients. Facets allow you to solve the
versioning problem more elegantly because they do not change an existing type system but extend it instead. We saw this approach once

, where we added date information about a file to our file system application without disturbing any of the existing definitions.already

In the most general sense, facets provide a mechanism for implementing multiple interfaces for a single object. The key point is that, to add a
new interface to an object, none of the existing definitions have to be touched, so no compatibility issues can arise. More importantly, the
decision as to which facet to use is made at run time instead of at compile time. In effect, facets implement a form of late binding and,
therefore, are coupled to the type system more loosely than any of the previous approaches.

Used judiciously, facets can handle versioning requirements more elegantly than other mechanisms. Apart from the straight extension of an
interface as shown , facets can also be used for more complex changes. For example, if you need to change the parameters of anearlier
operation or modify the fields of a structure, you can create a new facet with operations that operate on the changed data types. Quite often,
the implementation of a version 2 facet in the server can even re-use much of the version 1 functionality, by delegating some version 2
operations to a version 1 implementation.

On this page:

Facet Selection
Behavioral Versioning
Facets Design Considerations

Facet Selection

Given that we have decided to extend an application with facets, we have to deal with the question of how clients select the correct facet.
The answer typically involves an explicit selection of a facet sometime during client start-up. For example, in our file system application,
clients always begin their interactions with the file system by creating a proxy to the root directory. Let us assume that our versioning
requirements have led to version 1 and version 2 definitions of directories as follows:

Slice

module Filesystem { // Original version
    // ...

    interface Directory extends Node {
        idempotent NodeSeq list();
        // ...
    };
};

module FilesystemV2 {
    // ...

    enum NodeType { Directory, File };

    class NodeDetails {
        NodeType type;
        string name;
        DateTime createdTime;
        DateTime accessedTime;
        DateTime modifiedTime;
        // ...
    };

    interface Directory extends Filesystem::Node {
       idempotent NodeDetailsSeq list();
       // ...
    };
};

In this case, the semantics of the  operation have changed in version 2. A version 1 client uses the following code to obtain a proxy tolist
the root directory:
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C++

// Create a proxy for the root directory
//
Ice::ObjectPrx base = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
    throw "Could not create proxy";

// Down-cast the proxy to a Directory proxy
//
Filesystem::DirectoryPrx rootDir = Filesystem::DirectoryPrx::checkedCast(base);
if (!rootDir)
    throw "Invalid proxy";

For a version 2 client, the bootstrap code is almost identical — instead of down-casting to , the client selects theFilesystem::Directory
"V2" facet during the down-cast to the type :FilesystemV2::Directory

C++

// Create a proxy for the root directory
//
Ice::ObjectPrx base = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
    throw "Could not create proxy";

// Down-cast the proxy to a V2 Directory proxy
//
FilesystemV2::DirectoryPrx rootDir = FilesystemV2::DirectoryPrx::checkedCast(base, "V2");
if (!rootDir)
    throw "Invalid proxy";

Of course, we can also create a client that can deal with both version 1 and version 2 directories: if the down-cast to version 2 fails, the client
is dealing with a version 1 server and can adjust its behavior accordingly.

Behavioral Versioning

On occasion, versioning requires changes in behavior that are not manifest in the interface of the system. For example, we may have an
operation that performs some work, such as:

Slice

interface Foo {
    void doSomething();
};

The same operation on the same interface exists in both versions, but the  of  in version 2 differs from that inbehavior doSomething
version 1. The question is, how do we best deal with such behavioral changes?

Of course, one option is to simply create a version 2 facet and to carry that facet alongside the original version 1 facet. For example:

Slice

module V2 {

    interface Foo {    // V2 facet
        void doSomething();
    };
};

This works fine, as far as it goes: a version 2 client asks for the "V2" facet and then calls  to get the desired effect. DependingdoSomething



Ice 3.4.2 Documentation

1014 Copyright © 2011, ZeroC, Inc.

on your circumstances, this approach may be entirely reasonable. However, if there are such behavioral changes on several interfaces, the
approach leads to a more complex type system because it duplicates each interface with such a change.

A better alternative can be to create two facets of the same type, but have the implementation of those facets differ. With this approach, both
facets are of type . However, the implementation of  checks which facet was used to invoke the::Foo::doSomething doSomething
request and adjusts its behavior accordingly:

C++

void
FooI::doSomething(const Ice::Current& c)
{
    if (c.facet == "V2") {
        // Provide version 2 behavior...
    } else {
        // Provide version 1 behavior...
    }
}

This approach avoids creating separate types for the different behaviors, but has the disadvantage that version 1 and version 2 objects are
no longer distinguishable to the type system. This can matter if, for example, an operation accepts a  proxy as a parameter. Let usFoo
assume that we also have an interface  as follows:FooProcessor

Slice

interface FooProcessor {
    void processFoo(Foo* w);
};

If  also exists as a version 1 and version 2 facet, we must deal with the question of what should happen if a version 1 FooProcessor Foo
proxy is passed to a version 2  operation because, at the type level, there is nothing to prevent this from happening.processFoo

You have two options for dealing with this situation:

Define working semantics for mixed-version invocations. In this case, you must come up with sensible system behavior for all
possible combinations of versions.
If some of the combinations are disallowed (such as passing a version 1  proxy to a version 2  operation), you canFoo processFoo
detect the version mismatch in the server by looking at the  member and throwing an exception to indicate aCurrent::facet
version mismatch. Simultaneously, write your clients to ensure they only pass a permissible version to . Clients canprocessFoo
ensure this by checking the facet name of a proxy before passing it to  and, if there is a version mismatch, changingprocessFoo
either the  proxy or the  proxy to a matching facet:Foo FooProcessor

C++

FooPrx foo = ...;               // Get a Foo...
FooProcessorPrx fooP = ...;     // Get a FooProcessor...

string fooFacet = foo->ice_getFacet();
string fooPFacet = fooP->ice_getFacet();
if (fooFacet != fooPFacet) {
    if (fooPFacet == "V2") {
        error("Cannot pass a V1 Foo to a V2 FooProcessor");
    } else {
        // Upgrade FooProcessor from V1 to V2
        fooP = FooProcessorPrx::checkedCast(fooP, "V2");
        if (!fooP) {
            error("FooProcessor does not have a V2 facet");
        } else {
            fooP->processFoo(foo);
        }
    }
}
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Facets Design Considerations

Facets allow you to add versioning to a system, but they are merely a mechanism, not a solution. You still have to make a decision as to how
to version something. For example, eventually you may want to deprecate a previous version's behavior; at that point, you must make a
decision how to handle requests for the deprecated version. For behavioral changes, you have to decide whether to use separate interfaces
or use facets with the same interface. And, of course, you must have compatibility rules to determine what should happen if, for example, a
version 1 object is passed to an operation that implements version 2 behavior. In other words, facets cannot do your thinking for you and are
no panacea for the versioning problem.

The biggest advantage of facets is also the biggest drawback: facets delay the decision about the types that are used and their behavior until
run time. While this provides a lot of flexibility, it is significantly less type-safe than having explicit types that can be statically checked at
compile time: if you have a problem relating to incorrect facet selection, the problem will be visible only at run time and, moreover, will be
visible only if you actually execute the code that contains the problem, and execute it with just the right data.

Another danger of facets is the opportunity for abuse. As an extreme example, here is an interface that provides an arbitrary collection of
objects of arbitrary type:

Slice

interface Collection {};

Even though this interface is empty, it can provide access to an unlimited number of objects of arbitrary type in the form of facets. While this
example is extreme, it illustrates the design tension that is created by facets: you must decide, for a given versioning problem, how and at
what point of the type hierarchy to split off a facet that deals with the changed functionality. The temptation may be to "simply add another
facet" and be done with it. However, if you do that, your objects are in danger of being nothing more than loose conglomerates of facets
without rhyme or reason, and with little visibility of their relationships in the type system.

In object modeling terms, the relationship among facets is weaker than an  relationship (because facets are often not type-compatibleis-a
among each other). On the other hand, the relationship among facets is stronger than a  relationship (because all facets of an Icehas-a
object share the same ).object identity

It is probably best to treat the relationship of a facet to its Ice object with the same respect as an inheritance relationship: if you were
omniscient and could have designed your system for all current and future versions simultaneously, many of the operations that end up on
separate facets would probably have been in the same interface instead. In other words, adding a facet to an Ice object most often implies
that the facet has an  relationship with its Ice object. In particular, if you think about the life cycle of an Ice object and find that,is-partly-a
when an Ice object is deleted, all its facets must be deleted, this is a strong indication of a correct design. On the other hand, if you find that,
at various times during an Ice object's life cycle, it has a varying number of facets of varying types, that is a good indication that you are
using facets incorrectly.

Ultimately, the decision comes down to deciding whether the trade-off of static type safety versus dynamic type safety is worth the
convenience and backward compatibility. The answer depends strongly on the design of your system and individual requirements, so we can
only give broad advice here. Finally, there will be a point where no amount of facet trickery will get past the point when "yet one more version
will be the straw that breaks the camel's back." At that point, it is time to stop supporting older versions and to redesign the system.

See Also

Facet Concepts
The Versioning Problem
The Current Object
Object Identity
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Object Life Cycle
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Object Life Cycle for the File System Application
Avoiding Server-Side Garbage
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1.  
2.  
3.  
4.  

Understanding Object Life Cycle

Object life cycle generally refers to how an object-oriented application (whether distributed or not) creates and destroys objects. For
distributed applications, life cycle management presents particular challenges. For example, destruction of objects often can be surprisingly
complex, especially in threaded applications. Before we go into the details of object creation and destruction, we need to have a closer look
what we mean by the terms "life cycle" and "object" in this context.

Object life cycle refers to the act of creation and destruction of objects. For example, with our  application, we may start out withfile system
an empty file system that only contains a root directory. Over time, clients (by as yet unspecified means) add new directories and files to the
file system. For example, a client might create a new directory called  underneath the root directory. Some time later, the same or aMyPoems
different client might decide to remove this directory again, returning the file system to its previous empty state. This pattern of creation and
destruction is known as object life cycle.

The life cycle of distributed objects raises a number of interesting and challenging questions. For example, what should happen if a client
destroys a file while another client is reading or writing that file? And how do we prevent two files with the same name from existing in the
same directory? Another interesting scenario is illustrated by the following sequence of events:

Client A creates a file called  in the root directory and uses it for a while.DraftPoem
Some time later, client B destroys the  file so it no longer exists.DraftPoem
Some time later still, client C creates a new  file in the root directory, with different contents.DraftPoem
Finally, client A attempts to access the  file it created earlier.DraftPoem

What should happen when, in the final step, client A tries to use the  file? Should the client's attempt succeed and simply operateDraftPoem
on the new contents of the file that were placed there by client C? Or should client A's attempt fail because, after all, the new  fileDraftPoem
is, in a sense, a completely different file from the original one, even though it has the same name?

The answers to such questions cannot be made in general. Instead, meaningful answers depend on the semantics that each individual
application attaches to object life cycle. In this chapter, we will explore the various possible interpretations and how to implement them
correctly, particularly for threaded applications.

See Also

Slice for a Simple File System
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Object Existence and Non-Existence

Before we talk about how to create and destroy objects, we need to look at a more basic concept, namely that of object existence. What
does it mean for an object to "exist" and, more fundamentally, what do we mean by the term "object"?

As mentioned in , an  is a conceptual entity, or abstraction that does not really exist. On the client side, the concreteIce Objects Ice object
representation of an Ice object is a proxy and, on the server side, the concrete representation of an Ice object is a servant. Proxies and
servants are the concrete programming-language artifacts that represent Ice objects.

Because Ice objects are abstract, conceptual entities, they are invisible to the Ice run time and to the application code — only proxies and
servants are real and visible. It follows that, to determine whether an  object exists, any determination must rely on proxies and servants,Ice
because they are the only tangible entities in the system.

On this page:

Object Non-Existence
Object Existence
Indeterminate Object State
Authoritative Object Existence Semantics

Object Non-Existence

Here is the definitive statement of what it means for an Ice object to  exist:not

An Ice object does not exist if an invocation on the object raises an .ObjectNotExistException

This may seem self-evident but, on closer examination, is a little more subtle than you might expect. In particular, Ice object existence has
meaning . If that invocation raises , the object is known to notonly within the context of a particular invocation ObjectNotExistException
exist. Note that this says nothing about whether concurrent or future requests to that object will also raise  —ObjectNotExistException
they may or may not, depending on the semantics that are implemented by the application.

Also note that, because all the Ice run time knows about are servants, an  really indicates that a  forObjectNotExistException servant
the request could not be found at the time the request was made. This means that, ultimately, it is the application that attaches the meaning
"the Ice object does not exist" to this exception.

In theory, the application can attach any meaning it likes to  and a server can throw this exception forObjectNotExistException
whatever reason it sees fit; in practice, however, we recommend that you do not do this because it breaks with existing convention and is
potentially confusing. You should reserve this exception for its intended meaning and not abuse it for other purposes.

Object Existence

The preceding definition does not say anything about object existence if something other than  is returned inObjectNotExistException
response to a particular request. So, here is the definitive statement of what it means for an Ice object to exist:

An Ice object exists if a twoway invocation on the object either succeeds, raises a user exception, or raises 
 or .FacetNotExistException OperationNotExistException

It is self-evident that an Ice object exists if a twoway invocation on it succeeds: obviously, the object received the invocation, processed it,
and returned a result. However, note the qualification: this is true only for  invocations; for  and  invocations, nothingtwoway oneway datagram
can be inferred about the existence of the corresponding Ice object by invoking an operation on it: because there is no reply from the server,
the client-side Ice run time has no idea whether the request was dispatched successfully in the server or not. This includes user exceptions, 

, , and  — these exceptions are never raisedObjectNotExistException FacetNotExistException OperationNotExistException
by oneway and datagram invocations, regardless of the actual state of the target object.

If a twoway invocation raises a user exception, the Ice object obviously exists: the Ice run time never raises user exceptions so, for an
invocation to raise a user exception, the invocation was dispatched successfully in the server, and the operation implementation in the
servant raised the exception.

If a twoway invocation raises , we do know that the corresponding Ice object indeed exists: the Ice run timeFacetNotExistException
raises  only if it can find the identity of the target object in the  (ASM), but cannot find the FacetNotExistException Active Servant Map

 that was specified by the client.facet
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Note that, if you use , for these semantics to hold, your servant locator must correctly raise servant locators
 in the  operation (instead of returning null or raising )FacetNotExistException locate ObjectNotExistException

if an Ice object exists, but the particular target facet does not exist.

As a corollary to the preceding two definitions, we can state:

A facet does not exist if a twoway invocation on the object raises  or ObjectNotExistException
.FacetNotExistException

A facet exists if a twoway invocation on the object either succeeds, or raises .OperationNotExistException

These definitions simply capture the fact that a facet is a "sub-object" of an Ice object: if an invocation raises ,ObjectNotExistException
we know that the facet does not exist either because, for a facet to exist, its Ice object must exist.

If an operation raises , we know that both the target Ice object and the target facet exist. However, theOperationNotExistException
operation that the client attempted to invoke does not. (This is possible only if you use  or if you have mis-matched Slicedynamic invocation
definitions for client and server.)

Indeterminate Object State

The preceding definitions clearly state under what circumstances we can conclude that an Ice object (or its facet) does or does not exist.
However, the preceding definitions are incomplete because operation invocations can have outcomes other than success or failure with 

, , or . For example, a client might receive a ObjectNotExistException FacetNotExistException OperationNotExistException
, , , or . In that case, the client cannot draw anyMarshalException UnknownLocalException UnknownException TimeoutException

conclusions about whether the Ice object on which it invoked a twoway operation exists or not — the exceptions simply indicate that
something went wrong while the invocation was processed. So, to complete our definitions, we can state:

If a twoway invocation raises a run-time exception other than , ObjectNotExistException FacetNotExistException
, or , nothing is known about the existence or non-existence of the Ice object that wasOperationNotExistException
the target of the invocation. Furthermore, it is impossible to determine the state of existence of an Ice object with a oneway
or datagram invocation.

Authoritative Object Existence Semantics

The preceding definitions capture the fact that, to make a determination of object existence or non-existence, the client-side Ice run time
must be able to contact the server and, moreover, receive a reply from the server:

If the server can be contacted and returns a successful reply for an invocation, the Ice object exists.
If the server can be contacted and returns an  (or ), the Ice object (orObjectNotExistException FacetNotExistException
facet) does not exist. If the server returns an , the Ice object (and its facet) exists, but does notOperationNotExistException
provide the requested operation, which indicates a type mismatch due to client and server using out-of-sync Slice definitions or due
to incorrect use of dynamic invocation.
If the server cannot be contacted, does not return a reply (as for oneway and datagram invocations), or if anything at all goes wrong
with the process of sending an invocation, processing it in the server, and returning the reply, nothing is known about the state of the
Ice object, including its existence or non-existence.

Another way of looking at this is that a decision as to whether an object exists or not is  made by the Ice run time and, instead, is never
 made by the server-side  code:always application

If an invocation completes successfully, the server-side application code was involved because it processed the invocation.
If an invocation returns  or , the server-side application code was alsoObjectNotExistException FacetNotExistException
involved:

either the Ice run time could not find a servant for the invocation in the ASM, in which case the application code was
involved by virtue of not having added a servant to the ASM in the first place, or
the Ice run time consulted a servant locator that explicitly returned null or raised  or ObjectNotExistException

.FacetNotExistException

This means that  and  are : when you receive these exceptions,ObjectNotExistException FacetNotExistException authoritative
you can always believe what they tell you — the Ice run time never raises these exceptions without consulting your code, either implicitly (via
an ASM lookup) or explicitly (by calling a servant locator's  operation).locate

These semantics are motivated by the need to keep the Ice run time stateless with respect to object existence. For example, it would be nice
to have stronger semantics, such as a promise that "once an Ice object has existed and been destroyed, all future requests to that Ice object
also raise ". However, to implement these semantics, the Ice run time would have to remember all objectObjectNotExistException
identities that were used in the past, and prevent their reuse for new Ice objects. Of course, this would be inherently non-scalable. In
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addition, it would prevent applications from controlling object identity; allowing such control for applications is important however, for
example, to link the identity of an Ice object to its  in a database.persistent state

Note that, if the implementation of an operation calls another operation, dealing with  may require some care.ObjectNotExistException
For example, suppose that the client holds a proxy to an object of type  and invokes an operation  on it:Service provideService

C++

ServicePrx service = ...;

try {
    service?>provideService();
} catch (const ObjectNotExistException&) {
    // Service does not exist.
}

Here is the implementation of  in the server, which makes a call on a helper object to implement the operation:provideService

C++

void
ServiceI::provideService(const Ice::Current&)
{
    // ...
    proxyToHelper?>someOp();
    // ...
}

If  happens to point at an object that was destroyed previously, the call to  will throw proxyToHelper someOp
. If the implementation of  does not intercept this exception, the exception will propagate allObjectNotExistException provideService

the way back to the client, who will conclude that the service has been destroyed when, in fact, the service still exists but the helper object
used to implement  no longer exists.provideService

Usually, this scenario is not a serious problem. Most often, the helper object cannot be destroyed while it is needed by provideService
due to the way the application is structured. In that case, no special action is necessary because  will never throw someOp

. On the other hand, if it is possible for the helper object to be destroyed,  can wrap aObjectNotExistException provideService
try-catch block for  around the call to  and throw an appropriate user exception from the exceptionObjectNotExistException someOp
handler (such as  or similar).ResourceUnavailable

See Also

Terminology
Servant Locators
Oneway Invocations
Datagram Invocations
Facets and Versioning
Dynamic Ice
Freeze
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Life Cycle of Proxies, Servants, and Ice Objects

It is important to be aware of the different roles of proxies, servants, and Ice objects in a system. Proxies are the client-side representation of
Ice objects and servants are the server-side representation of Ice objects. Proxies, servants, and Ice objects have completely independent
life cycles. Clients can create and destroy proxies with or without a corresponding servant or Ice object in existence, servers can create and
destroy servants with or without a corresponding proxy or Ice object in existence and, most importantly, Ice objects can exist or not exist
regardless of whether corresponding proxies or servants exist. Here are a few examples to illustrate this:

C++

{
    Ice::ObjectPtr obj = communicator?>stringToProxy("hello:tcp ?p 10000");
    // Proxy exists now.

} // Proxy ceases to exist.

This code creates a proxy to an Ice object with the identity . The server for this Ice object is expected to listen for invocations on theHello
same host as the client, on port 10000, using the TCP/IP protocol. The proxy exists as soon as the call to  completes and,stringToProxy
thereafter, can by used by the client to make invocations on the corresponding Ice object.

However, note that this code says nothing at all about whether or not the corresponding Ice object exists. In particular, there might not be
any Ice object with the identity . Or there might be such an object, but the server for it may be down or unreachable. It is only whenHello
the client makes an invocation on the proxy that we get to find out whether the object exists, does not exist, or cannot be reached.

Similarly, at the end of the scope enclosing the  variable in the preceding code, the proxy goes out of scope and is destroyed. Again, thisobj
says nothing about the state of the corresponding Ice object or its servant. This shows that the life cycle of a proxy is completely independent
of the life cycle of its Ice object and the servant for that Ice object: clients can create and destroy proxies whenever they feel like it, and doing
so has no implications for Ice objects or servant creation or destruction.

Here is another code example, this time for the server side:

C++

{
    FileIPtr file = new FileI("DraftPoem", root);
    // Servant exists now.

} // Servant ceases to exist.

Here, the server instantiates a servant for a File object by creating a  instance. The servant comes into being as soon as the call to FileI
 completes and ceases to exist as soon as the scope enclosing the  variable closes. Note that, as for proxies, the life cycle of thenew file

servant is completely independent of the life cycle of proxies and Ice objects. Clearly, the server can create and destroy a servant regardless
of whether there are any proxies in existence for the corresponding Ice object.

Similarly, an Ice object can exist even if no servants exist for it. For example, our Ice objects might be persistent and stored in a database; in
that case, if we switch off the server for our Ice objects, no servants exist for these Ice objects, even though the Ice objects continue to exist
— the Ice objects are temporarily inaccessible, but exist regardless and, once their server is restarted, will become accessible again.

Conversely, a servant can exist without its corresponding Ice object. The mere creation of a servant does nothing, as far as the Ice run time
is concerned. It is only once a servant is added to the  (ASM) (or a  returns the servant from ) thatActive Servant Map servant locator locate
the servant incarnates its Ice object.

Finally, an Ice object can exist independently of proxies and servants. For example, returning to the database example, we might have an
Ice server that acts as a front end to an online telephone book: each entry in the phone book corresponds to a separate Ice object. When a
client invokes an operation, the server uses the  of the incoming request to determine which Ice object is the target of the request andidentity
then contacts the back-end database to, for example, return the street address of the entry. With such a design, entries can be added to and
removed from the back-end database quite independently of what happens to proxies and servants — the server finds out whether an Ice
object exists only when it accesses the back-end database.

The only time that the life cycle of an Ice object and a servant are linked is during an invocation on that Ice object: for an invocation to
complete successfully, a servant must exist for the . What happens to the servant thereafter is irrelevant to clientsduration of the invocation
and, in general, is irrelevant to the corresponding Ice object.

It is important to be clear about the independence of the life cycles of proxies, servants, and Ice objects because this independence has
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profound implications for how you need to implement object life cycle. In particular, to destroy an Ice object, a client cannot simply destroy its
proxy for an object because the server is completely unaware when a client does this.

Distributed object systems such as DCOM implement these semantics. However, this design is inherently non-scalable
because of the cost of globally tracking proxy creation and destruction.

See Also

The Active Servant Map
Servant Locators
Object Identity
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Object Creation

Now that we understand what it means for an Ice object to exist, we can look at what is involved in creating an Ice object. Fundamentally,
there is only one way for an Ice object to come into being: the server must instantiate a servant for the object and add an entry for that
servant to the  (ASM) (or, alternatively, arrange for a  to return a servant from its  operation).Active Servant Map servant locator locate

For the remainder of this chapter, we will ignore the distinction between using the ASM and a servant locator and simply
assume that the code uses the ASM. This is because servant locators do not alter the discussion: if  returns alocate
servant, that is the same as a successful lookup in the ASM; if  returns null or throws locate

, that is the same as an unsuccessful lookup in the ASM.ObjectNotExistException

One obvious way for a server to create a servant is to, well, simply instantiate it and add it to the ASM of its own accord. For example:

C++

DirectoryIPtr root = new DirectoryI("/", 0);
adapter?>addWithUUID(root); // Ice object exists now

The servant exists as soon as the call to  completes, and the Ice object exists as soon as the code adds the servant to the ASM: at thatnew
point, the Ice object becomes reachable to clients who hold a proxy to it.

This is the way we created Ice objects for our file system application earlier in the manual. However, doing so is not all that interesting
because the only files and directories that exist are those that the server decides to create when it starts up. What we really want is a way for

 to create and destroy directories and files.clients

On this page:

Creating an Object with a Factory
Implementing a Factory Operation

Creating an Object with a Factory

The canonical way to create an object is to use the factory pattern . The factory pattern, in a nutshell, says that objects are created by[1]
invoking an operation (usually called ) on an object factory:create

Slice

interface PhoneEntry {
    idempotent string name();
    idempotent string getNumber();
    idempotent void setNumber(string phNum);
};

exception PhoneEntryExists {
    string name;
    string phNum;
};

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
};

Rather than continue with the file system example, we will simplify the discussion for the time being by using the phone
book example mentioned earlier; we will return to the file system application to explore .more complex issues

The entries in the phone book consist of simple name-number pairs. The interface to each entry is called  and providesPhoneEntry
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operations to read the name and to read and write the phone number. (For a real application, the objects would likely be more complex and
encapsulate more state. However, these simple objects will do for the purposes of this discussion.)

To create a new entry, a client calls the  operation on a  object. (The factory is a singleton object  — that is,create PhoneEntryFactory [1]
only one instance of that interface exists in the server.) It is the job of  to create a new  object, using the supplied namecreate PhoneEntry
as the .object identity

An immediate consequence of using the name as the object identity is that  can raise a  exception:create PhoneEntryExists
presumably, if a client attempts to create an entry with the same name as an already-existing entry, we need to let the client know about this.
(Whether this is an appropriate design is something we examine more closely in .)Object Identity and Uniqueness

create returns a proxy to the newly-created object, so the client can use that proxy to invoke operations. However, this is by convention
only. For example,  could be a  operation if the client has some other way to eventually get a proxy to the new object (such ascreate void
creating the proxy from a string, or locating the proxy via a search operation). Alternatively, you could define "bulk" creation operations that
allow clients to create several new objects with a single RPC. As far as the Ice run time is concerned, there is nothing special about a factory
operation: a factory operation is just like any other operation; it just so happens that a factory operation creates a new Ice object as a side
effect of being called, that is, the  of the operation is what creates the object, not the Ice run time.implementation

Also note that  accepts a  and a  parameter, so it can initialize the new object. This is not compulsory, but generally acreate name phNum
good idea. An alternate factory operation could be:

Slice

interface PhoneEntryFactory {
    PhoneEntry* create(string name)
        throws PhoneEntryExists;
};

With this design, the assumption is that the client will call  after it has created the object. However, in general, allowing objectssetNumber
that are not fully initialized is a bad idea: it all too easily happens that a client either forgets to complete the initialization, or happens to crash
or get disconnected before it can complete the initialization. Either way, we end up with a partially-initialized object in the system that can
cause surprises later.

This is the approach taken by COM's , which suffers from just that problem.CoCreateObject

Similarly, so-called  factories are also something to be avoided:generic

Slice

dictionary<string, string> Params;

exception CannotCreateException {
    string reason;
};

interface GenericFactory {
    Object* create(Params p)
        throws CannotCreateException;
};

The intent here is that a  can be used to create any kind of object; the  dictionary allows an arbitrary number ofGenericFactory Params
parameters to be passed to the  operation in the form of name — value pairs, for example:create
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C++

GenericFactoryPrx factory = ...;

Ice::ObjectPrx obj;
Params p;

// Make a car.
//
p["Make"] = "Ford";
p["Model"] = "Falcon";
obj = factory?>create(p);
CarPrx car = CarPrx::checkedCast(obj);

// Make a horse.
//
p.clear();
p["Breed"] = "Clydesdale";
p["Sex"] = "Male";
obj = factory?>create(p);
HorsePrx horse = HorsePrx::checkedCast(obj);

We strongly discourage you from creating factory interfaces such as this, unless you have a good overriding reason: generic factories
undermine type safety and are much more error-prone than strongly-typed factories.

Implementing a Factory Operation

The implementation of an object factory is simplicity itself. Here is how we could implement the  operation for our create
:PhoneEntryFactory

C++

PhoneEntryPrx
PhoneEntryFactory::create(const string& name, const string& phNum, const Current& c)
{
    try {
        CommunicatorPtr comm = c.adapter.getCommunicator();
        PhoneEntryPtr servant = new PhoneEntryI(name, phNum);
        return PhoneEntryPrx::uncheckedCast(c.adapter?>add(servant,
comm?>stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }
}

The  function instantiates a new  object (which is the servant for the new  object), adds the servant tocreate PhoneEntryI PhoneEntry
the ASM, and returns the proxy for the new object. Adding the servant to the ASM is what creates the new Ice object, and client requests are
dispatched to the new object as soon as that entry appears in the ASM (assuming the ).object adapter is active

Note that, even though this code contains no explicit lock, it is thread-safe. The  operation on the object adapter is atomic: if two clientsadd
concurrently add a servant with the same identity, exactly one thread succeeds in adding the entry to the ASM; the other thread receives an 

. Similarly, if two clients concurrently call  for different entries, the two calls execute concurrentlyAlreadyRegisteredException create
in the server (if the server is multi-threaded); the implementation of  in the Ice run time uses appropriate locks to ensure that concurrentadd
updates to the ASM cannot corrupt anything.

See Also

The Active Servant Map
Servant Locators
Object Identity
Object Identity and Uniqueness
Object Life Cycle for the File System Application
Object Adapter States
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1.  

Servant Activation and Deactivation
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Object Destruction

Now that clients can , let us consider how to allow clients to destroy them again. One obvious design is to add a create  objectsPhoneEntry
 operation to the factory — after all, seeing that a factory knows how to create objects, it stands to reason that it also knows how todestroy

destroy them again:

Slice

exception PhoneEntryNotExists {
    string name;
    string phNum;
};

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
    void destroy(PhoneEntry* pe)      // Bad idea!
        throws PhoneEntryNotExists;
};

While this works (and certainly can be implemented without problems), it is generally a bad idea. For one, an immediate problem we need to
deal with is what should happen if a client passes a proxy to an already-destroyed object to . We could raise an destroy

 to indicate this, but that is not a good idea because it makes it ambiguous as to which object does not exist:ObjectNotExistException
the factory, or the entry. (By convention, if a client receives an  for an invocation, what does not exist is theObjectNotExistException
object the operation was targeted at, not some other object that in turn might be contacted by the operation.) This forces us to add a
separate  exception to deal with the error condition, which makes the interface a little more complex.PhoneEntryNotExists

A second and more serious problem with this design is that, in order to destroy an entry, the client must not only know which entry to
destroy, but must also know . For our example, with only a single factory, this is not a real concern. However,which factory created the entry
for more complex systems with dozens of factories (possibly in multiple server processes), it rapidly becomes a problem: for each object, the
application code somehow has to keep track of which factory created what object; if any part of the code ever loses track of where an object
originally came from, it can no longer destroy that object.

Of course, we could mitigate the problem by adding an operation to the  interface that returns a proxy to its factory. That way,PhoneEntry
clients could ask each object to provide the factory that created the object. However, that needlessly complicates the Slice definitions and
really is just a band-aid on a fundamentally flawed design. A much better choice is to add the  operation to the destroy PhoneEntry
interface instead:

Slice

interface PhoneEntry {
    idempotent string name();
    idempotent string getNumber();
    idempotent void setNumber(string phNum);
    void destroy();
};

With this approach, there is no need for clients to somehow keep track of which factory created what object. Instead, given a proxy to a 
 object, a client simply invokes the  operation on the object and the  obligingly commits suicide. NotePhoneEntry destroy PhoneEntry

that we also no longer need a separate exception to indicate the "object does not exist" condition because we can raise 
 instead — the exception exists precisely to indicate this condition and, because  is now anObjectNotExistException destroy

operation on the phone entry itself, there is no ambiguity about which object it is that does not exist.

Topics

Idempotency and Life Cycle Operations
Implementing a destroy Operation
Cleaning Up a Destroyed Servant
Life Cycle and Collection Operations
Life Cycle and Normal Operations

See Also
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Object Creation
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Idempotency and Life Cycle Operations

You may be tempted to write the life cycle operations as follows:

Slice

interface PhoneEntry {
    // ...
    idempotent void destroy(); // Wrong!

};

interface PhoneEntryFactory {
    idempotent PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
};

The idea is that  and  can be  because it is safe to let the Ice run time retry the operation in the eventcreate destroy idempotent operations
of a temporary network failure. However, this assumption is not true. To see why, consider the following scenario:

A client invokes  on a phone entry.destroy
The Ice run time sends the request to the server on the wire.
The connection goes down just after the request was sent, but before the reply for the request arrives in the client. It so happens
that the request was received by the server and acted upon, and the reply from the server back to the client is lost because the
connection is still down.
The Ice run time tries to read the reply for the request and realizes that the connection has gone down. Because the operation is
marked idempotent, the run time attempts an  by re-establishing the connection and sending the request a secondautomatic retry
time, which happens to work.
The server receives the request to destroy the entry but, because the entry is destroyed already, the server returns an 

 to the client, which the Ice run time passes to the application code.ObjectNotExistException
The application receives an  and falsely concludes that it tried to destroy a non-existent object when,ObjectNotExistException
in fact, the object did exist and was destroyed as intended.

A similar scenario can be constructed for : in that case, the application will receive a  exception when, in fact,create PhoneEntryExists
the entry did not exist and was created successfully.

These scenarios illustrate that  and  are  idempotent: sending one  or  invocation for a particularcreate destroy never create destroy
object is not the same as sending two invocations: the outcome depends on whether the first invocation succeeded or not, so  and create

 are not idempotent.destroy

See Also

Idempotent Operations
Automatic Retries
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Implementing a destroy Operation

As far as the Ice run time is concerned, the act of destroying an Ice object is to remove the mapping between its proxy and its servant. In
other words, an Ice object is destroyed when we remove its entry from the  (ASM). Once the ASM entry is gone,Active Servant Map
incoming operations for the object raise , as they should.ObjectNotExistException

On this page:

Object Destruction and Concurrency
Concurrent Execution of Life Cycle and Non-Life Cycle Operations

Object Destruction and Concurrency

Here is the simplest version of :destroy

C++

void
PhoneEntryI::destroy(const Current& c)
{
    try {
        c.adapter?>remove(c.id);
    } catch (const Ice::NotRegisteredException&)
        throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }
}

The implementation removes the ASM entry for the servant, thereby destroying the Ice object. If the entry does not exist (presumably,
because the object was destroyed previously),  throws an , as you would expect.destroy ObjectNotExistException

The ASM entry is removed as soon as  calls  on the object adapter. Assuming that we implement  as we sawdestroy remove create
earlier, so no other part of the code retains a smart pointer to the servant, this means that the ASM holds the only smart pointer to the
servant, so the servant's reference count is 1.

We use  in C++, which are analogous to object references in languages such as Java and C#.smart pointers

Once the ASM entry is removed (and its smart pointer destroyed), the reference count of the servant drops to zero. In C++, this triggers a
call to the destructor of the servant, and the heap-allocated servant is deleted just as it should be; in languages such as Java and C#, this
makes the servant eligible for garbage collection, so it will be deleted eventually as well.

Things get more interesting if we consider concurrent scenarios. One such scenario involves concurrent calls to  and .create destroy
Suppose we have the following sequence of events:

Client A creates a phone entry.
Client A passes the proxy for the entry to client B.
Client A destroys the entry.
Client A calls  for the same entry (passing the same name, which serves as the ) and, concurrently, client Bcreate object identity
calls  on the entry.destroy

Clearly, something is strange about this scenario, because it involves two clients asking for conflicting things, with one client trying to create
an object that existed previously, while another client tries to destroy the object that — unbeknownst to that client — was destroyed earlier.

Exactly what is seen by client A and client B depends on how the operations are dispatched in the server. In particular, the outcome depends
on the order in which the  to  (in ) and  (in ) on the servant are executed:calls on the object adapter add create remove destroy

If the thread processing client A's invocation executes  before the thread processing client B's invocation, client A's call to add add
succeeds. Internally, the calls to  and  are serialized, and client B's call to  blocks until client A's call to  hasadd remove remove add
completed. The net effect is that both clients see their respective invocations complete successfully.
If the thread processing client B's invocation executes  before the thread processing client A's invocation executes ,remove add
client B's thread receives a , which results in an  in client B. Client A'sNotRegisteredException ObjectNotExistException
thread then successfully calls , creating the object and returning its proxy.add

This example illustrates that, if life cycle operations interleave in this way, the outcome depends on thread scheduling. However, as far as
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the Ice run time is concerned, doing this is perfectly safe: concurrent access does not cause problems for memory management or the
integrity of data structures.

The preceding scenario allows two clients to attempt to perform conflicting operations. This is possible because clients can control the object
identity of each phone entry: if the object identity were hidden from clients and assigned by the server (the server could assign a UUID to
each entry, for example), the above scenario would not be possible. We will return to a more detailed discussion of such object identity
issues in .Object Identity and Uniqueness

Concurrent Execution of Life Cycle and Non-Life Cycle Operations

This section applies to C++ only.

Another scenario relates to concurrent execution of ordinary (non-life cycle) operations and :destroy

Client A holds a proxy to an existing object and passes that proxy to client B.
Client B calls the  operation on the object.setNumber
Client A calls  on the object .destroy while Client B's call to  is still executingsetNumber

The immediate question is what this means with respect to memory management. In particular, client A's thread calls  on the objectremove
adapter while client B's thread is still executing inside the object. If this call to  were to delete the servant immediately, it would deleteremove
the servant while client B's thread is still executing inside the servant, with potentially disastrous results.

The answer is that this cannot happen. Whenever the Ice run time dispatches an incoming invocation to a servant, it increments the
servant's reference count for the duration of the call, and decrements the reference count again once the call completes. Here is what
happens to the servant's reference count for the preceding scenario:

Initially, the servant is idle, so its reference count is at least 1 because the ASM entry stores a smart pointer to the servant. (The
remainder of these steps assumes that the ASM stores the  smart pointer to the servant, so the reference count is exactly 1.)only
Client B's invocation of  arrives and the Ice run time increments the reference count to 2 before dispatching the call.setNumber
While  is still executing, client A's invocation of  arrives and the Ice run time increments the reference countsetNumber destroy
to 3 before dispatching the call.
Client A's thread calls  on the object adapter, which destroys the smart pointer in the ASM and so decrements the referenceremove
to 2.
Either  or  may complete first. It does not matter which call completes — either way, the Ice run timesetNumber destroy
decrements the reference count as the call completes, so after one of these calls completes, the reference count drops to 1.
Eventually, when the final call (  or ) completes, the Ice run time decrements the reference count once again,setNumber destroy
which causes the count to drop to zero. In turn, this triggers the call to  (which calls the servant's destructor).delete

The net effect is that, while operations are executing inside a servant, the servant's reference count is always greater than zero. As the
invocations complete, the reference count drops until, eventually, it reaches zero. However, that can only happen once no operations are
executing, that is, once the servant is idle. This means that the Ice run time guarantees that a servant's destructor runs only once the final
operation invocation has drained out of the servant, so it is impossible to "pull memory out from underneath an executing invocation".

For garbage-collected languages, such as C# and Java, the language run time provides the same semantics: while the
servant can be reached via any reference in the application or the Ice run time, the servant will not be reclaimed by the
garbage collector.

See Also

The Active Servant Map
Object Identity and Uniqueness
Servant Activation and Deactivation
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Cleaning Up a Destroyed Servant

Here is a very simple implementation of our  servant. (Methods are inlined for convenience only. Also note that, for the timePhoneEntryI
being, this code ignores concurrency issues, which we return to in .)Life Cycle and Normal Operations

C++

class PhoneEntryI : public PhoneEntry {
public:
    PhoneEntryI(const string& name, const string& phNum)
        : _name(name), _phNum(phNum)
    {
    }

    virtual string
    name(const Current&) {
        return _name;
    }

    virtual string
    getNumber(const Current&) {
        return _phNum;
    }

    virtual void
    setNumber(const string& phNum, const Current&) {
        _phNum = phNum;
    }

    virtual void
    destroy(const Current& c) {
        try {
           c.adapter?>remove(c.id);
        } catch (const Ice::NotRegisteredException&)
           throw Ice::ObjectNotExistException(__FILE__, __LINE__);
        }
    }

private:
    const string _name;
    string _phNum;
};

With this servant,  does just the right thing: it calls  on the servant once the servant is idle, which in turn calls the destructor,destroy delete
so the memory used by the  and  data members is reclaimed._name _phNum

However, real servants are rarely this simple. In particular, destruction of an Ice object may involve non-trivial actions, such as flushing a file,
committing a transaction, making a remote call on another object, or updating a hardware device. For example, instead of storing the details
of a phone entry in member variables, the servant could be implemented to store the details in a file; in that case, destroying the Ice object
would require closing the file. Seeing that the Ice run time calls the destructor of a servant only once the servant becomes idle, the destructor
would appear to be an ideal place to perform such actions, for example:
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C++

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    ~PhoneEntryI()
    {
        _myStream.close(); // Bad idea
    }

private:
    fstream _myStream;
};

The problem with this code is that it can fail, for example, if the file system is full and buffered data cannot be written to the file. Such
clean-up failure is a general issue for non-trivial servants: for example, a transaction can fail to commit, a remote call can fail if the network
goes down, or a hardware device can be temporarily unresponsive.

If we encounter such a failure, we have a serious problem: we cannot inform the client of the error because, as far as the client is concerned,
the  call completed just fine. The client will therefore assume that the Ice object was correctly destroyed. However, the system isdestroy
now in an inconsistent state: the Ice object was destroyed (because its ASM entry was removed), but the object's state still exists (possibly
with incorrect values), which can cause errors later.

Another reason for avoiding such state clean-up in C++ destructors is that destructors cannot throw exceptions: if they do, and do so in the
process of being called during unwinding of the stack due to some other exception, the program goes directly to  and does notterminate
pass "Go". (There are a few exotic cases in which it is possible to throw from a destructor and get away with it but, in general, is an excellent
idea to maintain the no-throw guarantee for destructors.) So, if anything goes wrong during destruction, we are in a tight spot: we are forced
to swallow any exception that might be encountered by the destructor, and the best we can do is log the error, but not report it to the client.

Finally, using destructors to clean up servant state does not port well to languages such as Java and C#. For these languages, similar
considerations apply to error reporting from a finalizer and, with Java, finalizers may not run at all. Therefore, we recommend that you
perform any clean-up actions in the body of  instead of delaying clean-up until the servant's destructor runs.destroy

Note that the foregoing does  mean that you cannot reclaim servant resources in destructors; after all, that is what destructors are for. Butnot
it  mean that you should not try to reclaim resources from a destructor if the attempt can fail (such as deleting records in an externaldoes
system as opposed to, for example, deallocating memory or adjusting the value of variables in your program).

See Also

Life Cycle and Normal Operations
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Life Cycle and Collection Operations

On this page:

Factories and Collection Operations
Cyclic Dependencies between Factories and Objects

Factories and Collection Operations

The factory we defined  is what is known as a  object factory because  is the only operation it provides. However, it isearlier pure create
common for factories to do double duty and also act as collection managers that provide additional operations, such as  and :list find

Slice

// ...

sequence<PhoneEntry*> PhoneEntries;

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;

    idempotent PhoneEntry find(string name);
    idempotent PhoneEntries list();
};

find returns a proxy for the phone entry with the given name, and a null proxy if no such entry exists.  returns a sequence thatlist
contains the proxies of all existing entries.

Here is a simple implementation of :find

C++

PhoneEntryPrx
PhoneEntryFactory::find(const string& name, const Current& c)
{
    CommunicatorPtr comm = c.adapter?>getCommunicator();

    PhoneEntryPrx pe;
    Identity id = comm?>stringToIdentity(name);
    if (c.adapter?>find(id)) {
        pe = PhoneEntryPrx::uncheckedCast(c.adapter?>createProxy(id));
    }
    return pe;
}

If an entry exists in the  (ASM) for the given name, the code creates a proxy for the corresponding Ice object and returnsActive Servant Map
it. This code works correctly even for threaded servers: because the look?up of the identity in the ASM is atomic, there is no problem with
other threads concurrently modifying the ASM (for example, while servicing calls from other clients to  or ).create destroy

Cyclic Dependencies between Factories and Objects

Unfortunately, implementing  is not as simple because it needs to iterate over the collection of entries, but the object adapter does notlist
provide any iterator for ASM entries.

The reason for this is that, during iteration, the ASM would have to be locked to protect it against concurrent access, but
locking the ASM would prevent call dispatch during iteration and easily cause deadlocks.

Therefore, we must maintain our own list of entries inside the factory:
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C++

class PhoneEntryFactoryI : public PhoneEntryFactory
{
public:
    // ...

    void remove(const string&, const ObjectAdapterPtr&) {
        IceUtil::Mutex::Lock lock(_namesMutex);

        set<string>::iterator i = _names.find(name);
        if (i != _names.end())
            _names.erase(i);
    }

private:
    IceUtil::Mutex _namesMutex;
    set<string> _names;
};

The idea is to have a set of names of existing entries, and to update that set in  and  as appropriate. However, for threadedcreate destroy
servers, that raises a concurrency issue: if we have clients that can concurrently call , , and , we need to interlockcreate destroy list
these operations to avoid corrupting the  set (because STL containers are not thread-safe). This is the purpose of the mutex _names

 in the factory: , , and  can each lock this mutex to ensure exclusive access to the  set._namesMutex create destroy list _names

Another issue is that our implementation of  must update the set of entries that is maintained by the factory. This is the purpose ofdestroy
the  member function: it removes the specified name from the  set (of course, under protection of the  lock).remove _names _namesMutex
However,  is a method on the  servant, whereas  is a method on the factory, so the servant must know howdestroy PhoneEntryI remove
to reach the factory. Because the factory is a singleton, we can fix this by adding a static  member to the  class:_factory PhoneEntryI

C++

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
};

The code in  then creates the factory and initializes the static member variable, for example:main

C++

PersonI::_factory = new PersonFactoryI;

// Add factory to ASM and activate object
// adapter here...

This works, but it leaves a bad taste in our mouth because it sets up a cyclic dependency between the phone entry servants and the factory:
the factory knows about the servants, and each servant knows about the factory so it can call  on the factory. In general, such cyclicremove
dependencies are a bad idea: if nothing else, they make a design harder to understand.

We could remove the cyclic dependency by moving the  set and its associated mutex into a separate class instance that is_names
referenced from both  and . That would get rid of the cyclic dependency as far as the C++ typePhoneEntryFactoryI PhoneEntryI
system is concerned but, as we will see later, it would not really help because the factory and its servants turn out to be mutually dependent
regardless (because of concurrency issues). So, for the moment, we'll stay with this design and examine better alternatives after we have
explored the concurrency issues in more detail.

With this design, we can implement  as follows:list
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C++

PhoneEntries
PhoneEntryFactoryI::list(const Current& c)
{
    Mutex::Lock lock(_namesMutex);

    CommunicatorPtr comm = c.adapter?>getCommunicator();

    PhoneEntries pe;
    set<string>::const_iterator i;
    for (i = _names.begin(); i != _names.end(); ++i) {
        ObjectPrx o = c.adapter?>createProxy(comm?>stringToIdentity(name));
        pe.push_back(PhoneEntryPrx::uncheckedCast(o));
    }

    return pe;
}

Note that  acquires a lock on the mutex, to prevent concurrent modification of the  set by  and . In turn, our list _names create destroy
 implementation now also locks the mutex:create

PhoneEntryPrx
PhoneEntryFactory::create(const string& name, const string& phNum, const Current& c)
{
    Mutex::Lock lock(_namesMutex);

    PhoneEntryPrx pe;
    try {
        CommunicatorPtr comm = c.adapter?>getCommunicator();
        PhoneEntryPtr servant = new PhoneEntryI(name, phNum);
        pe = PhoneEntryPrx::uncheckedCast(c.adapter?>add(servant,
                                          comm?>stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }
    _names.insert(name);

    return pe;
}

With this implementation, we are safe if  and  run concurrently: only one of the two operations can acquire the lock at a time, socreate list
there is no danger of corrupting the  set._names

destroy is now trivial to implement: it simply removes the ASM entry and calls  on the factory:remove

C++

void
PhoneEntryI::destroy(const Current& c)
{
    // Note: not quite correct yet.
    c.adapter?>remove(_name);
    _factory?>remove(_name, c.adapter);
}

Note that this is not quite correct because we have not yet considered concurrency issues for destroy. We will consider this issue next.

See Also

Object Creation
The Active Servant Map
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Life Cycle and Normal Operations

So far, we have mostly ignored the implementations of the  and  operations we defined in our discussion of getNumber setNumber object
. Obviously,  and  must be interlocked against concurrent access — without this interlock, concurrentcreation getNumber setNumber

requests from clients could result in one thread writing to the  member while another thread is reading it, with unpredictable results._phNum
(Conversely, the  operation need not have an interlock because the name of a phone entry is immutable.) To interlock  and name getNumber

, we can add a mutex   to :setNumber _m PhoneEntryI

C++

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
    Mutex  _m;
};

The  and  implementations then lock   to protect  from concurrent access:getNumber setNumber _m _phNum

C++

string
PhoneEntryI::name(const Current&)
{
    return _name;
}

string
PhoneEntryI::getNumber(const Current&)
{
    // Incorrect implementation!

    Mutex::Lock lock(_m);

    return _phNum;
}

void
PhoneEntryI::setNumber(const string& phNum, const Current&)
{
    // Incorrect implementation!

    Mutex::Lock lock(_m);

    _phNum = phNum;
}

This looks good but, as it turns out,  throws a spanner in the works: as shown, this code suffers from a rare, but real, race condition.destroy
Consider the situation where a client calls  at the same time as another client calls . In a server with a  withdestroy setNumber thread pool
more than one thread, the calls can be dispatched in separate threads and can therefore execute concurrently.

The following sequence of events can occur:

The thread dispatching the  call locates the servant, enters the operation implementation, and is suspended by thesetNumber
scheduler immediately on entry to the operation, before it can lock  ._m
The thread dispatching the  call locates the servant, enters , successfully removes the servant from the destroy destroy Active

 (ASM) and the  set, and returns.Servant Map _names
The thread that was suspended in  is scheduled again, locks  , and now operates on a conceptually already-destroyedsetNumber _m
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Ice object.

Note that, even if we lock  in , the problem persists:_m destroy

C++

void
PhoneEntryI::destroy(const Current& c)
{
    // Note: still not correct.

    IceUtil::Mutex::Lock lock(_m);

    c.adapter?>remove(_name);
    _factory?>remove(_name, c.adapter);
}

Even though  now locks  and so cannot run concurrently with  and , the preceding scenario can stilldestroy _m getNumber setNumber
arise. The problem here is that a thread can enter the servant and be suspended before it gets a chance to acquire a lock. With the code as
it stands, this is not a problem:  will simply update the  member variable in a servant that no longer has an ASM entry. InsetNumber _phNum
other words, the Ice object is already destroyed — it just so happens that the servant for that Ice object is still hanging around because there
is still an operation executing inside it. Any updates to the servant will succeed (even though they are useless because the servant's 

 as soon as the last invocation leaves the servant.)destructor will run

Note that this scenario is not unique to C++ and can arise even with Java synchronized operations: in that case, a thread can be suspended
just after the Ice run time has identified the target servant, but before it actually calls the operation on the target servant. While the thread is
suspended, another thread can execute .destroy

While this race condition does not affect our implementation, it does affect more complex applications, particularly if the servant modifies
external state, such as a file system or database. For example,  could modify a file in the file system; in that case, setNumber destroy
would delete that file and probably close a file descriptor or stream. If we were to allow  to continue executing after  hassetNumber destroy
already done its job, we would likely encounter problems:  might not find the file where it expects it to be or try to use the closedsetNumber
file descriptor and return an error; or worse,  might end up re-creating the file in the process of updating the already-destroyedsetNumber
entry's phone number. (What exactly happens depends on how we write the code for each operation.)

Of course, we can try to anticipate these scenarios and handle the error conditions appropriately, but doing this for complex systems with
complex servants rapidly gets out of hand: in each operation, we would have to ask ourselves what might happen if the servant is destroyed
concurrently and, if so, take appropriate recovery action.

It is preferable to instead deal with interleaved invocations of  and other operations in a systematic fashion. We can do this bydestroy
adding a  member to the  servant. This member is initialized to false by the constructor and set to true by _destroyed PhoneEntryI

. On entry to every operation (including ), we lock the mutex, test the  flag, and throw destroy destroy _destroyed
 if the flag is set:ObjectNotExistException

C++



Ice 3.4.2 Documentation

1040 Copyright © 2011, ZeroC, Inc.

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
    bool   _destroyed;
    Mutex  _m;
};

PhoneEntryI::PhoneEntryI(const string& name, const string& phNum)
    : _name(name), _phNum(phNum), _destroyed(false)
{
}

string
PhoneEntryI::name(const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _name;
}

string
PhoneEntryI::getNumber(const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _phNum;
}

void
PhoneEntryI::setNumber(const string& phNum, const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _phNum = phNum;
}

void
PhoneEntryI::destroy(const Current& c)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _destroyed = true;
    c.adapter?>remove(_name);
    _factory?>remove(_name, c.adapter); // Dubious!
}

If you are concerned about the repeated code on entry to every operation, you can put that code into a member function or base class to
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make it reusable (although the benefits of doing so are probably too minor to make this worthwhile).

Using the  flag, if an operation is dispatched and suspended before it can lock the mutex and, meanwhile,  runs to_destroyed destroy
completion in another thread, it becomes impossible for an operation to operate on the state of such a "zombie" servant: the test on entry to
each operation ensures that any operation that runs after  immediately raises .destroy ObjectNotExistException

Also note the "dubious" comment in : the operation first locks   and, while holding that lock, calls  on the factory, which indestroy _m remove
turn locks its own . This is not wrong as such, but as we will see shortly, it can easily lead to deadlocks if we modify the_namesMutex
application later.

See Also

Object Creation
The Active Servant Map
Implementing a destroy Operation
The Ice Threading Model
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Removing Cyclic Dependencies

We mentioned  that factoring the  set and its mutex into a separate class instance does not really solve the cyclic dependencyearlier _names
problem, at least not in general. To see why, suppose that we want to extend our factory with a new  operation:getDetails

Slice

// ...

struct Details {
    PhoneEntry* proxy;
    string name;
    string phNum;
};

sequence<Details> DetailsSeq;

interface PhoneEntryFactory {
    // ...

    DetailsSeq getDetails();
};

This type of operation is common in collection managers: instead of returning a simple list of proxies,  returns a sequence ofgetDetails
structures, each of which contains not only the object's proxy, but also some of the state of the corresponding object. The motivation for this
is performance: with a plain list of proxies, the client, once it has obtained the list, is likely to immediately follow up with one or more remote
calls for each object in the list in order to retrieve their state (for example, to display the list of objects to the user). Making all these additional
remote procedure calls is inefficient, and an operation such as  gets the job done with a single RPC instead.getDetails

To implement  in the factory, we need to iterate over the set of entries and invoke the  operation on each object.getDetails getNumber
(These calls are collocated and therefore very efficient, so they do not suffer the performance problem that a client calling the same
operations would suffer.) However, this is potentially dangerous because the following sequence of events is possible:

Client A calls .getDetails
The implementation of  must lock  to prevent concurrent modification of the  set during iteration.getDetails _namesMutex _names
Client B calls  on a phone entry.destroy
The implementation of  locks the entry's mutex  , sets the  flag, and then calls , which attempts todestroy _m _destroyed remove
lock  in the factory. However,  is already locked by , so  blocks until  is_namesMutex _namesMutex getDetails remove _m
unlocked again.
getDetails, while iterating over its set of entries, happens to call  on the entry that is currently being destroyed bygetNumber
client B. , in turn, tries to lock its mutex  , which is already locked by .getNumber _m destroy

At this point, the server deadlocks:  holds a lock on  and waits for   to become available, and  holds agetDetails _namesMutex _m destroy
lock on  and waits for  to become available, so neither thread can make progress._m _namesMutex

To get rid of the deadlock, we have two options:

Rearrange the locking such that deadlock becomes impossible.
Abandon the idea of calling back from the servants into the factory and use  instead.reaping

We will explore both options in the following pages.

Topics

Acquiring Locks without Deadlocks
Reaping Objects

See Also

Life Cycle and Collection Operations
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Acquiring Locks without Deadlocks

For our example, it is fairly easy to avoid the deadlock caused by : instead of holding the lock for the duration of cyclic dependencies
, we set the  flag under protection of the lock and unlock   again before calling  on the factory:destroy _destroyed _m remove

C++

void
PhoneEntryI::destroy(const Current& c)
{
    {
        Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        _destroyed = true;

    } // _m is unlocked here.

    _factory->remove(_name, c.adapter);
}

Now deadlock is impossible because no function holds more than one lock, and no function calls another function while it holds a lock.
However, rearranging locks in this fashion can be quite difficult for complex applications. In particular, if an application uses callbacks that do
complex things involving several objects, it can be next to impossible to prove that the code is free of deadlocks. The same is true for
applications that use condition variables and suspend threads until a condition becomes true.

At the core of the problem is that concurrency can create circular locking dependencies: an operation on the factory (such as )getDetails
can require the same locks as a concurrent call to . This is one reason why threaded code is harder to write than sequential codedestroy
— the interactions among operations require locks, but dependencies among these locks are not obvious. In effect, locks set up an entirely
separate and largely invisible set of dependencies. For example, it was easy to spot the mutual dependency between the factory and the
servants due to the presence of ; in contrast, it was much harder to spot the lurking deadlock in . Worse, deadlocks mayremove destroy
not be found during testing and discovered only after deployment, when it is much more expensive to rectify the problem.

See Also

Removing Cyclic Dependencies
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Reaping Objects

Instead of trying to arrange code such that it is deadlock-free in the presence of callbacks and , it is often easier tocyclic dependencies
change the code to avoid the callbacks entirely and to use an approach known as :reaping

destroy marks the servant as destroyed and removes the  (ASM) entry as usual, but it does not call back intoActive Servant Map
the factory to update the  set._names
Whenever a collection manager operation, such as , , or  is called, the factory checks for destroyedlist getDetails find
servants and, if it finds any, removes them from the  set._names

Reaping can make for a much cleaner design because it avoids both the cyclic type dependency and the cyclic locking dependency.

On this page:

A Simple Reaping Implementation
Alternative Reaping Implementations

A Simple Reaping Implementation

To implement reaping, we need to change our  definition a little. It no longer has a static  smart pointer back to thePhoneEntryI _factory
factory (because it no longer calls ). Instead, the servant now provides a member function  that the factory calls to checkremove _isZombie
whether the servant was destroyed some time in the past:

C++

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    bool _isZombie() const;

private:
    const string _name;
    string _phNum;
    bool   _destroyed;
    Mutex  _m;
};

The implementation of  is trivial: it returns the  flag under protection of the lock:_isZombie _destroyed

C++

bool
PhoneEntryI::_isZombie() const
{
    Mutex::Lock lock(_m);

    return _destroyed;
}

The  operation no longer calls back into the factory to update the  set; instead, it simply sets the  flag anddestroy _names _destroyed
removes the ASM entry:
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C++

void
PhoneEntryI::destroy(const Current& c)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _destroyed = true;
    c.adapter?>remove(c.id);
}

The factory now, instead of storing just the names of existing servants, maintains a map that maps the name of each servant to its smart
pointer:

C++

class PhoneEntryFactoryI : public PhoneEntryFactory
{
public:
    // Constructor and Slice operations here...

private:
    typedef map<string, PhoneEntryIPtr> PMap;
    PMap _entries;
    Mutex _entriesMutex;
};

During  (and other operations, such as , , and ), we scan for zombie servants and remove them from the create list getDetails find
 map:_entries
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C++

PhoneEntryPrx
PhoneEntryFactory::create(const string& name, const string& phNum, const Current& c)
{
    Mutex::Lock lock(_entriesMutex);

    PhoneEntryPrx pe;
    PhoneEntryIPtr servant = new PhoneEntryI(name, phNum);

    // Try to create new object.
    //
    try {
        CommunicatorPtr comm = c.adapter?>getCommunicator();
        pe = PhoneEntryPrx::uncheckedCast(
            c.adapter?>add(servant, comm?>stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }

    // Scan for zombies.
    //
    PMap::iterator i = _entries.begin();
    while (i != _entries.end())
    {
        if (i?>second?>_isZombie())
            _entries.erase(i++);
        else
            ++i;
    }
    _entries[name] = servant;

    return pe;
}

The implementations of , , and  scan for zombies as well. Because they need to iterate over the existing entrieslist getDetails find
anyway, reaping incurs essentially no extra cost:

C++

PhoneEntries
PhoneEntryFactoryI::list(const Current& c)
{
    Mutex::Lock lock(_entriesMutex);

    CommunicatorPtr comm = c.adapter?>getCommunicator();

    PhoneEntries pe;
    PMap::iterator i = _entries.begin();
    for (i = _entries.begin(); i != _entries.end(); ++i) {
        if (i?>second?>_isZombie()) {
            _entries.erase(i++);
        } else {
            ObjectPrx o = c.adapter?>createProxy(comm?>stringToIdentity(i?>first));
            pe.push_back(PhoneEntryPrx::uncheckedCast(o));
            ++i;
        }
    }

    return pe;
}

// Similar for getDetails and find...
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This is a much cleaner design: there is no cyclic dependency between the factory and the servants, either implicit (in the type system) or
explicit (as a locking dependency). Moreover, the implementation is easier to understand once you get used to the idea of reaping: there is
no need to follow complex callbacks and to carefully analyze the order of lock acquisition. (Note that, depending on how state is maintained
for servants, you may also need to reap during start-up and shutdown.)

In general, we recommend that you use a reaping approach in preference to callbacks for all but the most trivial applications: it simply is a
better approach that is easier to maintain and understand.

Alternative Reaping Implementations

You may be concerned that reaping increases the cost of  from (log  ) to ( ) because  now iterates over all existingcreate O n O n create
entries and locks and unlocks a mutex in each servant (whereas, previously, it simply added each new servant to the  set). Often,_names
this is not an issue because life cycle operations are called infrequently compared to normal operations. However, you will notice the
additional cost if you have a large number of servants (in the thousands or more) and life cycle operations are called frequently.

If you find that  is a bottleneck (by profiling, not by guessing!), you can change to a more efficient implementation by adding zombiecreate
servants to a separate zombie list. Reaping then iterates over the zombie list and removes each servant in the zombie list from the 

 map before clearing the zombie list. This reduces the cost of reaping to be proportional to the number of zombie servants instead_entries
of the total number of servants. In addition, it allows us to remove the  member function and to lock and unlock _isZombie _entriesMutex
only once instead of locking a mutex in each servant as part of . We will see such an implementation when we revisit the _isZombie file

.system application

You may also be concerned about the number of zombie servants that can accumulate in the server if  is not called for some time.create
For most applications, this is not a problem: the servants occupy memory, but no other resources because  can clean up scarcedestroy
resources, such as file descriptors or network connections before it turns the servant into a zombie. If you really need to prevent
accumulation of zombie servants, you can reap from a background thread that runs periodically, or you can count the number of zombies
and trigger a reaping pass once that number exceeds some threshold.

See Also

Removing Cyclic Dependencies
The Active Servant Map
Object Life Cycle for the File System Application
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1.  
2.  
3.  
4.  
5.  
6.  

Object Identity and Uniqueness

When , it may not be a good idea to allow clients to control the  of the Ice objects they create.creating an object with a factory object identity
Here is the scenario from our , re-cast in terms of our phone book application:previous discussion

Client A creates a new phone entry for Fred.
Client A passes the proxy for the Fred entry as a parameter of a remote call to another part of the system, say, server B.
Server B remembers Fred's proxy.
Client A decides that the entry for Fred is no longer needed and calls Fred's destroy operation.
Some time later, client C creates a new phone entry for a different person whose name also happens to be Fred.
Server B decides to get Fred's phone number by calling  on the proxy it originally obtained from client A.getNumber

At this point, things are likely to go wrong: server B thinks that it has obtained the phone number of the original Fred, but that entry no longer
exists and has since been replaced by a new entry for a different person (who presumably has a different phone number).

What has happened here is that Fred has been reincarnated because the same object identity was used for two different objects. In general,
such reused object identities are a bad idea. For example, consider the following interfaces:

Slice

interface Process {
    void launch(); // Start process.
};

interface Missile {
    void launch(); // Kill lots of people.
};

Replaying the preceding scenario, if client A creates a  object called "Thunderbird" and destroys that object again, and client CProcess
creates a  object called "Thunderbird", when server B calls , it will launch a missile instead of a process.Missile launch

To be fair, in reality, this scenario is unlikely because it tacitly assumes that both objects are implemented by the same object adapter but, in
a realistic scenario, the same server would be unlikely to implement both launching of processes and missiles. However, if you have objects
that derive from common base interfaces, so objects of different types share the same operation names, this problem is real: operation
invocations can easily end up in a destroyed and later recreated object.

Specifically, the preceding scenario illustrates that, when the Ice run time dispatches a request, exactly three items determine where the
request ends up being processed:

the endpoint at which the server listens for incoming requests
the identity of the Ice object that is the target of the request
the name of the operation that is to be invoked on the Ice object

If object identities are insufficiently unique, a request intended for one object can end up being sent to a completely different object, provided
that the original object used the same identity, that both provide an operation with the same name, and that the parameters passed to one
operation happen to decode correctly when interpreted as the parameters to the other operation. (This is rare, but not impossible, depending
on the type and number of parameters.)

The crucial question is, what do we mean by "insufficiently unique"? As far as the call dispatch is concerned, identities must be unique only
per object adapter. This is because the ASM does not allow you to add two entries with the same object identity; by enforcing this, the Active

 (ASM) ensures that each object identity belongs to exactly one servant. (Note that the converse, namely, that servants in ASMServant Map
entries must be unique, is  the case: the ASM allows you to map different object identities to the same servant, which is useful to, fornot
example, implement stateless facade objects —  are used for this purpose.) So, as far as the Ice run time is concerned, it isdefault servants
perfectly OK to reuse object identities for different Ice objects.

Note that the Ice run time cannot prevent reuse of object identities either. Doing so would require the run time to remember every object
identity that has ever been used, which does not scale. Instead, the Ice run time makes the application responsible for ensuring that object
identities are "sufficiently unique".

You can deal with the identity reuse problem in several ways. One option is to do nothing and simply ignore the problem. While this sounds
facetious, it is a viable option for many applications because, due to their nature, identity reuse is simply impossible. For example, if you use
a social security number as a person's identity, the problem cannot arise because the social security number of a deceased person is not
given to another person.

Another option is to allow identity reuse and to write your application such that it can deal with such identities: if nothing bad happens when
an identity is reused, there is no problem. (This is the case if you know that the life cycles of the proxies for two different objects with the
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same identity can never overlap.)

The third option is to ensure that object identities are guaranteed unique, for example, by establishing naming conventions that make reuse
impossible, or by using a . This can be useful even for applications for which identity reuse does not pose aUUID as the object identity
problem. For example, if you use , globally-unique object identities allow you to move a server to a different machinewell-known objects
without invalidating proxies to these objects that are held by clients.

In general, we recommend that if an Ice object naturally contains a unique item of state (such as a social security number), you should use
that item as the object identity. On the other hand, if the natural object identity is insufficiently unique (as is the case with names of phone
book entries), you should use a UUID as the identity. (This is particularly useful for anonymous transient objects, such as session objects,
that may not have a natural identity.)

See Also

Object Creation
Object Identity
The Active Servant Map
Default Servants
Servant Activation and Deactivation
Understanding Object Life Cycle
Well-Known Objects
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Object Life Cycle for the File System Application

Now that we have had a look at the issues around object life cycle, let us return to our  and add life cycle operations tofile system application
it, so clients can create and destroy files and directories.

To destroy a file or directory, the obvious choice is to add a  operation to the  interface:destroy Node

Slice

module Filesystem {

    exception GenericError {
        string reason;
    };
    exception PermissionDenied extends GenericError {};
    exception NameInUse extends GenericError {};
    exception NoSuchName extends GenericError {};

    interface Node {
        idempotent string name();
        void destroy() throws PermissionDenied;
    };

    // ...
};

Note that  can throw a  exception. This is necessary because we must prevent attempts to destroy the rootdestroy PermissionDenied
directory.

The  interface is unchanged:File

Slice

module Filesystem {
    // ...

    sequence<string> Lines;

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };

    // ...
};

Note that, because  derives from , it inherits the  operation we defined for .File Node destroy Node

The  interface now looks somewhat different from the previous version:Directory

The  operation returns a sequence of structures instead of a list of proxies: for each entry in a directory, the list NodeDesc
structure provides the name, type, and proxy of the corresponding file or directory.
Directories provide a  operation that returns the description of the nominated node. If the nominated node does not exist, thefind
operation throws a  exception.NoSuchName
The  and  operations create a file and directory, respectively. If a file or directory already exists,createFile createDirectory
the operations throw a  exception.NameInUse

Here are the corresponding definitions:
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Slice

module Filesystem {
    // ...

    enum NodeType { DirType, FileType };

    struct NodeDesc {
        string name;
        NodeType type;
        Node* proxy;
    };

    sequence<NodeDesc> NodeDescSeq;

    interface Directory extends Node {
        idempotent NodeDescSeq list();
        idempotent NodeDesc find(string name) throws NoSuchName;
        File* createFile(string name) throws NameInUse;
        Directory* createDirectory(string name) throws NameInUse;
    };
};

Note that this design is somewhat different from the factory we designed for the . In particular, we do not have aphone book application
single object factory; instead, we have as many factories as there are directories, that is, each directory creates files and directories only in
that directory.

The motivation for this design is twofold:

Because all files and directories that can be created are immediate descendants of their parent directory, we avoid the complexities
of parsing path names for a separator such as "/". This keeps our example code to manageable size. (A real-world implementation
of a distributed file system would, of course, be able to deal with path names.)

Having more than one object factory presents interesting implementation issues that we will explore in the following discussion.

Let's move on to the implementation of this design in C++ and Java. You can find the full code of the implementation (including languages
other than C++ and Java) in the  directory of your Ice distribution.demo/book/lifecycle

Topics

Implementing Object Life Cycle in C++
Implementing Object Life Cycle in Java

See Also

Slice for a Simple File System
Object Creation
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Implementing Object Life Cycle in C++

The implementation of our life cycle design has the following characteristics:

It uses UUIDs as the object identities for nodes to avoid .object reincarnation problems
When  is called on a node, the node needs to destroy itself and inform its parent directory that it has been destroyeddestroy
(because the parent directory is the node's factory and also acts as a collection manager for child nodes).

Note that, in contrast to the , the entire implementation resides in a  namespace instead of being part of the initial version FilesystemI
 namespace. Doing this is not essential, but is a little cleaner because it keeps the implementation in a namespace that isFilesystem

separate from the Slice-generated namespace.

On this page:

Object Life Cycle Changes for the  Class in C++NodeI
Object Life Cycle Changes for the  Class in C++DirectoryI
Object Life Cycle Changes for the  Class in C++FileI
Object Life Cycle Concurrency Issues in C++

Object Life Cycle Changes for the  Class in C++NodeI

To begin with, let us look at the definition of the  class:NodeI

C++

namespace FilesystemI {

    class DirectoryI;
    typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

    class NodeI : public virtual Filesystem::Node {
    public:
        virtual std::string name(const Ice::Current&);
        Ice::Identity id() const;

    protected:
        NodeI(const std::string& name, const DirectoryIPtr& parent);

        const std::string _name;
        const DirectoryIPtr _parent;
        bool _destroyed;
        Ice::Identity _id;
        IceUtil::Mutex _m;
    };

    // ...
}

The purpose of the  class is to provide the data and implementation that are common to both  and , which useNodeI FileI DirectoryI
implementation inheritance from .NodeI

As in the ,  provides the implementation of the  operation and stores the name of the node and its parent directoryinitial version NodeI name
in the  and  members. (The root directory's  member is null.) These members are immutable and initialized by the_name _parent _parent
constructor and, therefore, .const

The  member, protected by the mutex  , prevents the  we discussed earlier. The constructor initializes _destroyed _m race condition
 to  and creates an identity for the node (stored in the  member):_destroyed false _id
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C++

FilesystemI::NodeI::NodeI(const string& name, const DirectoryIPtr& parent)
    : _name(name), _parent(parent), _destroyed(false)
{
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

The  member function returns a node's identity, stored in the  data member. The node must remember this identity because it is aid _id
UUID and is needed when we create a proxy to the node:

C++

Identity
FilesystemI::NodeI::id() const
{
    return _id;
}

The data members of  are protected instead of private to keep them accessible to the derived  and  classes.NodeI FileI DirectoryI
(Because the implementation of  and its derived classes is quite tightly coupled, there is little point in making these members privateNodeI
and providing separate accessors and mutators for them.)

The implementation of the Slice  operation simply returns the name of the node, but also :name checks whether the node has been destroyed

C++

string
FilesystemI::NodeI::name(const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _name;
}

This completes the implementation of the  base class.NodeI

Object Life Cycle Changes for the  Class in C++DirectoryI

Next, we need to look at the implementation of directories. The  class derives from  and the Slice-generated DirectoryI NodeI Directory
skeleton class. Of course, it must implement the pure virtual member functions for its Slice operations, which leads to the following (not yet
complete) definition:
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C++

namespace FilesystemI {

    // ...

    class DirectoryI : virtual public NodeI,
                       virtual public Filesystem::Directory {
    public:
        virtual Filesystem::NodeDescSeq list(const Ice::Current&);
        virtual Filesystem::NodeDesc find(const std::string&, const Ice::Current&);
        Filesystem::FilePrx createFile(const std::string&, const Ice::Current&);
        Filesystem::DirectoryPrx createDirectory(const std::string&, const Ice::Current&);
        virtual void destroy(const Ice::Current&);
        // ...

    private:
        // ...
    };
}

Each directory stores its contents in a map that maps the name of a directory to its servant:

C++

namespace FilesystemI {

    // ...

    class DirectoryI : virtual public NodeI,
                       virtual public Filesystem::Directory {
    public:
        // ...

        DirectoryI(const ObjectAdapterPtr& a,
                   const std::string& name,
                   const DirectoryIPtr& parent = 0);

        void removeEntry(const std::string& name);

    private:
        typedef std::map<std::string, NodeIPtr> Contents;
        Contents _contents;
        // ...
    };
}

Note that we use the inherited member  to interlock operations._m

The constructor simply initializes the  base class:NodeI

C++

FilesystemI::DirectoryI::DirectoryI(const string& name, const DirectoryIPtr& parent)
    : NodeI(name, parent)
{
}

The  member function is called by the child to remove itself from its parent's  map:removeEntry _contents



Ice 3.4.2 Documentation

1055 Copyright © 2011, ZeroC, Inc.

C++

void
FilesystemI::DirectoryI::removeEntry(const string& name)
{
    IceUtil::Mutex::Lock lock(_m);
    Contents::iterator i = _contents.find(name);
    if(i != _contents.end())
    {
        _contents.erase(i);
    }
}

Here is the  member function for directories:destroy

C++

void
FilesystemI::DirectoryI::destroy(const Current& c)
{
    if (!_parent)
        throw PermissionDenied("Cannot destroy root directory");
    {
        IceUtil::Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        if (!_contents.empty())
            throw PermissionDenied("Cannot destroy non?empty directory");

        c.adapter?>remove(id());
        _destroyed = true;
    }

    _parent?>removeEntry(_name);
}

The code first prevents destruction of the root directory and then checks whether this directory was destroyed previously. It then acquires the
lock and checks that the directory is empty. Finally,  removes the  (ASM) entry for the destroyed directory anddestroy Active Servant Map
removes itself from its parent's  map. Note that we call  outside the synchronization to ._contents removeEntry avoid deadlocks

The  implementation locks the mutex before checking whether the directory already contains a node with the given namecreateDirectory
(or an invalid empty name). If not, it creates a new servant, adds it to the ASM and the  map, and returns its proxy:_contents
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C++

DirectoryPrx
FilesystemI::DirectoryI::createDirectory(const string& name, const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    if (name.empty() || _contents.find(name) != _contents.end())
        throw NameInUse(name);

    DirectoryIPtr d = new DirectoryI(name, this);
    ObjectPrx node = c.adapter?>add(d, d?>id());
    _contents[name] = d;
    return DirectoryPrx::uncheckedCast(node);
}

The  implementation is identical, except that it creates a file instead of a directory:createFile

C++

FilePrx
FilesystemI::DirectoryI::createFile(const string& name, const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    if (name.empty() || _contents.find(name) != _contents.end())
        throw NameInUse(name);

    FileIPtr f = new FileI(name, this);
    ObjectPrx node = c.adapter?>add(f, f?>id());
    _contents[name] = f;
    return FilePrx::uncheckedCast(node);
}

Here is the implementation of :list
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C++

NodeDescSeq
FilesystemI::DirectoryI::list(const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    NodeDescSeq ret;
    for (Contents::const_iterator i = _contents.begin(); i != _contents.end(); ++i)
    {
        NodeDesc d;
        d.name = i?>first;
        d.type = FilePtr::dynamicCast(i?>second) ? FileType : DirType;
        d.proxy = NodePrx::uncheckedCast(c.adapter?>createProxy(i?>second?>id()));
        ret.push_back(d);
    }
    return ret;
}

After acquiring the lock, the code iterates over the directory's contents and adds a  structure for each entry to the returned vector.NodeDesc

The  operation proceeds along similar lines:find

C++

NodeDesc
FilesystemI::DirectoryI::find(const string& name, const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    Contents::const_iterator pos = _contents.find(name);
    if (pos == _contents.end())
        throw NoSuchName(name);

    NodeIPtr p = pos?>second;
    NodeDesc d;
    d.name = name;
    d.type = FilePtr::dynamicCast(p) ? FileType : DirType;
    d.proxy = NodePrx::uncheckedCast(c.adapter?>createProxy(p?>id()));
    return d;
}

Object Life Cycle Changes for the  Class in C++FileI

The constructor of  is trivial: it simply initializes the data members of its base class::FileI

C++

FilesystemI::FileI::FileI(const string& name, const DirectoryIPtr& parent)
    : NodeI(name, parent)
{
}

The implementation of the three member functions of the  class is also trivial, so we present all three member functions here:FileI
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C++

Lines
FilesystemI::FileI::read(const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _lines;
}

// Slice File::write() operation.

void
FilesystemI::FileI::write(const Lines& text, const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _lines = text;
}

void
FilesystemI::FileI::destroy(const Current& c)
{
    {
        IceUtil::Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        c.adapter?>remove(id());
        _destroyed = true;
    }

    _parent?>removeEntry(_name);
}

Object Life Cycle Concurrency Issues in C++

The preceding implementation is provably deadlock free. All member functions hold only one lock at a time, so they cannot deadlock with
each other or themselves. While the locks are held, the functions do not call other member functions that acquire locks, so any potential
deadlock can only arise by concurrent calls to another mutating function, either on the same node or on different nodes. For concurrent calls
on the same node, deadlock is impossible because such calls are strictly serialized on the mutex  ; for concurrent calls to  on_m destroy
different nodes, each node locks its respective mutex  , releases  again, and then acquires and releases a lock on its parent (by calling _m _m

), also making deadlock impossible.removeEntry

See Also

Example of a File System Server in C++
Life Cycle and Normal Operations
Acquiring Locks without Deadlocks
Object Identity and Uniqueness
The Active Servant Map
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Implementing Object Life Cycle in Java

The implementation of our life cycle design has the following characteristics:

It uses UUIDs as the object identities for nodes to avoid .object reincarnation problems
When  is called on a node, the node needs to destroy itself and inform its parent directory that it has been destroyeddestroy
(because the parent directory is the node's factory and also acts as a collection manager for child nodes).

Note that, in contrast to the , the entire implementation resides in a  package instead of being part of the initial version FilesystemI
 package. Doing this is not essential, but is a little cleaner because it keeps the implementation in a package that is separateFilesystem

from the Slice-generated package.

On this page:

Object Life Cycle Changes for the  Class in JavaNodeI
Object Life Cycle Changes for the  Class in JavaDirectoryI
Object Life Cycle Changes for the  Class in JavaFileI
Object Life Cycle Concurrency Issues in Java

Object Life Cycle Changes for the  Class in JavaNodeI

Our  and  servants derive from a common  base interface. This interface is not essential, but useful because itDirectoryI FileI NodeI
allows us to treat servants of type  and  polymorphically:DirectoryI FileI

Java

package FilesystemI;

public interface NodeI
{
    Ice.Identity id();
}

The only method is the  method, which returns the identity of the corresponding node.id

Object Life Cycle Changes for the  Class in JavaDirectoryI

As in the , the  class derives from the generated base class . In addition, the class implementsinitial version DirectoryI _DirectoryDisp
the  interface.  must implement each of the Slice operations, leading to the following outline:NodeI DirectoryI
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Java

package FilesystemI;

import Ice.*;
import Filesystem.*;

public class DirectoryI extends _DirectoryDisp implements NodeI
{
    public Identity
    id();

    public synchronized String
    name(Current c);

    public synchronized NodeDesc[]
    list(Current c);

    public synchronized NodeDesc
    find(String name, Current c) throws NoSuchName;

    public synchronized FilePrx
    createFile(String name, Current c) throws NameInUse;

    public synchronized DirectoryPrx
    createDirectory(String name, Current c) throws NameInUse;

    public void
    destroy(Current c) throws PermissionDenied;

    // ...
}

To support the implementation, we also require a number of methods and data members:

Java

package FilesystemI;

import Ice.*;
import Filesystem.*;

public class DirectoryI extends _DirectoryDisp implements NodeI
{
    // ...

    public DirectoryI();
    public DirectoryI(String name, DirectoryI parent);

    public synchronized void
    removeEntry(String name);

    private String _name;       // Immutable
    private DirectoryI _parent; // Immutable
    private Identity _id;       // Immutable
    private boolean _destroyed;
    private java.util.Map<String, NodeI> _contents;
}

The  and  members store the name of this node and a reference to the node's parent directory. (The root directory's _name _parent
 member is null.) Similarly, the  member stores the identity of this directory. The , , and  members are_parent _id _name _parent _id
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immutable once they have been initialized by the constructor. The  member prevents a ; to interlock access to _destroyed race condition
 (as well as the  member) we can use synchronized methods (as for the  method), or use a _destroyed _contents name

 block.synchronized(this)

The  map records the contents of a directory: it stores the name of an entry, together with a reference to the child node._contents

Here are the two constructors for the class:

Java

public DirectoryI()
{
    this("/", null);
}

public DirectoryI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;
    _id = new Identity();
    _destroyed = false;
    _contents = new java.util.HashMap<String, NodeI>();

    _id.name = parent == null ? "RootDir" : java.util.UUID.randomUUID().toString();
}

The first constructor is a convenience function to create the root directory with the fixed identity "RootDir" and a null parent.

The real constructor initializes the , , , , and  members. Note that nodes other than the root_name _parent _id _destroyed _contents
directory use a UUID as the object identity.

The  method is called by the child to remove itself from its parent's  map:removeEntry _contents

Java

public synchronized void
removeEntry(String name)
{
    _contents.remove(name);
}

The implementation of the Slice name operation simply returns the name of the node, but also :checks whether the node has been destroyed

Java

public synchronized String
name(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();
    return _name;
}

Note that this method is synchronized, so the  member cannot be accessed concurrently._destroyed

Here is the  member function for directories:destroy
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Java

public void
destroy(Current c) throws PermissionDenied
{
    if (_parent == null)
        throw new PermissionDenied("Cannot destroy root directory");

    synchronized(this) {
        if (_destroyed)
            throw new ObjectNotExistException();

        if (_contents.size() != 0)
            throw new PermissionDenied("Cannot destroy non?empty directory");

        c.adapter.remove(id());
        _destroyed = true;
    }

    _parent.removeEntry(_name);
}

The code first prevents destruction of the root directory and then checks whether this directory was destroyed previously. It then acquires the
lock and checks that the directory is empty. Finally,  removes the  (ASM) entry for the destroyed directory anddestroy Active Servant Map
removes itself from its parent's  map. Note that we call  outside the synchronization to ._contents removeEntry avoid deadlocks

The  implementation acquires the lock before checking whether the directory already contains a node with the givencreateDirectory
name (or an invalid empty name). If not, it creates a new servant, adds it to the ASM and the  map, and returns its proxy:_contents

Java

public synchronized DirectoryPrx
createDirectory(String name, Current c) throws NameInUse
{
    if (_destroyed)
        throw new ObjectNotExistException();

    if (name.length() == 0 || _contents.containsKey(name))
        throw new NameInUse(name);

    DirectoryI d = new DirectoryI(name, this);
    ObjectPrx node = c.adapter.add(d, d.id());
    _contents.put(name, d);
    return DirectoryPrxHelper.uncheckedCast(node);
}

The  implementation is identical, except that it creates a file instead of a directory:createFile
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Java

public synchronized FilePrx
createFile(String name, Current c) throws NameInUse
{
    if (_destroyed)
        throw new ObjectNotExistException();

    if (name.length() == 0 || _contents.containsKey(name))
        throw new NameInUse(name);

    FileI f = new FileI(name, this);
    ObjectPrx node = c.adapter.add(f, f.id());
    _contents.put(name, f);
    return FilePrxHelper.uncheckedCast(node);
}

Here is the implementation of :list

Java

public synchronized NodeDesc[]
list(Current c)
{
    if(_destroyed)
        throw new ObjectNotExistException();

    NodeDesc[] ret = new NodeDesc[_contents.size()];
    java.util.Iterator<java.util.Map.Entry<String, NodeI> > pos =
        _contents.entrySet().iterator();
    for(int i = 0; i < _contents.size(); ++i) {
        java.util.Map.Entry<String, NodeI> e = pos.next();
        NodeI p = e.getValue();
        ret[i] = new NodeDesc();
        ret[i].name = e.getKey();
        ret[i].type = p instanceof FileI ? NodeType.FileType : NodeType.DirType;
        ret[i].proxy = NodePrxHelper.uncheckedCast(c.adapter.createProxy(p.id()));
    }
    return ret;
}

After acquiring the lock, the code iterates over the directory's contents and adds a  structure for each entry to the returned array.NodeDesc

The  operation proceeds along similar lines:find
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Java

public synchronized NodeDesc
find(String name, Current c) throws NoSuchName
{
    if (_destroyed)
        throw new ObjectNotExistException();

    NodeI p = _contents.get(name);
    if (p == null)
        throw new NoSuchName(name);

    NodeDesc d = new NodeDesc();
    d.name = name;
    d.type = p instanceof FileI ? NodeType.FileType : NodeType.DirType;
    d.proxy = NodePrxHelper.uncheckedCast(c.adapter.createProxy(p.id()));
    return d;
}

Object Life Cycle Changes for the  Class in JavaFileI

The  class is similar to the  class. The data members store the name, parent, and identity of the file, as well as the FileI DirectoryI
 flag and the contents of the file (in the  member). The constructor initializes these members:_destroyed _lines

Java

package FilesystemI;

import Ice.*;
import Filesystem.*;
import FilesystemI.*;

public class FileI extends _FileDisp implements NodeI
{
    // ...

    public FileI(String name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;
        _destroyed = false;
        _id = new Identity();
        _id.name = Util.generateUUID();
    }

    private String _name;
    private DirectoryI _parent;
    private boolean _destroyed;
    private Identity _id;
    private String[] _lines;
}

The implementation of the remaining member functions of the  class is trivial, so we present all of them here:FileI
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Java

public synchronized String
name(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();
    return _name;
}

public Identity
id()
{
    return _id;
}

public synchronized String[]
read(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();

    return _lines;
}

public synchronized void
write(String[] text, Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();

    _lines = (String[])text.clone();
}

public void
destroy(Current c)
{
    synchronized(this) {
        if (_destroyed)
            throw new ObjectNotExistException();

        c.adapter.remove(id());
        _destroyed = true;
    }

    _parent.removeEntry(_name);
}

Object Life Cycle Concurrency Issues in Java

The preceding implementation is provably deadlock free. All methods hold only one lock at a time, so they cannot deadlock with each other
or themselves. While the locks are held, the methods do not call other methods that acquire locks, so any potential deadlock can only arise
by concurrent calls to another mutating method, either on the same node or on different nodes. For concurrent calls on the same node,
deadlock is impossible because such calls are strictly serialized on the instance; for concurrent calls to  on different nodes, eachdestroy
node locks itself, releases itself again, and then acquires and releases a lock on its parent (by calling ), also making deadlockremoveEntry
impossible.

See Also

Example of a File System Server in Java
Life Cycle and Normal Operations
Object Identity and Uniqueness
Acquiring Locks without Deadlocks
The Active Servant Map
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Avoiding Server-Side Garbage

On this page:

Creating Garbage
Garbage Collection Solutions
Simple Mechanisms for Garbage Collection
Using an Extra Level of Indirection to Collect Garbage
Server-Side Changes for Garbage Collection
Client-Side Changes for Garbage Collection

Creating Garbage

We have discussed the implementation of , that is, how to correctly provide clients with the means to create and destroyobject life cycle
objects. However, throughout this discussion, we have tacitly assumed that clients actually call  once they no longer need andestroy
object. What if this is actually not the case? For example, a client might intend to call  on an object it no longer needs but crashdestroy
before it can actually make the call.

To see why this is a realistic (and serious) scenario, consider an on-line retail application. Typically, such an application provides a shopping
cart to the client, into which the client can place items. Naturally, the cart and the items it contains will be modelled as server-side objects.
The expectation is that, eventually, the client will either finalize or cancel the purchase, at which point the shopping cart and its contents can
be destroyed. However, the client may never do that, for example, because it crashes or simply loses interest.

The preceding scenario applies to many different applications and shows up in various disguises. For example, the objects might be session
objects that encapsulate security credentials of a client, or might be iterator objects that allow a client to iterate over a collection of values.
The key point is that the interactions between client and server are stateful: the server creates state on behalf of a client, holds that state for
the duration of several client-server interactions, and expects the client to inform the server when it can clean up that state. If the client never
informs the server, whatever resources are associated with that client's state are leaked; these resources are termed .garbage

The garbage might be memory, file descriptors, network connections, disk space, or any number of other things. Unless the server takes
explicit action, eventually, the garbage will accumulate to the point where the server fails because it has run out of memory, file descriptors,
network connections, or disk space.

In the context of Ice, the garbage are servants and their associated resources. In this section, we examine strategies that a server can use
avoid drowning in that garbage.

Garbage Collection Solutions

The server is presented with something of a dilemma by garbage objects. The difficulty is not in how to remove the garbage objects (after all,
the server knows how to destroy each object), but how to identify whether a particular object is garbage or not. The server knows when a
client uses an object (because the server receives an invocation for the object), but the server does not know when an object is no longer of
interest to a client (because a dead client is indistinguishable from a slow one).

One approach to dealing with garbage is to avoid creating it in the first place: if all interactions between client and server are stateless, the
garbage problem does not arise. Unfortunately, for many applications, implementing this approach is infeasible. The reason is that, in order
to turn interactions that are inherently stateful (such as updating a database) into stateless ones, designers are typically forced to keep all
the state on the client side, transmit whatever state is required by the server with each remote procedure call, and return the updated state
back to the client. In many situations, this simply does not work: for one, the amount of state that needs to be transmitted with each call is
often prohibitively large; second, replicating all the state on the client side creates other problems, such as different clients concurrently
making conflicting updates to the same data.

The remainder of this section ignores stateless designs. This is not to say that stateless designs are undesirable: where suitable, they can be
very effective. However, because many applications simply cannot use them, we focus instead on other ways to deal with garbage.

Mechanisms that identify and reclaim garbage objects are known as garbage collectors. Garbage collectors are well-understood for
non-distributed systems. (For example, many programming languages, such as Java and C#, have built-in garbage collectors.)

Non-distributed garbage collectors keep track of all objects that are created, and perform some form of connectivity analysis to determine
which objects are still reachable; any objects that are unreachable (that is, objects to which the application code no longer holds any
reference) are garbage and are eventually reclaimed.

Unfortunately, for distributed systems, traditional approaches to garbage collection do not work because the cost of performing the
connectivity analysis becomes prohibitively large. For example, DCOM provided a distributed garbage collector that turned out to be its
Achilles' heel: the collector did not scale to large numbers of objects, particularly across WANs, and several attempts at making it scale
failed.
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An alternative to distributed garbage collection is to use timeouts to avoid the cost of doing a full connectivity analysis: if an object has not
been used for a certain amount of time, the server assumes that it is garbage and reclaims the object. The drawback of this idea is that it is
possible for objects to be collected while they are still in use. For example, a customer may have placed a number of items in a shopping
cart and gone out to lunch, only to find on return that the shopping cart has disappeared in the mean time.

Yet another alternative is to use the evictor pattern: the server puts a cap on the total number of objects it is willing to create on behalf of
clients and, once the cap is reached, destroys the least-recently used object in order to make room for a new one. This puts an upper limit on
the resources used by the server and eventually gets rid of all unwanted objects. But the drawback is the same as with timeouts: just
because an object has not been used for a while does not necessarily mean that it truly is garbage.

Neither timeouts nor evictors are true garbage collectors because they can collect objects that are not really garbage, but they do have the
advantage that they reap objects even if the client is alive, but forgets to call  on some of these objects.destroy

Simple Mechanisms for Garbage Collection

Traditional garbage collection fails in the distributed case for a number of reasons:

Garbage collectors require connectivity analysis, which is prohibitively expensive. Furthermore, for distributed object systems that
permit proxies to be externalized as strings, such as Ice, connectivity analysis is impossible because proxies can exist and travel by
means that are invisible to the run time. For example, proxies can exist as records in a database and can travel as strings inside
e-mail messages.
Garbage collectors consider all objects in existence but, for the vast majority of applications, only a small subset of all objects
actually ever needs collecting. The work spent in examining objects that can never become garbage is wasted.
Garbage collectors examine connectivity at the granularity of a single object. However, for many distributed applications, objects are
used in groups and, if one object in a group is garbage, all objects in the group are garbage. It would be useful to take advantage of
this knowledge, but a garbage collector cannot do this because that knowledge is specific to each application.

In the remainder of this section, we examine a simple mechanism that allows you to get rid of garbage objects cheaply and effectively. The
approach has the following characteristics:

Only those objects that potentially can become garbage are considered for collection.
Granularity of collection is under control of the application: you can have objects collected as groups of arbitrary size, down to a
single object.
Objects are guaranteed not to be collected prematurely.
Objects are guaranteed to be collected if the client crashes or suffers loss of connectivity.
The mechanism is simple to implement and has low run-time overhead.

It is equally important to be aware of the limitations of the approach:

The approach collects objects if a client crashes, but offers no protection against clients that are still running, but have neglected to
destroy objects that they no longer need. In other words, the server is protected against client-side hardware failure and catastrophic
client crashes, but it is not protected against faulty programming logic of clients.
The approach is not transparent at the interface level: it requires changes (albeit minor ones) to the interface definitions for an
application.
The approach requires the client to periodically call the server, thus consuming network resources even if the client is otherwise idle.

Despite the limitations, this approach to garbage collection is applicable to a wide variety of applications and meets the most pragmatic
need: how to clean up in case something goes badly wrong (rather than how to clean up in case the client misbehaves).

Using an Extra Level of Indirection to Collect Garbage

Object factories are typically singleton objects that create objects on behalf of various clients. It is important for our garbage collector to know
which client created what objects, so the collector can reap the objects created by a specific client if that client crashes. We can easily deal
with this requirement by adding the proverbial level of indirection: instead of making a factory a singleton object, we provide a singleton
object that creates factories. Clients first create a factory and then create all other objects they need using that factory:
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Slice

interface Item { /* ...*/ };

interface Cart
{
    Item* create(/* ... */);
    idempotent string getName();
    void destroy();
    idempotent void refresh();
};

interface CartFactory // Singleton
{
    Cart* create(string name);
};

Clients obtain a proxy to the  singleton and call  to create a  object. In turn, the  object provides a createCartFactory create Cart Cart
operation to place new objects of type  into the cart. Note that the shopping cart name allows a client to distinguish different carts — theItem

 parameter is  used to identify clients or to provide a unique identifier for carts. The  operation on the  object returnsname not getName Cart
the name that was used by the client to create it.

Each  object remembers which items it created. Because each client uses its own shopping cart, the server knows which objects wereCart
created by what client. In normal operation, a client first creates a shopping cart, and then uses the cart to create the items in the cart. Once
the client has finished its job, it calls  on the cart. The implementation of  destroys both the cart and its items to reclaimdestroy destroy
resources.

To deal with crashed clients, the server needs to know when a cart is no longer in use. This is the purpose of the  operation: clientsrefresh
are expected to periodically call  on their cart objects. For example, the server might decide that, if a client's cart has not beenrefresh
refreshed for more than ten minutes, the cart is no longer in use and reclaim it. As long as the client calls  at least once every tenrefresh
minutes, the cart (and the items it contains) remain alive; if more than ten minutes elapse, the server simply calls  on the cart. Ofdestroy
course, there is no need to hard-wire the timeout value — you can make it part of the application's configuration. However, to keep the
implementation simple, it is useful to have the same timeout value for all carts, or to at least restrict the timeouts for different carts to a small
number of fixed choices — this considerably simplifies the implementation in both client and server.

Server-Side Changes for Garbage Collection

The implementation of the interfaces on the server side almost suggests itself:

Whenever  is called on a cart, the cart records the time at which the call was made.refresh
The server runs a reaper thread that wakes up once every ten minutes. The reaper thread examines the timestamp of all carts and,
if it finds a cart last time-stamped more than ten minutes ago, it calls  on that cart.destroy
Each cart remembers the items it contains and destroys them as part of its  implementation.destroy

Here then is the reaper thread in outline. (Note that we have simplified the code to show the essentials. For example, we have omitted the
code that is needed to make the reaper thread terminate cleanly when the server shuts down. See the code in  fordemo/Ice/session
more detail.)
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C++

class ReapThread : public IceUtil::Thread,
                   public IceUtil::Monitor<IceUtil::Mutex>
{
public:
    ReapThread();
    virtual void run();
    void add(const CartPrx&, const CartIPtr&);

private:
    const IceUtil::Time _timeout;
    struct CartProxyPair
    {
        CartProxyPair(const CartPrx& p, const CartIPtr& c) :
              proxy(p), cart(c) { }
        const CartPrx proxy;
        const CartIPtr cart;
    };
    std::list<CartProxyPair> _carts;
};

typedef IceUtil::Handle<ReapThread> ReapThreadPtr;

Note that the reaper thread maintains a list of pairs. Each pair stores the proxy of a cart and its servant pointer. We need both the proxy and
the pointer because we need to invoke methods on both the Slice interface and the implementation interface of the cart. Whenever a client
creates a new cart, the server calls the  method on the reaper thread, passing it the new cart:add

C++

void ReapThread::add(const CartPrx& proxy, const CartIPtr& cart)
{
    Lock sync(*this);
    _carts.push_back(CartProxyPair(proxy, cart));
}

The  method of the reaper thread is a loop that sleeps for ten minutes and calls  on any session that has not been refreshedrun destroy
within the preceding ten minutes:
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C++

void ReapThread::run()
{
    Lock sync(*this);
    while (true) {
        timedWait(_timeout);
        list<CartProxyPair>::iterator p = _carts.begin();
        while (p != _carts.end()) {
            try {
                //
                // Cart destruction may take some time.
                // Therefore the current time is computed
                // for each iteration.
                //
                if ((IceUtil::Time::now() - p->cart->timestamp()) > _timeout) {
                    p->proxy->destroy();
                    p = _carts.erase(p);
                } else {
                    ++p;
                }
            } catch (const Ice::ObjectNotExistException&) {
                p = _carts.erase(p);
            }
        }
    }
}

Note that the reaper thread catches  from the call to , and removes the cart from its list in that case.ObjectNotExistException destroy
This is necessary because it is possible for a client to call  explicitly, so a cart may be destroyed already by the time the reaperdestroy
thread examines it.

The  implementation is trivial:CartFactory

C++

class CartFactoryI : CartFactory
{
public:
    CartFactoryI(const ReapThreadPtr&);
    virtual CartPrx create(const std::string&, const Ice::Current&);

private:
    ReapThreadPtr _reaper;
};

The constructor is passed the instantiated reaper thread and remembers that thread in the  member._reaper

The  method adds each new cart to the reaper thread's list of carts:create

C++

CartPrx CartFactoryI::create(const string& name, const Ice::Current& c)
{
    CartIPtr cart = new CartI(name);
    CartPrx proxy = CartPrx::uncheckedCast(
                        c.adapter->addWithUUID(cart));
                        _reaper->add(proxy, cart);
    return proxy;
}

Note that each cart internally has a unique ID that is unrelated to its name — the name exists purely as a convenience for the application.
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The server's  function starts the reaper thread and instantiates the cart factory:main

C++

ReapThreadPtr reaper = new ReapThread();
CartFactory factory = new CartFactoryI(reaper);
reaper->start();
adapter->add(factory, Ice::stringToIdentity(CartFactory));
adapter->activate();

This completes the implementation on the server side. Note that there is very little code here, and that much of this code is essentially the
same for each application. For example, we could easily turn the  class into a template class to permit the same code to beReapThread
used for something other than shopping carts.

Client-Side Changes for Garbage Collection

On the client side, the application code does what it would do with an ordinary factory, except for the extra level of indirection: the client first
creates a cart, and then uses the cart as its factory.

As long as the client-side calls  at least once every ten minutes, the cart remains alive and, with it, all items the client created in thatrefresh
cart. Once the client misses a  call, the reaper thread in the server cleans up the cart and its items.refresh

To keep the cart alive, you could sprinkle your application code with calls to  in the hope that at least one of these calls is made atrefresh
least every ten minutes. However, that is not only error-prone, but also fails if the client blocks for some time. A much better approach is to
run a thread in the client that automatically calls . That way, the calls are guaranteed to happen even if the client's main threadrefresh
blocks for some time, and the application code does not get polluted with  calls. Again, we show a simplified version of the refreshrefresh
thread here that does not deal with issues such as clean shutdown and a few other irrelevant details:

C++

class CartRefreshThread : public IceUtil::Thread,
                          public IceUtil::Monitor<IceUtil::Mutex>
{
public:
    CartRefreshThread(const IceUtil::Time& timeout, const CartPrx& cart) :
        _cart(cart),
        _timeout(timeout) {}

    virtual void run() {
        Lock sync(*this);
        while(true) {
            timedWait(_timeout);
            try {
                _cart->refresh();
            } catch(const Ice::Exception& ex) {
                return;
            }
        }
    }

private:
    const CartPrx _cart;
    const IceUtil::Time _timeout;
};

typedef IceUtil::Handle<CartRefreshThread> CartRefreshThreadPtr;

The client's  function instantiates the reaper thread after creating a cart. We assume that the client has a proxy to the cart factory in the main
 variable:factory
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C++

CartPrx cart = factory->create(name);
CartRefreshThreadPtr refresh = new CartRefreshThread(IceUtil::Time::seconds(480), cart);
refresh->start();

Note that, to be on the safe side and also allow for some network delays, the client calls refresh every eight minutes; this is to ensure that at
least one call to  arrives at the server within each ten-minute interval.refresh

See Also

Object Life Cycle
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Dynamic Ice
The Ice streaming API allows you to serialize and deserialize Slice types using either the Ice encoding or an encoding of your choice (for
example, XML). This is useful, for example, if you want to store Slice types in a data base.

The dynamic invocation and dispatch interfaces allow you to write generic clients and servers that need not have compile-time knowledge of
the Slice types used by an application. This makes it possible to create applications such as object browsers, protocol analyzers, or protocol
bridges. In addition, the dynamic invocation and dispatch interfaces permit services such as IceStorm to be implemented without the need to
unmarshal and remarshal every message, with considerable performance improvements.

Keep in mind that applications that use dynamic invocation and dispatch are tedious to implement and harder to prove correct (because what
normally would be a compile-time error appears only as a run-time error with dynamic invocation and dispatch). Therefore, you should use
the dynamic interfaces only if your application truly benefits from this trade-off.

Topics

Streaming Interfaces
Dynamic Invocation and Dispatch
Asynchronous Dynamic Invocation and Dispatch
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Streaming Interfaces

Ice provides convenient interfaces for streaming Slice types to and from a sequence of bytes. You can use these interfaces in many
situations, such as when serializing types for persistent storage, and when using Ice's .dynamic invocation and dispatch facility

The streaming interfaces are not defined in Slice, but are rather a collection of native classes provided by each language mapping.

The streaming interfaces are currently supported in C++, Java, and .NET.

A default implementation of the interfaces uses the , but other implementations are possible.Ice encoding

There are two primary abstract classes:  and . As you might guess,  is used to extract SliceInputStream OutputStream InputStream
types from a sequence of bytes, while  is used to convert Slice types into a sequence of bytes. The classes provide theOutputStream
functions necessary to manipulate all of the core Slice types:

Primitives ( , , , etc.)bool int string
Sequences of primitives
Proxies
Objects

The classes also provide functions that handle various details of the Ice encoding. Using these functions, you can manually insert and extract
constructed types, such as dictionaries and structures, but doing so is tedious and error-prone. To make insertion and extraction of
constructed types easier, the Slice compilers can optionally generate helper functions that manage the low-level details for you.

The remainder of this section describes the streaming interfaces for each supported language mapping. To properly use the streaming
interfaces, you should be familiar with the . An example that demonstrates the use of the streaming interfaces is located in Ice encoding

 in your Ice distribution.demo/Ice/invoke

Topics

C++ Streaming Interfaces
Java Streaming Interfaces
C-Sharp Streaming Interfaces

See Also

Dynamic Invocation and Dispatch
Data Encoding
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C++ Streaming Interfaces

We discuss the stream classes first, followed by the helper functions, and finish with an advanced use case.

Topics

The InputStream Interface in C++
The OutputStream Interface in C++
Intercepting Object Insertion and Extraction in C++
Intercepting User Exception Insertion in C++
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The InputStream Interface in C++

On this page:

The  API in C++InputStream
Extracting Built-In Types in C++
Extracting Sequences of Built-In Types in C++
Extracting Sequences of Built-In Types using Zero-Copy in C++
Extracting Structures in C++
Extracting Dictionaries in C++
Extracting Sequences of User-Defined Types in C++
Other  Methods in C++InputStream

The  API in C++InputStream

An  is created using the following function:InputStream

C++

namespace Ice {
    InputStreamPtr createInputStream(
        const Ice::CommunicatorPtr& communicator,
        const std::vector<Ice::Byte>& data);
}

The  class is shown below.InputStream

C++

namespace Ice {
    class InputStream : ... {
    public:
        virtual CommunicatorPtr communicator() const = 0;

        virtual void sliceObjects(bool slice) = 0;

        virtual void read(bool& v) = 0;
        virtual void read(Byte& v) = 0;
        virtual void read(Short& v) = 0;
        virtual void read(Int& v) = 0;
        virtual void read(Long& v) = 0;
        virtual void read(Float& v) = 0;
        virtual void read(Double& v) = 0;
        virtual void read(std::string& s, bool convert = true) = 0;
        virtual void read(std::wstring& s) = 0;

        template<typename T> inline void read(T& v) {
            StreamReader< StreamTrait<T>::type>::read(this, v);
        }

        virtual void read(std::vector<std::string>& v, bool convert) = 0;

        virtual void read(std::pair<const bool*, const bool*>&,
                          IceUtil::ScopedArray<bool>&) = 0;

        virtual void read(std::pair<const Byte*, const Byte*>&) = 0;

        virtual void read(std::pair<const Short*, const Short*>&,
                          IceUtil::ScopedArray<Short>&) = 0;

        virtual void read(std::pair<const Int*, const Int*>&,
                          IceUtil::ScopedArray<Int>&) = 0;
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        virtual void read(std::pair<const Long*, const Long*>&,
                          IceUtil::ScopedArray<Long>&) = 0;

        virtual void read(std::pair<const Float*, const Float*>&,
                          IceUtil::ScopedArray<Float>&) = 0;

        virtual void read(std::pair<const Double*, const Double*>&,
                          IceUtil::ScopedArray<Double>&) = 0;

        virtual Int readSize() = 0;
        virtual Int readAndCheckSeqSize(int minWireSize) = 0;

        virtual ObjectPrx readProxy() = 0;

        template<typename T> inline void
        read(IceInternal::ProxyHandle<T>& v) {
            // ...
        }

        virtual void readObject(const ReadObjectCallbackPtr& cb) = 0;

        template<typename T> inline void
        read(IceInternal::Handle<T>& v) {
            // ...
        }

        virtual std::string readTypeId() = 0;

        virtual void throwException() = 0;

        virtual void startSlice() = 0;
        virtual void endSlice() = 0;
        virtual void skipSlice() = 0;

        virtual void startEncapsulation() = 0;
        virtual void endEncapsulation() = 0;
        virtual void skipEncapsulation() = 0;

        virtual void readPendingObjects() = 0;

        virtual void rewind() = 0;
    };
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    typedef ... InputStreamPtr;
}

Extracting Built-In Types in C++

Member functions are provided to extract any of the . For example, you can extract a double value followed by a string from abuilt-in types
stream as follows:

C++

vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
double d;
in->read(d);
string s;
in->read(s);

Extracting Sequences of Built-In Types in C++

For types other than built-in types, the following template member function performs the extraction:

C++

template<typename T> inline void
read(T& v) {
    StreamReader<StreamTrait<T>::type>::read(this, v);
}

For example, you can extract a sequence of integers as follows:

C++

vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
// ...
IntSeq s; // Slice: sequence<int> IntSeq;
in->read(s);

The Ice run time provides an implementation of the  template whose  method reads a sequence of any of the built-inStreamReader read
types. Note that, when reading a sequence, this reads both the sequence size that precedes the sequence elements as well as the
sequence elements that follow the size.

If you are using a custom container for your sequence of built-in type, you must provide a specialization of the  template inStreamTrait
order to extract your sequence. For example, the following definition allows you to use the  container from the Qt library:QVector

C++

//
// StreamTrait specialization for QVector
//
template<typename T>
struct StreamTrait< QVector<T> >
{
    static const StreamTraitType type = StreamTraitTypeSequence;
    static const int minWireSize = 1;
};

Extracting Sequences of Built-In Types using Zero-Copy in C++
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InputStream provides a number of overloads that accept a pair of pointers. For example, you can extract a sequence of bytes as follows:

C++

vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
std::pair<const Ice::Byte*, const Ice::Byte*> p;
in->read(p);

The same extraction works for the other built-in integral and floating-point types, such  and .int double

If the extraction is for a byte sequence, the returned pointers always point at memory in the stream's internal marshaling buffer.

For the other built-in types, the pointers refer to the internal marshaling buffer only if the Ice encoding is compatible with the machine and
compiler representation of the type, otherwise the pointers refer to a temporary array allocated to hold the unmarshaled data. The overloads
for zero-copy extraction accept an additional parameter of type  that holds this temporary array when necessary.IceUtil::ScopedArray

Here is an example to illustrate how to extract a sequence of integers, regardless of whether the machine's encoding of integers matches the
on-the-wire representation or not:

C++

#include <IceUtil/ScopedArray.h>
...
in = Ice::createInputStream(communicator, data);
std::pair<const Ice::Int*, const Ice::Int*> p;
IceUtil::ScopedArray<Ice::Int> a;
in->read(p, a);

for(const Ice::Int* i = p.first; i != p.second; ++i) {
    cout << *i << endl;
}

If the on-the-wire encoding matches that of the machine, and therefore zero-copy is possible, the returned pair of pointers points into the run
time's internal marshaling buffer. Otherwise, the run time allocates an array, unmarshals the data into the array, and sets the pair of pointers
to point into that array. Use of the  helper template ensures that the array is deallocated once you let the  goScopedArray ScopedArray
out of scope, so there is no need to call . (  is conceptually the same as the   for classes.delete[] ScopedArray Ptr smart pointer types

Extracting Structures in C++

Without the  option to , you must extract structures member by member according to the  rules.--stream slice2cpp data encoding
Otherwise, with ,  generates code that allows you to extract the structure directly. For example, here is how you can--stream slice2cpp
extract a Slice structure called  from a stream:MyStruct

C++

in = Ice::createInputStream(communicator, data);
MyStruct myStruct;
in->read(myStruct);

Extracting Dictionaries in C++

Without the  option to , you can extract any dictionary whose key and value types are built-in types; for any other--stream slice2cpp
dictionary, you must extract it as a size followed by its entries according to the  rules. If you are using a custom container fordata encoding
your dictionary of built-in types, you must provide a specialization of the  template in order to extract your dictionary. ForStreamTrait
example, the following definition allows you to use the  container from the Qt library:QMap
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C++

//
// StreamTrait specialization for QMap
//
template<typename K, typename V>
struct StreamTrait< QMap<K, V> >
{
    static const StreamTraitType type = StreamTraitTypeDictionary;
    static const int minWireSize = 1;
};

With the  option,  generates code that allows you to extract any dictionary directly, for example:--stream slice2cpp

C++

in = Ice::createInputStream(communicator, data);
MyDict myDict; // Slice: dictionary<string, SomeType> MyDict;
in->read(myDict);

Extracting Sequences of User-Defined Types in C++

Without the  option to , you must extract sequences of user-defined type as a size followed by the element type--stream slice2cpp
according to the  rules. Otherwise, with ,  generates code that allows you to extract a sequence directly,data encoding --stream slice2cpp
for example:

C++

in = Ice::createInputStream(communicator, data);
MyEnumS myEnumS; // Slice: sequence<MyEnum> myEnumS;
in->read(myEnumS);

Other  Methods in C++InputStream

The remaining member functions of  have the following semantics:InputStream

void sliceObjects(bool slice)
Determines the behavior of the stream when extracting . An Ice object is "sliced" when a factory cannot be found for aIce objects
Slice , resulting in the creation of an object of a less-derived type. Slicing is typically disabled when the application expects alltype ID
object factories to be present, in which case the exception  is raised. The default behavior is toNoObjectFactoryException
allow slicing.

void read(std::string& v, bool convert = true)
void read(std::vector<std::string>& v, bool convert = true)
The optional boolean argument determines whether the strings unmarshaled by these methods are processed by the string

, if one is installed. The default behavior is to convert the strings.converter

Ice::Int readSize()
The  has a compact representation to indicate size. This function extracts a size and returns it as an integer.Ice encoding

Ice::Int readAndCheckSeqSize(int minWireSize)
Like , this function reads a size and returns it, but also verifies that there is enough data remaining in the unmarshalingreadSize
buffer to successfully unmarshal the elements of the sequence. The  parameter indicates the smallest possible minWireSize

 of a single sequence element. If the unmarshaling buffer contains insufficient data to unmarshal theon-the-wire representation
sequence, the function throws .UnmarshalOutOfBoundsException

Ice::ObjectPrx readProxy()
This function returns an instance of the base proxy type, .ObjectPrx

template<typename T> inline void
 read(IceInternal::ProxyHandle<T>& v)

This template function behaves like  but avoids the need to down-cast the return value. You can pass a proxy of anyreadProxy
type as the parameter  .v
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void readObject(const Ice::ReadObjectCallbackPtr &)
The  requires extraction to occur in stages. The  function accepts a callback object ofIce encoding for class instances readObject
type , whose definition is shown below:ReadObjectCallback

C++

namespace Ice {
    class ReadObjectCallback : ... {
    public:
        virtual void invoke(const Ice::ObjectPtr&) = 0;
    };
    typedef ... ReadObjectCallbackPtr;
}

When the object instance is available, the callback object's  member function is called. The application must call invoke
 to ensure that all instances are properly extracted. If you are not interested in receiving a callback when thereadPendingObjects

object is extracted, it is easier to use the  template function instead (see below).read(IceInternal::Handle<T>&)

template<typename T> inline void
read(IceInternal::Handle<T>& v)
This template function behaves like  but avoids the need to supply a callback. You can pass a smart pointer of anyreadObject
type as the parameter . Note that, if you want to intercept object extraction, you must use  instead.v readObject

std::string readTypeId()
A table of Slice  is used to save space when . This function returns the type ID at the stream's currenttype IDs encoding Ice objects
position.

void throwException()
This function extracts a  from the stream and throws it. If the stored exception is of an unknown type, the functionuser exception
attempts to extract and throw a less-derived exception. If that also fails, an  is thrown.UnmarshalOutOfBoundsException

void startSlice()
void endSlice()
void skipSlice()
Start, end, and skip a slice of member data, respectively. These functions are used when manually extracting the slices of an Ice

 or .object user exception

void startEncapsulation()
void endEncapsulation()
void skipEncapsulation()
Start, end, and skip an , respectively.encapsulation

void readPendingObjects()
An application must call this function after all other data has been extracted, but only if  were encoded. This functionIce objects
extracts the state of Ice objects and invokes their corresponding callback objects (see ).readObject

void rewind()
Resets the position of the stream to the beginning.

See Also

Smart Pointers for Classes
slice2cpp Command-Line Options
C++ Strings and Character Encoding
Data Encoding for Classes
Basic Data Encoding
The C++ ScopedArray Template
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The OutputStream Interface in C++

On this page:

The  API in C++OutputStream
Inserting Built-In Types in C++
Inserting Sequences of Built-In Types in C++
Inserting Sequences of Built-In Types using Zero-Copy in C++
Inserting Structures in C++
Inserting Dictionaries in C++
Inserting Sequences of User-Defined Types in C++
Other  Methods in C++OutputStream

The  API in C++OutputStream

An  is created using the following function:OutputStream

C++

namespace Ice {
    OutputStreamPtr createOutputStream(const Ice::CommunicatorPtr& communicator);
}

The  class is shown below.OutputStream

C++
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namespace Ice {
    class OutputStream : ... {
    public:
        virtual Ice::CommunicatorPtr communicator() const = 0;

        virtual void write(bool v) = 0;
        virtual void write(Byte v) = 0;
        virtual void write(Short v) = 0;
        virtual void write(Int v) = 0;
        virtual void write(Long v) = 0;
        virtual void write(Float v) = 0;
        virtual void write(Double v) = 0;
        virtual void write(const std::string& v, bool convert = true) = 0;
        virtual void write(const char* v, bool convert = true) = 0;
        virtual void write(const std::wstring& v) = 0;

        virtual void write(const bool* begin, const bool* end) = 0;
        virtual void write(const Byte* begin, const Byte* end) = 0;
        virtual void write(const Short* begin, const Short* end) = 0;
        virtual void write(const Int* begin, const Int* end) = 0;
        virtual void write(const Long* begin, const Long* end) = 0;
        virtual void write(const Float* begin, const Float* end) = 0;
        virtual void write(const Double* begin, const Double* end) = 0;    

        virtual void write(const std::vector<std::string>& v, bool convert) = 0;

        template<typename T> inline void
        write(const T& v) {
            StreamWriter<StreamTrait<T>::type>::write(this, v);
        }

        virtual void writeSize(Ice::Int sz) = 0;

        virtual void writeProxy(const Ice::ObjectPrx& v) = 0;

        template<typename T> inline void
        write(const IceInternal::ProxyHandle<T>& v) {
            // ...
        }

        virtual void writeObject(const Ice::ObjectPtr& v) = 0;

        template<typename T> inline void
        write(const IceInternal::Handle<T>& v) {
            // ...
        }

        virtual void writeTypeId(const std::string& id) = 0;

        virtual void writeException(const Ice::UserException& e) = 0;

        virtual void startSlice() = 0;
        virtual void endSlice() = 0;

        virtual void startEncapsulation() = 0;
        virtual void endEncapsulation() = 0;

        virtual void writePendingObjects() = 0;

        virtual void finished(std::vector<Ice::Byte>& v) = 0;

        virtual void reset(bool) = 0;
    };
}
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Inserting Built-In Types in C++

Member functions are provided to insert any of the . For example, you can insert a double value followed by a string into abuilt-in types
stream as follows:

C++

out = Ice::createOutputStream(communicator);
Ice::Double d = 3.14;
out->write(d);
string s = "Hello";
out->write(s);

Inserting Sequences of Built-In Types in C++

For types other than built-in types, the following template member function performs the insertion:

C++

template<typename T> inline void
write(const T& v) {
    StreamWriter<StreamTrait<T>::type>::write(this, v);
}

For example, you can insert a sequence of integers as follows:

C++

out = Ice::createOutputStream(communicator);
IntSeq s = ...;
out->write(s);

The Ice run time provides an implementation of the  template whose  method writes a sequence of any of the built-inStreamWriter write
types. Note that, when writing a sequence, this writes both the sequence size that precedes the sequence elements and the sequence
elements that follow the size.

If you are using a custom container for your sequence of built-in type, you must provide a specialization of the  template inStreamTrait
order to insert your sequence. For example, the following definition allows you to use the  container from the Qt library:QVector

C++

//
// StreamTrait specialization for QVector
//
template<typename T>
struct StreamTrait< QVector<T> >
{
    static const StreamTraitType type = StreamTraitTypeSequence;
    static const int minWireSize = 1;
};

Inserting Sequences of Built-In Types using Zero-Copy in C++

OutputStream provides a number of overloads that accept a pair of pointers. For example, you can insert a sequence of bytes as follows:

C++

out = Ice::createOutputStream(communicator);
vector<Ice::Byte> data = ...;
out->write(&v[0], &v[v.size()]);
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The same insertion technique works for the other built-in integral and floating-point types, such  and . Insertion in this way canint double
avoid an additional data copy during marshaling if the internal representation of the data in memory is the same as the on-the-wire
representation. (Note that the two pointers must point at a contiguous block of memory.)

Inserting Structures in C++

Without the  option to , you must insert structures member by member according to the  rules.--stream slice2cpp data encoding
Otherwise, with ,  generates code that allows you to insert the structure directly. For example, here is how you can--stream slice2cpp
insert a Slice structure called  into a stream:MyStruct

C++

out = Ice::createOutputStream(communicator);
MyStruct myStruct;
// Initialize myStruct...
out->write(myStruct);

Inserting Dictionaries in C++

Without the  option to , you can insert any dictionary whose key and value types are built-in types; for any other--stream slice2cpp
dictionary, you must insert it as a size followed by its entries according to the  rules. If you are using a custom container fordata encoding
your dictionary of built-in types, you must provide a specialization of the  template in order to insert your dictionary. ForStreamTrait
example, the following definition allows you to use the  container from the Qt library:QMap

C++

//
// StreamTrait specialization for QMap
//
template<typename K, typename V>
struct StreamTrait< QMap<K, V> >
{
    static const StreamTraitType type = StreamTraitTypeDictionary;
    static const int minWireSize = 1;
};

With the  option,  generates code that allows you to insert any dictionary directly, for example:--stream slice2cpp

C++

out = Ice::createOutputStream(communicator);
MyDict myDict; // Slice: dictionary<int, SomeType> MyDict;
// Initialize myDict...
out->write(myDict);

Inserting Sequences of User-Defined Types in C++

Without the  option to , you must insert sequences of user-defined type as a size followed by the element type--stream slice2cpp
according to the  rules. Otherwise, with ,  generates code that allows you to insert a sequence directly,data encoding --stream slice2cpp
for example:

C++

out = Ice::createOutputStream(communicator);
MyEnumS myEnumS; // Slice: sequence<MyEnum> myEnumS;
// Initialize myEnumS...
out->write(myEnumS);

Other  Methods in C++OutputStream
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The remaining member functions of  have the following semantics:OutputStream

void write(const std::string& v, bool convert = true)
void write(const char* v, bool convert = true)
void write(const std::vector<std::string>&, bool convert = true)
The optional boolean argument determines whether the strings marshaled by these methods are processed by the ,string converter
if one is installed. The default behavior is to convert the strings.

void writeSize(Ice::Int sz)
The  has a compact representation to indicate size. This function converts the given non-negative integer into theIce encoding
proper encoded representation.

void writeProxy(const Ice::ObjectPtr & v)
Inserts a proxy.

template<typename T> inline void
write(const IceInternal::Handle<T>& v)
This template function behaves like . You can pass a smart pointer of any type as the parameter  .writeObject v

void writeObject(const Ice::ObjectPtr & v)
Inserts an Ice object. The  may cause the insertion of this object to be delayed, in which case theIce encoding for class instances
stream retains a reference to the given object and the stream does not insert its state it until  is invoked onwritePendingObjects
the stream.

template<typename T> inline void
write(const IceInternal::ProxyHandle<T>& v)
This template function behaves like . You can pass a proxy of any type as the parameter  .writeProxy v

void writeTypeId(const std::string & id)
A table of Slice  is used to save space when encoding . This function adds the given type ID to the table andtype IDs Ice objects
encodes the type ID.  may only be invoked in the context of a call to  (see below).writeTypeId writePendingObjects

void writeException(const Ice::UserException & ex)
Inserts a . You can also use the template member function  to insert a user exception.user exception write(const T&)

void startSlice()
 void endSlice()

Starts and ends a slice of  or  member data.object exception

void startEncapsulation()
 void endEncapsulation()

Starts and ends an , respectively.encapsulation

void writePendingObjects()
Encodes the state of  whose insertion was delayed during . This member function must only be calledIce objects writeObject
once.

void finished(std::vector< Ice::Byte > & data)
Indicates that marshaling is complete. The given byte sequence is filled with the encoded data. This member function must only be
called once.

void reset(bool clearBuffer)
Resets the writing position of the stream to the beginning. If  is true, the stream releases the memory it has allocatedclearBuffer
to hold the encoded data.

See Also

Basic Data Encoding
slice2cpp Command-Line Options
C++ Strings and Character Encoding
Data Encoding for Classes
Data Encoding for Exceptions
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Intercepting Object Insertion and Extraction in C++

In some situations it may be necessary to intercept the insertion and extraction of Ice objects. For example, the  isIce extension for PHP
implemented using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually
encoding and decoding Ice objects as directed by the  rules. However, the extension obviously cannot pass a native PHPdata encoding
object to the C++ stream function . To bridge this gap between object systems, Ice supplies the classes  and writeObject ObjectReader

:ObjectWriter

C++

namespace Ice {
    class ObjectReader : public Ice::Object {
    public:
        virtual void read(const InputStreamPtr&, bool) = 0;
        // ...
    };
    typedef ... ObjectReaderPtr;

    class ObjectWriter : public Ice::Object {
    public:
        virtual void write(const OutputStreamPtr&) const = 0;
        // ...
    };
    typedef ... ObjectWriterPtr;
}

A foreign Ice object is inserted into a stream using the following technique:

A C++ "wrapper" class is derived from . This class wraps the foreign object and implements the  memberObjectWriter write
function.
An instance of the wrapper class is passed to . (This is possible because  derives from writeObject ObjectWriter

.) Eventually, the  member function is invoked on the wrapper instance.Ice::Object write
The implementation of  encodes the object's state as directed by the .write data encoding rules for classes

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is
necessary in order to ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

A C++ "wrapper" class is derived from . An instance of this class represents a foreign Ice object.ObjectReader
An  is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Sliceobject factory
types if it is registered with an empty Slice type ID.
A C++ callback class is derived from . The implementation of  expects its argument to be either nilReadObjectCallback invoke
or an instance of the wrapper class as returned by the object factory.
An instance of the callback class is passed to .readObject
When the stream is ready to extract the state of an object, it invokes  on the wrapper class. The implementation of read read
decodes the object's state as directed by the . The boolean argument to  indicates whether thedata encoding rules for classes read
function should invoke  on the stream; it is possible that the type ID of the current slice has already been read, in whichreadTypeId
case this argument is .false
The callback object passed to  is invoked, passing the instance of the wrapper object. All other callback objectsreadObject
representing the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding
Data Encoding for Classes
C++ Mapping for Classes
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Intercepting User Exception Insertion in C++

As in the case of , a Dynamic Ice application may represent user exceptions in a native format that is not directly compatible withIce objects
the Ice API. If the application needs to raise such a user exception to the Ice run time (so that it will be marshaled and sent back to the
client), the exception must be wrapped in a subclass of . The Dynamic Ice API provides a class to simplify thisIce::UserException
process:

C++

namespace Ice {
    class UserExceptionWriter : public UserException {
    public:
        UserExceptionWriter(const CommunicatorPtr&);

        virtual void write(const OutputStreamPtr&) const = 0;
        virtual bool usesClasses() const = 0;

        virtual std::string ice_name() const = 0;
        virtual Ice::Exception* ice_clone() const = 0;
        virtual void ice_throw() const = 0;

        // ...
    };
    typedef ... UserExceptionWriterPtr;
}

A subclass of  is responsible for supplying a communicator to the constructor, and for implementing the followingUserExceptionWriter
methods:

void write(const OutputStreamPtr&) const
This method is invoked when the Ice run time is ready to marshal the exception. The subclass must marshal the exception using the

.encoding rules for exceptions

bool usesClasses() const
Return true if the exception, or any base exception, contains a data member that is an object by value.

std::string ice_name() const
Return the Slice name of the exception.

Ice::Exception* ice_clone() const
Return a copy of the exception.

void ice_throw() const
Raise the exception by calling .throw *this

See Also

Intercepting Object Insertion and Extraction in C++
Data Encoding for Exceptions
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Java Streaming Interfaces

We discuss the stream classes first, followed by the helper functions, and finish with an advanced use case.

Topics

The InputStream Interface in Java
The OutputStream Interface in Java
Stream Helper Functions in Java
Intercepting Object Insertion and Extraction in Java
Intercepting User Exception Insertion in Java
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The InputStream Interface in Java

An  is created using the following function:InputStream

Java

package Ice;

public class Util {
    public static InputStream
    createInputStream(Communicator communicator, byte[] data);
}

The  interface is shown below.InputStream
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Java

package Ice;

public interface InputStream {
    Communicator communicator();

    void sliceObjects(boolean slice);

    boolean readBool();
    boolean[] readBoolSeq();

    byte readByte();
    byte[] readByteSeq();

    short readShort();
    short[] readShortSeq();

    int readInt();
    int[] readIntSeq();

    long readLong();
    long[] readLongSeq();

    float readFloat();
    float[] readFloatSeq();

    double readDouble();
    double[] readDoubleSeq();

    String readString();
    String[] readStringSeq();

    int readSize();
    int readAndCheckSeqSize(int minSizeWireSize);

    ObjectPrx readProxy();

    void readObject(ReadObjectCallback cb);

    String readTypeId();

    void throwException() throws UserException;

    void startSlice();
    void endSlice();
    void skipSlice();

    void startEncapsulation();
    void endEncapsulation();
    void skipEncapsulation();

    void readPendingObjects();

    java.io.Serializable readSerializable();

    void rewind();

    void destroy();
}

Member functions are provided for extracting all of the primitive types, as well as sequences of primitive types; these are self-explanatory.
The remaining member functions have the following semantics:

void sliceObjects(boolean slice) Determines the behavior of the stream when extracting . An Ice object isIce objects
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"sliced" when a factory cannot be found for a Slice , resulting in the creation of an object of a less-derived type. Slicing istype ID
typically disabled when the application expects all object factories to be present, in which case the exception 

 is raised. The default behavior is to allow slicing.NoObjectFactoryException

int readSize()
The  has a compact representation to indicate size. This function extracts a size and returns it as an integer.Ice encoding

int readAndCheckSeqSize(int minWireSize)
Like , this function reads a size and returns it, but also verifies that there is enough data remaining in the unmarshalingreadSize
buffer to successfully unmarshal the elements of the sequence. The  parameter indicates the smallest possible minWireSize

 of a single sequence element. If the unmarshaling buffer contains insufficient data to unmarshal theon-the-wire representation
sequence, the function throws .UnmarshalOutOfBoundsException

Ice.ObjectPrx readProxy()
This function returns an instance of the base proxy type, . The Slice compiler optionally generates helper functions toObjectPrx
extract proxies of user-defined types.

void readObject(ReadObjectCallback cb)
The  requires extraction to occur in stages. The  function accepts a callback object ofIce encoding for class instances readObject
type , whose definition is shown below:ReadObjectCallback

Java

package Ice;

public interface ReadObjectCallback {
    void invoke(Ice.Object obj);
}

When the object instance is available, the callback object's  member function is called. The application must call invoke
 to ensure that all instances are properly extracted. Note that applications rarely need to invoke this memberreadPendingObjects

function directly; the  generated by the Slice compiler are easier to use.helper functions

String readTypeId()
A table of Slice  is used to save space when encoding . This function returns the type ID at the stream's currenttype IDs Ice objects
position.

void throwException() throws UserException
This function extracts a  from the stream and throws it. If the stored exception is of an unknown type, the functionuser exception
attempts to extract and throw a less-derived exception. If that also fails, an  is thrown.UnmarshalOutOfBoundsException

void startSlice()
 void endSlice()

void skipSlice()
Start, end, and skip a slice of member data, respectively. These functions are used when manually extracting the slices of an Ice

 or .object user exception

void startEncapsulation()
void endEncapsulation()
void skipEncapsulation()
Start, end, and skip an , respectively.encapsulation

void readPendingObjects()
An application must call this function after all other data has been extracted, but only if  were encoded. This functionIce objects
extracts the state of Ice objects and invokes their corresponding callback objects (see ).readObject

java.io.Serializable readSerializable()
Reads a  from the stream.serializable Java object

void destroy()
Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a sequence of strings from a stream:
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Java

byte[] data = ...
Ice.InputStream in =
    Ice.Util.createInputStream(communicator, data);
try {
    boolean b = in.readBool();
    String[] seq = in.readStringSeq();
} finally {
    in.destroy();
}

See Also

Basic Data Encoding
Data Encoding for Classes
Data Encoding for Exceptions
Serializable Objects in Java
Stream Helper Functions in Java
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The OutputStream Interface in Java

An  is created using the following function:OutputStream

Java

package Ice;

public class Util {
    public static OutputStream createOutputStream(
        Communicator communicator);
}

The  class is shown below.OutputStream
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Java

package Ice;

public interface OutputStream {
    Communicator communicator();

    void writeBool(boolean v);
    void writeBoolSeq(boolean[] v);

    void writeByte(byte v);
    void writeByteSeq(byte[] v);

    void writeShort(short v);
    void writeShortSeq(short[] v);

    void writeInt(int v);
    void writeIntSeq(int[] v);

    void writeLong(long v);
    void writeLongSeq(long[] v);

    void writeFloat(float v);
    void writeFloatSeq(float[] v);

    void writeDouble(double v);
    void writeDoubleSeq(double[] v);

    void writeString(String v);
    void writeStringSeq(String[] v);

    void writeSize(int sz);

    void writeProxy(ObjectPrx v);

    void writeObject(Ice.Object v);

    void writeTypeId(String id);

    void writeException(UserException ex);

    void startSlice();
    void endSlice();

    void startEncapsulation();
    void endEncapsulation();

    void writePendingObjects();

    byte[] finished();

    void reset(boolean clearBuffer);

    void writeSerializable(java.io.Serializable o);

    void destroy();
}

Member functions are provided for inserting all of the primitive types, as well as sequences of primitive types; these are self-explanatory. The
remaining member functions have the following semantics:

void writeSize(int sz)
The  has a compact representation to indicate size. This function converts the given non-negative integer into theIce encoding
proper encoded representation.
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void writeProxy(Ice.ObjectPrx v)
Inserts a proxy.

void writeObject(Ice.Object v)
Inserts an Ice object. The  may cause the insertion of this object to be delayed, in which case theIce encoding for class instances
stream retains a reference to the given object and does not insert its state it until  is invoked on the stream.writePendingObjects

void writeTypeId(String id)
A table of Slice  is used to save space when encoding . This function adds the given type ID to the table andtype IDs Ice objects
encodes the type ID.  may only be invoked in the context of a call to  (see below).writeTypeId writePendingObjects

void writeException(UserException ex)
Inserts a .user exception

void startSlice()
 void endSlice()

Starts and ends a slice of  or  member data.object exception

void startEncapsulation()
 void endEncapsulation()

Starts and ends an , respectively.encapsulation

void writePendingObjects()
Encodes the state of Ice objects whose insertion was delayed during . This member function must only be calledwriteObject
once.

byte[] finished()
Indicates that marshaling is complete and returns the encoded byte sequence. This member function must only be called once.

void reset(boolean clearBuffer)
Resets the writing position of the stream to the beginning. The boolean argument  determines whether the streamclearBuffer
releases the internal buffer it allocated to hold the encoded data. If  is true, the stream releases the buffer in order toclearBuffer
make it eligible for garbage collection. If  is false, the stream retains the buffer to avoid generating unnecessaryclearBuffer
garbage.

void writeSerializable(java.io.Serializable v)
Writes a  to the stream.serializable Java object

void destroy()
Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a sequence of strings into a stream:

Java

final String[] seq = { "Ice", "rocks!" };
Ice.OutputStream out = Ice.Util.createOutputStream(communicator);
try {
    out.writeBool(true);
    out.writeStringSeq(seq);
    byte[] data = out.finished();
} finally {
    out.destroy();
}

See Also

Basic Data Encoding
Data Encoding for Classes
Data Encoding for Exceptions
Serializable Objects in Java
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Stream Helper Functions in Java

The stream classes provide all of the low-level functions necessary for  Ice types. However, it would be tedious andencoding and decoding
error-prone to manually encode complex Ice types such as classes, structs, and dictionaries using these low-level functions. For this reason,
the  optionally generates helper functions for streaming complex Ice types.Slice compiler

We will use the following Slice definitions to demonstrate the language mapping:

Slice

module M {
    sequence<...> Seq;
    dictionary<...> Dict;
    struct S {
        ...
    };
    enum E { ... };
    class C {
        ...
    };
};

The Slice compiler generates the corresponding helper functions shown below:

Java

package M;

public class SeqHelper {
    public static T[] read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, T[] v);
}

public class DictHelper {
    public static java.util.Map read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, java.util.Map<..., ...> v);
}

public class SHelper {
    public static S read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, S v);
}

public class EHelper {
    public static E read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, E v);
}

public class CHelper {
    public static void read(Ice.InputStream in, CHolder h);
    public static void write(Ice.OutputStream out, C v);
}

public class CPrxHelper {
    public static CPrx read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, CPrx v);
}

In addition, the Slice compiler generates the following member functions for  and  types:struct enum
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Java

public class S ... {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
};
public class E... {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
}

Be aware that a call to  does not result in the immediate extraction of an Ice object. The  member of the given CHelper.read value
 object is updated when  is invoked on the .CHolder readPendingObjects input stream

See Also

Data Encoding
Using the Slice Compiler for Java
The InputStream Interface in Java
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Intercepting Object Insertion and Extraction in Java

In some situations it may be necessary to intercept the insertion and extraction of Ice objects. For example, the  isIce extension for PHP
implemented using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually
encoding and decoding Ice objects as directed by the  rules. However, the extension obviously cannot pass a native PHPdata encoding
object to the C++ stream function . To bridge this gap between object systems, Ice supplies the classes  and writeObject ObjectReader

:ObjectWriter

Java

package Ice;

public abstract class ObjectReader extends ObjectImpl {
    public abstract void read(InputStream in, boolean rid);
    // ...
}

public abstract class ObjectWriter extends ObjectImpl {
    public abstract void write(OutputStream out);
    // ...
}

A foreign Ice object is inserted into a stream using the following technique:

A Java "wrapper" class is derived from . This class wraps the foreign object and implements the  memberObjectWriter write
function.
An instance of the wrapper class is passed to . (This is possible because  derives from writeObject ObjectWriter Ice.Object
.) Eventually, the  member function is invoked on the wrapper instance.write
The implementation of  encodes the object's state as directed by the .write data encoding rules for classes

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is
necessary in order to ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

A Java "wrapper" class is derived from . An instance of this class represents a foreign Ice object.ObjectReader
An  is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Sliceobject factory
types if it is registered with an empty Slice type ID.
A Java callback class implements the  interface. The implementation of  expects its argument to beReadObjectCallback invoke
either null or an instance of the wrapper class as returned by the object factory.
An instance of the callback class is passed to .readObject
When the stream is ready to extract the state of an object, it invokes  on the wrapper class. The implementation of read read
decodes the object's state as directed by the . The boolean argument to  indicates whether thedata encoding rules for classes read
function should invoke  on the stream; it is possible that the type ID of the current slice has already been read, in whichreadTypeId
case this argument is .false
The callback object passed to  is invoked, passing the instance of the wrapper object. All other callback objectsreadObject
representing the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding
Data Encoding for Classes
Class Factories in Java
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Intercepting User Exception Insertion in Java

As in the case of , a Dynamic Ice application may represent user exceptions in a native format that is not directly compatible withIce objects
the Ice API. If the application needs to raise such a user exception to the Ice run time, the exception must be wrapped in a subclass of 

. The Dynamic Ice API provides a class to simplify this process:Ice.UserException

Java

package Ice;

public abstract class UserExceptionWriter extends UserException {

    public UserExceptionWriter(Communicator communicator);

    public abstract void write(Ice.OutputStream os);
    public abstract boolean usesClasses();

    // ...
}

A subclass of  is responsible for supplying a communicator to the constructor, and for implementing the followingUserExceptionWriter
methods:

void write(OutputStream os)
This method is invoked when the Ice run time is ready to marshal the exception. The subclass must marshal the exception using the

.encoding rules for exceptions

boolean usesClasses()
Return true if the exception, or any base exception, contains a data member that is an object by value.

See Also

Intercepting Object Insertion and Extraction in Java
Data Encoding for Exceptions
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C-Sharp Streaming Interfaces

We discuss the stream classes first, followed by the helper functions, and finish with an advanced use case.

Topics

The InputStream Interface in C-Sharp
The OutputStream Interface in C-Sharp
Stream Helper Functions in C-Sharp
Intercepting Object Insertion and Extraction in C-Sharp
Intercepting User Exception Insertion in C-Sharp
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The InputStream Interface in C-Sharp

An  is created using the following function:InputStream

C#

namespace Ice
{
    public sealed class Util
    {
        public static InputStream createInputStream(
            Communicator communicator,
            byte[] bytes);
    }
}

The  interface is shown below.InputStream
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C#

namespace Ice
{
    public interface InputStream
    {
        Communicator communicator();

        void sliceObjects(bool slice);

        bool readBool();
        bool[] readBoolSeq();

        byte readByte();
        byte[] readByteSeq();

        short readShort();
        short[] readShortSeq();

        int readInt();
        int[] readIntSeq();

        long readLong();
        long[] readLongSeq();

        float readFloat();
        float[] readFloatSeq();

        double readDouble();
        double[] readDoubleSeq();

        string readString();
        string[] readStringSeq();

        int readSize();
        int readAndCheckSeqSize(int minSize);

        ObjectPrx readProxy();

        void readObject(ReadObjectCallback cb);

        string readTypeId();

        void throwException();

        void startSlice();
        void endSlice();
        void skipSlice();

        void startEncapsulation();
        void endEncapsulation();
        void skipEncapsulation();
        int getEncapsulationSize();

        void readPendingObjects();

        object readSerializable();

        void rewind();

        void destroy();
    }
}
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Member functions are provided for extracting all of the primitive types, as well as sequences of primitive types; these are self-explanatory.
The remaining member functions have the following semantics:

void sliceObjects(boolean slice)
Determines the behavior of the stream when extracting . An Ice object is "sliced" when a factory cannot be found for aIce objects
Slice , resulting in the creation of an object of a less-derived type. Slicing is typically disabled when the application expects alltype ID
object factories to be present, in which case the exception  is raised. The default behavior is toNoObjectFactoryException
allow slicing.

int readSize()
The  has a compact representation to indicate size. This function extracts a size and returns it as an integer.Ice encoding

int readAndCheckSeqSize(int minWireSize)
Like , this function reads a size and returns it, but also verifies that there is enough data remaining in the unmarshalingreadSize
buffer to successfully unmarshal the elements of the sequence. The  parameter indicates the smallest possible minWireSize

 of a single sequence element. If the unmarshaling buffer contains insufficient data to unmarshal theon-the-wire representation
sequence, the function throws .UnmarshalOutOfBoundsException

Ice.ObjectPrx readProxy()
This function returns an instance of the base proxy type, . The Slice compiler optionally generates  toObjectPrx helper functions
extract proxies of user-defined types.

void readObject(ReadObjectCallback cb)
The  requires extraction to occur in stages. The  function accepts a callback object ofIce encoding for class instances readObject
type , whose definition is shown below:ReadObjectCallback

C#

namespace Ice
{
    public interface ReadObjectCallback
    {
        void invoke(Ice.Object obj);
    }
}

When the object instance is available, the callback object's  member function is called. The application must call invoke
 to ensure that all instances are properly extracted. Note that applications rarely need to invoke this memberreadPendingObjects

function directly; the  generated by the Slice compiler are easier to use.helper functions

string readTypeId()
A table of Slice  is used to save space when encoding . This function returns the type ID at the stream's currenttype IDs Ice objects
position.

void throwException()
This function extracts a  from the stream and throws it. If the stored exception is of an unknown type, the functionuser exception
attempts to extract and throw a less-derived exception. If that also fails, an  is thrown.UnmarshalOutOfBoundsException

void startSlice()
 void endSlice()

void skipSlice()
Start, end, and skip a slice of member data, respectively. These functions are used when manually extracting the slices of an Ice

 or .object user exception

void startEncapsulation()
void endEncapsulation()
void skipEncapsulation()
Start, end, and skip an , respectively.encapsulation

int getEncapsulationSize()
Returns the size of the current  in bytes.encapsulation

void readPendingObjects()
An application must call this function after all other data has been extracted, but only if  were encoded. This functionIce objects
extracts the state of Ice objects and invokes their corresponding callback objects (see ).readObject

object readSerializable()
Reads a  from the stream.serializable .NET object
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void rewind()
Resets the position of the stream to the beginning.

void destroy()
Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a sequence of strings from a stream:

C#

byte[] data = ...
Ice.InputStream inStream =
    Ice.Util.createInputStream(communicator, data);
try {
    bool b = inStream.readBool();
    string[] seq = inStream.readStringSeq();
} finally {
    inStream.destroy();
}

See Also

Basic Data Encoding
Data Encoding for Classes
Data Encoding for Exceptions
Serializable Objects in C-Sharp
Stream Helper Functions in C-Sharp
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The OutputStream Interface in C-Sharp

An  is created using the following function:OutputStream

C#

namespace Ice
{
    public sealed class Util
    {
        public static OutputStream createOutputStream(Communicator communicator);
    }
}

The  class is shown below.OutputStream
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C#

namespace Ice
{
    public interface OutputStream
    {
        Communicator communicator();

        void writeBool(bool v);
        void writeBoolSeq(bool[] v);

        void writeByte(byte v);
        void writeByteSeq(byte[] v);

        void writeShort(short v);
        void writeShortSeq(short[] v);

        void writeInt(int v);
        void writeIntSeq(int[] v);

        void writeLong(long v);
        void writeLongSeq(long[] v);

        void writeFloat(float v);
        void writeFloatSeq(float[] v);

        void writeDouble(double v);
        void writeDoubleSeq(double[] v);

        void writeString(string v);
        void writeStringSeq(string[] v);

        void writeSize(int sz);

        void writeProxy(ObjectPrx v);

        void writeObject(Ice.Object v);

        void writeTypeId(string id);

        void writeException(UserException ex);

        void startSlice();
        void endSlice();

        void startEncapsulation();
        void endEncapsulation();

        void writePendingObjects();

        byte[] finished();

        void reset(bool clearBuffer);

        void writeSerializable(object v);

        void destroy();
    }
}

Member functions are provided for inserting all of the primitive types, as well as sequences of primitive types; these are self-explanatory. The
remaining member functions have the following semantics:

void writeSize(int sz)
The  has a compact representation to indicate size. This function converts the given non-negative integer into theIce encoding
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proper encoded representation.

void writeObject(Ice.Object v)
Inserts an Ice object. The  may cause the insertion of this object to be delayed, in which case theIce encoding for class instances
stream retains a reference to the given object and does not insert its state it until  is invoked on the stream.writePendingObjects

void writeProxy(Ice.ObjectPrx v)
Inserts a proxy.

void writeTypeId(string id)
A table of Slice  is used to save space when encoding . This function adds the given type ID to the table andtype IDs Ice objects
encodes the type ID.  may only be invoked in the context of a call to  (see below).writeTypeId writePendingObjects

void writeException(UserException ex)
Inserts a .user exception

void startSlice()
 void endSlice()

Starts and ends a slice of  or  member data.object exception

void startEncapsulation()
 void endEncapsulation()

Starts and ends an , respectively.encapsulation

void writePendingObjects()
Encodes the state of Ice objects whose insertion was delayed during . This member function must only be calledwriteObject
once.

byte[] finished()
Indicates that marshaling is complete and returns the encoded byte sequence. This member function must only be called once.

void reset(boolean clearBuffer)
Resets the writing position of the stream to the beginning. The boolean argument  determines whether the streamclearBuffer
releases the internal buffer it allocated to hold the encoded data. If  is true, the stream releases the buffer in order toclearBuffer
make it eligible for garbage collection. If  is false, the stream retains the buffer to avoid generating unnecessaryclearBuffer
garbage.

void writeSerializable(object v)
Writes a  to the stream.serializable .NET object

void destroy()
Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a sequence of strings into a stream:

C#

string[] seq = { "Ice", "rocks!" };
Ice.OutputStream outStream
    = Ice.Util.createOutputStream(communicator);
try {
    outStream.writeBool(true);
    outStream.writeStringSeq(seq);
    byte[] data = outStream.finished();
} finally {
    outStream.destroy();
}

See Also

Basic Data Encoding
Data Encoding for Classes
Data Encoding for Exceptions
Serializable Objects in C-Sharp
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Stream Helper Functions in C-Sharp

The stream classes provide all of the low-level functions necessary for  Ice types. However, it would be tedious andencoding and decoding
error-prone to manually encode complex Ice types such as classes, structs, and dictionaries using these low-level functions. For this reason,
the  optionally generates helper functions for streaming complex Ice types.Slice compiler

We will use the following Slice definitions to demonstrate the language mapping:

Slice

module M {
    sequence<...> Seq;
    dictionary<...> Dict;
    struct S {
        ...
    };
    enum E { ... };
    class C {
        ...
    };
};

The Slice compiler generates the corresponding helper functions shown below:
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C#

namespace M
{
    public sealed class SeqHelper
    {
        public static int[] read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, int[] _v);
    }

    public sealed class DictHelper
    {
        public static Dictionary<...> read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, Dictionary<...> _v);
    }

    public sealed class SHelper
    {
        public static S read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, S _v);
    }

    public sealed class EHelper
    {
        public static M.E read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, M.E _v);
    }

    public sealed class CHelper
    {
        public CHelper(Ice.InputStream _in);
        public void read();
        public static void write(Ice.OutputStream _out, C _v);
        public M.C value
        {
            get;
        }
        // ...
    }

    public sealed class CPrxHelper : Ice.ObjectPrxHelperBase, CPrx
    {
        public static CPrx read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, CPrx _v);
    }
}

In addition, the Slice compiler generates the following member functions for  types:struct

C#

public struct S {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
}

Be aware that a call to  does not result in the immediate extraction of an Ice object. The  property of the given CHelper.read value
 object is updated when  is invoked on the .CHelper readPendingObjects input stream

See Also

slice2cs Command-Line Options
The InputStream Interface in C-Sharp
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Intercepting Object Insertion and Extraction in C-Sharp

In some situations it may be necessary to intercept the insertion and extraction of Ice objects. For example, the  isIce extension for PHP
implemented using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually
encoding and decoding Ice objects as directed by the  rules. However, the extension obviously cannot pass a native PHPdata encoding
object to the C++ stream function . To bridge this gap between object systems, Ice supplies the classes  and writeObject ObjectReader

:ObjectWriter

C#

namespace Ice
{
    public abstract class ObjectReader : ObjectImpl
    {
        public abstract void read(InputStream inStream, bool rid);
        // ...
    }

    public abstract class ObjectWriter : ObjectImpl
    {
        public abstract void write(OutputStream outStream);
        // ...
    }
}

A foreign Ice object is inserted into a stream using the following technique:

A C# "wrapper" class is derived from . This class wraps the foreign object and implements the  memberObjectWriter write
function.
An instance of the wrapper class is passed to . (This is possible because  derives from writeObject ObjectWriter Ice.Object
.) Eventually, the  member function is invoked on the wrapper instance.write
The implementation of  encodes the object's state as directed by the .write data encoding rules for classes

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is
necessary in order to ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

A C# "wrapper" class is derived from . An instance of this class represents a foreign Ice object.ObjectReader
An  is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Sliceobject factory
types if it is registered with an empty Slice type ID.
A C# callback class implements the  interface. The implementation of  expects its argument to beReadObjectCallback invoke
either null or an instance of the wrapper class as returned by the object factory.
An instance of the callback class is passed to .readObject
When the stream is ready to extract the state of an object, it invokes  on the wrapper class. The implementation of read read
decodes the object's state as directed by the . The boolean argument to  indicates whether thedata encoding rules for classes read
function should invoke  on the stream; it is possible that the type ID of the current slice has already been read, in whichreadTypeId
case this argument is .false
The callback object passed to  is invoked, passing the instance of the wrapper object. All other callback objectsreadObject
representing the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding
Data Encoding for Classes
Class Factories in C#
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Intercepting User Exception Insertion in C-Sharp

As in the case of , a Dynamic Ice application may represent user exceptions in a native format that is not directly compatible withIce objects
the Ice API. If the application needs to raise such a user exception to the Ice run time, the exception must be wrapped in a subclass of 

. The Dynamic Ice API provides a class to simplify this process:Ice.UserException

C#

namespace Ice
{
    public abstract class UserExceptionWriter : UserException
    {
        public UserExceptionWriter(Communicator communicator);

        public abstract void write(OutputStream os);
        public abstract bool usesClasses();

        // ...
    }
}

A subclass of  is responsible for supplying a communicator to the constructor, and for implementing the followingUserExceptionWriter
methods:

void write(OutputStream os)
This method is invoked when the Ice run time is ready to marshal the exception. The subclass must marshal the exception using the

.encoding rules for exceptions

bool usesClasses()
Return true if the exception, or any base exception, contains a data member that is an object by value.

See Also

Intercepting Object Insertion and Extraction in C-Sharp
Data Encoding for Exceptions
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Dynamic Invocation and Dispatch

Topics

Dynamic Invocation and Dispatch Overview
Dynamic Invocation and Dispatch in C++
Dynamic Invocation and Dispatch in Java
Dynamic Invocation and Dispatch in C-Sharp
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1.  
2.  
3.  
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Dynamic Invocation and Dispatch Overview

On this page:

Use Cases for Dynamic Invocation and Dispatch
Dynamic Invocation using ice_invoke
Dynamic Dispatch using Blobject

Use Cases for Dynamic Invocation and Dispatch

Ice applications generally use the static invocation model, in which the application invokes a Slice operation by calling a member function on
a generated proxy class. In the server, the static dispatch model behaves similarly: the request is dispatched to the servant as a
statically-typed call to a member function. Underneath this statically-typed facade, the Ice run times in the client and server are exchanging
sequences of bytes representing the encoded request arguments and results. These interactions are illustrated below:

Interactions in a static invocation.

The client initiates a call to the Slice operation  by calling the member function  on a proxy.add add
The generated proxy class marshals the arguments into a sequence of bytes and transmits them to the server.
In the server, the generated servant class unmarshals the arguments and calls  on the subclass.add
The servant marshals the results and returns them to the client.
Finally, the client's proxy unmarshals the results and returns them to the caller.

The application is blissfully unaware of this low-level machinery, and in the majority of cases that is a distinct advantage. In some situations,
however, an application can leverage this machinery to accomplish tasks that are not possible in a statically-typed environment. Ice provides
the dynamic invocation and dispatch models for these situations, allowing applications to send and receive requests as encoded sequences
of bytes instead of statically-typed arguments.

The dynamic invocation and dispatch models offer several unique advantages to Ice services that forward requests from senders to
receivers, such as  and . For these services, the request arguments are an opaque byte sequence that can be forwardedGlacier2 IceStorm
without the need to unmarshal and remarshal the arguments. Not only is this significantly more efficient than a statically-typed
implementation, it also allows intermediaries such as Glacier2 and IceStorm to be ignorant of the Slice types in use by senders and
receivers.

Another use case for the dynamic invocation and dispatch models is scripting language integration. The Ice extensions for Python, PHP, and
Ruby invoke Slice operations using the dynamic invocation model; the request arguments are encoded using the .streaming interfaces

It may be difficult to resist the temptation of using a feature like dynamic invocation or dispatch, but we recommend that you carefully
consider the risks and complexities of such a decision. For example, an application that uses the streaming interface to manually encode
and decode request arguments has a high risk of failure if the argument signature of an operation changes. In contrast, this risk is greatly
reduced in the static invocation and dispatch models because errors in a strongly-typed language are found early, during compilation.
Therefore, we caution you against using this capability except where its advantages significantly outweigh the risks.
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Dynamic Invocation using ice_invoke

Dynamic invocation is performed using the proxy member function , defined in the proxy base class . If we were toice_invoke ObjectPrx
define the function in Slice, it would look like this:

Slice

sequence<byte> ByteSeq;

bool ice_invoke(
    string operation,
    Ice::OperationMode mode,
    ByteSeq inParams,
    out ByteSeq outParams
);

The first argument is the name of the Slice operation.

This is the Slice name of the operation, not the name as it might be mapped to any particular language. For example, the
string  is the name of the Slice operation , and not  (C++) or  (Java)."while" while "_cpp_while" "_while"

The second argument is an enumerator from the Slice type ; the possible values are  and .Ice::OperationMode Normal Idempotent
The third argument, , represents the encoded  parameters of the operation.inParams in

A return value of  indicates a successful invocation, in which case the marshaled form of the operation's results (if any) is provided in true
. A return value of  signals the occurrence of a user exception whose marshaled form is provided in . TheoutParams false outParams

caller must also be prepared to catch local exceptions, which are thrown directly.

Note that the Ice run time currently does not support the use of collocation optimization in dynamic invocations. Attempting to call 
 on a proxy that is configured to use collocation optimization raises . See ice_invoke CollocationOptimizationException Location
 for more information on this optimization and instructions for disabling it.Transparency

Dynamic Dispatch using Blobject

A server enables dynamic dispatch by creating a subclass of  (the name is derived from , meaning a blob of bytes). The SliceBlobject blob
equivalent of  is shown below:Blobject

Slice

sequence<byte> ByteSeq;

interface Blobject {
    bool ice_invoke(ByteSeq inParams, out ByteSeq outParams);
};

The  argument supplies the encoded  parameters. The contents of the  argument depends on the outcome of theinParams in outParams
invocation: if the operation succeeded,  must return  and place the encoded results in ; if a user exceptionice_invoke true outParams
occurred,  must return , in which case  contains the encoded exception. The operation may also raise localice_invoke false outParams
exceptions such as .OperationNotExistException

The language mappings add a trailing argument of type  to , and this provides the implementation with theIce::Current ice_invoke
name of the operation being dispatched.

Because  derives from , an instance is a regular Ice servant just like instances of the classes generated for user-definedBlobject Object
Slice interfaces. The primary difference is that all operation invocations on a  instance are dispatched through the Blobject ice_invoke
member function.

If a  subclass intends to decode the  parameters (and not simply forward the request to another object), then theBlobject in
implementation obviously must know the signatures of all operations it supports. How a  subclass determines its type informationBlobject
is an implementation detail that is beyond the scope of this manual.

Note that a  servant is also useful if you want to create a message forwarding service, such as . In this case, there is noBlobject Glacier2
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need to decode any parameters; instead, the implementation simply forwards each request unchanged to a new destination. You can
register a  servant as a  to easily achieve this.Blobject default servant

See Also

Location Transparency
The Current Object
Default Servants
Streaming Interfaces
Glacier2
IceStorm
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Dynamic Invocation and Dispatch in C++

This page describes the C++ mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

 in C++ice_invoke
Using Streams with  in C++ice_invoke
Subclassing  in C++Blobject
Using the Array Mapping for  and  in C++ice_invoke Blobject

ice_invoke in C++

The mapping for  is shown below:ice_invoke

C++

bool ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector< Ice::Byte >& inParams,
    std::vector< Ice::Byte >& outParams
);

Another overloading of  (not shown) adds a trailing argument of type .ice_invoke Ice::Context

As an example, the code below demonstrates how to invoke the operation , which takes no  parameters:op in

C++

Ice::ObjectPrx proxy = ...
try {
    std::vector<Ice::Byte> inParams, outParams;
    if (proxy->ice_invoke("op", Ice::Normal, inParams, outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (const Ice::LocalException& ex) {
    // Handle exception
}

Using Streams with  in C++ice_invoke

The  provide the tools an application needs to dynamically invoke operations with arguments of any Slice type. Considerstreaming interfaces
the following Slice definition:

Slice

module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};



Ice 3.4.2 Documentation

1120 Copyright © 2011, ZeroC, Inc.

Now let's write a client that dynamically invokes the  operation:add

C++

Ice::ObjectPrx proxy = ...
try {
    std::vector< Ice::Byte > inParams, outParams;

    Ice::OutputStreamPtr out = Ice::createOutputStream(communicator);
    out->writeInt(100); // x
    out->writeInt(-1);  // y
    out->finished(inParams);

    if (proxy->ice_invoke("add", Ice::Idempotent, inParams, outParams)) {
        // Handle success
        Ice::InputStreamPtr in = Ice::createInputStream(communicator, outParams);
        int result = in->readInt();
        assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (const Ice::LocalException& ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let's implement that now. We assume that we have compiled our
program with the Slice-generated code, therefore we can call  on the input stream and catch  directly:throwException Overflow

C++

    if (proxy->ice_invoke("add", Ice::Idempotent, inParams, outParams)) {
        // Handle success
        // ...
    } else {
        // Handle user exception
        Ice::InputStreamPtr in = Ice::createInputStream(communicator, outParams);
        try {
            in->throwException();
        } catch (const Calc::Overflow& ex) {
            cout << "overflow while adding " << ex.x << " and " << ex.y << endl;
        } catch (const Ice::UserException& ex) {
            // Handle unexpected user exception
        }
    }

This is obviously a contrived example: if the Slice-generated code is available, why bother using dynamic dispatch? In the
absence of Slice-generated code, the caller would need to manually unmarshal the user exception, which is outside the
scope of this manual.

As a defensive measure, the code traps . This could be raised if the Slice definition of  is modified to includeIce::UserException add
another user exception but this segment of code did not get updated accordingly.

Subclassing  in C++Blobject

Implementing the dynamic dispatch model requires writing a subclass of . We continue using the  interface toIce::Blobject Compute
demonstrate a  implementation:Blobject
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C++

class ComputeI : public Ice::Blobject {
public:
    virtual bool ice_invoke(
        const std::vector<Ice::Byte>& inParams,
        std::vector<Ice::Byte>& outParams,
        const Ice::Current& current);
};

An instance of  is an Ice object because  derives from , therefore an instance can be added to an ComputeI Blobject Object object
 like any other servant.adapter

For the purposes of this discussion, the implementation of  handles only the  operation and raises ice_invoke add
 for all other operations. In a real implementation, the servant must also be prepared to receiveOperationNotExistException

invocations of the following : operationsObject

string ice_id()
Returns the Slice  of the servant's most-derived type.type ID

StringSeq ice_ids()
Returns a sequence of strings representing all of the Slice interfaces supported by the servant, including ."::Ice::Object"

bool ice_isA(string id)
Returns  if the servant supports the interface denoted by the given Slice , or  otherwise. This operation is invokedtrue type ID false
by the proxy function .checkedCast

void ice_ping()
Verifies that the object denoted by the  and  contained in  is reachable.identity facet Ice::Current

With that in mind, here is our simplified version of :ice_invoke
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C++

bool ComputeI::ice_invoke(
    const std::vector<Ice::Byte>& inParams,
    std::vector<Ice::Byte>& outParams,
    const Ice::Current& current)
{
    if (current.operation == "add") {
        Ice::CommunicatorPtr communicator = current.adapter->getCommunicator();
        Ice::InputStreamPtr in = Ice::createInputStream(communicator, inParams);
        int x = in->readInt();
        int y = in->readInt();
        Ice::OutputStreamPtr out = Ice::createOutputStream(communicator);
        if (checkOverflow(x, y)) {
            Calc::Overflow ex;
            ex.x = x;
            ex.y = y;
            out->writeException(ex);
            out->finished(outParams);
            return false;
        } else {
            out->writeInt(x + y);
            out->finished(outParams);
            return true;
        }
    } else {
        Ice::OperationNotExistException ex(__FILE__, __LINE__);
        ex.id = current.id;
        ex.facet = current.facet;
        ex.operation = current.operation;
        throw ex;
    }
}

If an overflow is detected, the code "raises" the  user exception by calling  on the output stream andCalc::Overflow writeException
returning , otherwise the return value is encoded and the function returns .false true

Using the Array Mapping for  and  in C++ice_invoke Blobject

Ice for C++ supports an  for  input parameters that avoids the overhead of extra copying. Since the alternative mapping sequence
 functions treat the encoded input parameters as a value of type , the dynamic invocation and dispatchice_invoke sequence<byte>

facility includes interfaces that use the array mapping for the input parameter blob.

Ice provides two overloaded versions of the proxy function  that use the array mapping. The version that omits the trailing ice_invoke
 argument is shown below:Ice::Context

C++

bool ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair< const Ice::Byte*, const Ice::Byte* >& in,
    std::vector< Ice::Byte >& out
);

A  servant uses the array mapping by deriving its implementation class from  and overriding its Blobject Ice::BlobjectArray
 function:ice_invoke



Ice 3.4.2 Documentation

1123 Copyright © 2011, ZeroC, Inc.

C++

class BlobjectArray {
public:
    virtual bool ice_invoke(
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in,
        std::vector<Ice::Byte>& out,
        const Ice::Current& current) = 0;
};

See Also

C++ Mapping for Sequences
Object Adapters
Request Contexts
Streaming Interfaces
Type IDs
Object Identity
Facets and Versioning
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Dynamic Invocation and Dispatch in Java

This page describes the Java mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

 in Javaice_invoke
Using Streams with  in Javaice_invoke
Subclassing  in JavaBlobject

ice_invoke in Java

The mapping for  is shown below:ice_invoke

Java

boolean ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Ice.ByteSeqHolder outParams
);

Another overloading of  (not shown) adds a trailing argument of type .ice_invoke Ice.Context

As an example, the code below demonstrates how to invoke the operation , which takes no  parameters:op in

Java

Ice.ObjectPrx proxy = ...
try {
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder();
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null, outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

Using Streams with  in Javaice_invoke

The  provide the tools an application needs to dynamically invoke operations with arguments of any Slice type. Considerstreaming interfaces
the following Slice definition:

Slice

module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};
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Now let's write a client that dynamically invokes the  operation:add

Java

Ice.ObjectPrx proxy = ...
try {
    Ice.OutputStream out = Ice.Util.createOutputStream(communicator);
    out.writeInt(100); // x
    out.writeInt(-1);  // y
    byte[] inParams = out.finished();
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder();
    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent, inParams, outParams)) {
        // Handle success
        Ice.InputStream in = Ice.Util.createInputStream(communicator, outParams.value);
        int result = in.readInt();
        assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let's implement that now. We assume that we have compiled our
program with the Slice-generated code, therefore we can call  on the input stream and catch  directly:throwException Overflow

Java

    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent, inParams, outParams)) {
        // Handle success
        // ...
    } else {
        // Handle user exception
        Ice.InputStream in = Ice.Util.createInputStream(communicator, outParams.value);
        try {
            in.throwException();
        } catch (Calc.Overflow ex) {
            System.out.println("overflow while adding " + ex.x + " and " + ex.y);
        } catch (Ice.UserException ex) {
            // Handle unexpected user exception
        }
    }

This is obviously a contrived example: if the Slice-generated code is available, why bother using dynamic dispatch? In the
absence of Slice-generated code, the caller would need to manually unmarshal the user exception, which is outside the
scope of this manual.

As a defensive measure, the code traps . This could be raised if the Slice definition of  is modified to includeIce.UserException add
another user exception but this segment of code did not get updated accordingly.

Subclassing  in JavaBlobject

Implementing the dynamic dispatch model requires writing a subclass of . We continue using the  interface toIce.Blobject Compute
demonstrate a  implementation:Blobject
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Java

public class ComputeI extends Ice.Blobject {
    public boolean ice_invoke(
        byte[] inParams,
        Ice.ByteSeqHolder outParams,
        Ice.Current current)
    {
        // ...
    }
}

An instance of  is an Ice object because  derives from , therefore an instance can be added to an ComputeI Blobject Object object
 like any other servant.adapter

For the purposes of this discussion, the implementation of  handles only the  operation and raises ice_invoke add
 for all other operations. In a real implementation, the servant must also be prepared to receiveOperationNotExistException

invocations of the following : operationsObject

string ice_id()
Returns the Slice  of the servant's most-derived type.type ID

StringSeq ice_ids()
Returns a sequence of strings representing all of the Slice interfaces supported by the servant, including ."::Ice::Object"

bool ice_isA(string id)
Returns  if the servant supports the interface denoted by the given Slice , or  otherwise. This operation is invokedtrue type ID false
by the proxy function .checkedCast

void ice_ping()
Verifies that the object denoted by the  and  contained in  is reachable.identity facet Ice::Current

With that in mind, here is our simplified version of :ice_invoke
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Java

    public boolean ice_invoke(
        byte[] inParams,
        Ice.ByteSeqHolder outParams,
        Ice.Current current)
    {
        if (current.operation.equals("add")) {
            Ice.Communicator communicator = current.adapter.getCommunicator();
            Ice.InputStream in = Ice.Util.createInputStream(communicator, inParams);
            int x = in.readInt();
            int y = in.readInt();
            Ice.OutputStream out = Ice.Util.createOutputStream(communicator);
            try {
                if (checkOverflow(x, y)) {
                    Calc.Overflow ex = new Calc.Overflow();
                    ex.x = x;
                    ex.y = y;
                    out.writeException(ex);
                    outParams.value = out.finished();
                    return false;
                } else {
                    out.writeInt(x + y);
                    outParams.value = out.finished();
                    return true;
                }
            } finally {
                out.destroy();
            }
        } else {
            Ice.OperationNotExistException ex = new Ice.OperationNotExistException();
            ex.id = current.id;
            ex.facet = current.facet;
            ex.operation = current.operation;
            throw ex;
        }
    }

If an overflow is detected, the code "raises" the  user exception by calling  on the output stream andCalc::Overflow writeException
returning , otherwise the return value is encoded and the function returns .false true

See Also

Object Adapters
Request Contexts
Streaming Interfaces
Type IDs
Object Identity
Facets and Versioning
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Dynamic Invocation and Dispatch in C-Sharp

This page describes the C# mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

 in C#ice_invoke
Using Streams with  in C#ice_invoke
Subclassing  in C#Blobject

ice_invoke in C#

The mapping for  is shown below:ice_invoke

C#

namespace Ice
{
    public interface ObjectPrx
    {
        bool ice_invoke(string operation,
                        OperationMode mode,
                        byte[] inParams,
                        out byte[] outParams);
        // ...
    }
}

Another overloading of  (not shown) adds a trailing argument of type .ice_invoke Ice.Context

As an example, the code below demonstrates how to invoke the operation , which takes no  parameters:op in

C#

Ice.ObjectPrx proxy = ...
try {
    byte[] outParams;
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null, outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

Using Streams with  in C#ice_invoke

The  provide the tools an application needs to dynamically invoke operations with arguments of any Slice type. Considerstreaming interfaces
the following Slice definition:
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Slice

module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};

Now let's write a client that dynamically invokes the  operation:add

C#

Ice.ObjectPrx proxy = ...
try {
    Ice.OutputStream outStream = Ice.Util.createOutputStream(communicator);
    outStream.writeInt(100); // x
    outStream.writeInt(-1);  // y
    byte[] inParams = outStream.finished();
    byte[] outParams;
    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent, inParams, out outParams)) {
        // Handle success
        Ice.InputStream inStream = Ice.Util.createInputStream(communicator, outParams);
        int result = inStream.readInt();
        System.Diagnostics.Debug.Assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let's implement that now. We assume that we have compiled our
program with the Slice-generated code, therefore we can call  on the input stream and catch  directly:throwException Overflow

C#

    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent, inParams, out outParams)) {
        // Handle success
        ...
    } else {
        // Handle user exception
        Ice.InputStream inStream = Ice.Util.createInputStream(communicator, outParams);
        try {
            inStream.throwException();
        } catch (Calc.Overflow ex) {
            System.Console.WriteLine("overflow while adding " +
                                     ex.x + " and " + ex.y);
        } catch (Ice.UserException) {
            // Handle unexpected user exception
        }
    }

This is obviously a contrived example: if the Slice-generated code is available, why bother using dynamic dispatch? In the
absence of Slice-generated code, the caller would need to manually unmarshal the user exception, which is outside the
scope of this book.
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As a defensive measure, the code traps . This could be raised if the Slice definition of  is modified to includeIce.UserException add
another user exception but this segment of code did not get updated accordingly.

Subclassing  in C#Blobject

Implementing the dynamic dispatch model requires writing a subclass of . We continue using the  interface toIce.Blobject Compute
demonstrate a  implementation:Blobject

C#

public class ComputeI : Ice.Blobject {
    public bool ice_invoke(byte[] inParams, out byte[] outParams, Ice.Current current);
    {
        ...
    }
}

An instance of  is an Ice object because  derives from , therefore an instance can be added to an ComputeI Blobject Object object
 like any other servant.adapter

For the purposes of this discussion, the implementation of  handles only the  operation and raises ice_invoke add
 for all other operations. In a real implementation, the servant must also be prepared to receiveOperationNotExistException

invocations of the following : operationsObject

string ice_id()
Returns the Slice  of the servant's most-derived type.type ID

StringSeq ice_ids()
Returns a sequence of strings representing all of the Slice interfaces supported by the servant, including ."::Ice::Object"

bool ice_isA(string id)
Returns  if the servant supports the interface denoted by the given Slice , or  otherwise. This operation is invokedtrue type ID false
by the proxy function .checkedCast

void ice_ping()
Verifies that the object denoted by the  and  contained in  is reachable.identity facet Ice::Current

With that in mind, here is our simplified version of :ice_invoke
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C#

    public bool ice_invoke(byte[] inParams, out byte[] outParams, Ice.Current current);
    {
        if (current.operation.Equals("add")) {
            Ice.Communicator communicator = current.adapter.getCommunicator();
            Ice.InputStream inStream = Ice.Util.createInputStream(communicator, inParams);
            int x = inStream.readInt();
            int y = inStream.readInt();
            Ice.OutputStream outStream = Ice.Util.createOutputStream(communicator);
            try {
                if (checkOverflow(x, y)) {
                    Calc.Overflow ex = new Calc.Overflow();
                    ex.x = x;
                    ex.y = y;
                    outStream.StreamwriteException(ex);
                    outParams = outStream.finished();
                    return false;
                } else {
                    outStream.writeInt(x + y);
                    outParams = outStream.finished();
                    return true;
                }
            } finally {
                outStream.destroy();
            }
        } else {
            Ice.OperationNotExistException ex = new Ice.OperationNotExistException();
            ex.id = current.id;
            ex.facet = current.facet;
            ex.operation = current.operation;
            throw ex;
        }
    }

If an overflow is detected, the code "raises" the  user exception by calling  on the output stream andCalc::Overflow writeException
returning , otherwise the return value is encoded and the function returns .false true

See Also

Object Adapters
Request Contexts
Streaming Interfaces
Type IDs
Object Identity
Facets and Versioning
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Asynchronous Dynamic Invocation and Dispatch

Ice also provides asynchronous support for the . The mappings for the  proxy functiondynamic invocation and dispatch models ice_invoke
and the  class adhere to the normal asynchronous mapping rules.Blobject

Topics

Asynchronous Dynamic Invocation and Dispatch in C++
Asynchronous Dynamic Invocation and Dispatch in Java
Asynchronous Dynamic Invocation and Dispatch in C-Sharp

See Also

Dynamic Invocation and Dispatch
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Asynchronous Dynamic Invocation and Dispatch in C++

This page describes the asynchronous C++ mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

Calling  Asynchronously in C++ice_invoke
Basic Asynchronous Mapping for  in C++ice_invoke
Generic Asynchronous Callback Mapping for  in C++ice_invoke
Type-Safe Asynchronous Callback Mapping for  in C++ice_invoke

Subclassing  in C++BlobjectAsync
Subclassing  in C++BlobjectArrayAsync

Calling  Asynchronously in C++ice_invoke

The asynchronous mapping for  resembles that of the . Multiple overloadings are provided to support theice_invoke static AMI mapping
use of callbacks, , and . The return value and the parameters , , and  haverequest contexts zero-copy semantics operation mode inParams
the same semantics as for the  of .synchronous version ice_invoke

Basic Asynchronous Mapping for  in C++ice_invoke

The basic mapping is shown below:

C++

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams,
    const Ice::Context& __ctx);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams,
    const Ice::Context& __ctx,
    const Ice::LocalObjectPtr& __cookie = 0);

bool end_ice_invoke(std::vector<Ice::Byte>&, const Ice::AsyncResultPtr&);

User exceptions are handled differently than for static asynchronous invocations. Calling  can raise system exceptions butend_ice_invoke
never raises user exceptions. Instead, the boolean return value of  indicates whether the operation completedend_ice_invoke
successfully (true) or raised a user exception (false). If the return value is true, the results are encoded in the byte sequence; otherwise, the
byte sequence contains the encoded user exception.

Generic Asynchronous Callback Mapping for  in C++ice_invoke

The generic callback API is also available:
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C++

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams,
    const Ice::CallbackPtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams,
    const Ice::Context& __ctx,
    const Ice::CallbackPtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams,
    const Ice::CallbackPtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams,
    const Ice::Context& __ctx,
    const Ice::CallbackPtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Use the  function to create callback objects, as shown in the .Ice::newCallback static AMI mapping

Type-Safe Asynchronous Callback Mapping for  in C++ice_invoke

The type-safe callback API looks as follows:
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C++

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams,
    const Ice::Callback_Object_ice_invokePtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams,
    const Ice::Context& __ctx,
    const Ice::Callback_Object_ice_invokePtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams,
    const Ice::Callback_Object_ice_invokePtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& inParams,
    const Ice::Context& __ctx,
    const Ice::Callback_Object_ice_invokePtr& __del,
    const Ice::LocalObjectPtr& __cookie = 0);

Several overloadings of  allow you to create callback objects. Versions are provided to supportIce::newCallback_Object_ice_invoke
zero-copy semantics for the byte sequence containing the operation's results, as well as a cookie value whose type is inferred and
represented here by the  symbol:CT
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C++

template<class T> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*cb)(bool, const std::vector<Ice::Byte>&),
                              void (T::*excb)(const ::Ice::Exception&),
                              void (T::*sentcb)(bool) = 0);

template<class T> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*cb)(bool, const std::pair<const Byte*, const Byte*>&),
                              void (T::*excb)(const ::Ice::Exception&),
                              void (T::*sentcb)(bool) = 0);

template<class T, typename CT> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*cb)(bool, const std::vector<Ice::Byte>&, const CT&),
                              void (T::*excb)(const ::Ice::Exception&, const CT&),
                              void (T::*sentcb)(bool, const CT&) = 0);

template<class T, typename CT> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*cb)(bool, const std::pair<const Byte*, const Byte*>&,
                                            const CT&),
                              void (T::*excb)(const ::Ice::Exception&, const CT&),
                              void (T::*sentcb)(bool, const CT&) = 0);

template<class T> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*excb)(const ::Ice::Exception&),
                              void (T::*sentcb)(bool) = 0);

template<class T, typename CT> Callback_Object_ice_invokePtr
newCallback_Object_ice_invoke(const IceUtil::Handle<T>& instance,
                              void (T::*excb)(const ::Ice::Exception&, const CT&),
                              void (T::*sentcb)(bool, const CT&) = 0);

Subclassing  in C++BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to :Blobject

C++

namespace Ice {
    class BlobjectAsync : virtual public Ice::Object {
    public:
        virtual void ice_invoke_async(
            const AMD_Object_ice_invokePtr& cb,
            const std::vector<Ice::Byte>& inParams,
            const Ice::Current& current) = 0;
    };
}

To implement asynchronous dynamic dispatch, a server must subclass  and override .BlobjectAsync ice_invoke_async

The first argument to the servant's member function is a callback object of type , shown here:Ice::AMD_Object_ice_invoke
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C++

namespace Ice {
    class AMD_Object_ice_invoke : ... {
    public:
        virtual void ice_response(
            bool result,
            const std::vector<Ice::Byte>& outParams) = 0;

        virtual void ice_response(
            bool result,
            const std::pair<const Ice::Byte*, const Ice::Byte*>& outParams) = 0;

        virtual void ice_exception(const std::exception&) = 0;
        virtual void ice_exception() = 0;
    };
}

Upon a successful invocation, the servant must invoke one of the  methods on the callback object, passing  as the firstice_response true
argument and encoding the operation results into . To report a user exception, the servant invokes  with outParams ice_response false
as the first argument and the encoded form of the exception in . Note that the second overloading of  uses theoutParams ice_response
array mapping (see the next section below).

ice_exception has several overloadings. Note however that in the dynamic dispatch model, the  function must not beice_exception
used to report user exceptions; doing so results in the caller receiving .UnknownUserException

Subclassing  in C++BlobjectArrayAsync

To implement an asynchronous Blobject servant that uses the array mapping, derive your implementation class from 
 and override the  function:Ice::BlobjectArrayAsync ice_invoke_async

C++

class BlobjectArrayAsync : virtual public Ice::Object {
public:
    virtual void ice_invoke_async(
        const AMD_Object_ice_invokePtr& cb,
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in,
        const Ice::Current& current) = 0;
};

As shown in the previous section, the AMD callback class provides an overloaded  method that supports the array mappingice_response
for the encoded  parameter blob.out

The discussion of  provides more information on the array mapping.sequences

See Also

Asynchronous Method Invocation (AMI) in C++
Request Contexts
C++ Mapping for Sequences
Dynamic Invocation and Dispatch in C++
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Asynchronous Dynamic Invocation and Dispatch in Java

This page describes the asynchronous Java mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

Calling  Asynchronously in Javaice_invoke
Basic Asynchronous Mapping for  in Javaice_invoke
Generic Asynchronous Callback Mapping for  in Javaice_invoke
Type-Safe Asynchronous Callback Mapping for  in Javaice_invoke

Subclassing  in JavaBlobjectAsync

Calling  Asynchronously in Javaice_invoke

The asynchronous mapping for  resembles that of the . Multiple overloadings are provided to support theice_invoke static AMI mapping
use of callbacks and . The return value and the parameters , , and  have the same semanticsrequest contexts operation mode inParams
as for the  of .synchronous version ice_invoke

Basic Asynchronous Mapping for  in Javaice_invoke

The basic mapping is shown below:

Java

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams);

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    java.util.Map<String, String> __context);

boolean end_ice_invoke(Ice.ByteSeqHolder outParams, Ice.AsyncResult __result);

User exceptions are handled differently than for static asynchronous invocations. Calling  can raise system exceptions butend_ice_invoke
never raises user exceptions. Instead, the boolean return value of  indicates whether the operation completedend_ice_invoke
successfully (true) or raised a user exception (false). If the return value is true, the results are encoded in the byte sequence; otherwise, the
byte sequence contains the encoded user exception.

Generic Asynchronous Callback Mapping for  in Javaice_invoke

The generic callback API is also available:

Java

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Ice.Callback __cb);

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    java.util.Map<String, String> __context,
    Ice.Callback __cb);
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Refer to the  for an example of subclassing .static AMI mapping Ice.Callback

Type-Safe Asynchronous Callback Mapping for  in Javaice_invoke

The type-safe callback API looks as follows:

Java

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Ice.Callback_Object_ice_invoke __cb);

Ice.AsyncResult begin_ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    java.util.Map<String, String> __context,
    Ice.Callback_Object_ice_invoke __cb);

Callers must supply a subclass of :Ice.Callback_Object_ice_invoke

Java

package Ice;

public abstract class Callback_Object_ice_invoke extends ...
{
    public abstract void response(boolean __ret, byte[] outParams);

    public abstract void exception(LocalException __ex);
}

The boolean argument to  indicates whether the operation completed successfully (true) or raised a user exception (false). If theresponse
return value is true, the results are encoded in the byte sequence; otherwise, the byte sequence contains the encoded user exception.

Subclassing  in JavaBlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to :Blobject

Java

package Ice;

public abstract class BlobjectAsync extends Ice.ObjectImpl {
    public abstract void ice_invoke_async(
        Ice.AMD_Object_ice_invoke cb,
        byte[] inParams,
        Ice.Current current);

    // ...
}

To implement asynchronous dynamic dispatch, a server must subclass  and override .BlobjectAsync ice_invoke_async

As with any other asynchronous operation, the first argument to the servant's member function is always a callback object. In this case, the
callback object is of type , shown here:Ice.AMD_Object_ice_invoke
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Java

package Ice;

public interface AMD_Object_ice_invoke {
    void ice_response(boolean result, byte[] outParams);
    void ice_exception(java.lang.Exception ex);
}

Upon a successful invocation, the servant must invoke  on the callback object, passing  as the first argument andice_response true
encoding the operation results into . To report a user exception, the servant invokes  with  as the firstoutParams ice_response false
argument and the encoded form of the exception in .outParams

In the dynamic dispatch model, the  function must not be used to report user exceptions; doing so results in the callerice_exception
receiving .UnknownUserException

See Also

Asynchronous Method Invocation (AMI) in Java
Request Contexts
Dynamic Invocation and Dispatch Overview
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Asynchronous Dynamic Invocation and Dispatch in C-Sharp

This page describes the asynchronous C# mapping for the  proxy function and the  class.ice_invoke Blobject

On this page:

Calling  Asynchronously in C#ice_invoke
Basic Asynchronous Mapping for  in C#ice_invoke
Generic Asynchronous Callback Mapping for  in C#ice_invoke
Type-Safe Asynchronous Callback Mapping for  in C#ice_invoke

Subclassing  in C#BlobjectAsync

Calling  Asynchronously in C#ice_invoke

The asynchronous mapping for  resembles that of the . Multiple overloadings are provided to support theice_invoke static AMI mapping
use of callbacks and . The return value and the parameters , , and  have the same semanticsrequest contexts operation mode inParams
as for the  of .synchronous version ice_invoke

Basic Asynchronous Mapping for  in C#ice_invoke

The basic mapping is shown below:

C#

Ice.AsyncResult<Ice.Callback_Object_ice_invoke>
begin_ice_invoke(
    string operation,
    Ice.OperationMode mode,
    byte[] inParams);

Ice.AsyncResult<Callback_Object_ice_invoke>
begin_ice_invoke(
    string operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Dictionary<string, string> context__);

bool end_ice_invoke(out byte[] outParams, AsyncResult r__);

User exceptions are handled differently than for static asynchronous invocations. Calling  can raise system exceptions butend_ice_invoke
never raises user exceptions. Instead, the boolean return value of  indicates whether the operation completedend_ice_invoke
successfully (true) or raised a user exception (false). If the return value is true, the results are encoded in the byte sequence; otherwise, the
byte sequence contains the encoded user exception.

Generic Asynchronous Callback Mapping for  in C#ice_invoke

The generic callback API is also available:
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C#

Ice.AsyncResult begin_ice_invoke(
    string operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Ice.AsyncCallback cb__,
    object cookie__);

Ice.AsyncResult begin_ice_invoke(
    string operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Dictionary<string, string> context__,
    Ice.AsyncCallback cb__,
    object cookie__);

Refer to the  for a callback example.static AMI mapping

Type-Safe Asynchronous Callback Mapping for  in C#ice_invoke

For the type-safe callback API, you register callbacks on the  object just as in the :AsyncResult static AMI mapping

C#

public class MyCallback
{
    public void responseCB(bool ret, byte[] results)
    {
        if(ret)
            System.Console.Out.WriteLine("Success");
        else
            System.Console.Out.WriteLine("User exception");
    }

    public void failureCB(Ice.Exception ex)
    {
        System.Console.Err.WriteLine("Exception is: " + ex);
    }
}

...

Ice.AsyncResult<Ice.Callback_Object_ice_invoke> r = proxy.begin_ice_invoke(...);
MyCallback cb = new MyCallback();
r.whenCompleted(cb.responseCB, cb.failureCB);

The caller invokes  on the  object and supplies delegates to handle response and failure. The responsewhenCompleted AsyncResult
delegate must match the signature of :Ice.Callback_Object_ice_invoke

C#

public delegate void Callback_Object_ice_invoke(bool ret__, byte[] outParams);

Subclassing  in C#BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to :Blobject
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C#

public abstract class BlobjectAsync : Ice.ObjectImpl
{
    public abstract void ice_invoke_async(
        AMD_Object_ice_invoke cb,
        byte[] inParams,
        Current current);
}

To implement asynchronous dynamic dispatch, a server must subclass  and override .BlobjectAsync ice_invoke_async

The first argument to the servant's member function is a callback object of type , shown here:Ice.AMD_Object_ice_invoke

C#

namespace Ice
{
    public interface AMD_Object_ice_invoke
    {
        void ice_response(bool ok, byte[] outParams);
        void ice_exception(System.Exception ex);
    }
}

Upon a successful invocation, the servant must invoke  on the callback object, passing  as the first argument andice_response true
encoding the operation results into . To report a user exception, the servant invokes  with  as the firstoutParams ice_response false
argument and the encoded form of the exception in .outParams

In the dynamic dispatch model, the ice_exception function must not be used to report user exceptions; doing so results in the caller receiving
.UnknownUserException

See Also

Asynchronous Method Invocation (AMI) in C-Sharp
Request Contexts
Dynamic Invocation and Dispatch Overview
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Connection Management
The Ice run time establishes connections automatically and transparently as a side effect of using proxies. There are well-defined rules that
determine when a . If necessary, you can influence .new connection is established connection management activities

Connection management becomes increasingly important as network environments grow more complex. In particular, if you need to make
callbacks from a server to a client through a firewall, you must use a . In most cases, you can use a bidirectional connection Glacier2 router
to automatically take advantage of bidirectional connections. However, the Ice run time also provides direct access to connections, allowing
you to explicitly control establishment and closure of both unidirectional and bidirectional connections.

Most Ice applications benefit from  and transparent connection establishment and thus need not concernactive connection management
themselves with the details of connections. Not all Ice applications can be so fortunate, and for those applications Ice provides convenient 

 that enables developers to address the realities of today's deployment environments.access to connections

The discussion that follows assumes that you are familiar with  and .proxies endpoints

Topics

Connection Establishment
Active Connection Management
Using Connections
Connection Closure
Bidirectional Connections
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1.  
2.  

3.  

4.  

5.  

Connection Establishment

Connections are established as a side effect of using proxies. The first invocation on a proxy causes the Ice run time to search for an
existing connection to one of the ; only if no suitable connection exists does the Ice run time establish a new connection toproxy's endpoints
one of the proxy's endpoints.

This page describes how and when Ice establishes a new connection.

On this page:

Endpoint Selection for New Connections
Error Semantics for Failed Connections
Reusing an Existing Connection

Connection Reuse for Proxies with Multiple Endpoints
Protocol Compression and Connection Reuse
Influencing Connection Reuse

Connection Caching
Timeouts and Connection Establishment

Endpoint Selection for New Connections

A proxy performs a number of operations on its endpoints before it asks the Ice run time to supply a connection. These operations produce a
list of zero or more endpoints that satisfy the proxy's configuration. If the resulting list is empty, the application receives 

 to indicate that no suitable endpoints could be found. For example, this situation can arise when a twoway proxyNoEndpointException
contains only a UDP endpoint; the UDP endpoint is eliminated from consideration because it cannot be used for twoway invocations.

The proxy performs the following steps to derive its endpoint list:

Remove the endpoints of unknown transports. For instance, SSL endpoints are removed if the SSL plug-in is not installed.
Remove endpoints that are not suitable for the proxy's invocation mode. For example, datagram endpoints are removed for twoway,
oneway and batch oneway proxies. Similarly, non-datagram endpoints are removed for datagram and batch datagram proxies.
Perform DNS queries to convert host names into IP addresses, if necessary. For a multi-homed host name, the proxy adds a new
endpoint for each address returned by the DNS query.
Sort the endpoints according to the configured selection type, which is established using the  proxyice_endpointSelection
method. The default value is , meaning the endpoints are randomly shuffled. Alternatively, the value  maintains theRandom Ordered
existing order of the endpoints.
Satisfy the proxy's security requirements:

If  is defined, remove all non-secure endpoints.Ice.Override.Secure
Otherwise, if the proxy is configured to prefer secure endpoints (e.g., by calling the  proxy method),ice_preferSecure
move all secure endpoints to the beginning of the list. Note that this setting still allows non-secure endpoints to be included.
Otherwise, move all non-secure endpoints to the beginning of the list.

If  is enabled and the Ice run time , it reuses the cached connection. Otherwise, theconnection caching already has a compatible connection
run time attempts to connect to each endpoint in the list until it succeeds or exhausts the list; the order in which endpoints are selected for
connection attempts depends on the endpoint selection policy. This policy can be set using a default property (

), using a proxy property ( ), and using the  Ice.Default.EndpointSelection .EndpointSelectionname ice_endpointSelection
.proxy method

Error Semantics for Failed Connections

If a failure occurs during a connection attempt, the Ice run time tries to connect to all of the proxy's remaining endpoints until either a
connection is successfully established or all attempts have failed. At that point, the Ice run time may attempt  depending onautomatic retries
the value of the  configuration property. The default value of this property is  , which causes the Ice run time to tryIce.RetryIntervals 0
connecting to all of the endpoints one more time.

Tip
Define the property  to monitor these attempts.Ice.Trace.Retry=2

If no connection can be established on this second attempt, the Ice run time raises an exception that indicates the reason for the final failed
attempt (typically ). Similarly, if a connection was lost during a request and could not be reestablishedConnectFailedException
(assuming the request can be retried), the Ice run time raises an exception that indicates the reason for the final failed attempt.
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1.  
2.  

3.  

Reusing an Existing Connection

When establishing a connection for a proxy, the Ice run time reuses an existing connection under the following conditions:

The remote endpoint matches one of the proxy's endpoints.
The connection was established by the communicator that created the proxy.
The connection matches the proxy's configuration.  play an important role here, as an existing connection is onlyTimeout values
reused if its timeout value (i.e., the timeout used when the connection was established) matches the new proxy's timeout. Similarly,
a proxy configured with a  only reuses a connection if it was established by a proxy with the same connection ID.connection ID

Connection Reuse for Proxies with Multiple Endpoints

Applications must exercise caution when using proxies containing multiple endpoints, especially endpoints using different transports. For
example, suppose a proxy has multiple endpoints, such as one each for TCP, SSL, and UDP. When establishing a connection for this proxy,
the Ice run time will open a new connection only if it cannot reuse an existing connection to any of the endpoints (that is, if connection

 is enabled). Furthermore, the proxy in its default (that is, non-secure) configuration gives higher priority to non-secure endpoints. Ifcaching
you want to ensure that a particular transport is used by a proxy, you must configure the proxy appropriately, such as by calling the proxy

  or  as necessary.methods ice_secure ice_datagram

Protocol Compression and Connection Reuse

The Ice run time does not consider  settings when searching for existing connections to reuse; proxies whose compressioncompression
settings differ can share the same connection (assuming all other selection criteria are satisfied).

Influencing Connection Reuse

The default behavior of the Ice run time, which reuses connections whenever possible, is appropriate for many applications because it
conserves resources and typically has little or no impact on performance. However, when a server implementation attaches semantics to a
connection, the client often must be designed to cooperate, despite the tighter coupling it causes. For example, a server might use a
serialized  to preserve the order of requests received over each connection. If the client wants to execute several requeststhread pool
simultaneously, it must be able to force the Ice run time to establish new connections at will.

For those situations that require more control over connection reuse, the Ice run time allows you to form arbitrary groups of proxies that
share a connection by configuring them with the same connection identifier. The   returns a new proxyproxy method ice_connectionId
configured with the given connection ID. Once configured, the Ice run time ensures that the proxy only reuses a connection that was
established by a proxy with the same connection ID (assuming all other criteria for connection reuse are also satisfied). A new connection is
created if none with a matching ID is found, which means each proxy could conceivably have its own connection if each were assigned a
unique connection ID.

As an example, consider the following code fragment:

C++

Ice::ObjectPrx prx = comm->stringToProxy("ident:tcp -p 10000");
Ice::ObjectPrx g1 = prx->ice_connectionId("group1");
Ice::ObjectPrx g2 = prx->ice_connectionId("group2");
prx->ice_ping(); // Opens a new connection
g1->ice_ping(); // Opens a new connection
g2->ice_ping(); // Opens a new connection
MyInterfacePrx i1 = MyInterfacePrx::checkedCast(g1);
i1->ice_ping(); // Reuses g1's connection
MyInterfacePrx i2 = MyInterfacePrx::checkedCast(prx->ice_connectionId("group2"));
i2->ice_ping(); // Reuses g2's connection

A total of three connections are established by this example:

The proxy  establishes a new connection. This proxy has the default connection ID (an empty string).prx
The proxy  establishes a new connection because the only existing connection, the one established by , has a differentg1 prx
connection ID.
Similarly, the proxy  establishes a new connection because none of the existing connections have a matching connection ID.g2

The proxy  inherits its connection ID from , and therefore shares the connection for ;  explicitly configured its connection IDi1 g1 group1 i2
and shares the  connection with proxy .group2 g2
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Connection Caching

When we refer to a proxy's connection, we actually mean the connection that the proxy is  using. This connection can change overcurrently
time, such that a proxy might use several connections during its lifetime. For example, an idle connection may be  andclosed automatically
then transparently replaced by a new connection when activity resumes.

After establishing a connection in response to proxy activities, the Ice run time adds the connection to an internal pool for subsequent reuse
by other proxies. The Ice run time manages the lifetime of the connection and eventually  it. The connection is not affected by the lifecloses
cycle of the proxies that use it, except that the lack of activity may prompt the Ice run time to close the connection after a while.

Once a proxy has been associated with a connection, the proxy's default behavior is to continue using that connection for all subsequent
requests. In effect, the proxy caches the connection and attempts to use it for as long as possible in order to minimize the overhead of
creating new connections. If the connection is later closed and the proxy is used again, the proxy repeats the connection-establishment
procedure described .earlier

There are situations in which this default caching behavior is undesirable, such as when a client has a proxy with multiple endpoints and
wishes to balance the load among the servers at those endpoints. The client can disable connection caching by passing an argument of 

 to the proxy method . The new proxy returned by this method repeats the connection-establishmentfalse ice_connectionCached
procedure before each request, thereby achieving request load balancing at the expense of potentially higher latency.

This type of load balancing is performed solely by the client using whatever endpoints are contained in the proxy. More sophisticated forms
of load balancing are also possible, such as when using .IceGrid

Timeouts and Connection Establishment

A proxy's default configuration has a timeout value of , meaning that network activity initiated by this proxy does not time out. The timeout-1
value affects both connection establishment and remote invocations. If a different timeout value is specified and the connection cannot be
established within the allotted time, a  is raised.ConnectTimeoutException

You can set a timeout on a proxy using the  . To use the same timeout period for all proxies, you can define the ice_timeout proxy method
 property; in this case, any timeout established using the  proxy method is ignored. Finally, if youIce.Override.Timeout ice_timeout

want to specify a  value that affects only connection establishment and takes precedence over a proxy's configured timeoutseparate timeout
value, you can define the  property.Ice.Override.ConnectTimeout

The timeout in effect when a connection is established is bound to that connection and affects all requests on that connection. If a request
times out, all other outstanding requests on the same connection also time out, and the connection is . The Ice run timeclosed forcefully
automatically retries these requests on a new connection, assuming that  are enabled and would not violate at-most-onceautomatic retries
semantics.

See Also

Proxy Methods
Proxy Endpoints
The Ice Threading Model
Automatic Retries
Active Connection Management
IceGrid
Ice Default and Override Properties
Ice Proxy Properties
Ice Miscellaneous Properties
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Active Connection Management

Active Connection Management (ACM) is enabled by default and helps to improve scalability and conserve application resources by closing
idle connections.

On this page:

Configuring Active Connection Management
Disabling Active Connection Management

Configuring Active Connection Management

ACM is configured separately for client (outgoing) and server (incoming) connections using the properties  and Ice.ACM.Client
, respectively. The default value of  is , meaning an outgoing connection is closed if it has not beenIce.ACM.Server Ice.ACM.Client 60

used for sixty seconds. The default value of  is zero, which disables ACM for incoming connections. Ice disables serverIce.ACM.Server
ACM by default because it can cause incoming  to be silently discarded.oneway requests

You can also selectively enable or disable ACM for individual  by setting the property .object adapters .ACM<adapter>

The decision to close a connection is not based only on a lack of network activity. For example, a request may take longer to complete than
the configured idle time. Therefore, ACM does not close a connection if there are outgoing or incoming requests pending on that connection,
or if a  is being accumulated for that connection.batch request

When it is safe to , the closure is usually transparent to the client and server applications because the connection isclose the connection
automatically reestablished if necessary. We say connection closure is  because it is possible that the Ice run time will beusually transparent
unable to reestablish a connection for a variety of reasons. In such a situation, the application receives a local exception for new requests
(usually a ).ConnectFailedException

It is important that you choose an idle time that does not result in excessive connection closure and reestablishment. The default value of
sixty seconds is a reasonable default, but your requirements may determine a more appropriate value.

The run time periodically scans through all open connections to close those that have exceeded their idle time. By default, the scanning
interval is 10% of the smallest configured ACM timeout, with a minimum of 5 seconds and a maximum of 5 minutes. You can choose a
different scanning interval by setting the property  to the desired interval in seconds. Once a connectionIce.MonitorConnections
exceeds its idle time, it is closed during the next scan. This means that, if you set a scanning interval of 120 seconds, and have an ACM
timeout of 60 seconds, idle connections will be closed once they have been idle for between one and three minutes. For servers with many
(thousands) of incoming connections, you should set the scanning interval to the longest amount of time you can afford connections to
remain open past their idle limit; this reduces the overhead of the scans and makes it more likely that each scan will actually find and close
idle connections.

Disabling Active Connection Management

Since server ACM is disabled by default, you only need to set  to 0 to disable ACM for all connections. In thisIce.ACM.Client
configuration a connection is not closed until its communicator is destroyed or it is  by the application. It is important to noteclosed explicitly
that disabling ACM in a process does not prevent a remote peer from closing a connection; all peers must be properly configured in order to
truly disable ACM.

There are certain situations in which it is necessary to disable ACM. For example,  can be silently discarded when aoneway requests
connection is closed . As another example, ACM must be disabled when using . A bidirectional connection isbidirectional connections
enabled by using a router such as  or by configuring a connection explicitly for bidirectional use. If you do not disable ACM in suchGlacier2
cases, ACM can prematurely close a bidirectional connection and thereby cause callbacks to fail unexpectedly.

See Also

Oneway Invocations
Object Adapters
Batched Invocations
Using Connections
Connection Closure
Bidirectional Connections
Glacier2
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Using Connections

Applications can gain access to an Ice object representing an established connection.

On this page:

The  InterfaceConnection
Flushing Batch Requests for a Connection

The  InterfaceEndpoint
Opaque Endpoints

Client-Side Connection Usage
Server-Side Connection Usage
Closing a Connection

Graceful Closure
Forceful Closure

The  InterfaceConnection

The Slice definition of the  interface is shown below:Connection

Slice

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local interface Connection {
        void close(bool force);
        Object* createProxy(Identity id);
        void setAdapter(ObjectAdapter adapter);
        ObjectAdapter getAdapter();
        Endpoint getEndpoint();
        void flushBatchRequests();
        string type();
        int timeout();
        string toString();
        ConnectionInfo getInfo();
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };

    local class TCPConnectionInfo extends IPConnectionInfo {};

    local class UDPConnectionInfo extends IPConnectionInfo {
        string mcastAddress;
        int mcastPort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};
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As indicated in the Slice definition, a connection is a , similar to a communicator or an object adapter. A connection therefore islocal interface
only usable within the process and cannot be accessed remotely.

The  interface supports the following operations:Connection

void close(bool force)
Explicitly . The connection is closed gracefully if  is false, otherwise the connection is closed forcefully.closes the connection force

Object* createProxy(Identity id)
Creates a special proxy that only uses this connection. This operation is primarily used for .bidirectional connections

void setAdapter(ObjectAdapter adapter)
Associates this connection with an object adapter to enable a .bidirectional connection

ObjectAdapter getAdapter()
Returns the object adapter associated with this connection, or nil if no association has been made.

Endpoint getEndpoint()
Returns an . objectEndpoint

void flushBatchRequests()
Flushes any pending  for this connection.batch requests

string type()
Returns the connection type as a string, such as ."tcp"

int timeout()
Returns the  value used when the connection was established.timeout

string toString()
Returns a readable description of the connection.

ConnectionInfo getInfo()
This operation returns a  class defined as follows:ConnectionInfo

Slice

local class ConnectionInfo {
    bool incoming;
    string adapterName;
};

The  member is true if the connection is an incoming connection and false, otherwise. If  is true, incoming incoming
 provides the name of the object adapter that accepted the connection. Note that the object returned by adapterName getInfo

implements a more derived interface, depending on the connection type. You can down-cast the returned class instance and access
the connection-specific information according to the type of the connection.

Flushing Batch Requests for a Connection

The  operation blocks the calling thread until any batch requests that are queued for a connection have beenflushBatchRequests
successfully written to the local transport. To avoid the risk of blocking, you can also invoke this operation asynchronously using the 

 method (in those language mappings that support it).begin_flushBatchRequests

Since batch requests are inherently oneway invocations, the  method does not support a request callback.begin_flushBatchRequests
However, you can use the exception callback to handle any errors that might occur while flushing, and the sent callback to receive
notification that the batch request has been flushed successfully.

For example, the code below demonstrates how to flush batch requests asynchronously in C++:
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C++

class FlushCallback : public IceUtil::Shared
{
public:

    void exception(const Ice::Exception& ex)
    {
        cout << "Flush failed: " << ex << endl;
    }

    void sent(bool sentSynchronously)
    {
        cout << "Batch sent!" << endl;
    }
};
typedef IceUtil::Handle<FlushCallback> FlushCallbackPtr;

void flushConnection(const Ice::ConnectionPtr& conn)
{
    FlushCallbackPtr f = new FlushCallback;
    Ice::Callback_Connection_flushBatchRequestsPtr cb =
        Ice::newCallback_Connection_flushBatchRequests(
            f, &FlushCallback::exception, &FlushCallback::sent);
    conn->begin_flushBatchRequests(cb);
}

For more information on asynchronous invocations, please see the relevant language mapping chapter.

The  InterfaceEndpoint

The  operation returns an interface of type :Connection::getEndpoint Endpoint
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Slice

module Ice {
    const short TCPEndpointType = 1;
    const short UDPEndpointType = 3;

    local class EndpointInfo {
        int timeout;
        bool compress;
        short type();
        bool datagram();
        bool secure();
    };

    local interface Endpoint {
        EndpointInfo getInfo();
        string toString();
    };

    local class IPEndpointInfo extends EndpointInfo {
        string host;
        int port;
    };

    local class TCPEndpointInfo extends IPEndpointInfo {};

    local class UDPEndpointInfo extends IPEndpointInfo {
        byte protocolMajor;
        byte protocolMinor;
        byte encodingMajor;
        byte encodingMinor;
        string mcastInterface;
        int mcastTtl;
    };

    local class OpaqueEndpointInfo extends EndpointInfo {
        Ice::ByteSeq rawBytes;
    };
};

module IceSSL {
    const short EndpointType = 2;

    local class EndpointInfo extends Ice::IPEndpointInfo {};
};

The  operation returns an  instance. Note that the object returned by  implements a more derivedgetInfo EndpointInfo getInfo
interface, depending on the endpoint type. You can down-cast the returned class instance and access the endpoint-specific information
according to the type of the endpoint, as returned by the  operation.type

The  member provides the timeout in milliseconds. The  member is true if the endpoint uses  (if available).timeout compress compression
The  operation returns true if the endpoint is for a  transport, and the  operation returns true if the endpoint uses datagram datagram secure

.SSL

The derived classes provide further detail about the endpoint according to its type.

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrecognized by the Ice run time. In this situation, Ice preserves
the endpoint in its encoded ( ) form so that the proxy remains intact, but Ice ignores the endpoint for all connection-related activities.opaque
Preserving the endpoint allows an application to later forward that proxy with all of its original endpoints to a different program that might
support the endpoint type in question.

Although a connection will never return an opaque endpoint, it is possible for a program to encounter an opaque endpoint when iterating
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over the endpoints returned by the  .proxy method ice_getEndpoints

As a practical example, consider a program for which the  plug-in is not configured. If this program receives a proxy containing anIceSSL
SSL endpoint, Ice treats it as an opaque endpoint such that calling  on the endpoint object returns an instance of getInfo

.OpaqueEndpointInfo

Note that the  operation of the  object returns the  type of the endpoint. For example, the operationtype OpaqueEndpointInfo actual
returns the value  if the object encodes an SSL endpoint. As a result, your program cannot assume that an  object whose2 EndpointInfo
type is  can be safely down-cast to ; if the IceSSL plug-in is not configured, such a down-cast will fail because2 IceSSL::EndpointInfo
the object is actually an instance of .OpaqueEndpointInfo

Client-Side Connection Usage

Clients obtain a connection by using one of the   or . If the proxy doesproxy methods ice_getConnection ice_getCachedConnection
not yet have a connection, the  method immediately attempts to establish one. As a result, the caller must beice_getConnection
prepared to handle  exceptions. Furthermore, if the proxy denotes a  and collocation optimization isconnection failure collocated object
enabled, calling  results in a .ice_getConnection CollocationOptimizationException

If you wish to obtain the proxy's connection without the potential for triggering connection establishment, call ;ice_getCachedConnection
this method returns null if the proxy is not currently associated with a connection or if connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection from a proxy and print its type:

C++

Ice::ObjectPrx proxy = ...
try
{
    Ice::ConnectionPtr conn = proxy->ice_getConnection();
    cout << conn->type() << endl;
}
catch(const Ice::CollocationOptimizationException&)
{
    cout << "collocated" << endl;
}

Server-Side Connection Usage

Servers can access a connection via the  member of the  parameter passed to every operation. For collocatedcon Ice::Current
invocations,  has a nil value.con

For example, this Java code shows how to invoke  on the connection:toString

Java

public int add(int a, int b, Ice.Current curr)
{
    if (curr.con != null)
    {
        System.out.println("Request received on connection:\n" + curr.con.toString());
    }
    else
    {
        System.out.println("collocated invocation");
    }
    return a + b;
}

Although the mapping for the Slice operation  results in a Java method named , the Ice run time implements toString _toString
 to return the same value.toString
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Closing a Connection

Applications should rarely need to close a connection explicitly, but those that do must be aware of its implications. Since there are two ways
to close a connection, we discuss them separately.

Graceful Closure

Passing an argument of  to the  operation initiates graceful connection closure, as discussed in . Thefalse close Connection Closure
operation blocks until all pending outgoing requests on the connection have completed.

Forceful Closure

A forceful closure is initiated by passing an argument of  to the  operation, causing the peer to receive a true close
.ConnectionLostException

A client must use caution when forcefully closing a connection. Any outgoing requests that are pending on the connection when  isclose
invoked will fail with a . Furthermore, requests that fail with this exception are not automaticallyForcedCloseConnectionException
retried.

In a server context, forceful closure can be useful as a defense against hostile clients.

The Ice run time interprets a  to mean that it is safe to  the request without violating at-most-onceCloseConnectionException retry
semantics. If automatic retries are enabled, a client must only initiate a graceful close when it knows that there are no outgoing requests in
progress on that connection, or that any pending requests can be safely retried.

See Also

The Current Object
Automatic Retries
Connection Establishment
Connection Closure
Bidirectional Connections
IceSSL
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Connection Closure

The Ice run time may close a connection for many reasons, including the situations listed below:

When deactivating an object adapter or shutting down a communicator
As required by active connection management
When initiated by an application
After a request times out
In response to an exception, such as a socket failure or protocol error

In most cases, the Ice run time closes a connection gracefully as required by the . The Ice run time only closes a connectionIce protocol
forcefully when a  occurs or when the application explicitly requests it.timeout

On this page:

Graceful Connection Closure
Connection Closure and Oneway Invocations

Graceful Connection Closure

Gracefully closing a connection occurs in stages:

In the process that initiates closure, incoming and outgoing requests that are in progress are allowed to complete, and then a close
connection message is sent to the peer. Any incoming requests received after closure is initiated are silently discarded (but may be
retried, as discussed in the next bullet). An attempt to make a new outgoing request on the connection results in a 

 and an automatic retry (if enabled).CloseConnectionException

Upon receipt of a close connection message, the Ice run time in the peer closes its end of the connection. Any outgoing requests
still pending on that connection fail with a . This exception indicates to the Ice run time that it is safeCloseConnectionException
to retry those requests without violating at-most-once semantics, assuming  have not been disabled.automatic retries

After detecting that the peer has closed the connection, the initiating Ice run time closes the connection.

Connection Closure and Oneway Invocations

Oneway invocations are generally considered reliable because they are sent over a stream-oriented transport. However, it is quite possible
for oneway requests to be silently discarded if a server has initiated . Whereas graceful closure causes agraceful connection closure
discarded twoway request to receive a  and eventually be retried, the sender receives no notice about aCloseConnectionException
discarded oneway request.

If an application makes assumptions about the reliability of oneway requests, it may be necessary to control the events surrounding
connection closure as much as possible, for example by  and avoiding explicit connection closures.disabling active connection management

See Also

Active Connection Management
Using Connections
Protocol Messages
Connection Establishment
Oneway Invocations
Automatic Retries
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Bidirectional Connections

On this page:

Use Cases for Bidirectional Connections
Configuring a Client for Bidirectional Connections

Disabling Active Connection Management
Configuring a Server for Bidirectional Connections
Fixed Proxies
Limitations of Bidirectional Connections
Threading Considerations for Bidirectional Connections

Use Cases for Bidirectional Connections

An Ice connection normally allows requests to flow in only one direction. If an application's design requires the server to make callbacks to a
client, the server usually establishes a new connection to that client in order to send callback requests, as shown below:

Callbacks in an open network.

Unfortunately, network restrictions often prevent a server from being able to create a separate connection to the client, such as when the
client resides behind a firewall as shown here:

Callbacks with a firewall.

In this scenario, the firewall blocks any attempt to establish a connection directly to the client.

For situations such as these, a bidirectional connection offers a solution. Requests may flow in both directions over a bidirectional
connection, enabling a server to send callback requests to a client over the client's existing connection to the server.

There are two ways to make use of a bidirectional connection. First, you can use a , in which case bidirectional connectionsGlacier2 router
are used automatically. If you do not require the functionality offered by Glacier2 or you do not want an intermediary service between clients
and servers, you can configure bidirectional connections manually.

The remainder of this section discusses manual configuration of bidirectional connections. An example that demonstrates how to configure a
bidirectional connection is provided in the directory  of your Ice distribution.demo/Ice/bidir

Configuring a Client for Bidirectional Connections

A client needs to perform the following steps in order to configure a bidirectional connection:

Create an object adapter to receive callback requests. This adapter does not require a name or endpoints if its only purpose is to
receive callbacks over bidirectional connections.
Register the callback object with the object adapter.
Activate the object adapter.
Obtain a connection object by calling  on the proxy.ice_getConnection
Invoke  on the connection, passing the callback object adapter. This associates an object adapter with the connectionsetAdapter
and enables callback requests to be dispatched.
Pass the  of the callback object to the server.identity

The C++ code below illustrates these steps:
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1.  
2.  

C++

Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("");
Ice::Identity ident;
ident.name = IceUtil::generateUUID();
ident.category = "";
CallbackPtr cb = new CallbackI;
adapter->add(cb, ident);
adapter->activate();
proxy->ice_getConnection()->setAdapter(adapter);
proxy->addClient(ident);

The last step may seem unusual because a client would typically pass a proxy to the server, not just an identity. For example, you might be
tempted to give the proxy returned by the adapter operation  to the server, but this would not have the desired effect: if the callbackadd
object adapter is configured with endpoints, the server would attempt to establish a separate connection to one of those endpoints, which
defeats the purpose of a bidirectional connection. It is just as likely that the callback object adapter has no endpoints, in which case the proxy
is of no use to the server.

Similarly, you might try invoking  on the connection to obtain a proxy that the server can use for callbacks. This too would fail,createProxy
because the proxy returned by the connection is for local use only and cannot be used by another process.

As you will see below, the server must create its own callback proxy.

Disabling Active Connection Management

Active Connection Management (ACM) automatically and transparently closes idle connections. By default, ACM is enabled for client
(outgoing) connections and disabled for server (incoming) connections. As far as the client-side Ice run time is concerned, a bidirectional
connection is a client connection, therefore the client-side property  governs ACM behavior for bidirectional connections.Ice.ACM.Client

In general, it is necessary to disable client-side ACM for bidirectional connections: since the outgoing connection is the only channel on
which the server can send callback invocations to the client, allowing ACM to prematurely close the connection introduces the risk that the
client might unknowingly fail to receive callbacks. To disable client-side ACM, set the property to zero:

Ice.ACM.Client=0

It is not necessary to disable client-side ACM if your client sends invocations at regular intervals, in which case Ice will never consider the
connection to be idle and therefore ACM will not close it. The default value for  is 60, meaning a connection that has beenIce.ACM.Client
idle for 60 seconds is eligible to be closed.

Configuring a Server for Bidirectional Connections

A server needs to take the following steps in order to make callbacks over a bidirectional connection:

Obtain the identity of the callback object, which is typically supplied by the client.
Create a proxy for the callback object by calling  on the connection. The connection object is accessible as a membercreateProxy
of the  parameter to an operation implementation.Ice::Current

These steps are illustrated in the C++ code below:

C++

void addClient(const Ice::Identity& ident, const Ice::Current& curr)
{
    CallbackPrx client = CallbackPrx::uncheckedCast(curr.con->createProxy(ident));
    client->notify();
}

Fixed Proxies

The proxy returned by a connection's  operation is called a . It can only be used in the server process and cannotcreateProxy fixed proxy
be marshaled or stringified by ; attempts to do so raise .proxyToString FixedProxyException



Ice 3.4.2 Documentation

1158 Copyright © 2011, ZeroC, Inc.

A fixed proxy is bound to the connection that created it, and ceases to work once that connection is closed. If the connection is closed
prematurely, either by  (ACM) or by explicit action on the part of the application, the server can no longeractive connection management
make callback requests using that proxy. Any attempt to use the proxy again usually results in a .CloseConnectionException

Many aspects of a fixed proxy cannot be changed. For example, it is not possible to change the proxy's endpoints or timeout. Attempting to
invoke a method such as  on a fixed proxy raises .ice_timeout FixedProxyException

Limitations of Bidirectional Connections

Bidirectional connections have certain limitations:

They can only be configured for connection-oriented transports such as TCP and SSL.
Most proxy  are not relevant for a proxy created by a connection's  operation. The proxy is bound tofactory methods createProxy
an existing connection, therefore the proxy reflects the connection's configuration. Attempting to change settings such as the proxy's
timeout value causes the Ice run time to raise . Note however that it is legal to configure a fixed proxy forFixedProxyException
using oneway or twoway invocations. You may also invoke  on a fixed proxy if its security configuration is important; aice_secure
fixed proxy configured for secure communication raises  on the first invocation if the connection is notNoEndpointException
secure.
A connection established from a Glacier2 router to a server is not configured for bidirectional use. Only the connection from a client
to the router is bidirectional. However, the client must not attempt to manually configure a bidirectional connection to a router, as this
is handled internally by the Ice run time.
Bidirectional connections are not compatible with .ACM

Threading Considerations for Bidirectional Connections

The Ice run time normally creates two  for processing network traffic on connections: the client thread pool manages outgoingthread pools
connections and the server thread pool manages incoming connections. All of the object adapters in a server share the same thread pool by
default, but an object adapter can also be configured to have . The default size of the client and server thread pools isits own thread pool
one.

The client thread pool processes replies to pending requests. When a client configures an outgoing connection for bidirectional requests, the
client thread pool also becomes responsible for dispatching callback requests received over that connection.

Similarly, the server thread pool normally dispatches requests from clients. If a server uses a bidirectional connection to send callback
requests, then the server thread pool must also process the replies to those requests.

You must increase the size of the appropriate thread pool if you need the ability to dispatch multiple requests in parallel, or if you need to
make . For example, a client that receives a callback request over a bidirectional connection and makes nestednested twoway invocations
invocations must increase the size of the  thread pool.client

See Also

Glacier2
Creating an Object Adapter
Servant Activation and Deactivation
Using Connections
Object Identity
Active Connection Management
Proxy Methods
Nested Invocations
The Ice Threading Model
Object Adapter Thread Pools
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The Ice Protocol
The Ice protocol definition consists of three major parts:

a set of data encoding rules that determine how the various data types are serialized
a number of message types that are interchanged between client and server, together with rules as to what message is to be sent
under what circumstances
a set of rules that determine how client and server agree on a particular protocol and encoding version

Topics

Data Encoding
Protocol Messages
Protocol Compression
Protocol and Encoding Versions
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Data Encoding

The key goals of the Ice data encoding are simplicity and efficiency. In keeping with these principles, the encoding does not align primitive
types on word boundaries and therefore eliminates the wasted space and additional complexity that alignment requires. The Ice data
encoding simply produces a stream of contiguous bytes; data contains no padding bytes and need not be aligned on word boundaries.

Data is always encoded using little-endian byte order for numeric types. (Most machines use a little-endian byte order, so the Ice data
encoding is "right" more often than not.) Ice does not use a "receiver makes it right" scheme because of the additional complexity this would
introduce. Consider, for example, a chain of receivers that merely forward data along the chain until that data arrives at an ultimate receiver.
(Such topologies are common for event distribution services.) The Ice protocol permits all the intermediates to forward the data without
requiring it to be unmarshaled: the intermediates can forward requests by simply copying blocks of binary data. With a "receiver makes it
right" scheme, the intermediates would have to unmarshal and remarshal the data whenever the byte order of the next receiver in the chain
differs from the byte order of the sender, which is inefficient.

Ice requires clients and servers that run on big-endian machines to incur the extra cost of byte swapping data into little-endian layout, but
that cost is insignificant compared to the overall cost of sending or receiving a request.

Topics

Basic Data Encoding
Data Encoding for Exceptions
Data Encoding for Classes
Data Encoding for Interfaces
Data Encoding for Proxies

See Also

Protocol Messages
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Basic Data Encoding

On this page:

Encoding for Sizes
Encoding for Encapsulations
Encoding for Slices
Encoding for Basic Types
Encoding for Strings
Encoding for Sequences
Encoding for Dictionaries
Encoding for Enumerators
Encoding for Structures

Encoding for Sizes

Many of the types involved in the data encoding, as well as several  components, have an associated size or count. A sizeprotocol message
is a non-negative number. Sizes and counts are encoded in one of two ways:

If the number of elements is less than 255, the size is encoded as a single  indicating the number of elements.byte
If the number of elements is greater than or equal to 255, the size is encoded as a  with value , followed by an byte 255 int
indicating the number of elements.

Using this encoding to indicate sizes is significantly cheaper than always using an  to store the size, especially when marshalingint
sequences of short strings: counts of up to 254 require only a single byte instead of four. This comes at the expense of counts greater than
254, which require five bytes instead of four. However, for sequences or strings of length greater than 254, the extra byte is insignificant.

Encoding for Encapsulations

An encapsulation is used to contain variable-length data that an intermediate receiver may not be able to decode, but that the receiver can
forward to another recipient for eventual decoding. An encapsulation is encoded as if it were the following structure:

Slice

struct Encapsulation {
    int size;
    byte major;
    byte minor;
    // [... size - 6 bytes ...]
};

The  member specifies the size of the encapsulation in bytes (including the , , and  fields). The  and size size major minor major minor
fields specify the  of the data contained in the encapsulation. The version information is followed by  bytes ofencoding version size-6
encoded data.

All the data in an encapsulation is context-free, that is, nothing inside an encapsulation can refer to anything outside the encapsulation. This
property allows encapsulations to be forwarded among address spaces as a blob of data.

Encapsulations can be nested, that is, contain other encapsulations.

An encapsulation can be empty, in which case the value of  is 6.size

Encoding for Slices

Exceptions and  are subject to slicing if the receiver of a value only partially understands the received value (that is, only hasclasses
knowledge of a base type, but not of the actual run-time derived type). To allow the receiver of an exception or class to ignore those parts of
a value that it does not understand, exception and class values are marshaled as a sequence of slices (one slice for each level of the
inheritance hierarchy). A slice is a byte count encoded as a fixed-length four-byte integer, followed by the data for the slice. (The byte count
includes the four bytes occupied by the count itself, so an empty slice has a byte count of four and no data.) The receiver of a value can skip
over a slice by reading the byte count , and then discarding the next  bytes in the input stream.b b-4
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Encoding for Basic Types

The basic types are encoded as shown in the table. Integer types ( , , ) are represented as two's complement numbers, andshort int long
floating point types ( , ) use the IEEE standard formats . All numeric types use a little-endian byte order.float double [1]

Type Encoding

bool A single byte with value  for ,  for 1 true 0 false

byte An uninterpreted byte

short Two bytes (LSB, MSB)

int Four bytes (LSB .. MSB)

long Eight bytes (LSB .. MSB)

float Four bytes (23-bit fractional mantissa, 8-bit exponent, sign bit)

double Eight bytes (52-bit fractional mantissa, 11-bit exponent, sign bit)

Encoding for basic types.

Encoding for Strings

Strings are encoded as a , followed by the string contents in UTF-8 format . Strings are not NUL-terminated. An empty string issize [2]
encoded with a size of zero.

Encoding for Sequences

Sequences are encoded as a  representing the number of elements in the sequence, followed by the elements encoded as specified forsize
their type.

Encoding for Dictionaries

Dictionaries are encoded as a  representing the number of key-value pairs in the dictionary, followed by the pairs. Each key-value pair issize
encoded as if it were a  containing the key and value as members, in that order.struct

Encoding for Enumerators

Enumerated values are encoded depending on the number of enumerators:

If the enumeration has 1 - 127 enumerators, the value is marshaled as a .byte
If the enumeration has 12 - 32767 members, the value is marshaled as a .short
If the enumeration has more than 32767 members, the value is marshaled as an .int

The value is the ordinal value of the corresponding enumerator, with the first enumerator value encoded as zero.

Encoding for Structures

The members of a structure are encoded in the order they appear in the  declaration, as specified for their types.struct

See Also

Protocol Messages
Protocol and Encoding Versions
Data Encoding for Exceptions
Data Encoding for Classes
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Data Encoding for Exceptions

Exceptions are marshaled as shown below:

Marshaling format for exceptions.

Every exception instance is preceded by a single byte that indicates whether the exception uses class members: the byte value is   if any of1
the exception members are classes (or if any of the exception members, recursively, contain class members) and  , otherwise.0

Following the header byte, the exception is marshaled as a sequence of pairs: the first member of each pair is the  for an exceptiontype ID
slice, and the second member of the pair is a  containing the marshaled members of that slice. The sequence of pairs is marshaled inslice
derived-to-base order, with the most-derived slice first, and ending with the least-derived slice. Within each slice, data members are
marshaled as for : in the order in which they are defined in the Slice definition.structures

Following the sequence of pairs, any  that are used by the members of the exception are marshaled. This final part isclass instances
optional: it is present only if the header byte is  .1

To illustrate the marshaling, consider the following exception hierarchy:

Slice

exception Base {
    int baseInt;
    string baseString;
};

exception Derived extends Base {
    bool derivedBool;
    string derivedString;
    double derivedDouble;
};

Assume that the exception members are initialized to the values shown:

Member Type Value Marshaled Size (in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8

Member values of an exception of type .Derived
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From the above table, we can see that the total size of the members of  is 10 bytes, and the total size of the members of  isBase Derived
16 bytes. None of the exception members are classes. An instance of this exception has the on-the-wire representation shown in the next
table. (The size, type, and byte offset of the marshaled representation is indicated for each component.)

Marshaled Value Size in Bytes Type Byte offset

 0 (no class members) 1 bool 0

  "::Derived" (type ID) 10 string 1

  20 (byte count for slice) 4 int 11

 )1 (derivedBool 1 bool 15

 )"World!" (derivedString 7 string 16

 )3.14 (derivedDouble 8 double 23

 "::Base" (type ID) 7 string 31

  14 (byte count for slice) 4 int 38

 )99 (baseInt 4 int 42

 )"Hello" (baseString 6 string 46

Marshaled representation of the exception

Note that the size of each string is one larger than the actual string length. This is because each string is preceded by a count of its number
of bytes, as directed by the .encoding for strings

The receiver of this sequence of values uses the header byte to decide whether it eventually must unmarshal any class instances contained
in the exception (none in this example) and then examines the first type ID ( ). If the receiver recognizes that type ID, it can::Derived
unmarshal the contents of the first slice, followed by the remaining slices; otherwise, the receiver reads the byte count that follows the
unknown type (20) and then skips 20-4 bytes in the input stream, which is the start of the type ID for the second slice ( ). If the::Base
receiver does not recognize that type ID either, it again reads the byte count following the type ID (14), skips 14-4 bytes, and attempts to
read another type ID. (This can happen only if client and server have been compiled with mismatched Slice definitions that disagree in the
exception specification of an operation.) In this case, the receiver will eventually encounter an unmarshaling error, which it can report with a 

.MarshalException

If an exception contains class members, these members are marshaled following the exception slices as described in the following section.

See Also

Type IDs
Basic Data Encoding
Data Encoding for Classes
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Data Encoding for Classes

The marshaling for  is complex, due to the need to deal with the pointer semantics for graphs of classes, as well as the need for theclasses
receiver to slice classes of unknown derived type. In addition, the marshaling for classes uses a  compression scheme to avoidtype ID
repeatedly marshaling the same type IDs for large graphs of class instances.

Classes are marshaled similar to : each instance is divided into a number of pairs containing a type ID and a  (one pair forexceptions slice
each level of the inheritance hierarchy) and marshaled in derived-to-base order. Only data members are marshaled — no information is sent
that would relate to operations. Unlike exceptions, no header byte precedes a class. Instead, each marshaled class instance is preceded by
a (non-zero) positive integer that provides an identity for the instance. The sender assigns this identity during marshaling such that each
marshaled instance has a different identity. The receiver uses that identity to correctly reconstruct graphs of classes. The overall marshaling
format for classes is shown below:

Marshaling format for classes.

Topics

Data Encoding for Class Type IDs
Simple Example of Class Encoding
Data Encoding for Class Graphs

See Also

Classes
Type IDs
Data Encoding for Exceptions
Basic Data Encoding
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Data Encoding for Class Type IDs

Unlike for exception , class type IDs are not simple strings. Instead, a class type ID is marshaled as a boolean followed by either atype IDs
string or a , to conserve bandwidth. To illustrate this, consider the following class hierarchy:size

Slice

class Base {
    // ...
};

class Derived extends Base {
    // ...
};

The type IDs for the class  are  and . Suppose the sender marshals three instances of  as part of aslices ::Derived ::Base ::Derived
single request. (For example, two instances could be out-parameters and one instance could be the return value.)

The first instance that is sent on the wire contains the type IDs  and  preceding their respective slices. Because::Derived ::Base
marshaling proceeds in derived-to-base order, the first type ID that is sent is . Every time the sender sends a type ID that it has::Derived
not sent previously in the same request, it sends the boolean value , followed by the type ID. Internally, the sender also assigns afalse
unique positive number to each type ID. These numbers start at   and increment by one for each type ID that has not been marshaled1
previously. This means that the first type ID is encoded as the boolean value , followed by , and the second type ID isfalse ::Derived
encoded as the boolean value , followed by .false ::Base

When the sender marshals the remaining two instances, it consults a lookup table of previously-marshaled type IDs. Because both type IDs
were sent previously in the same request (or reply), the sender encodes all further occurrences of  as the value  followed::Derived true
by the number   encoded as a size, and it encodes all further occurrences of  as the value  followed by the number   encoded1 ::Base true 2
as a size.

When the receiver reads a type ID, it first reads its boolean marker:

If the boolean is , the receiver reads a string and enters that string into a lookup table that maps integers to strings. The firstfalse
new class type ID received in a request is numbered  , the second new class type ID is numbered  , and so on.1 2
If the boolean value is , the receiver reads a number encoded as a size and uses it to retrieve the corresponding class type IDtrue
from the lookup table.

Note that this numbering scheme is re-established for each new . (As we will see in our discussion of ,encapsulation protocol messages
parameters, return values, and exceptions are always marshaled inside an enclosing encapsulation.) For subsequent or nested
encapsulation, the numbering scheme restarts, with the first new type ID being assigned the value  . In other words, each encapsulation1
uses its own independent numbering scheme for class type IDs to satisfy the constraint that encapsulations must not depend on their
surrounding context.

Encoding class type IDs in this way provides significant savings in bandwidth: whenever an ID is marshaled a second and subsequent time,
it is marshaled as a two-byte value (assuming no more than 254 distinct type IDs per request) instead of as a string. Because type IDs can
be long, especially if you are using nested modules, the savings are considerable.

See Also

Type IDs
Basic Data Encoding
Protocol Messages
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Simple Example of Class Encoding

To make the  more concrete, consider the following class definitions:preceding discussion

Slice

interface SomeInterface {
     void op1();
};

class Base {
    int baseInt;
    void op2();
    string baseString;
};

class Derived extends Base implements SomeInterface {
    bool derivedBool;
    string derivedString;
    void op3();
    double derivedDouble;
};

Note that  and  have operations, and that  also implements the interface . Because marshaling ofBase Derived Derived SomeInterface
classes is concerned with state, not behavior, the operations , , and  are simply ignored during marshaling and the on-the-wireop1 op2 op3
representation is as if the classes had been defined as follows:

Slice

class Base {
    int baseInt;
    string baseString;
};

class Derived extends Base {
    bool derivedBool;
    string derivedString;
    double derivedDouble;
};

Suppose the sender marshals two instances of  (for example, as two in-parameters in the same request). The member values areDerived
as shown:

First instance:

Member Type Value Marshaled Size (in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8

Second instance:

Member Type Value Marshaled Size (in bytes)

baseInt int 115 4
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baseString string "Cave" 5

derivedBool bool false 1

derivedString string "Canem" 6

derivedDouble double 6.32 8

The sender arbitrarily assigns a non-zero  to each instance. Typically, the sender will simply consecutively number the instancesidentity
starting at  . For this example, assume that the two instances have the identities   and  . The marshaled representation for the two1 1 2
instances (assuming that they are marshaled immediately following each other) is shown.

Marshaled Value Size in Bytes Type Byte offset

 1 (identity) 4 int 0

  0 (marker for class type ID) 1 bool 4

  "::Derived" (class type ID) 10 string 52

 20 (byte count for slice) 4 int 15

 )1 (derivedBool 1 bool 19

 )"World!" (derivedString 7 string 20

 )3.14 (derivedDouble 8 double 27

  0 (marker for class type ID) 1 bool 35

 "::Base" (type ID) 7 string 36

 14 (byte count for slice) 4 int 43

 )99 (baseInt 4 int 47

 )"Hello" (baseString 6 string 51

  0 (marker for class type ID) 1 bool 57

  "::Ice::Object" (class type ID) 14 string 58

 5 (byte count for slice) 4 int 72

  0 (number of dictionary entries) 1 size 76

 2 (identity) 4 int 77

  1 (marker for class type ID) 1 bool 81

 1 (class type ID) 1 size 82

 19 (byte count for slice) 4 int 83

 )0 (derivedBool 1 bool 87

 )"Canem" (derivedString 6 string 88

 )6.32 (derivedDouble 8 double 94

  1 (marker for class type ID) 1 bool 102

 2 (class type ID) 1 size 103

 13 (byte count for slice) 4 int 104

 )115 (baseInt 4 int 108

 )"Cave" (baseString 5 string 112

  1 (marker for class type ID) 1 bool 117
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 3 (class type ID) 1 size 118

 5 (byte count for slice) 4 int 119

 0 (number of dictionary entries) 1 size 123

Note that, because classes (like ) are sent as a sequence of , the receiver of a class can slice off any derived parts of aexceptions slices
class it does not understand. Also note that (as shown in the above table) each class instance contains three slices. The third slice is for the
type , which is the base type of all classes. The class   has the number   in this example because::Ice::Object type ID ::Ice::Object 3
it is the third distinct type ID that is marshaled by the sender. (See entries at byte offsets 58 and 118 in the above table.) All class instances
have this final slice of type .::Ice::Object

Marshaling a separate slice for  dates back to Ice versions 1.3 and earlier. In those versions, classes carried a facet map::Ice::Object
that was marshaled as if it were defined as follows:

Slice

module Ice {
    class Object;

    dictionary<string, Object> FacetMap;

    class Object {
        FacetMap facets; // No longer exists
    };
};

As of Ice version 1.4, this facet map is always empty, that is, the count of entries for the dictionary that is marshaled in the ::Ice::Object
slice is always zero. If a receiver receives a class instance with a non-empty facet map, it must throw a .MarshalException

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,
indicating that the slice contains no data.

See Also

Data Encoding for Classes
Data Encoding for Exceptions
Basic Data Encoding
Type IDs
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Data Encoding for Class Graphs

On this page:

Encoding a Class Graph
Impact of Slicing on Class Graph Decoding

Encoding a Class Graph

Classes support pointer semantics, that is, you can construct graphs of classes. It follows that classes can arbitrarily point at each other. The
 is used to distinguish instances and pointers as follows:class identity

A class identity of 0 denotes a null pointer.
A class identity > 0 precedes the marshaled contents of an instance
A class identity < 0 denotes a pointer to an instance.

Identity values less than zero are pointers. For example, if the receiver receives the identity -57, this means that the corresponding class
member that is currently being unmarshaled will eventually point at the instance with identity 57.

For structures, classes, exceptions, sequences, and dictionary members that do not contain class members, the Ice encoding uses a simple
depth-first traversal algorithm to marshal the members. For example, structure members are marshaled in the order of their Slice definition; if
a structure member itself is of complex type, such as a sequence, the sequence is marshaled in toto where it appears inside its enclosing
structure. For complex types that contain class members, this depth-first marshaling is suspended: instead of marshaling the actual class
instance at this point, a negative identity is marshaled that indicates which class instance that member must eventually denote. For example,
consider the following definitions:

Slice

class C {
    // ...
};

struct S {
    int i;
    C firstC;
    C secondC;
    C thirdC;
    int j;
};

Suppose we initialize a structure of type   as follows:S

C++

S myS;
myS.i = 99;
myS.firstC = new C;             // New instance
myS.secondC = 0;                // null
myS.thirdC = myS.firstC;        // Same instance as previously
myS.j = 100;

When this structure is marshaled, the contents of the three class members are not marshaled in-line. Instead, the sender marshals the
negative identities of the corresponding instances. Assuming that the sender has assigned the identity 78 to the instance assigned to 

,  is marshaled as shown in the table.myS.firstC myS

Marshaled Value Size in Bytes Type Byte offset

 99 (myS.i) 4 int 0

 -78 (myS.firstC) 4 int 4

 0 (myS.secondC) 4 int 8

 -78 (mys.thirdC) 4 int 12
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 100 (myS.j) 4 int 16

Note that  and  both use the identity  . This allows the receiver to recognize that  and  point atmyS.firstC myS.thirdC -78 firstC thirdC
the same class instance (rather than at two different instances that happen to have the same contents).

Marshaling the negative identities instead of the contents of an instance allows the receiver to accurately reconstruct the class graph that
was sent by the sender. However, this begs the question of  the actual instances are to be marshaled as described at the beginning ofwhen
this section. In Ice , parameters and return values are marshaled as if they were members of a structure. For example, ifprotocol messages
an operation invocation has five input parameters, the client marshals the five parameters end-to-end as if they were members of a single
structure. If any of the five parameters are class instances, or are of complex type (recursively) containing class instances, the sender
marshals the parameters in multiple passes: the first pass marshals the parameters end-to-end, using the usual depth-first algorithm:

If the sender encounters a class member during marshaling, it checks whether it has marshaled the same instance previously for the
current request or reply:

If the instance has not been marshaled before, the sender assigns a new identity to the instance and marshals the negative
identity.
Otherwise, if the instance was marshaled previously, the sender sends the same negative identity that is previously sent for
that instance.

In effect, during marshaling, the sender builds an identity table that is indexed by the address of each instance; the lookup value for the
instance is its identity.

Once the first pass ends, the sender has marshaled all the parameters, but has not yet marshaled any of the class instances that may be
pointed at by various parameters or members. The identity table at this point contains all those instances for which negative identities
(pointers) were marshaled, so whatever is in the identity table at this point are the classes that the receiver still needs. The sender now
marshals those instances in the identity table, but with positive identities and followed by their contents, as described in .our earlier example
The outstanding instances are marshaled as a sequence, that is, the sender marshals the number of instances as a , followed by thesize
actual instances.

In turn, the instances just sent may themselves contain class members; when those class members are marshaled, the sender assigns an
identity to new instances or uses a negative identity for previously marshaled instances as usual. This means that, by the end of the second
pass, the identity table may have grown, necessitating a third pass. That third pass again marshals the outstanding class instances as a size
followed by the actual instances. The third pass contains all those instances that were not marshaled in the second pass. Of course, the third
pass may trigger yet more passes until, finally, the sender has sent all outstanding instances, that is, marshaling is complete. At this point,
the sender terminates the sequence of passes by marshaling an empty sequence (the value   encoded as a size).0

To illustrate this with an example, consider the definitions shown in  once more:Classes with Operations

Slice

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
    idempotent long eval();
};

class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand {
    long val;
};

These definitions allow us to construct expression trees. Suppose the client initializes a tree to the shape shown in the illustration below,
representing the expression . The values outside the nodes are the identities assigned by the client.(1 + 6 / 2) * (9 - 3)
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Expression tree for the expression . Both  and  denote the root node.(1 + 6 / 2) * (9 - 3) p1 p2

The client passes the root of the tree to the following operation in the parameters  and , as shown in the illustration above. (Evenp1 p2
though it does not make sense to pass the same parameter value twice, we do it here for illustration purposes):

Slice

interface Tree {
    void sendTree(Node p1, Node p2);
};

The client now marshals the two parameters  and  to the server, resulting in the value   being sent twice in succession. (The clientp1 p2 -1
arbitrarily assigns an identity to each node. The value of the identity does not matter, as long as each node has a unique identity. For
simplicity, the Ice implementation numbers instances with a counter that starts counting at   and increments by one for each unique1
instance.) This completes the marshaling of the parameters and results in a single instance with identity 1 in the identity table. The client now
marshals a sequence containing a single element, node 1, as described in . In turn, node 1 results in nodes 2 and 3 being addedthe example
to the identity table, so the next sequence of nodes contains two elements, nodes 2 and 3. The next sequence of nodes contains nodes 4, 5,
6, and 7, followed by another sequence containing nodes 8 and 9. At this point, no more class instances are outstanding, and the client
marshals an empty sequence to indicate to the receiver that the final sequence has been marshaled.

Within each sequence, the order in which class instances are marshaled is irrelevant. For example, the third sequence could equally contain
nodes 7, 6, 4, and 5, in that order. What is important here is that each sequence contains nodes that are an equal number of "hops" away
from the initial node: the first sequence contains the initial node(s), the second sequence contains all nodes that can be reached by
traversing a single link from the initial node(s), the third sequence contains all nodes that can be reached by traversing two links from the
initial node(s), and so on.

Now consider the same example once more, but with different parameter values for :  denotes the root of the tree, and sendTree p1 p2
denotes the  operator of the right-hand sub-tree, as shown:-
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The expression tree of with  and  denoting different nodes.p1 p2

The graph that is marshaled is exactly the same, but instances are marshaled in a different order and with different identities:

During the first pass, the client sends the identities  and  for the parameter values.-1 -2
The second pass marshals a sequence containing nodes 1 and 2.
The third pass marshals a sequence containing nodes 3, 4, and 5.
The fourth pass marshals a sequence containing nodes 6 and 7.
The fifth pass marshals a sequence containing nodes 8 and 9.
The final pass marshals an empty sequence.

In this way, any graph of nodes can be transmitted (including graphs that contain cycles). The receiver reconstructs the graph by filling in a
patch table during unmarshaling:

Whenever the receiver unmarshals a negative identity, it adds that identity to a patch table; the lookup value is the memory address
of the parameter or member that eventually will point at the corresponding instance.
Whenever the receiver unmarshals an actual instance, it adds the instance to an unmarshaled table; the lookup value is the memory
address of the instantiated class. The receiver then uses the address of the instance to patch any parameters or members with the
actual memory address.

Note that the receiver may receive negative identities that denote class instances that have been unmarshaled already (that is, point
"backward" in the unmarshaling stream), as well as instances that are yet to be unmarshaled (that is, point "forward" in the unmarshaling
stream). Both scenarios are possible, depending on the order in which instances are marshaled, as well as their in-degree.

To provide another example, consider the following definition:

Slice

class C {
    // ...
};

sequence<C> CSeq;

Suppose the client marshals a sequence of 100  instances to the server, with each instance being distinct. (That is, the sequence containsC
100 pointers to 100 different instances, not 100 pointers to the same single instance.) In that case, the sequence is marshaled as a size of
100, followed by 100 negative identities,  to  . Following that, the client marshals a single sequence containing the 100 instances,-1 -100
each instance with its positive identity in the range  to , and completes by marshaling an empty sequence.1 100

On the other hand, if the client sends a sequence of 100 elements that all point to the same single class instance, the client marshals the
sequence as a size of 100, followed by 100 negative identities, all with the value  . The client then marshals a sequence containing a single-1
element, namely instance  , and completes by marshaling an empty sequence.1
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Impact of Slicing on Class Graph Decoding

It is important to note that when a graph of class instances is sent, it always forms a connected graph. However, when the receiver rebuilds
the graph, it may end up with a disconnected graph, due to slicing. Consider:

Slice

class Base {
    // ...
};

class Derived extends Base {
    // ...
    Base b;
};

interface Example {
    void op(Base p);
};

Suppose the client has complete type knowledge, that is, understands both types  and , but the server only understands type Base Derived
, so the derived part of a  instance is sliced. The client can instantiate classes to be sent as parameter   as follows:Base Derived p

C++

DerivedPtr p = new Derived;
p->b = new Derived;
ExamplePrx e = ...;
e->op(p);

As far as the client is concerned, the graph looks like the one shown below:

Sender-side view of a graph containing derived instances.

However, the server does not understand the derived part of the instances and slices them. Yet, the server unmarshals all the class
instances, leading to the situation where the class graph has become disconnected, as shown here:

.Receiver-side view of the graph

Of course, more complex situations are possible, such that the receiver ends up with multiple disconnected graphs, each containing many
instances.

See Also

Classes with Operations
Basic Data Encoding
Data Encoding for Classes
Simple Example of Class Encoding
Protocol Messages



Ice 3.4.2 Documentation

1176 Copyright © 2011, ZeroC, Inc.

Data Encoding for Interfaces

Interfaces can be . For an interface marshaled by value (as opposed to a class instance derived from that interface), onlymarshaled by value
the  of the most-derived interface is encoded. Here are the Slice definitions once more:type ID

Slice

interface Base { /* ... */ };

interface Derived extends Base { /* ... */ };

interface Example {
    void doSomething(Base b);
};

If the client passes a class instance to  that does not have a Slice definition (but derives from ), the on-the-wiredoSomething Derived
representation of the interface is as follows:

Marshaled Value Size in Bytes Type Byte offset

 1 (identity) 4 int 0

  0 (marker for class type ID) 1 bool 4

  "::Derived" (class type ID) 10 string 5

 4 (byte count for slice) 4 int 15

  0 (marker for class type ID) 1 bool 19

  "::Ice::Object" (class type ID) 14 string 20

 5 (byte count for slice) 4 int 34

  0 (number of dictionary entries) 1 size 38

See Also

Passing Interfaces by Value
Type IDs
Data Encoding for Classes
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Data Encoding for Proxies

On this page:

Encoding for General Proxy Parameters
Encoding for Endpoint Parameters
Encoding for TCP Endpoint Parameters
Encoding for UDP Endpoint Parameters
Encoding for SSL Endpoint Parameters

Encoding for General Proxy Parameters

The first component of an encoded proxy is a value of type . If the proxy is a nil value, the  and  membersIce::Identity category name
are empty strings, and no additional data is encoded. The encoding for a non-null proxy consists of general parameters followed by endpoint
parameters.

The general proxy parameters are encoded as if they were members of the following structure:

Slice

struct ProxyData {
    Ice::Identity id;
    Ice::StringSeq facet;
    byte mode;
    bool secure;
};

The general proxy parameters are described in the following table.

Parameter Description

id The object identity

facet The  name (zero- or one-element sequence)facet

mode The proxy mode ( =twoway, =oneway, =batch oneway, =datagram, =batch datagram)0 1 2 3 4

secure  if secure endpoints are required, otherwise true false

The  field has either zero elements or one element. An empty sequence denotes the default facet, and a one-element sequencefacet
provides the facet name in its first member. If a receiver receives a proxy with a  field with more than one element, it must throw a facet

.ProxyUnmarshalException

Encoding for Endpoint Parameters

A proxy optionally contains an , but not both.endpoint list or an adapter identifier

If a proxy contains endpoints, they are encoded immediately following the general parameters. A  specifying the number ofsize
endpoints is encoded first, followed by the endpoints. Each endpoint is encoded as a  specifying the endpoint type ( =TCP, short 1 2
=SSL, =UDP), followed by an  of type-specific parameters. The type-specific parameters for TCP, UDP, and SSL are3 encapsulation
presented in the sections that follow.
If a proxy does not have endpoints, a single byte with value   immediately follows the general parameters and a string representing0
the object adapter identifier is encoded immediately following the zero byte.

Type-specific endpoint parameters are encapsulated because a receiver may not be capable of decoding them. For example, a receiver can
only decode SSL endpoint parameters if it is configured with the  plug-in. However, the receiver must be able to re-encode the proxyIceSSL
with all of its original endpoints, in the order they were received, even if the receiver does not understand the type-specific parameters for an
endpoint. Encapsulation of the parameters into an  allows the receiver to do this.opaque endpoint

Encoding for TCP Endpoint Parameters

A TCP endpoint is encoded as an encapsulation containing the following structure:
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Slice

struct TCPEndpointData {
    string host;
    int port;
    int timeout;
    bool compress;
};

The endpoint parameters are described in the following table.

Parameter Description

host The server host (a host name or IP address)

port The server port ( - )1 65535

timeout The timeout in milliseconds for socket operations

compress  if  should be used (if possible), otherwise true compression false

Encoding for UDP Endpoint Parameters

A UDP endpoint is encoded as an encapsulation containing the following structure:

Slice

struct UDPEndpointData {
    string host;
    int port;
    byte protocolMajor;
    byte protocolMinor;
    byte encodingMajor;
    byte encodingMinor;
    bool compress;
};

The endpoint parameters are described in the following table.

Parameter Description

host The server host (a host name or IP address)

port The server port ( - )1 65535

protocolMajor The major protocol version supported by the endpoint

protocolMinor The highest minor protocol version supported by the endpoint

encodingMajor The major encoding version supported by the endpoint

encodingMinor The highest minor encoding version supported by the endpoint

compress  if  should be used (if possible), otherwise true compression false

Encoding for SSL Endpoint Parameters

An SSL endpoint is encoded as an encapsulation containing the following structure:
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Slice

struct SSLEndpointData {
    string host;
    int port;
    int timeout;
    bool compress;
};

The endpoint parameters are described in the following table.

Parameter Description

host The server host (a host name or IP address)

port The server port ( - )1 65535

timeout The timeout in milliseconds for socket operations

compress  if  should be used (if possible), otherwise true compression false

See Also

Object Identity
Facets and Versioning
Basic Data Encoding
IceSSL
Using Connections
Protocol Compression
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Protocol Messages

The Ice protocol uses five messages:

Request (from client to server)
Batch request (from client to server)
Reply (from server to client)
Validate connection (from server to client)
Close connection (client to server or server to client)

Of these messages, validate and close connection only apply to connection-oriented transports.

As with the , protocol messages have no alignment restrictions. Each message consists of a message header and (except fordata encoding
validate and close connection) a message body that immediately follows the header.

On this page:

Message Header
Request Message Body
Batch Request Message Body
Reply Message Body
Validate Connection Message
Close Connection Message
Protocol State Machine
Disorderly Connection Closure

Message Header

Each protocol message has a 14-byte header that is encoded as if it were the following structure:

Slice

struct HeaderData {
    int  magic;
    byte protocolMajor;
    byte protocolMinor;
    byte encodingMajor;
    byte encodingMinor;
    byte messageType;
    byte compressionStatus;
    int  messageSize;
};

The message header members are described in the following table.

Member Description

magic A four-byte magic number consisting of the ASCII-encoded values of 'I', 'c', 'e', 'P' (0x49, 0x63, 0x65, 0x50)

protocolMajor The protocol major version number

protocolMinor The protocol minor version number

encodingMajor The encoding major version number

encodingMinor The encoding minor version number

messageType The message type

compressionStatus The  status of the messagecompression

messageSize The size of the message in bytes, including the header

Currently, both the protocol and the encoding are at version 1.0. The valid message types are shown in the following table.
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Message Type Encoding

Request 0

Batch request 1

Reply 2

Validate connection 3

Close connection 4

The encoding for the message bodies of each of these message types is described in the sections that follow.

Request Message Body

A request message contains the data necessary to perform an invocation on an object, including the identity of the object, the operation
name, and input parameters. A request message is encoded as if it were the following structure:

Slice

struct RequestData {
    int requestId;
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;
    byte mode;
    Ice::Context context;
    Encapsulation params;
};

The request members are described in the following table.

Member Description

requestId The request identifier

id The object identity

facet The  name (zero- or one-element sequence)facet

operation The operation name

mode A byte representation of  ( =normal, =idempotent)Ice::OperationMode 0 2

context The invocation context

params The  input parameters, in order of declarationencapsulated

The request identifier zero ( ) is reserved for use in  requests and indicates that the server must not send a reply to the client. A0 oneway
non-zero request identifier must uniquely identify the request on a connection, and must not be reused while a reply for the identifier is
outstanding.

The  field has either zero elements or one element. An empty sequence denotes the default facet, and a one-element sequencefacet
provides the facet name in its first member. If a receiver receives a request with a  field with more than one element, it must throw a facet

.MarshalException

Batch Request Message Body

A  request message contains one or more oneway requests, bundled together for the sake of efficiency. A batch request message isbatch
encoded as integer (not a size) that specifies the number of requests in the batch, followed by the corresponding number of requests,
encoded as if each request were the following structure:
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Slice

struct BatchRequestData {
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;
    byte mode;
    Ice::Context context;
    Encapsulation params;
};

The batch request members are described in the following table.

Member Description

id The object identity

facet The  name (zero- or one-element sequence)facet

operation The operation name

mode A byte representation of Ice::OperationMode

context The invocation context

params The encapsulated input parameters, in order of declaration

Note that no request ID is necessary for batch requests because only oneway invocations can be batched.

The  field has either zero elements or one element. An empty sequence denotes the default facet, and a one-element sequencefacet
provides the facet name in its first member. If a receiver receives a batch request with a  field with more than one element, it mustfacet
throw a .MarshalException

Reply Message Body

A reply message body contains the results of a twoway invocation, including any return value, out-parameters, or exception. A reply
message body is encoded as if it were the following structure:

struct ReplyData {
    int requestId;
    byte replyStatus;
    Encapsulation body; // messageSize - 19 bytes
};

The first four bytes of a reply message body contain a request ID. The request ID matches an outgoing request and allows the requester to
associate the reply with the .original request

The byte following the request ID indicates the status of the request; the remainder of the reply message body following the status byte is an 
 whose contents depend on the status value. The possible reply status values are shown in the table below (most of theseencapsulation

values correspond to ).common exceptions

Reply
status

Success Description

Success 0 A successful reply message is encoded as an  containing out-parameters (in the order ofencapsulation
declaration), followed by the return value for the invocation, encoded according to their types as specified in Data

. If an operation declares a  return type and no out-parameters, an empty encapsulation is encoded.Encoding void

User
exception

1 A user exception reply message contains an  containing the .encapsulation encoded user exception
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Object
does not
exist

2 If the target object does not exist, the reply message is encoded as if it were the following structure inside an 
: encapsulation

Slice

struct ReplyData {
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;
};

The invalid object reply members are described below: 

Member Description

id The object identity

facet The  name (zero- or one-element sequence)facet

operation The operation name

The  field has either zero elements or one element. An empty sequence denotes the default facet, and afacet
one-element sequence provides the facet name in its first member. If a receiver receives a reply with a  fieldfacet
with more than one element, it must throw a .MarshalException

Facet
does not
exist

3 If the target object does not support the facet encoded in the request message, the reply message is encoded as
for reply status 2.

Operation
does not
exist

4 If the target object does not support the operation encoded in the request message, the reply message is encoded
as for reply status 2.

Unknown
Ice local
exception

5 The reply message for an unknown Ice local exception is encoded as an  containing a single stringencapsulation
that describes the exception.

Unknown
Ice user
exception

6 The reply message for an unknown Ice user exception is encoded as an  containing a single stringencapsulation
that describes the exception.

Unknown
exception

7 The reply message for an unknown exception is encoded as an  containing a single string thatencapsulation
describes the exception.

Validate Connection Message

A server sends a validate connection message when it receives a new connection.

Validate connection messages are only used for connection-oriented transports.

The message indicates that the server is ready to receive requests; the client must not send any messages on the connection until it has
received the validate connection message from the server. No reply to the message is expected by the server.

The purpose of the validate connection message is two-fold:

It informs the client of the  that are supported by the server.protocol and encoding versions
It prevents the client from writing a request message to its local transport buffers until after the server has acknowledged that it can
actually process the request. This avoids a race condition caused by the server's TCP/IP stack accepting connections in its backlog
while the server is in the process of shutting down: if the client were to send a request in this situation, the request would be lost but
the client could not safely re-issue the request because that might violate at-most-once semantics. The validate connection
message guarantees that a server is not in the middle of shutting down when the server's TCP/IP stack accepts an incoming
connection and so avoids the race condition.
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4.  
5.  
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The  comprises the entire validate connection message. The  status of a validate connection message ismessage header compression
always  .0

Close Connection Message

A close connection message is sent when a peer is about to gracefully shutdown a .connection

Close connection messages are only used for connection-oriented transports.

The  comprises the entire close connection message. The  status of a close connection message is always  .message header compression 0

Either client or server can initiate connection closure. On the client side, connection closure is triggered by Active Connection Management
(ACM), which automatically reclaims connections that have been idle for some time.

This means that connection closure can be initiated at will by either end of a connection; most importantly, no state is associated with a
connection as far as the object model or application semantics are concerned.

The client side can close a connection whenever no reply for a request is outstanding on the connection. The sequence of events is:

The client sends a close connection message.
The client closes the writing end of the connection.
The server responds to the client's close connection message by closing the connection.

The server side can close a connection whenever no operation invocation is in progress that was invoked via that connection. This
guarantees that the server will not violate : an operation, once invoked in a servant, is allowed to complete and itsat-most-once semantics
results are returned to the client. Note that the server can close a connection even after it has received a request from the client, provided
that the request has not yet been passed to a servant. In other words, if the server decides that it wants to close a connection, the sequence
of events is:

The server discards all incoming requests on the connection.
The server waits until all still executing requests have completed and their results have been returned to the client.
The server sends a close connection message to the client.
The server closes its writing end of the connection.
The client responds to the server's close connection message by closing both its reading and writing ends of the connection.
If the client has outstanding requests at the time it receives the close connection message, it re-issues these requests on a new
connection. Doing so is guaranteed not to violate at-most-once semantics because the server guarantees not to close a connection
while requests are still in progress on the server side.

Protocol State Machine

From a client's perspective, the Ice protocol behaves according to the state machine shown below:
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Protocol state machine.

To summarize, a new connection is inactive until a  message has been received by the client, at which point the activevalidate connection
state is entered. The connection remains in the active state until it is shut down, which can occur when there are no more proxies using the
connection, or after the connection has been idle for a while. At this point, the connection is , meaning that a gracefully closed close

 message is sent, and the connection is closed.connection

Disorderly Connection Closure

Any violation of the protocol or encoding rules results in a disorderly connection closure: the side of the connection that detects a violation
unceremoniously closes it (without sending a close connection message or similar). There are many potential error conditions that can lead
to disorderly connection closure; for example, the receiver might detect that a message has a bad magic number or incompatible version,
receive a reply with an ID that does not match that of an outstanding request, receive a validate connection message when it should not, or
find illegal data in a request (such as a negative size, or a size that disagrees with the actual data that was unmarshaled).

See Also

Data Encoding
Protocol Compression
Object Identity
Facets and Versioning
Request Contexts
Oneway Invocations
Batched Invocations
Protocol and Encoding Versions
Active Connection Management
Automatic Retries
Connection Closure
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Protocol Compression

Compression is an optional feature of the Ice protocol; whether it is used for a particular message is determined by several factors:

Compression may not be supported on all platforms or in all language mappings.
Compression can be used in a request or batch request only if the endpoint  the ability to accept compressed messages.advertises
For efficiency reasons, the Ice protocol engine does not compress messages smaller than 100 bytes.

A compliant implementation of the protocol is free to compress messages that are smaller than 100 bytes — the choice is
up to the protocol implementation.

If compression is used, the entire message excluding the  is compressed using the bzip2 algorithm . The  memberheader [1] messageSize
of the message header therefore reflects the size of the compressed message, including the uncompressed header, plus an additional four
bytes.

The  field of the message header indicates whether a message is compressed and whether the sender can accept acompressionStatus
compressed reply, as shown in the table below.

Reply status Encoding Applies to Description

Message is
uncompressed,
sender cannot
accept a
compressed reply.

0 Request, Batch
Request, Reply,
Validate
Connection, Close
Connection

A client that does not support compression always uses this value. A client that
supports compression sets the value to  if the endpoint via which the request is0
dispatched indicates that it does not support compression. A server uses this
value for uncompressed replies.

Message is
uncompressed,
sender can accept a
compressed reply.

1 Request, Batch
Request

A client uses this value if the endpoint via which the request is dispatched
indicates that it supports compression, but the client has decided not to use
compression for this particular request (presumably because the request is too
small, so compression does not provide any saving).

Message is
compressed and
sender can accept a
compressed reply.

2 Request, Batch
Request, Reply

A client that supports compression sets this value only if the endpoint via which
the request is dispatched indicates that it supports compression. A server uses
this value for compressed replies.

The message body of a compressed request, batch request, or reply message is encoded by first writing the size of the uncompressed
message (including its header) as a four-byte integer, followed by the compressed message body (excluding the header). It follows that the
size of a compressed message is 14 bytes for the header, plus four bytes to record the size of the uncompressed message, plus the number
of bytes occupied by the compressed message body. Writing the uncompressed message size prior to the body enables the receiver to
allocate a buffer that is large enough to accomodate the uncompressed message body.

Note that compression is likely to improve performance only over lower-speed links, for which bandwidth is the overall limiting factor. Over
high-speed LAN links, the CPU time spent on compressing and uncompressing messages is longer than the time it takes to just send the
uncompressed data.

See Also

Data Encoding for Proxies
Protocol Messages

References

Red Hat, Inc. 2003. . Raleigh, NC: Red Hat, Inc.The bzip2 and libbzip2 Home Page

http://sources.redhat.com/bzip2
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Protocol and Encoding Versions

On this page:

Version Flexibility
Version Ground Rules
Version Compatibility Rules
Version Negotiation

Version Negotiation for Connection-Oriented Transports
Version Negotiation for Connection-Less Transports

Version Flexibility

As we saw in the preceding sections, both the Ice protocol and encoding have separate major and minor version numbers. Separate
versioning of protocol and encoding has the advantage that neither depends on the other: any version of the Ice protocol can be used with
any version of the encoding, so they can evolve independently. (For example, Ice protocol version 1.1 could use encoding version 2.3, and
vice versa.)

The Ice versioning mechanism provides the maximum possible amount of interoperability between clients and servers that use different
versions of the Ice run time. In particular, older deployed clients can communicate with newer deployed servers and vice versa, provided that
the message contents use types that are understandable to both sides.

For an example, assume that a later version of Ice were to introduce a new Slice keyword and data type, such as , for complexcomplex
numbers. This would require a new minor version number for the encoding; let us assume that version 1.1 of the encoding is identical to the
1.0 encoding but, in addition, supports the  type. We now have four possible combinations of client and server encoding versions:complex

Client Version Server Version Operation with  Parametercomplex Operation without  Parametercomplex

1.0 1.0 N/A Yes

1.1 1.0 N/A Yes

1.0 1.1 N/A Yes

1.1 1.1 Yes Yes

Interoperability for different versions.

As you can see, interoperability is provided to the maximum extent possible. If both client and server are at version 1.1, they can obviously
exchange messages and will use encoding version 1.1. For version 1.0 clients and servers, only operations that do not involve complex
parameters can be invoked (because at least one of client and server do not know about the new  type) and messages arecomplex
exchanged using encoding version 1.0.

Version Ground Rules

For versioning of the protocol and encoding to be possible, all versions (present and future) of the Ice run time adhere to a few ground rules:

Encapsulations always have a six-byte header; the first four bytes are the size of the encapsulation (including the size of the
header), followed by two bytes that indicate the major and minor version. How to interpret the remainder of the encapsulation
depends on the major and minor version.
The first eight bytes of a  always contain the magic number 'I', 'c', 'e', 'P', followed by four bytes of versionmessage header
information (two bytes for the protocol major and minor number, and two bytes for the encoding major and minor number). How to
interpret the remainder of the header and the message body depends on the major and minor version.

These ground rules ensure that all current and future versions of the Ice run time can at least identify the version and size of an
encapsulation and a message. This is particularly important for message switches such as ; by keeping the version and sizeIceStorm
information in a fixed format, it is possible to forward messages that are, for example, at version 2.0, even though the message switch itself
may still be at version 1.0.

Version Compatibility Rules

To establish whether a particular protocol version is compatible with another protocol version (or a particular encoding version is compatible
with another encoding version), the following rules apply:
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1.  
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3.  

Different major versions are incompatible. There is no obligation on either clients or servers to support more than a single major
version. For example, a server with major version 2 is under no obligation to also support major version 1. This rule exists to permit
the Ice run time to eventually get rid of old versions — without such a rule, all future releases of Ice would have to support all
previous major versions forever. In plain language, the rule means that clients and servers that use different major versions simply
cannot communicate with each other.
A receiver that advertises minor version   guarantees to be able to successfully decode all minor versions less than  .n n
Note that this does  imply that messages using version  -1 can be decoded as if they were version  : as far as their physicalnot n n
representation is concerned, two adjacent minor versions can be completely incompatible. However, because any receiver
advertising version   is also obliged to correctly deal with version  -1, minor version upgrades are  backwardn n semantically
compatible, even though their physical representation may be incompatible.
A sender that supports minor version   guarantees to be able to send messages using all minor versions less than  .n n
Moreover, the sender guarantees that if it receives a request using minor version   (with ), it will send the reply for that requestk k?n
using minor version  .k

Version Negotiation

Client and server must somehow agree on which version to use to exchange messages. Depending on whether the underlying transport is
connection-oriented or connection-less, different mechanisms are used to negotiate a common version.

Version Negotiation for Connection-Oriented Transports

For connection-oriented transports, the client opens a connection to the server and then waits for a  message. Thevalidate connection
validate connection message sent by the server indicates the server's major and highest supported minor version numbers for both protocol
and encoding. If the server's and client's major version numbers do not match, the client side raises an 

 or .UnsupportedProtocolException UnsupportedEncodingException

Assuming that the client has received a validate connection message from the server that matches the client's major version, the client
knows the highest minor version number that is supported by the server. Thereafter, the client is obliged to send no message with a minor
version number higher than the server's limit. However, the client is free to send a message with a minor version number that is less than the
server's limit.

The server does not have a-priori knowledge of the highest minor version that is supported by the client (because there is no validate
connection message from client to server). Instead, the server learns about the client version number in each individual message, by looking
at the . That minor version indicates the minor version number that the client can accept. The scope of that minor versionmessage header
number is a single request-reply interaction. For example, if the client sends a request with minor version 3, the server must reply to that
request with minor version 3 as well. However, the next client request might be with minor version 2, and the server must reply to that
request with minor version 2.

For orderly connection closure via a  message, the server can use any minor version, but that minor version must not beclose connection
higher than the highest minor version number that was received from the client while the connection was open.

Version Negotiation for Connection-Less Transports

For connection-less transports, no  message exists, so the client must learn about the highest supported minor versionvalidate connection
number of the server via other means. The mechanism for this depends on whether a proxy for a connection-less endpoint is bound directly

:or indirectly

For direct proxies, the version information is part of the endpoint contained in the proxy. In this case, the client simply sends its
messages with a minor version number that is not greater than the minor version number of the endpoint in the proxy.
For indirect proxies, the proxy itself contains no version information at all (because the proxy contains no endpoints). Instead, the
client obtains the version information when it resolves the proxy's symbolic information to one or more endpoints (via  or anIceGrid
equivalent service). The version information of the endpoints determines the highest minor version number that is available to the
client.

See Also

Basic Data Encoding
Protocol Messages
IceStorm
IceGrid
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IceGrid
IceGrid is the location and activation service for Ice applications. For the purposes of this discussion, we can loosely define grid computing
as the use of a network of relatively inexpensive computers to perform the computational tasks that once required costly "big iron."
Developers familiar with distributed computing technologies may not consider the notion of grid computing to be particularly revolutionary;
after all, distributed applications have been running on networks for years, and the definition of grid computing is sufficiently vague that
practically any server environment could be considered a "grid."

One possible grid configuration is a homogeneous collection of computers running identical programs. Each computer in the grid is
essentially a clone of the others, and all are equally capable of handling a task. As a developer, you need to write the code that runs on the
grid computers, and Ice is ideally suited as the infrastructure that enables the components of a grid application to communicate with one
another. However, writing the application code is just the first piece of the puzzle. Many other challenges remain:

How do I install and update this application on all of the computers in the grid?
How do I keep track of the servers running on the grid?
How do I distribute the load across all the computers?
How do I migrate a server from one computer to another one?
How can I quickly add a new computer to the grid?

Of course, these are issues faced by most distributed applications. As you learn more about IceGrid's capabilities, you will discover that it
offers solutions to these challenges. To get you started, we have summarized IceGrid's feature set below:

Location service
As an implementation of an Ice , IceGrid enables clients to bind indirectly to their servers, making applications morelocation service
flexible and resilient to changing requirements.

On-demand server activation
Starting an Ice server process is called . IceGrid can be given responsibility for activating a server on demand, thatserver activation
is, when a client attempts to access an object hosted by the server. Activation usually occurs as a side effect of indirect binding, and
is completely transparent to the client.

Application distribution
IceGrid provides a convenient way to distribute your application to a set of computers, without the need for a shared file system or
complicated scripts. Simply configure an  server and let IceGrid download the necessary files and keep themIcePatch2
synchronized.

Replication and load balancing
IceGrid supports replication by grouping the object adapters of several servers into a single virtual object adapter. During indirect
binding, a client can be bound to an endpoint of any of these adapters. Furthermore, IceGrid monitors the load on each computer
and can use that information to decide which of the endpoints to return to a client.

Sessions and resource allocation
An IceGrid client establishes a session in order to allocate a resource such as an object or a server. IceGrid prevents other clients
from using the resource until the client releases it or the session expires. Sessions enhance security through the use of an
authentication mechanism that can be integrated with a .Glacier2 router

Automatic failover
Ice supports automatic retry and failover in any proxy that contains multiple endpoints. When combined with IceGrid's support for
replication and load balancing, automatic failover means that a failed request results in a client transparently retrying the request on
the next endpoint with the lowest load.

Dynamic queries
In addition to transparent binding, applications can interact directly with IceGrid to locate objects in a variety of ways.

Status monitoring
IceGrid supports Slice interfaces that allow applications to monitor its activities and receive notifications about significant events,
enabling the development of custom tools or the integration of IceGrid status events into an existing management framework.

Administration
IceGrid includes command-line and graphical administration tools. They are available on all supported platforms and allow you to
start, stop, monitor, and reconfigure any server managed by IceGrid.

Deployment
Using XML files, you can describe the servers to be deployed on each computer. Templates simplify the description of identical
servers.

Database Independence
By default, IceGrid uses a  database to store its state. However, you can configure IceGrid to use a different database, suchFreeze
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as MySQL (among others).

As grid computing enters the mainstream and compute servers become commodities, users expect more value from their applications.
IceGrid, in cooperation with the Ice run time, relieves you of these low-level tasks to accelerate the construction and simplify the
administration of your distributed applications.

Topics

IceGrid Architecture
Getting Started with IceGrid
Using IceGrid Deployment
Well-Known Objects
IceGrid Templates
IceBox Integration with IceGrid
Object Adapter Replication
Load Balancing
Resource Allocation using IceGrid Sessions
Registry Replication
Application Distribution
IceGrid Administrative Sessions
Glacier2 Integration with IceGrid
IceGrid XML Reference
Using Descriptor Variables and Parameters
IceGrid Property Set Semantics
IceGrid XML Features
IceGrid Server Reference
IceGrid and the Administrative Facility
Securing IceGrid
IceGrid Administrative Utilities
IceGrid Server Activation
IceGrid Troubleshooting
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IceGrid Architecture

An IceGrid domain consists of a  and any number of . Together, the registry and nodes cooperate to manage the informationregistry nodes
and server processes that comprise . Each application assigns servers to particular nodes. The registry maintains a persistentapplications
record of this information, while the nodes are responsible for starting and monitoring their assigned server processes. In a typical
configuration, one node runs on each computer that hosts Ice servers. The registry does not consume much processor time, so it commonly
runs on the same computer as a node; in fact, the registry and a node can run in the same process if desired. If fault tolerance is desired, the
registry supports replication using a master-slave design.

On this page:

Architecture of a Simple IceGrid Application
Server Replication with IceGrid
Deploying an IceGrid Application

Architecture of a Simple IceGrid Application

As an example, this illustration shows a very simple IceGrid application running on a network of three computers. The IceGrid registry is the
only process of interest on host , while IceGrid nodes are running on the hosts  and . In this sample application, one server hasPC1 PC2 PC3
been assigned to each node.

Simple IceGrid application.

From a client application's perspective, the primary responsibility of the registry is to resolve indirect proxies as an Ice . Aslocation service
such, this contribution is largely transparent: when a client first attempts to use an indirect proxy, the Ice run time in the client contacts the
registry to convert the proxy's symbolic information into endpoints that allow the client to .establish a connection

Although the registry might sound like nothing more than a simple lookup table, reality is quite different. For example, behind the scenes, a
locate request might prompt a node to start the target server automatically, or the registry might select appropriate endpoints based on load
statistics from each computer.

This also illustrates the benefits of indirect proxies: the location service can provide a great deal of functionality without any special action by
the client and, unlike with direct proxies, the client does not need advance knowledge of the address and port of a server. The extra level of
indirection adds some latency to the client's first use of a proxy; however, all subsequent interactions occur directly between client and
server, so the cost is negligible. Furthermore, indirection allows servers to migrate to different computers without the need to update proxies
held by clients.

Server Replication with IceGrid

IceGrid's flexibility allows an endless variety of configurations. For example, suppose we have a grid network and want to replicate a server
on each blade, as shown below:
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Replicated server on grid network.

Replication in Ice is based on , not servers. Any object adapter in any server could participate in replication, but it is far moreobject adapters
likely that all of the  are created by instances of the same server executable that is running on each computer. Wereplicated object adapters
are using this configuration in the example shown above, but IceGrid requires each server to have a unique name.  and Server 1 Server

 are our unique names for the same executable.2

The binding process works somewhat differently when replication is involved, since the registry now has multiple object adapters to choose
from. The description of the IceGrid application drives the registry's decision about which object adapter (or object adapters) to use. For
example, the registry could consider the system load of each computer (as periodically reported by the nodes) and return the endpoints of
the object adapter on the computer with the lowest load. It is also possible for the registry to combine the endpoints of several object
adapters, in which case the Ice run time in the client would select the endpoint for the initial connection attempt.

Deploying an IceGrid Application

In IceGrid,  is the process of describing an application to the registry. This description includes the following information:deployment

Replica groups
A  is the term for a collection of . An application can create any number of replica groups.replica group replicated object adapters
Each group requires a unique identifier.

Nodes
An application must assign its servers to one or more nodes.

Servers
A server's description includes a unique name and the path to its executable. It also lists the object adapters it creates.

Object adapters
Information about an object adapter includes its endpoints and any well-known objects it advertises. If the object adapter is a
member of a replica group, it must also supply that group's identifier.

Objects
A  is one that is known solely by its identity. The registry maintains a global list of such objects for use duringwell-known object
locate requests.

IceGrid uses the term  to refer to the description of an application and its components; deploying an application involves creatingdescriptor
its descriptors in the registry. The are several ways to accomplish this:

You can use a command-line tool that reads a file containing an XML representation of the descriptors.
You can create descriptors interactively with the graphical administration tool.
You can create descriptors programmatically via IceGrid's administrative interface.

The registry server must be running in order to deploy an application, but it is not necessary for nodes to be active. Nodes that are started
after deployment automatically retrieve the information they need from the registry. Once deployed, you can update the application at any
time.

See Also

Locators
Connection Establishment
Object Adapters
Object Adapter Replication
Well-Known Objects
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Getting Started with IceGrid

This page introduces a sample application that will help us demonstrate IceGrid's capabilities.

On this page:

The Ripper Application
Initial Ripper Architecture
Ripper Registry Configuration
Ripper Client Configuration
Ripper Server Configuration
Starting the Registry for the Ripper Application
Starting the Ripper Server
Ripper Progress Review

The Ripper Application

Our application "rips" music tracks from a compact disc (CD) and encodes them as MP3 files, as shown below:

Overview of sample application.

Ripping an entire CD usually takes several minutes because the MP3 encoding requires lots of CPU cycles. Our distributed ripper
application accelerates this process by taking advantage of powerful CPUs on remote Ice servers, enabling us to process many songs in
parallel.

The Slice interface for the MP3 encoder is straightforward:
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Slice

module Ripper {
exception EncodingFailedException {
    string reason;
};

sequence<short> Samples;

interface Mp3Encoder {
    // Input: PCM samples for left and right channels
    // Output: MP3 frame(s).
    Ice::ByteSeq encode(Samples leftSamples, Samples rightSamples)
        throws EncodingFailedException;

    // You must flush to get the last frame(s). Flush also 
    // destroys the encoder object.
    Ice::ByteSeq flush()
        throws EncodingFailedException;
};

interface Mp3EncoderFactory
{
    Mp3Encoder* createEncoder();
};
};

The implementation of the encoding algorithm is not relevant for the purposes of this discussion. Instead, we will focus on incrementally
improving the application as we discuss IceGrid features.

Initial Ripper Architecture

The initial architecture for our application is intentionally simple, consisting of an IceGrid registry and a server that we start manually. This
illustration shows how the client's invocation on its  proxy causes an implicit locate request:EncoderFactory

Initial architecture for the ripper application.

The corresponding C++ code for the client is presented below:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("factory@EncoderAdapter");
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(proxy);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Notice that the client uses an indirect proxy for the  object. This stringified proxy can be read literally as "the objectMP3EncoderFactory
with identity  in the object adapter identified as ." The encoding server creates this object adapter and ensuresfactory EncoderAdapter
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that the object adapter uses this identifier. Since each object adapter must be uniquely identified, the registry can easily determine the server
that created the adapter and return an appropriate endpoint to the client.

The client's call to  is the first remote invocation on the factory object, and therefore the locate request is performed during thecheckedCast
completion of this invocation. The subsequent call to  is sent directly to the server without further involvement by IceGrid.createEncoder

Ripper Registry Configuration

The registry needs a subdirectory in which to create its databases, and we will use  for this purpose (the directory/opt/ripper/registry
must exist before starting the registry). We also need to create an Ice configuration file to hold  required by the registry. The file properties

 contains the following properties:/opt/ripper/registry.cfg

IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifier
IceGrid.Registry.Data=/opt/ripper/registry
IceGrid.Registry.DynamicRegistration=1

Several of the properties define endpoints, but only the value of  needs a fixed port. ThisIceGrid.Registry.Client.Endpoints
property specifies the endpoints of the IceGrid locator service; IceGrid clients must include these endpoints in their definition of 

, as discussed in the next section. The TCP port number (4061) used in this example has been reserved by the Ice.Default.Locator
 (IANA) for the IceGrid registry, along with SSL port number 4062.Internet Assigned Numbers Authority

Several other properties are worth mentioning:

IceGrid.Registry.AdminPermissionsVerifier
Controls access to the registry's .administrative functionality

IceGrid.Registry.Data
Specifies the registry's database directory.

IceGrid.Registry.DynamicRegistration
If set to a non-zero value, allows servers to register their object adapters. Dynamic registration is explained in more detail below.

By default, IceGrid will not permit a server to register its object adapters without using IceGrid's . In some situations, suchdeployment facility
as in this sample application, you may want a client to be able to bind indirectly to a server without having to first deploy the server. That is,
simply starting the server should be sufficient to make the server register itself with IceGrid and be reachable from clients.

You can achieve this by running the registry with the property  set to a non-zero value. WithIceGrid.Registry.DynamicRegistration
this setting, IceGrid permits an adapter to register itself upon activation even if it has not been previously deployed. To force the server to
register its adapters, you must define  (so the server can find the registry) and, for each adapter that you wish toIce.Default.Locator
register, you must set  to an identifier that is unique within the registry. Setting the .AdapterId<adapter-name> <adapter-name>

 property also causes the adapter to no longer create direct proxies but rather to create indirect proxies that clients must.AdapterId
resolve via the registry.

Ripper Client Configuration

The client requires only minimal configuration, namely a value for the property . This property supplies the Ice runIce.Default.Locator
time with the proxy for the locator service. In IceGrid, the locator service is implemented by the registry, and the locator object is available on
the registry's client endpoints. The property  defined above provides most of the information weIceGrid.Registry.Client.Endpoints
need to construct the proxy. The missing piece is the identity of the locator object, which defaults to :IceGrid/Locator

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

The use of a locator service allows the client to take advantage of indirect binding and avoid static dependencies on server endpoints.
However, the locator proxy must have a fixed port, otherwise the client has a bootstrapping problem: it cannot resolve indirect proxies
without knowing the endpoints of the locator service.

Note that the identity of the locator object may change based on the .registry's configuration

Ripper Server Configuration

http://www.iana.org/assignments/port-numbers
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We use  as the server's configuration file. It contains the following properties:/opt/ripper/server.cfg

EncoderAdapter.AdapterId=EncoderAdapter
EncoderAdapter.Endpoints=tcp
Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

The properties are described below:

EncoderAdapter.AdapterId
This property supplies the object adapter identifier that the client uses in its indirect proxy (e.g., ).factory@EncoderAdapter

EncoderAdapter.Endpoints
This property defines the . Notice that the value does not contain any port information, meaning that theobject adapter's endpoint
adapter uses a system-assigned port. Without IceGrid, the use of a system-assigned port would pose a significant problem: how
would a client create a direct proxy if the adapter's port could change every time the server is restarted? IceGrid solves this problem
nicely because clients can use indirect proxies that contain no endpoint dependencies. The registry resolves indirect proxies using
the endpoint information supplied by object adapters each time they are activated.

Ice.Default.Locator
The server requires a value for this property in order to register its object adapter.

Starting the Registry for the Ripper Application

Now that the configuration file is written and the directory structure is prepared, we are ready to start the IceGrid registry:

$ icegridregistry --Ice.Config=/opt/ripper/registry.cfg

Additional  are supported, including those that allow the registry to run as a Windows service or Unix daemon.command line options

Starting the Ripper Server

With the registry up and running, we can now start the server. At a command prompt, we run the program and pass an --Ice.Config
option indicating the location of the configuration file:

$ /opt/ripper/bin/server --Ice.Config=/opt/ripper/server.cfg

Ripper Progress Review

This example demonstrated how to use IceGrid's location service, which is a core component of IceGrid's feature set. By incorporating
IceGrid into our application, the client is now able to locate the  object using only an indirect proxy and a value for MP3EncoderFactory

. Furthermore, we can reconfigure the application in any number of ways without modifying the client's code orIce.Default.Locator
configuration.

For some applications, the functionality we have already achieved using IceGrid may be entirely sufficient. However, we have only just
begun to explore IceGrid's capabilities, and there is much we can still do to improve our application. The next section shows how we can
avoid the need to start our server manually by deploying our application onto an IceGrid node.

See Also

Locator Configuration for a Client
Resource Allocation using IceGrid Sessions
Well-Known Registry Objects
Using IceGrid Deployment
Object Adapter Endpoints
icegridregistry
IceGrid Properties
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Using IceGrid Deployment

Here we extend the capabilities of our  using IceGrid's deployment facility.sample application

On this page:

Ripper Architecture using Deployment
Ripper Deployment Descriptors
Ripper Registry and Node Configuration
Ripper Server Configuration using Deployment
Starting the Node for the Ripper Application
Deploying the Ripper Application
Ripper Progress Review
Adding Nodes to the Ripper Application

Descriptor Changes
Configuration Changes
Redeploying the Application
Client Changes

Ripper Architecture using Deployment

The revised architecture for our application consists of a single IceGrid node responsible for our encoding server that runs on the computer
named . The illustration below shows the client's initial invocation on its indirect proxy and the actions that IceGrid takes toComputeServer
make this invocation possible:

Architecture for deployed ripper application.

In contrast to the , we no longer need to manually start our server. In this revised application, the client's locate requestinitial architecture
prompts the registry to query the node about the server's state and start it if necessary. Once the server starts successfully, the locate
request completes and subsequent client communication occurs directly with the server.

Ripper Deployment Descriptors

We can deploy our application using the , but first we must define our descriptors in XML. The command line utilityicegridadmin
descriptors are quite brief:

XML

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>
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For IceGrid's purposes, we have named our application . It consists of a single server, , assigned to the node Ripper EncoderServer
.Node1

Since a computer typically runs only one node process, you might be tempted to give the node a name that identifies its
host (such as ). However, this naming convention becomes problematic as soon as you need toComputeServerNode
migrate the node to another host.

The server's  attribute supplies the pathname of its executable, and the  attribute indicates that the server should be exe activation
 when necessary.activated on demand

The object adapter's descriptor is the most interesting. As you can see, the  and  attributes both specify the value name id EncoderAdapter
. The value of  reflects the adapter's name in the server process (i.e., the argument passed to ) that is usedname createObjectAdapter
for configuration purposes, whereas the value of  uniquely identifies the adapter within the registry and is used in indirect proxies. Theseid
attributes are not required to have the same value. Had we omitted the  attribute, IceGrid would have composed a unique value byid
combining the server name and adapter name to produce the following identifier:

EncoderServer.EncoderAdapter

The  attribute defines one or more  for the adapter. As explained , these endpoints do not require a fixed port.endpoints endpoints earlier

Refer to the  for detailed information on using XML to define descriptors.XML reference

Ripper Registry and Node Configuration

In our , we created the directory  for use by the registry. The node also needs ainitial registry configuration /opt/ripper/registry
subdirectory for its own purposes, so we will use . Again, these directories must exist before starting the registry and/opt/ripper/node
node.

We also need to create an Ice configuration file to hold  required by the registry and node. The file properties /opt/ripper/config
contains the following properties:

# Registry properties
IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifier
IceGrid.Registry.Data=/opt/ripper/registry

# Node properties
IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=/opt/ripper/node
IceGrid.Node.CollocateRegistry=1
Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

The registry and node can share this configuration file. In fact, by enabling , we have indicated thatIceGrid.Node.CollocateRegistry
the registry and node should run in the same process.

One difference from our  is that we no longer define . By omitting thisinitial configuration IceGrid.Registry.DynamicRegistration
property, we force the registry to reject the registration of object adapters that have not been deployed.

The node properties are explained below:

IceGrid.Node.Endpoints
This property specifies the node's endpoints. A fixed port is not required.

IceGrid.Node.Name
This property defines the unique name for this node. Its value must match the descriptor we wrote above.

IceGrid.Node.Data
This property specifies the node's data directory.
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Ice.Default.Locator
This property is defined for use by the  tool. The node would also require this property if the registry is noticegridadmin
collocated. Refer to our discussion of the  for more information on this setting.ripper client configuration

Ripper Server Configuration using Deployment

Server configuration is accomplished using descriptors. During deployment, the node creates a subdirectory tree for each server. Inside this
tree the node creates a configuration file containing properties derived from the server's descriptors. For instance, the adapter's descriptor
generates the following properties in the server's configuration file:

# Server configuration
Ice.Admin.ServerId=EncoderServer
Ice.Admin.Endpoints=tcp -h 127.0.0.1
Ice.ProgramName=EncoderServer
# Object adapter EncoderAdapter
EncoderAdapter.Endpoints=tcp
EncoderAdapter.AdapterId=EncoderAdapter
Ice.Default.Locator=IceGrid/Locator:default -p 4061

As you can see, the configuration file that IceGrid generates from the descriptor resembles the , with two additionalinitial configuration
properties:

Ice.Admin.ServerId
Ice.Admin.Endpoints

These properties enable the  that, among other features, allows an IceGrid node to gracefully deactivate the server.administrative facility

Using the directory structure we established for our ripper application, the configuration file for  has the file name shownEncoderServer
below:

/opt/ripper/node/servers/EncoderServer/config/config

Note that this file should not be edited directly because any changes you make are lost the next time the node regenerates the file. The
correct way to add properties to the file is to include property definitions in the server's descriptor. For example, we can add the property 

 by modifying the server descriptor as follows:Ice.Trace.Network=1

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp"/>
                <property name="Ice.Trace.Network" value="1"/>
            </server>
        </node>
    </application>
</icegrid>

When a node activates a server, it passes the location of the server's configuration file using the  command-line argument. If--Ice.Config
you start a server manually from a command prompt, you must supply this argument yourself.

Starting the Node for the Ripper Application

Now that the configuration file is written and the directory structure is prepared, we are ready to start the IceGrid registry and node. Using a
collocated registry and node, we only need to use one command:

$ icegridnode --Ice.Config=/opt/ripper/config

Additional  are supported, including those that allow the node to run as a Windows service or Unix daemon.command line options
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Deploying the Ripper Application

With the registry up and running, it is now time to deploy our application. Like our client, the  utility also requires a definitionicegridadmin
for the  property. We can start the utility with the following command:Ice.Default.Locator

$ icegridadmin --Ice.Config=/opt/ripper/config

After confirming that it can contact the registry,  provides a command prompt at which we deploy our application. Assumingicegridadmin
our descriptor is stored in , the deployment command is shown below:/opt/ripper/app.xml

>>> application add "/opt/ripper/app.xml"

Next, confirm that the application has been deployed:

>>> application list
Ripper

You can start the server using this command:

>>> server start EncoderServer

Finally, you can retrieve the current endpoints of the object adapter:

>>> adapter endpoints EncoderAdapter

If you want to experiment further using , issue the  command and review the .icegridadmin help available commands

Ripper Progress Review

We have deployed our first IceGrid application, but you might be questioning whether it was worth the effort. Even at this early stage, we
have already gained several benefits:

We no longer need to manually start the encoder server before starting the client, because the IceGrid node automatically starts it if
it is not active at the time a client needs it. If the server happens to terminate for any reason, such as an IceGrid administrative
action or a server programming error, the node restarts it without intervention on our part.
We can manage the application remotely using one of the IceGrid administration tools. The ability to remotely modify applications,
start and stop servers, and inspect every aspect of your configuration is a significant advantage.

Admittedly, we have not made much progress yet in our stated goal of improving the performance of the ripper over alternative solutions that
are restricted to running on a single computer. Our client now has the ability to easily delegate the encoding task to a server running on
another computer, but we have not achieved the parallelism that we really need. For example, if the client created a number of encoders and
used them simultaneously from multiple threads, the encoding performance might actually be  than simply encoding the data directly inworse
the client, as the remote computer would likely slow to a crawl while attempting to task-switch among a number of processor-intensive tasks.

Adding Nodes to the Ripper Application

Adding more nodes to our environment would allow us to distribute the encoding load to more compute servers. Using the techniques we
have learned so far, let us investigate the impact that adding a node would have on our descriptors, configuration, and client application.

Descriptor Changes

The addition of a node is mainly an exercise in cut and paste:
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XML

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>

Note that we now have two  elements instead of a single one. You might be tempted to simply use the host name as the node name.node
However, in general, that is not a good idea. For example, you may want to run several IceGrid nodes on a single machine (for example, for
testing). Similarly, you may have to rename a host at some point, or need to migrate a node to a different host. But, unless you also rename
the node, that leads to the situation where you have a node with the name of a (possibly obsolete) host when the node in fact is not running
on that host. Obviously, this makes for a confusing configuration — it is better to use abstract node names, such as .Node1

Aside from the new  element, notice that the server identifiers must be unique. The adapter name, however, can remain as node
 because this name is used only for local purposes within the server process. In fact, using a different name for eachEncoderAdapter

adapter would actually complicate the server implementation, since it would somehow need to discover the name it should use when
creating the adapter.

We have also removed the  attribute from our adapter descriptors; the  supplied by IceGrid are sufficient for our purposes.id default values

Configuration Changes

We can continue to use the configuration file we created  for our combined registry-node process. We need a separate configurationearlier
file for , primarily to define a different value for the property . However, we also cannot have two nodesNode2 IceGrid.Node.Name
configured with  because only one master registry is allowed, so we must remove this property:IceGrid.Node.CollocateRegistry

IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node2
IceGrid.Node.Data=/opt/ripper/node

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

We assume that  refers to a local file system directory on the computer hosting , and not a shared volume,/opt/ripper/node Node2
because two nodes must not share the same data directory.

We have also modified the locator proxy to include the address of the host on which the registry is running.

Redeploying the Application

After saving the new descriptors, you need to redeploy the application. Using , issue the following command:icegridadmin

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> application update "/opt/ripper/app.xml"

Client Changes

We have added a new node, but we still need to modify our client to take advantage of it. As it stands now, our client can delegate an
encoding task to one of the two  objects. The client selects a factory by using the appropriate indirect proxy:MP3EncoderFactory

factory@EncoderServer1.EncoderAdapter
factory@EncoderServer2.EncoderAdapter
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In order to distribute the tasks among both factories, the client could use a random number generator to decide which factory receives the
next task:

C++

string adapter;
if ((rand() % 2) == 0)
    adapter = "EncoderServer1.EncoderAdapter";
else
    adapter = "EncoderServer2.EncoderAdapter";
Ice::ObjectPrx proxy = communicator->stringToProxy("factory@" + adapter);
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(proxy);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

There are a few disadvantages in this design:

The client application must be modified each time a new compute server is added or removed because it knows all of the adapter
identifiers.
The client cannot distribute the load intelligently; it is just as likely to assign a task to a heavily-loaded computer as it is an idle one.

We describe better solutions in the sections that follow.

See Also

IceGrid Server Activation
Creating an Object Adapter
Object Adapter Endpoints
Getting Started with IceGrid
IceGrid Administrative Utilities
IceGrid and the Administrative Facility
icegridnode
Adapter Descriptor Element
IceGrid Properties
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Well-Known Objects

On this page:

Overview of Well-Known Objects
Well-Known Object Types
Deploying Well-Known Objects
Adding Well-Known Objects Programmatically
Adding Well-Known Objects with icegridadmin
Querying Well-Known Objects
Using Well-Known Objects in the Ripper Application

Adding Well-Known Objects to the Ripper Deployment
Querying Ripper Objects with findAllObjectsByType
Querying Ripper Objects with findObjectByType
Querying Ripper Objects with findObjectByTypeOnLeastLoadedNode
Ripper Progress Review

Overview of Well-Known Objects

There are two types of : one specifies an identity and an object adapter identifier, while the other contains only an identity.indirect proxies
The latter type of indirect proxy is known as a . A well-known proxy refers to a well-known object, that is, its identity alone iswell-known proxy
sufficient to allow the client to locate it. Ice requires all object identities in an application to be unique, but typically only a select few objects
are able to be located only by their identities.

In earlier sections we showed the relationship between indirect proxies containing an object adapter identifier and the IceGrid configuration.
Briefly, in order for a client to use a proxy such as , an object adapter must be given the identifier factory@EncoderAdapter

.EncoderAdapter

A similar requirement exists for well-known objects. The registry maintains a table of these objects, which can be populated in a number of
ways:

statically in descriptors,
programmatically using IceGrid's administrative interface,
dynamically using an IceGrid administration tool.

The registry's database maps an object identity to a proxy. A locate request containing only an identity prompts the registry to consult this
database. If a match is found, the registry examines the associated proxy to determine if additional work is necessary. For example, consider
the well-known objects in the following table.

Identity Proxy

Object1 Object1:tcp -p 10001

Object2 Object2@TheAdapter

Object3 Object3

The proxy associated with  already contains endpoints, so the registry can simply return this proxy to the client.Object1

For , the registry notices the adapter ID and checks to see whether it knows about an adapter identified as . If it does,Object2 TheAdapter
it attempts to obtain the endpoints of that adapter, which may cause its server to be started. If the registry is successfully able to determine
the adapter's endpoints, it returns a direct proxy containing those endpoints to the client. If the registry does not recognize  orTheAdapter
cannot obtain its endpoints, it returns the indirect proxy  to the client. Upon receipt of another indirect proxy, the IceObject2@TheAdapter
run time in the client will try once more to resolve the proxy, but generally this will not succeed and the Ice run time in the client will raise a 

 as a result.NoEndpointException

Finally,  represents a hopeless situation: how can the registry resolve  when its associated proxy refers to itself? In thisObject3 Object3
case, the registry returns the proxy  to the client, which causes the client to raise . Clearly, you shouldObject3 NoEndpointException
avoid this situation.

Well-Known Object Types

The registry's database not only associates an identity with a proxy, but also a type. Technically, the "type" is an arbitrary string but, by
convention, that string represents the most-derived Slice type of the object. For example, the Slice  of the encoder factory in ourtype ID
ripper application is .::Ripper::MP3EncoderFactory
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Object types are useful when performing .queries

Deploying Well-Known Objects

The  adds a well-known object to the registry. It must appear within the context of an adapter descriptor, as shown in theobject descriptor
XML example below:

XML

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp">
                    <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
    </application>
</icegrid>

During deployment, the registry associates the identity  with the indirect proxy . IfEncoderFactory EncoderFactory@EncoderAdapter
the adapter descriptor had omitted the adapter ID, the registry would have generated a unique identifier by combining the server ID and the
adapter name.

In this example, the object's  is specified explicitly.type

Adding Well-Known Objects Programmatically

The  interface defines several operations that manipulate the registry's database of well-known objects:IceGrid::Admin

Slice

module IceGrid {
interface Admin {
    ...
    void addObject(Object* obj)
        throws ObjectExistsException,
               DeploymentException;
    void updateObject(Object* obj)
        throws ObjectNotRegisteredException,
               DeploymentException;
    void addObjectWithType(Object* obj, string type)
        throws ObjectExistsException,
               DeploymentException;
    void removeObject(Ice::Identity id) 
        throws ObjectNotRegisteredException,
               DeploymentException;
    ...
};
};

addObject
The  operation adds a new object to the database. The proxy argument supplies the identity of the well-known object. IfaddObject
an object with the same identity has already been registered, the operation raises . Since this operationObjectExistsException
does not accept an argument supplying the object's type, the registry invokes  on the given proxy to determine itsice_id
most-derived type. The implication here is that the object must be available in order for the registry to obtain its type. If the object is
not available,  raises .addObject DeploymentException

updateObject
The  operation supplies a new proxy for the well-known object whose identity is encapsulated by the proxy. If noupdateObject
object with the given identity is registered, the operation raises . The object's type is notObjectNotRegisteredException
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modified by this operation.

addObjectWithType
The  operation behaves like , except the object's type is specified explicitly and therefore theaddObjectWithType addObject
registry does not attempt to invoke  on the given proxy (even if the type is an empty string).ice_id

removeObject
The  operation removes the well-known object with the given identity from the database. If no object with the givenremoveObject
identity is registered, the operation raises .ObjectNotRegisteredException

The following C++ example produces the same result as the  we deployed earlier:descriptor

C++

Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident = communicator->stringToIdentity("EncoderFactory");
FactoryPtr f= new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
    admin->addObject(factory); // OOPS!
} catch (const IceGrid::ObjectExistsException &) {
    admin->updateObject(factory);
}

After obtaining a proxy for the , the code invokes . Notice that the code traps  interfaceIceGrid::Admin addObject
 and calls  instead when the object is already registered.ObjectExistsException updateObject

There is one subtle problem in this code: calling  causes the registry to invoke  on our factory object, but we have not yetaddObject ice_id
activated the object adapter. As a result, our program will hang indefinitely at the call to . One solution is to activate the adapteraddObject
prior to the invocation of ; another solution is to use  as shown below:addObject addObjectWithType

C++

Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident = communicator->stringToIdentity("EncoderFactory");
FactoryPtr f = new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
    admin->addObjectWithType(factory, factory->ice_id());
} catch (const IceGrid::ObjectExistsException &) {
    admin->updateObject(factory);
}

Adding Well-Known Objects with icegridadmin

The  provides commands that are the functional equivalents of the Slice operations for . utilityicegridadmin managing well-known objects
We can use the utility to manually register the  object from our :EncoderFactory descriptors

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> object add "EncoderFactory@EncoderAdapter"

Use the  command to verify that the object was registered successfully:object list

>>> object list
EncoderFactory
IceGrid/Query
IceGrid/Locator
IceGrid/Registry
IceGrid/InternalRegistry-Master
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To specify the object's type explicitly, append it to the  command:object add

>>> object add "EncoderFactory@EncoderAdapter" "::Ripper::MP3EncoderFactory"

Finally, the object is removed from the registry like this:

>>> object remove "EncoderFactory"

Querying Well-Known Objects

The registry's database of well-known objects is not used solely for resolving indirect proxies. The database can also be queried interactively
to find objects in a variety of ways. The  interface supplies this functionality:IceGrid::Query

Slice

module IceGrid {
enum LoadSample {
    LoadSample1,
    LoadSample5,
    LoadSample15
};

interface Query {
    idempotent Object* findObjectById(Ice::Identity id);
    idempotent Object* findObjectByType(string type);
    idempotent Object* findObjectByTypeOnLeastLoadedNode(string type, LoadSample sample);
    idempotent Ice::ObjectProxySeq findAllObjectsByType(string type);
    idempotent Ice::ObjectProxySeq findAllReplicas(Object* proxy);
};
};

findObjectById
The  operation returns the proxy associated with the given identity of a well-known object. It returns a null proxy iffindObjectById
no match was found.

findObjectByType
The  operation returns a proxy for an object registered with the given type. If more than one object has thefindObjectByType
same type, the registry selects one at random. The operation returns a null proxy if no match was found.

findObjectByTypeOnLeastLoadedNode
The  operation considers the system load when selecting one of the objects with thefindObjectByTypeOnLeastLoadedNode
given type. If the registry is unable to determine which node hosts an object (for example, because the object was registered with a
direct proxy and not an adapter ID), the object is considered to have a load value of   for the purposes of this operation. The sample1
argument determines the interval over which the loads are averaged (one, five, or fifteen minutes). The operation returns a null
proxy if no match was found.

findAllObjectsByType
The  operation returns a sequence of proxies representing the well-known objects having the given type.findAllObjectsByType
The operation returns an empty sequence if no match was found.

findAllReplicas
Given an indirect proxy for a replicated object, the  operation returns a sequence of proxies representing thefindAllReplicas
individual replicas. An application can use this operation when it is necessary to communicate directly with one or more replicas.

Be aware that the operations accepting a  parameter are not equivalent to invoking  on each object to determine whether ittype ice_isA
supports the given type, a technique that would not scale well for a large number of registered objects. Rather, the operations simply
compare the given type to the object's  or, if the object was registered without a type, to the object's most-derived Slice typeregistered type
as determined by the registry.

Using Well-Known Objects in the Ripper Application
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Well-known objects are another IceGrid feature we can incorporate into our ripper application.

Adding Well-Known Objects to the Ripper Deployment

First we'll modify the  to add two well-known objects:descriptors

XML

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp">
                    <object identity="EncoderFactory1" type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp">
                    <object identity="EncoderFactory2" type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
    </application>
</icegrid>

At first glance, the addition of the well-known objects does not appear to simplify our client very much. Rather than selecting which of the two
adapters receives the next task, we now need to select one of the well-known objects.

Querying Ripper Objects with findAllObjectsByType

The  interface provides a way to eliminate the client's dependency on object adapter identifiers and object identities. SinceIceGrid::Query
our factories are registered with the same type, we can search for all objects of that type:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectProxySeq seq;
string type = Ripper::MP3EncoderFactory::ice_staticId();
seq = query->findAllObjectsByType(type);
if (seq.empty()) {
    // no match
}
Ice::ObjectProxySeq::size_type index = ... // random number
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(seq[index]);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

This example invokes  and then randomly selects an element of the sequence.findAllObjectsByType

Querying Ripper Objects with findObjectByType

We can simplify the client further using  instead, which performs the randomization for us:findObjectByType
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C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByType(type);
if (!obj) {
    // no match
}
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Querying Ripper Objects with findObjectByTypeOnLeastLoadedNode

So far the use of  has allowed us to simplify our client, but we have not gained any functionality. If we replace the call to IceGrid::Query
 with , we can improve the client by distributing the encoding tasks morefindObjectByType findObjectByTypeOnLeastLoadedNode

intelligently. The change to the client's code is trivial:

C++

Ice::ObjectPrx proxy = communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByTypeOnLeastLoadedNode(type,
    IceGrid::LoadSample1);
if (!obj) {
    // no match
}
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Ripper Progress Review

Incorporating intelligent load distribution is a worthwhile enhancement and is a capability that would be time consuming to implement
ourselves. However, our current design uses only well-known objects in order to make queries possible. We do not really need the encoder
factory object on each compute server to be individually addressable as a well-known object, a fact that seems clear when we examine the
identities we assigned to them: , , and so on. IceGrid's  give us the tools we needEncoderFactory1 EncoderFactory2 replication features
to improve our design.

See Also

Terminology
Type IDs
Object Descriptor Element
IceGrid Administrative Sessions
IceGrid Administrative Utilities
Object Adapter Replication
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IceGrid Templates

IceGrid templates simplify the task of creating the descriptors for an application. A template is a parameterized descriptor that you can
instantiate as often as necessary, and they are descriptors in their own right. Templates are components of an IceGrid application and
therefore they are stored in the registry's database. As such, their use is not restricted to XML files; templates can also be created and
instantiated interactively using the .graphical administration tool

You can define templates for server and service descriptors. The focus of this section is server templates; we discuss service descriptors
and templates in the context of .IceBox integration

On this page:

Server Templates
Template Parameters
Adding Properties to a Server Instance
Default Templates
Using Templates with icegridadmin

Server Templates

You may recall from a  that the XML description of our sample application defined two nearly identical servers:previous example

XML

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2" exe="/opt/ripper/bin/server" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>

This example is an excellent candidate for a server template. Equivalent definitions that incorporate a template are shown below:

XML

<icegrid>
    <application name="Ripper">
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <server id="EncoderServer${index}" exe="/opt/ripper/bin/server"
activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"/>
        </node>
    </application>
</icegrid>

We have defined a  named . Nested within the  element is a server template EncoderServerTemplate server-template server
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 that defines an encoder server. The only difference between this  element and our previous example is that it is nowdescriptor server
parameterized: the template parameter  is used to form unique identifiers for the server and its adapter. The symbol  isindex ${index}
replaced with the value of the  parameter wherever it occurs.index

The template is instantiated by a  element, which may be used anywhere that a  element is used. The server-instance server server
 identifies the template to be instantiated, and supplies a value for the  parameter.instance descriptor index

Although we have not significantly reduced the length of our XML file, we have made it more readable. And more importantly, deploying this
server on additional nodes has become much easier.

Template Parameters

Parameters enable you to customize each instance of a template as necessary. The example  defined the  parameter with aabove index
different value for each instance to ensure that identifiers are unique. A parameter may also declare a default value that is used in the
template if no value is specified for it. In our sample application the  parameter is considered mandatory and therefore should not haveindex
a default value, but we can illustrate this feature in another way. For example, suppose that the pathname of the server's executable may
change on each node. We can supply a default value for this attribute and override it when necessary:

XML

<icegrid>
    <application name="Ripper">
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath" default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}" exe="${exepath}" activation="on-demand">
                <adapter name="EncoderAdapter" endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"
                exepath="/opt/ripper-test/bin/server"/>
        </node>
    </application>
</icegrid>

As you can see, the instance on  uses the default value for the new parameter , but the instance on  defines aNode1 exepath Node2
different location for the server's executable.

Understanding the semantics of  will help you add flexibility to your own IceGrid applications.descriptor variables and parameters

Adding Properties to a Server Instance

As we saw in the preceding section, template parameters allow you to customize each instance of a server template, and template
parameters with default values allow you to define commonly used configuration options. However, you might want to have additional
configuration properties for a given instance without having to add a parameter. For example, to debug a server instance on a specific node,
you might want to start the server with the  property set; it would be inconvenient to have to add a parameter to theIce.Trace.Network
template just to set that property.

To cater for such scenarios, it is possible to specify additional properties for a server instance without modifying the template. You can define
such properties in the  element, for example:server-instance
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XML

<icegrid>
    <application>
        ...
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" index="2"> 
                <properties>
                    <property name="Ice.Trace.Network" value="2"/>
                </properties>
            </server-instance>
        </node> 
    </application> 
</icegrid> 

This sets the  property for a specific server.Ice.Trace.Network

Default Templates

The IceGrid registry can be configured to supply any number of default template descriptors for use in your applications. The configuration
property  specifies the pathname of an XML file containing template definitions. One suchIceGrid.Registry.DefaultTemplates
template file is provided in the Ice distribution as , which contains helpful templates for deploying Ice servicesconfig/templates.xml
such as  and .IcePatch2 Glacier2

The template file must use the structure shown below:

XML

<icegrid>
    <application name="DefaultTemplates">
        <server-template id="EncoderServerTemplate">
            ...
        </server-template>
    </application>
</icegrid>

The name you give to the application is not important, and you may only define  and  templates within it. After configuring theserver service
registry to use this file, your default templates become available to every application that imports them.

The descriptor for each application indicates whether the default templates should be imported. (By default they are not imported.) If the
templates are imported, they are essentially copied into the application descriptor and treated no differently than templates defined by the
application itself. As a result, changes to the file containing default templates have no effect on existing application descriptors. In XML, the
attribute  determines whether the default templates are imported, as shown in the following example:import-default-templates

XML

<icegrid>
    <application name="Ripper" import-default-templates="true">
        ...
    </application>
</icegrid>

Using Templates with icegridadmin

The  allow you to inspect templates and instantiate new servers dynamically. First, let us ask  toIceGrid administration tools icegridadmin
describe the server template we created :earlier

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> server template describe Ripper EncoderServerTemplate
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This command generates the following output:

server template `EncoderServerTemplate'
{
    parameters = `index exepath'
    server `EncoderServer${index}'
    {
        exe = `${exepath}'
        activation = `on-demand'
        properties
        {
            EncoderAdapter.Endpoints = `tcp'
        }
        adapter `EncoderAdapter'
        {
            id = `EncoderAdapter${index}'
            replica group id = 
            endpoints = `tcp'
            register process = `false'
            server lifetime = `true'
        }
    }
}

Notice that the server ID is a parameterized value; it cannot be evaluated until the template is instantiated with values for its parameters.

Next, we can use  to create an instance of the encoder server template on a new node:icegridadmin

>>> server template instantiate Ripper Node3 EncoderServerTemplate index=3

The command requires that we identify the application, node and template, as well as supply any parameters needed by the template. The
new server instance is permanently added to the registry's database, but if we intend to keep this configuration it is a good idea to update the
XML description of our application to reflect these changes and avoid potential synchronization issues.

See Also

Server Descriptor Element
Server-Template Descriptor Element
Server-Instance Descriptor Element
IceGrid Administrative Utilities
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IceBox Integration with IceGrid

IceGrid makes it easy to configure an  server with one or more services.IceBox

On this page:

Deploying an IceBox Server
Service Templates
Advanced Service Templates

Deploying an IceBox Server

An IceBox server shares many of the same characteristics as other servers, but its special requirements necessitate a new . Unlikedescriptor
other servers, an IceBox server generally hosts multiple independent services, each requiring its own communicator instance and
configuration file.

As an example, the following application deploys an IceBox server containing one service:

XML

<icegrid>
    <application name="IceBoxDemo">
        <node name="Node">
            <icebox id="IceBoxServer" exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service name="ServiceA" entry="servicea:create">
                    <adapter name="${service}" endpoints="tcp"/>
                </service>
            </icebox>
        </node>
    </application>
</icegrid>

It looks very similar to a server descriptor. The most significant difference is the , which is constructed much like a server inservice descriptor
that you can declare its attributes such as object adapters and configuration properties. The order in which services are defined determines
the order in which they are loaded by the IceBox server.

The value of the adapter's  attribute needs additional explanation. The symbol  is one of the names . Inname service reserved by IceGrid
the context of a service descriptor,  is replaced with the service's name, and so the object adapter is also named .${service} ServiceA

Service Templates

If you are familiar with  in general, an IceBox  is readily understandable:templates service template
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XML

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}" endpoints="default"/>
                <property name="${service}.Identity" value="${server}-${service}"/>
            </service>
        </service-template>
        <node name="Node1">
            <icebox id="IceBoxServer" endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate" name="Service1"/>
            </icebox>
        </node>
    </application>
</icegrid>

In this application, an IceBox server is deployed on a node and has one service instantiated from the service template. Of particular interest
is the  descriptor, which uses another   to form the property value. When the template is instantiated by theproperty reserved name server

, the symbol  is replaced with the name of the enclosing server, so the property definition expands asservice instance descriptor ${server}
follows:

Service1.Identity=IceBoxServer-Service1

As with server instances, you can specify additional properties for the service instance without modifying the template. These properties can
be defined in the  element, as shown below:service-instance

XML

<icegrid>
    <application name="IceBoxApp">
        ...
        <node name="Node1">
            <icebox id="IceBoxServer"endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate" name="Service1">
                    <properties>
                        <property name="Ice.Trace.Network" value="1"/>
                    </properties>
                </service-instance>
            </icebox>
        </node>
    </application>
</icegrid>

Advanced Service Templates

A more sophisticated use of templates involves instantiating a service template in a :server template
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XML

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}" endpoints="default"/>
                <property name="${name}.Identity" value="${server}-${name}"/>
            </service>
        </service-template>
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <icebox id="${id}" endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate" name="Service1"/>
            </icebox>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate" id="IceBoxServer"/>
        </node>
    </application>
</icegrid>

This application is equivalent to our first example of . Now, however, the process of deploying an identical server onservice templates
several nodes has become much simpler.

If you need the ability to customize the configuration of a particular service instance, your server instance can define a  thatproperty set
applies only to the desired service:

XML

<icegrid>
    <application name="IceBoxApp">
        <node name="Node1">
            <server-instance template="ServerTemplate" id="IceBoxServer">
                <properties service="Service1">
                    <property name="Ice.Trace.Network" value="1"/>
                </properties>
            </server-instance>
        </node>
    </application>
</icegrid>

As this example demonstrates, the  attribute of the property set denotes the name of the target service.service

See Also

IceBox
IceBox Descriptor Element
Service Descriptor Element
Service-Template Descriptor Element
Server-Template Descriptor Element
Properties Descriptor Element
Using Descriptor Variables and Parameters
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Object Adapter Replication

As an implementation of an Ice location service, IceGrid supports . An application defines its replica groups andobject adapter replication
their participating object adapters using descriptors, and IceGrid generates the server configurations automatically.

On this page:

Deploying a Replica Group
Replica Group Membership
Using Replica Groups in the Ripper Application

Adding a Replica Group to the Ripper Deployment
Using a Replica Group in the Ripper Client

Deploying a Replica Group

The  can optionally declare  as well as configure the group to determine its behaviordescriptor that defines a replica group well-known objects
during locate requests. Consider this example:

XML

<icegrid>
    <application name="ReplicaApp">
        <replica-group id="ReplicatedAdapter">
            <object identity="TheObject" type="::Demo::ObjectType"/>
        </replica-group>
        <node name="Node">
            <server id="ReplicaServer" activation="on-demand" exe="/opt/replica/bin/server">
                <adapter name="TheAdapter" endpoints="default" replica-group="ReplicatedAdapter"/>
            </server>
        </node>
    </application>
</icegrid>

The adapter's descriptor declares itself to be a member of the replica group , which must have been previouslyReplicatedAdapter
created by a replica group descriptor.

The replica group  declares a well-known object so that an indirect proxy of the form  is equivalent to theReplicatedAdapter TheObject
indirect proxy . Since this trivial example defines only one adapter in the replica group, the proxy TheObject@ReplicatedAdapter

 is also equivalent to .TheObject TheObject@TheAdapter

Replica Group Membership

An object adapter participates in a replica group by specifying the group's ID in the adapter's  configuration property.ReplicaGroupId
Identifying the replica group in the IceGrid descriptor for an object adapter causes the node to include the equivalent ReplicaGroupId
property in the configuration file it generates for the server.

By default, the IceGrid registry requires the membership of a replica group to be statically defined. When you create a descriptor for an
object adapter that identifies a replica group, the registry adds that adapter to the group's list of valid members. During an adapter's
activation, when it describes its endpoints to the registry, an adapter that also claims membership in a replica group is validated against the
registry's internal list.

In a properly configured IceGrid application, this activity occurs without incident, but there are situations in which validation can fail. For
example, adapter activation fails if an adapter's ID is changed without notifying the registry, such as by manually modifying the server
configuration file that was generated by a node.

It is also possible for activation to fail when the IceGrid registry is being used solely as a location service, in which case descriptors have not
been created and therefore the registry has no advance knowledge of the replica groups or their members. In this situation, adapter
activation causes the server to receive  unless the registry is configured to allow dynamic registration, whichNotRegisteredException
you can do by defining the following property:

IceGrid.Registry.DynamicRegistration=1
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With this configuration, a replica group is created implicitly as soon as an adapter declares membership in it, and any adapter is allowed to
participate.

The use of dynamic registration often leads to the accumulation of obsolete replica groups and adapters in the registry. The IceGrid
 allow you to inspect and clean up the registry's state.administration tools

Using Replica Groups in the Ripper Application

Replication is a perfect fit for the ripper application. The collection of encoder factory objects should be treated as a single logical object, and
replication makes that possible.

Adding a Replica Group to the Ripper Deployment

Adding a replica group descriptor to our application is very straightforward:

XML

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath" default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}" exe="${exepath}" activation="on-demand">
                <adapter name="EncoderAdapter" replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"/>
        </node>
    </application>
</icegrid>

The new descriptor adds the replica group called  and registers a well-known object with the identity .EncoderAdapters EncoderFactory
The adapter descriptor in the server template has been changed to declare its membership in the replica group.

Using a Replica Group in the Ripper Client

In comparison to the examples that demonstrated , the new version of our client has become much simpler:querying for well-known objects

Ice::ObjectPrx obj = communicator->stringToProxy("EncoderFactory");
Ripper::MP3EncoderFactoryPrx factory = Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

The client no longer needs to use the  interface, but simply creates a proxy for a well-known object and lets the Ice runIceGrid::Query
time transparently interact with the location service. In response to a locate request for , the registry returns a proxyEncoderFactory
containing the endpoints of both object adapters. The Ice run time in the client selects one of the endpoints at random, meaning we have
now lost some functionality compared to the prior example in which system load was considered when selecting an endpoint. We will learn
how to rectify this situation in our discussion of .load balancing

See Also

Terminology
Replica-Group Descriptor Element
Object Descriptor Element
Well-Known Objects
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Load Balancing
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Load Balancing

Replication is an important IceGrid feature but, when combined with load balancing, replication becomes even more useful.

IceGrid nodes regularly report the system load of their hosts to the registry. The replica group's configuration determines whether the registry
actually considers system load information while processing a locate request. Its configuration also specifies how many replicas to include in
the registry's response.

IceGrid's load balancing capability assists the client in obtaining an initial set of endpoints for the purpose of . Onceestablishing a connection
a client has established a connection, all subsequent requests on the proxy that initiated the connection are normally sent to the same server
without further consultation with the registry. As a result, the registry's response to a locate request can only be viewed as a snapshot of the
replicas at a particular moment. If system loads are important to the client, it must take steps to periodically contact the registry and update

.its endpoints

On this page:

Replica Group Load Balancing
Load Balancing Types
Using Load Balancing in the Ripper Application
Interacting with Object Replicas

Replica Group Load Balancing

A  optionally contains a  that determines how system loads are used in locate requests. Thereplica group descriptor load balancing descriptor
load balancing descriptor specifies the following information:

Type
Several  are supported.load balancing types

Sampling interval
One of the load balancing types considers system load statistics, which are reported by each node at regular intervals. The replica
group can specify a sampling interval of one, five, or fifteen minutes. Choosing a sampling interval requires balancing the need for
up-to-date load information against the desire to minimize transient spikes. On Unix platforms, the node reports the system's load
average for the selected interval, while on Windows the node reports the CPU utilization averaged over the interval.

Number of replicas
The replica group can instruct the registry to return the endpoints of one (the default) or more object adapters. If the specified
number  is larger than one, the proxy returned in response to a locate request contains the endpoints of at most  object adapters.N N
If  is 0, the proxy contains the endpoints of all the object adapters. The Ice run time in the client selects one of these endpoints atN
random when .establishing a connection

For example, the descriptor shown below uses adaptive load balancing to return the endpoints of the two least-loaded object adapters
sampled with five-minute intervals:

XML

<replica-group id="ReplicatedAdapter">
    <load-balancing type="adaptive" load-sample="5" n-replicas="2"/>
</replica-group>

The type must be specified, but the remaining attributes are optional.

Load Balancing Types

A replica group can select one of the following load balancing types:

Random
Random load balancing selects the requested number of object adapters at random. The registry does not consider system load for
a replica group with this type.

Adaptive
Adaptive load balancing uses system load information to choose the least-loaded object adapters over the requested sampling
interval. This is the only load balancing type that uses sampling intervals.
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Round Robin
Round robin load balancing returns the least recently used object adapters. The registry does not consider system load for a replica
group with this type. Note that the round-robin information is not shared between registry replicas; each replica maintains its own
notion of the "least recently used" object adapters.

Ordered
Ordered load balancing selects the requested number of object adapters by priority. A priority can be set for each object adapter
member of the replica group. If you define several object adapters with the same priority, IceGrid will order these object adapters
according to their order of appearance in the descriptor.

Choosing the proper type of load balancing is highly dependent on the needs of client applications. Achieving the desired load balancing and
fail-over behavior may also require the cooperation of your clients. To that end, it is very important that you understand how and when the
Ice run time uses a .locator to resolve indirect proxies

Using Load Balancing in the Ripper Application

The only change we need to make to the ripper application is the addition of a load balancing descriptor:

XML

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <load-balancing type="adaptive"/>
            <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath" default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}" exe="${exepath}" activation="on-demand">
                <adapter name="EncoderAdapter" replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"/>
        </node>
    </application>
</icegrid>

Using adaptive load balancing, we have regained the functionality we forfeited when we . Namely, we now selectintroduced replica groups
the object adapter on the least-loaded node, and no changes are necessary in the client.

Interacting with Object Replicas

In some applications you may have a need for interacting directly with the replicas of an object. For example, the application may want to
implement a custom load-balancing strategy. In this situation you might be tempted to call  on the proxy of a replicatedice_getEndpoints
object in an effort to obtain the endpoints of all replicas, but that is not the correct solution because the proxy is indirect and therefore
contains no endpoints. The proper approach is to  using the  operation.query well-known objects findAllReplicas

See Also

Object Adapter Replication
Connection Establishment
Replica-Group Descriptor Element
Load-Balancing Descriptor Element
Well-Known Objects
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Resource Allocation using IceGrid Sessions

IceGrid provides a resource allocation facility that coordinates access to the objects and servers of an IceGrid application. To allocate a
resource for exclusive use, a client must first establish a session by authenticating itself with the IceGrid registry or a Glacier2 router, after
which the client may reserve objects and servers that the application indicates are allocatable. The client should release the resource when it
is no longer needed, otherwise IceGrid reclaims it when the client's session terminates or expires due to inactivity.

An allocatable server offers at least one allocatable object. The server is considered to be allocated when its first allocatable object is
claimed, and is not released until all of its allocated objects are released. While the server is allocated by a client, no other clients can
allocate its objects.

On this page:

Creating an IceGrid Session
Controlling Access to IceGrid Sessions
Allocating Objects with an IceGrid Session
Allocating Servers with an IceGrid Session
Security Considerations for Allocated Resources
Deploying Allocatable Resources
Using Resource Allocation in the Ripper Application

Creating an IceGrid Session

A client must create an IceGrid session before it can allocate objects. If you have configured a Glacier2 router to use IceGrid's session
, the client's  satisfies this requirement.managers router session

In the absence of Glacier2, an IceGrid client invokes  or  on IceGrid's createSession createSessionFromSecureConnection
 interface to create a session:Registry

Slice

module IceGrid {
    exception PermissionDeniedException {
        string reason;
    };

    interface Registry {
        Session* createSession(string userId, string password)
            throws PermissionDeniedException;

        Session* createSessionFromSecureConnection()
            throws PermissionDeniedException;

        idempotent int getSessionTimeout();
    };
};

The  operation expects a username and password and returns a session proxy if the client is allowed to create a session.createSession
By default, IceGrid does not allow the creation of sessions. You must define the registry property 

 with the proxy of a permissions verifier object to  with IceGrid.Registry.PermissionsVerifier enable session creation
.createSession

The  operation does not require a username and password because it uses the credentialscreateSessionFromSecureConnection
supplied by an  connection to authenticate the client. As with , you must  by configuring theSSL createSession enable session creation
proxy of a permissions verifier object so that clients can use  to create a session. In this case,createSessionFromSecureConnection
the property is .IceGrid.Registry.SSLPermissionsVerifier

To create a session, the client obtains the registry proxy by converting the well-known proxy string  to a proxy object"IceGrid/Registry"
with the communicator, downcasts the proxy to the  interface, and invokes on one of the operations. The sample codeIceGrid::Registry
below demonstrates how to do it in C++; the code will look very similar in other language mappings.
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C++

Ice::ObjectPrx base = communicator->stringToProxy("IceGrid/Registry");
IceGrid::RegistryPrx registry = IceGrid::RegistryPrx::checkedCast(base); 
string username = ...; 
string password = ...; 
IceGrid::SessionPrx session; 
try { 
    session = registry->createSession(username, password); 
} catch (const IceGrid::PermissionDeniedException & ex) { 
    cout << "permission denied:\n" << ex.reason << endl; 
}

The  may change based on its configuration settings.identity of the registry object

After creating the session, the client must keep it alive by periodically invoking its  operation. The session expires if the clientkeepAlive
does not invoke  within the configured timeout period, which can be obtained by calling the  operation onkeepAlive getSessionTimeout
the  interface.Registry

If a session times out, or if the client explicitly terminates the session by invoking its  operation, IceGrid automatically releases alldestroy
objects allocated using that session.

Controlling Access to IceGrid Sessions

As described above, you must configure the IceGrid registry with the proxy of at least one permissions verifier object to enable session
creation:

IceGrid.Registry.PermissionsVerifier
This property supplies the proxy of an object that implements the interface . Defining thisGlacier2::PermissionsVerifier
property allows clients to create sessions using .createSession

IceGrid.Registry.SSLPermissionsVerifier
This property supplies the proxy of an object that implements the interface . Defining thisGlacier2::SSLPermissionsVerifier
property allows clients to create sessions using .createSessionFromSecureConnection

IceGrid supplies built-in permissions verifier objects:

A null permissions verifier for TCP/IP. This object accepts any username and password and should only be used in a secure
environment where no access control is necessary. You select this verifier object by defining the following configuration property:

IceGrid.Registry.PermissionsVerifier=<instance-name>/NullPermissionsVerifier

Note that you have to substitute the correct  for the object identity category.instance name

A null permissions verifier for SSL, analogous to the one for TCP/IP. You select this verifier object by defining the following
configuration property:

IceGrid.Registry.SSLPermissionsVerifier=<instance-name>/NullSSLPermissionsVerifier

A file-based permissions verifier. This object uses an access control list in a file that contains username-password pairs. The format
of the password file is the same as the format of . You enable this verifier implementation by defining theGlacier2 password files
configuration property  with the pathname of the password file. Note that this property isIceGrid.Registry.CryptPasswords
ignored if you specify the proxy of a permissions verifier object using .IceGrid.Registry.PermissionsVerifier

You can also .implement your own permissions verifier object

Allocating Objects with an IceGrid Session

A client allocates objects using the session proxy returned from  or . The proxycreateSession createSessionFromSecureConnection



Ice 3.4.2 Documentation

1223 Copyright © 2011, ZeroC, Inc.

supports the  interface shown below:Session

Slice

module IceGrid {
    exception ObjectNotRegisteredException {
        Ice::Identity id;
    };

    exception AllocationException {
        string reason;
    };

    exception AllocationTimeoutException
        extends AllocationException {
    };

    interface Session extends Glacier2::Session {

        idempotent void keepAlive();

        Object* allocateObjectById(Ice::Identity id)
            throws ObjectNotRegisteredException,
                   AllocationException;

        Object* allocateObjectByType(string type)
            throws AllocationException;

        void releaseObject(Ice::Identity id)
            throws ObjectNotRegisteredException,
                   AllocationException;

        idempotent void setAllocationTimeout(int timeout);
    };
};

The client is responsible for keeping the session alive by periodically invoking , as discussed .keepAlive earlier

The  operation allocates and returns the proxy for the allocatable object with the given identity. If no allocatableallocateObjectById
object with the given identity is registered, the client receives . If the object cannot be allocated, theObjectNotRegisteredException
client receives . An allocation attempt can fail for the following reasons:AllocationException

the object is already allocated by the session
the object is allocated by another session and did not become available during the configured allocation timeout period
the session was destroyed.

The  operation allocates and returns a proxy for an allocatable object registered with the given type. If more thanallocateObjectByType
one allocatable object is registered with the given type, the registry selects one at random. The client receives  ifAllocationException
no objects with the given type could be allocated. An allocation attempt can fail for the following reasons:

no objects are registered with the given type
all objects with the given type are already allocated (either by this session or other sessions) and none became available during the
configured allocation timeout period
the session was destroyed.

The  operation releases an object allocated by the session. The client receives  if noreleaseObject ObjectNotRegisteredException
allocatable object is registered with the given identity and  if the object is not allocated by the session. UponAllocationException
session destruction, IceGrid automatically releases all allocated objects.

The  operation configures the timeout used by the allocation operations. If no allocatable objects are availablesetAllocationTimeout
when the client invokes  or , IceGrid waits for the specified timeout period for anallocateObjectById allocateObjectByType
allocatable object to become available. If the timeout expires, the client receives .AllocationTimeoutException

Allocating Servers with an IceGrid Session

A client does not need to explicitly allocate a server. If a server is allocatable, IceGrid implicitly allocates it to the first client that claims one of
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the server's allocatable objects. Likewise, IceGrid releases the server when all of its allocatable objects are released.

Server allocation is useful in two situations:

Only allocatable servers can use the  activation mode, in which the server is activated on demand when allocated by asession
client and deactivated upon release.
An allocatable server can be secured with IceSSL or Glacier2 so that its objects can only be invoked by the client that allocated it.

Security Considerations for Allocated Resources

IceGrid's resource allocation facility allows clients to coordinate access to objects and servers but does not place any restrictions on client
invocations to allocated objects; any client that has a proxy for an allocated object could conceivably invoke an operation on it. IceGrid
assumes that clients are cooperating with each other and respecting allocation semantics.

To prevent unauthorized clients from invoking operations on an allocated object or server, you can use  or :IceSSL Glacier2

Using IceSSL, you can secure access to a server or a particular object adapter with the properties  orIceSSL.TrustOnly.Server
. For example, if you configure a server with the session activation mode, you canIceSSL.TrustOnly.Server.AdapterName

set one of the  properties to the  variable, which is substituted with the session ID when theIceSSL.TrustOnly ${session.id}
server is activated for the session. If the IceGrid session was created from a secure connection, the session ID will be the
distinguished name associated with the secure connection, which effectively restricts access to the server or one of its adapters to
the client that established the session with IceGrid.

With Glacier2, you can secure access to an allocated object or the object adapters of an allocated server with the Glacier2 filtering
. By default, IceGrid sessions created with a Glacier2 router are  given access to allocated objects,mechanism automatically

allocatable objects, certain well-known objects, and the object adapters of allocated servers.

Deploying Allocatable Resources

Allocatable objects are registered using a descriptor that is similar to . Allocatable objects cannot be replicatedwell-known object descriptors
and therefore can only be specified within an object adapter descriptor.

Servers can be specified as allocatable by setting the server descriptor's  attribute.allocatable

As an example, the following application defines an allocatable server and an :allocatable object

XML

<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"
                allocatable="true"> 
                <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp"> 
                    <allocatable identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </node> 
    </application>
</icegrid> 

Using Resource Allocation in the Ripper Application

We can use the allocation facility in our MP3 encoder factory to coordinate access to the MP3 encoder factories. First we need to modify the
descriptors to define an allocatable object:
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XML

<icegrid> 
    <application name="Ripper"> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <server id="EncoderServer${index}" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter"  endpoints="tcp">
                    <allocatable identity="EncoderFactory${index}"
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" index="2"/> 
        </node> 
    </application> 
</icegrid> 

Next, the client needs to create a session and allocate a factory:

C++

Ice::ObjectPrx obj = session->allocateObjectByType(Ripper::MP3EncoderFactory::ice_staticId());
try {
    Ripper::MP3EncoderPrx encoder = factory->createEncoder(); 
    // Use the encoder to encode a file ...
}
catch (const Ice::LocalException & ex) {
    // There was a problem with the encoding, we catch the
    // exception to make sure we release the factory.
}
session->releaseObject(obj->ice_getIdentity());

It is important to release an allocated object when it is no longer needed so that other clients may use it. If you forget to release an object, it
remains allocated until the session is destroyed.

See Also

Getting Started with Glacier2
IceSSL
Well-Known Registry Objects
Securing a Glacier2 Router
Object Descriptor Element
Allocatable Descriptor Element
IceGrid Properties
IceSSL Properties
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Registry Replication

The failure of an IceGrid registry or registry host can have serious consequences. A client can continue to use an existing connection to a
server without interruption, but any activity that requires interaction with the registry is vulnerable to a single point of failure. As a result, the
IceGrid registry supports replication using a master-slave configuration to provide high availability for applications that require it.

On this page:

Registry Replication Architecture
Capabilities of a Registry Replica

Locate Requests
Server Activation
Queries
Allocation
Administration
Glacier2 Support

Configuring Registry Replication
Replicas
Clients
Nodes
Diagnostics

Registry Replication Architecture

In IceGrid's registry replication architecture, there is one master replica and any number of slave replicas. The master synchronizes its
deployment information with the slaves so that any replica is capable of responding to locate requests, managing nodes, and starting servers
on demand. Should the master registry or its host fail, properly configured clients transparently fail over to one of the slaves.

Each replica has a unique name. The name  is reserved for the master replica, while replicas can use any name that can legallyMaster
appear in an object identity.

The figure below illustrates the underlying concepts of registry replication:

Overview of registry replication.

The slave replica contacts the master replica at startup and synchronizes its databases. Any subsequent modifications to the
deployed applications are made via the master replica, which distributes them to all active slaves.
The nodes contact the master replica at startup to notify it about their availability.
The master replica provides a list of slave replicas to the nodes so that the nodes can also notify the slaves.
The client's configuration determines which replica it contacts initially. In this example, it contacts the master replica.
In the case of a failure, the client automatically fails over to the slave. If the master registry's host has failed, then  and anyNode1
servers that were active on this host also become unavailable. The use of  allows the client to transparentlyobject adapter replication
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5.  

reestablish communication with a server on .Node2

Capabilities of a Registry Replica

A master registry replica has a number of responsibilities, only some of which are supported by slaves. The master replica knows all of its
slaves, but the slaves are not in contact with one another. If the master replica fails, the slaves can perform several vital functions that should
keep most applications running without interruption. Eventually, however, a new master replica must be started to restore full registry
functionality. For a slave replica to become the master, the slave must be restarted.

Locate Requests

One of the most important functions of a registry replica is responding to locate requests from clients, and every replica has the capability to
service these requests. Slaves synchronize their databases with the master so that they have all of the information necessary to transform
object identities, object adapter identifiers, and replica group identifiers into an appropriate set of endpoints.

Server Activation

Nodes establish sessions with each active registry replica so that any of the replicas are capable of activating a server on behalf of a client.

Queries

Replicating the registry also replicates the object that supports the  interface used to . A clientIceGrid::Query query well-known objects
that resolves the  object identity receives the endpoints of all active replicas, any of which can execute the client's requests.IceGrid/Query

Allocation

A client that needs to allocate a resource must establish a session with the master replica.

Administration

The state of an IceGrid registry is accessible via the  interface or (more commonly) using an  thatIceGrid::Admin administrative tool
encapsulates this interface. Modifications to the registry's state, such as deploying or updating an application, can only be done using the
master replica. Administrative access to slave replicas is allowed but restricted to read-only operations. The administrative utilities provide
mechanisms for you to select a particular replica to contact.

For programmatic access to a replica's administrative interface, the  identity corresponds to the master replica and theIceGrid/Registry
identity  corresponds to the slave with the given name.IceGrid/Registry-name

Glacier2 Support

The registry implements the session manager interfaces required for . The master replica supports theintegration with a Glacier2 router
object identities  and . The slave replicas offer support for read-onlyIceGrid/SessionManager IceGrid/AdminSessionManager
administrative sessions using the object identity .IceGrid/AdminSessionManager-name

Configuring Registry Replication

Incorporating registry replication into an application is primarily accomplished by modifying your IceGrid configuration settings.

Replicas

Each replica must specify a unique name in its configuration property . The default value of thisIceGrid.Registry.ReplicaName
property is , therefore the master replica can omit this property if desired.Master

At startup, a slave replica attempts to register itself with its master in order to synchronize its databases and obtain the list of active nodes.
The slave uses the proxy supplied by the  property to connect to the master, therefore this proxy must be definedIce.Default.Locator
and contain at least the endpoint of the master replica.

For better reliability if a failure occurs, we recommend that you also include the endpoints of all slave replicas in the 
 property. There is no harm in adding the slave's own endpoints to the proxy in ; in fact, itIce.Default.Locator Ice.Default.Locator

makes configuration simpler because all of the slaves can share the same property definition. Although slaves do not communicate with
each other, it is possible for one of the slaves to be promoted to the master, therefore supplying the endpoints of all slaves minimizes the
chance of a communication failure.
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Shown below is an example of the configuration properties for a master replica:

IceGrid.InstanceName=DemoIceGrid
IceGrid.Registry.Client.Endpoints=default -p 12000
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/master
...

You can configure a slave replica to use this master with the following settings:

Ice.Default.Locator=DemoIceGrid/Locator:default -p 12000
IceGrid.Registry.Client.Endpoints=default -p 12001
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/replica1
IceGrid.Registry.ReplicaName=Replica1
...

Clients

The endpoints contained in the  property determine which registry replicas the client can use when issuing locateIce.Default.Locator
requests. If high availability is important, this property should include the endpoints of at least two (and preferably all) replicas. Not only does
this increase the reliability of the client, it also distributes the work load of responding to locate requests among all of the replicas.

Continuing the example from the previous section, you can configure a client with the  property as shown below:Ice.Default.Locator

Ice.Default.Locator=DemoIceGrid/Locator:default -p 12000:default -p 12001

Nodes

As with slave replicas and clients, an IceGrid node should be configured with an  property that contains theIce.Default.Locator
endpoints of all replicas. Doing so allows a node to notify each of them about its presence, thereby enabling the replicas to activate its
servers and obtain the endpoints of its object adapters.

The following properties demonstrate how to configure a node with a replicated registry:

Ice.Default.Locator=DemoIceGrid/Locator:default -p 12000:default -p 12001
IceGrid.Node.Name=node1
IceGrid.Node.Endpoints=default
IceGrid.Node.Data=db/node1

Diagnostics

You can use several configuration properties to enable trace messages that may help in diagnosing registry replication issues:

IceGrid.Registry.Trace.Replica
Displays information about the sessions established between master and slave replicas.

IceGrid.Registry.Trace.Node
IceGrid.Node.Trace.Replica
Displays information about the sessions established between replicas and nodes.

See Also

Well-Known Objects
IceGrid Administrative Utilities
Glacier2 Integration with IceGrid
IceGrid Properties
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Application Distribution

On this page:

Using IcePatch2 to Distribute Applications
Deploying an IcePatch2 Server

Patching Considerations
IcePatch2 Server Template

Adding Distribution to a Deployment
Distributing Applications and Servers
Server Integrity during Distribution
Distribution Descriptor Variables
Using Distribution in the Ripper Application

Using IcePatch2 to Distribute Applications

In the section so far, "deployment" has meant the creation of descriptors in the registry. A broader definition involves a number of other
tasks:

Writing IceGrid configuration files and preparing data directories on each computer
Installing the IceGrid binaries and dependent libraries on each computer
Starting the registry and/or node on each computer, and possibly configuring the systems to launch them automatically
Distributing your server executables, dependent libraries and supporting files to the appropriate nodes.

The first three tasks are the responsibility of the system administrator, but IceGrid can help with the fourth. Using an  server, youIcePatch2
can configure the nodes to download servers automatically and patch them at any time. The illustration below shows the interactions of the
components:

Overview of application distribution.

As you can see, deploying an IceGrid application has greater significance when IcePatch2 is also involved. After deployment, the 
 initiates a patch, causing the registry to notify all active nodes that are configured for application distribution to begin theadministrative tool

patching process. Since each IceGrid node is an IcePatch2 client, the node performs the patch just like any IcePatch2 client: it downloads
everything if no local copy of the distribution exists, otherwise it does an incremental patch in which it downloads only new files and those
whose signatures have changed.

The benefits of this feature are clear:

The distribution files are maintained in a central location
Updating a distribution on all of the nodes is a simple matter of preparing the master distribution and letting IceGrid do the rest
Manually transferring executables and supporting files to each computer is avoided, along with the mistakes that manual
intervention sometimes introduces.

Deploying an IcePatch2 Server

If you plan to use IceGrid's distribution capabilities, we generally recommend deploying an IcePatch2 server along with your application.
Doing so gives you the same benefits as any other IceGrid server, including on-demand activation and remote administration. We will only
use one server in our sample application, but you might consider replicating a number of IcePatch2 servers in order to balance the patching
load for large distributions.

Patching Considerations

Deploying an IcePatch2 server with your application presents a chicken-and-egg dilemma: how do the nodes download their distributions if
the IcePatch2 server is included in the deployment? To answer this question, we need to learn more about IceGrid's behavior.

Deploying and patching are treated as two separate steps: first you deploy the application, then you initiate the patching process. The 
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 utility combines these steps into one command ( ), but also provides an option to disable the patchingicegridadmin application add
step if so desired.

Let's consider the state of the application after deployment but before patching: we have described the servers that run on each node,
including file system-dependent attributes such as the pathnames of their executables and default working directories. If these pathnames
refer to directories in the distribution, and the distribution has not yet been downloaded to that node, then clearly we cannot attempt to use
those servers until patching has completed. Similarly, we cannot deploy an IcePatch2 server whose executable resides in the distribution to
be downloaded.

We are ignoring the case where a temporary IcePatch2 server is used to bootstrap other IcePatch2 servers.

For these reasons, we assume that the IcePatch2 server and supporting libraries are distributed by the system administrator along with the
IceGrid registry and nodes to the appropriate computers. The server should be configured for on-demand activation so that its node starts it
automatically when patching begins. If the server is configured for manual activation, you must start it prior to patching.

IcePatch2 Server Template

The Ice distribution includes an IcePatch2  that simplifies the inclusion of IcePatch2 in your application. The relevant portionserver template
from the file  is shown below:config/templates.xml

XML

<server-template id="IcePatch2">
    <parameter name="instance-name" default="${application}.IcePatch2"/>
    <parameter name="endpoints" default="default"/>
    <parameter name="directory"/>

    <server id="${instance-name}" exe="icepatch2server"
        application-distrib="false" activation="on-demand">
        <adapter name="IcePatch2" endpoints="${endpoints}">
            <object identity="${instance-name}/server" type="::IcePatch2::FileServer"/>
        </adapter>
        <adapter name="IcePatch2.Admin" id="" endpoints="tcp -h 127.0.0.1"/>
        <property name="IcePatch2.InstanceName" value="${instance-name}"/>
        <property name="IcePatch2.Directory" value="${directory}"/>
    </server>
</server-template>

Notice that the server's pathname is , meaning the program must be present in the node's executable search path. Theicepatch2server
only mandatory parameter is , which specifies the server's data directory and becomes the value of the directory

 property. The value of the  parameter is used as the server's identifier when the template isIcePatch2.Directory instance-name
instantiated; its default value includes the name of the application in which the template is used. This identifier also affects the identities of
the two  declared by the server.well-known objects

Consider the following sample application:

XML

<icegrid>
    <application name="PatchDemo">
        <node name="Node">
            <server-instance template="IcePatch2" directory="/opt/icepatch2/data"/>
            ...
        </node>
    </application>
</icegrid>

Instantiating the  template creates a server identified as  (as determined by the default value for the IcePatch2 PatchDemo.IcePatch2
 parameter). The well-known objects use this value as the category in their identities, such as instance-name

.PatchDemo.IcePatch2/server

In order to refer to the  template in your application, you must have already configured the registry to use the IcePatch2
 file as your , or copied the template into the XML file describing your application.config/templates.xml default templates
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Adding Distribution to a Deployment

A  provides the details that a node requires in order to download the necessary files. Specifically, the descriptordistribution descriptor
supplies the proxy of the IcePatch2 server and the names of the subdirectories comprising the distribution, all of which are optional. If the
descriptor does not define the proxy, the following default value is used instead:

${application}.IcePatch2/server

You may recall that this value matches the default identity configured by the IcePatch2 server template described . Also notice that thisabove
is an indirect proxy, implying that the IcePatch2 server was deployed with the application and can be started on-demand if necessary.

If the descriptor does not select any subdirectories, the node downloads the entire contents of the IcePatch2 data directory.

In XML, a descriptor having the default behavior as described above can be written as shown below:

XML

<distrib/>

To specify a proxy, use the  attribute:icepatch

XML

<distrib icepatch="PatchDemo.IcePatch2/server"/>

Finally, select subdirectories using a nested element:

XML

<distrib>
    <directory>dir1</directory>
    <directory>dir2/subdir</directory>
</distrib>

By including only certain subdirectories in a distribution, you are minimizing the time and effort required to download and patch each node.
For example, each node in a heterogeneous network might download a platform-specific subdirectory and another subdirectory containing
files common to all platforms.

Distributing Applications and Servers

A  can be used in two contexts: within an application, and within a server. When the descriptor appears at thedistribution descriptor
application level, it means every node in the application downloads that distribution. This is useful for distributing files required by all of the
nodes on which servers are deployed, especially in a grid of homogeneous computers where it would be tedious to repeat the same
distribution information in each server descriptor. Here is a simple XML example:

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        ...
    </application>
</icegrid>

At the server level, a distribution descriptor downloads the specified directories for the private use of the server:
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XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" ...>
                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

When a distribution descriptor is defined at both the application and server levels, as shown in the previous example, IceGrid assumes that a
dependency relationship exists between the two unless the server is configured otherwise. IceGrid checks this dependency before patching
a server; if the server is dependent on the application's distribution, IceGrid patches the application's distribution first, and then proceeds to
patch the server's. You can disable this dependency by modifying the server's descriptor:

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" application-distrib="false" ...>
                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Setting the  attribute to  informs IceGrid to consider the two distributions independent of one another.application-distrib false

Server Integrity during Distribution

Before an IceGrid node begins patching a distribution, it ensures that all relevant servers are shut down and prevents them from reactivating
until patching completes. For example, the node disables all of the servers whose descriptors declare a dependency on the application

.distribution

Distribution Descriptor Variables

The node stores application and server distributions in its data directory. The pathnames of the distributions are represented by reserved
 that you can use in your descriptors:variables

application.distrib
This variable can be used within server descriptors to refer to the top-level directory of the application distribution.

server.distrib
The value of this variable is the top-level directory of a server distribution. It can be used only within a server descriptor that has a
distribution.

The XML example shown below illustrates the use of these variables:
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XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="Server1" exe="${application.distrib}/Common/Bin/Server1" ...>
            </server>
            <server id="Server2" exe="${server.distrib}/Server2Files/Bin/Server2" ...>
                <option>-d</option>
                <option>${server.distrib}/Server2Files</option>
                <distrib>
                    <directory>Server2Files</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Notice that the descriptor for  supplies the server's distribution directory as command-line options.Server2

Using Distribution in the Ripper Application

Adding an application distribution to our  requires two minor changes to our descriptors:ripper example

XML

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <load-balancing type="adaptive"/>
            <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath" default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}" exe="${exepath}" activation="on-demand">
                <adapter name="EncoderAdapter" replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <distrib/>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
            <server-instance template="IcePatch2" directory="/opt/ripper/icepatch"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"/>
        </node>
    </application>
</icegrid>

An application distribution is sufficient for this example because we are deploying the same server on each node. We have also deployed an
 on  using the template.IcePatch2 server Node1

See Also

IcePatch2
IceGrid Administrative Utilities
IceGrid Templates
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Distrib Descriptor Element
Using Descriptor Variables and Parameters
Object Adapter Replication
IcePatch2 Object Identities
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IceGrid Administrative Sessions

To access IceGrid's administrative facilities from a program, you must first establish an administrative session. Once done, a wide range of
services are at your disposal, including the manipulation of IceGrid registries, nodes, and servers; deployment of new components such as
well-known objects; and dynamic monitoring of IceGrid events.

Note that, for , an administrative session can be established with either the master or a slave registry replica, but areplicated registries
session with a slave replica is restricted to read-only operations.

On this page:

Creating an Administrative Session
Accessing Log Files Remotely
Dynamic Monitoring in IceGrid

Observer Interfaces
Registering Observers

Creating an Administrative Session

The  interface provides two operations for creating an administrative session:Registry

Slice

module IceGrid {
    exception PermissionDeniedException {
        string reason;
    };

    interface Registry {
        AdminSession* createAdminSession(string userId, string password)
            throws PermissionDeniedException;

        AdminSession* createAdminSessionFromSecureConnection()
            throws PermissionDeniedException;

        idempotent int getSessionTimeout();

        // ...
    };
};

The  operation expects a username and password and returns a session proxy if the client is allowed to create acreateAdminSession
session. By default, IceGrid does not allow the creation of administrative sessions. You must define the property 

 with the proxy of a permissions verifier object to enable session creation with IceGrid.Registry.AdminPermissionsVerifier
. The verifier object must implement the interface .createAdminSession Glacier2::PermissionsVerifier

The  operation does not require a username and password because it uses thecreateAdminSessionFromSecureConnection
credentials supplied by an  connection to authenticate the client. As with , you must configure the proxy of aSSL createAdminSession
permissions verifier object before clients can use  to create a session. In this case, the createAdminSessionFromSecureConnection

 property specifies the proxy of a verifier object that implements the interface IceGrid.Registry.AdminSSLPermissionsVerifier
.Glacier2::SSLPermissionsVerifier

As an example, the following code demonstrates how to obtain a proxy for the registry and invoke :createAdminSession
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C++

Ice::ObjectPrx base = communicator->stringToProxy("IceGrid/Registry");
IceGrid::RegistryPrx registry = IceGrid::RegistryPrx::checkedCast(base); 
string username = ...; 
string password = ...; 
IceGrid::AdminSessionPrx session; 
try { 
    session = registry->createAdminSession(username, password); 
} catch (const IceGrid::PermissionDeniedException & ex) { 
    cout << "permission denied:\n" << ex.reason << endl; 
}

The  interface provides operations for  and establishing . Furthermore, two additional operationsAdminSession accessing log files observers
are worthy of your attention:

Slice

module IceGrid {
    interface AdminSession extends Glacier2::Session {
        idempotent void keepAlive();
        idempotent Admin* getAdmin();
        // ...
    };
};

If your program uses an administrative session indefinitely, you must prevent the session from expiring by invoking  periodically.keepAlive
You can  by calling  on the  interface. Typically a program uses a dedicateddetermine the timeout period getSessionTimeout Registry
thread for this purpose.

The  operation returns a proxy for the  interface, which provides complete access to the registry's settings. ForgetAdmin IceGrid::Admin
this reason, you must use extreme caution when enabling administrative sessions.

Accessing Log Files Remotely

IceGrid's  interface provides operations for remotely accessing the log files of a registry, node, or server:AdminSession



Ice 3.4.2 Documentation

1238 Copyright © 2011, ZeroC, Inc.

Slice

module IceGrid {
interface AdminSession extends Glacier2::Session {
    // ...

    FileIterator* openServerLog(string id, string path, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;
    FileIterator* openServerStdErr(string id, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;
    FileIterator* openServerStdOut(string id, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;

    FileIterator* openNodeStdErr(string name, int count)
        throws FileNotAvailableException, NodeNotExistException,
               NodeUnreachableException;
    FileIterator* openNodeStdOut(string name, int count)
        throws FileNotAvailableException, NodeNotExistException,
               NodeUnreachableException;

    FileIterator* openRegistryStdErr(string name, int count)
        throws FileNotAvailableException,
               RegistryNotExistException,
               RegistryUnreachableException;
    FileIterator * openRegistryStdOut(string name, int count)
        throws FileNotAvailableException,
               RegistryNotExistException,
               RegistryUnreachableException;
};
};

In order to access the text of a program's standard output or standard error log, you must configure it using the  and Ice.StdOut
 properties, respectively. For registries and nodes, you must define these properties explicitly but, for servers, the node definesIce.StdErr

these properties automatically if the property  is defined, causing the server's output to be logged in individual files.IceGrid.Node.Output

If  is  defined, the following rules apply:IceGrid.Node.Output not

If the node is started from a console or shell, servers share the node's  and . If  and/or stdout stderr Ice.StdOut Ice.StdErr
properties are defined for the node, the servers' output is redirected to the specified files as well.
If the node is started as a Unix daemon and  is not used, the servers' output is lost, except if  and/or --noclose Ice.StdOut

 properties are set for the node, in which case the servers' output is redirected to the specified files.Ice.StdErr
If the node is started as a Windows service, the servers' output is lost even if  and/or  are set.Ice.StdOut Ice.StdErr

Log messages from the node itself are sent to  unless you set  (for Unix). If the node is started as a Windowsstderr Ice.UseSyslog
service, its log messages always are sent to the Windows event log.

In the case of , the value of the  argument must resolve to the same file as one of the server's . ThisopenServerLog path log descriptors
security measure prevents a client from opening an arbitrary file on the server's host.

All of the operations accept a  argument and return a proxy to a  object. The  argument determines where tocount FileIterator count
start reading the log file: if the value is negative, the iterator is positioned at the beginning of the file, otherwise the iterator is positioned to
return the last  lines of text.count

The  interface is quite simple:FileIterator
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Slice

module IceGrid {
interface FileIterator {
    bool read(int size, out Ice::StringSeq lines)
        throws FileNotAvailableException;
    void destroy();
};
};

A client may invoke the  operation as many times as necessary. The  argument specifies the maximum number of bytes that read size
 can return; the client must not use a size that would cause the reply to exceed the client's configured .read maximum message size

If this is the client's first call to , the  argument holds whatever text was available from the iterator's initial position, and theread lines
iterator is repositioned in preparation for the next call to . The operation returns false to indicate that more text is available and true if allread
available text has been read.

Line termination characters are removed from the contents of . When displaying the text, you must be aware that the first and lastlines
elements of the sequence can be partial lines. For example, the last line of the sequence might be incomplete if the limit specified by  issize
reached. The next call to  returns the remainder of that line as the first element in the sequence.read

As an example, the C++ code below displays the contents of a log file and waits for new text to become available:

C++

IceGrid::FileIteratorPrx iter = ...;
while(true) {
    Ice::StringSeq lines;
    bool end = iter->read(10000, lines);
    if (!lines.empty()) {
        // The first line might be a continuation from
        // the previous call to read.
        cout << lines[0];
        for (Ice::StringSeq::const_iterator p = ++lines.begin(); p != lines.end(); ++p)
            cout << endl << *p << flush;
    }
    if (end)
        sleep(1);
}

Notice that the loop includes a delay in case  returns true, which prevents the client from entering a busy loop when no data is currentlyread
available.

The client should call  when the iterator object is no longer required. At the time the client's session terminates, IceGrid reclaimsdestroy
any iterators that were not explicitly destroyed.

If the client waits for new data, it must invoke  on the  to prevent it from expiring.keepAlive administrative session

Dynamic Monitoring in IceGrid

IceGrid allows an application to monitor relevant state changes by registering callback objects. (The  uses these callbackIceGrid GUI tool
interfaces for its implementation.) The callback interfaces are useful to, for example, automatically generate an email notification when a
node goes down or some other state change of interest occurs.

Observer Interfaces

IceGrid offers a callback interface for each major component of the IceGrid architecture:
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Slice

module IceGrid {
interface NodeObserver {
    void nodeInit(NodeDynamicInfoSeq nodes);
    void nodeUp(NodeDynamicInfo node);
    void nodeDown(string name);
    void updateServer(string node, ServerDynamicInfo updatedInfo);
    void updateAdapter(string node, AdapterDynamicInfo updatedInfo);
};

interface ApplicationObserver {
    void applicationInit(int serial, ApplicationInfoSeq applications);
    void applicationAdded(int serial, ApplicationInfo desc);
    void applicationRemoved(int serial, string name);
    void applicationUpdated(int serial, ApplicationUpdateInfo desc);
};

interface AdapterObserver {
    void adapterInit(AdapterInfoSeq adpts);
    void adapterAdded(AdapterInfo info);
    void adapterUpdated(AdapterInfo info);
    void adapterRemoved(string id);
};

interface ObjectObserver {
    void objectInit(ObjectInfoSeq objects);
    void objectAdded(ObjectInfo info);
    void objectUpdated(ObjectInfo info);
    void objectRemoved(Ice::Identity id);
};

interface RegistryObserver {
    void registryInit(RegistryInfoSeq registries);
    void registryUp(RegistryInfo node);
    void registryDown(string name);
};
};

The next section describes how to install an observer.

Registering Observers

The  interface provides two operations for registering your observers:AdminSession
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Slice

module IceGrid {
    interface AdminSession extends Glacier2::Session {
        idempotent void keepAlive();

        idempotent void setObservers(
                RegistryObserver* registryObs,
                NodeObserver* nodeObs,
                ApplicationObserver* appObs,
                AdapterObserver* adptObs,
                ObjectObserver* objObs)
            throws ObserverAlreadyRegisteredException;

        idempotent void setObserversByIdentity(
                Ice::Identity registryObs,
                Ice::Identity nodeObs,
                Ice::Identity appObs,
                Ice::Identity adptObs,
                Ice::Identity objObs)
            throws ObserverAlreadyRegisteredException;

        // ...
    };
};

You should invoke  and supply proxies when it is possible for the registry to establish a separate connection to the client tosetObservers
deliver its callbacks. If network restrictions such as firewalls prevent such a connection, you should use the setObserversByIdentity
operation, which creates a  instead.bidirectional connection

You can pass a null proxy for any parameter to , or an empty identity for any parameter to , ifsetObservers setObserversByIdentity
you want to use only some of the observers. In addition, passing a null proxy or an empty identity for an observer cancels a previous
registration of that observer. The operations raise  if you pass a proxy or identity that wasObserverAlreadyRegisteredException
registered in a previous call.

Once the observers are registered, operations corresponding to state changes will be invoked on the observers. (See the online Slice API
 for details on the data passed to the observers. You can also look at the source code for the IceGrid GUI implementation in theReference

Ice for Java distribution to see how observers are used by the GUI.)

Finally, remember to invoke  periodically on the  to prevent it from expiring.keepAlive administrative session

See Also

Registry Replication
Securing a Glacier2 Router
Resource Allocation using IceGrid Sessions
Log Descriptor Element
IceGrid Administrative Utilities
Bidirectional Connections
IceGrid Properties

http://www.zeroc.com/doc/Ice-3.4.2/reference
http://www.zeroc.com/doc/Ice-3.4.2/reference
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Glacier2 Integration with IceGrid

This section provides information on integrating a  into your IceGrid environment.Glacier2 router

On this page:

Configuration Changes for using Glacier2 with IceGrid
Remote IceGrid Administration via Glacier2
Resource Allocation using Glacier2 and IceGrid
Session Considerations for Glacier2 and IceGrid
Deploying Glacier2 with IceGrid

Configuration Changes for using Glacier2 with IceGrid

A typical IceGrid client must be configured with a , but the configuration requirements change when the client accesses thelocator proxy
location service indirectly via a Glacier2 router as shown below:

Using IceGrid via a Glacier2 router.

In this situation, it is the router that must be configured with a locator proxy.

Assuming the registry's client endpoint in the illustration uses port , the router requires the following setting for the 8000
 property:Ice.Default.Locator

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 8000

Fortunately, the node supplies this property when it starts the router, so there is no need to configure it explicitly. Note that all of the router's
clients use the same locator.

Remote IceGrid Administration via Glacier2

If you intend to administer IceGrid remotely via a Glacier2 router, you must define one of the following properties (or both), depending on
whether you use user name and password authentication or a secure connection:

Glacier2.SessionManager=IceGrid/AdminSessionManager
Glacier2.SSLSessionManager=IceGrid/AdminSSLSessionManager

These session managers are accessible via the registry's administrative session manager endpoints, so the Glacier2 router must be
authorized to establish a connection to these endpoints. Note that you must secure these endpoints, otherwise arbitrary clients can
manipulate the session managers. An administrative session is allowed to access any object by default. To restrict access to the 

 object and the  object that is returned by the session's  operation, you must setIceGrid::AdminSession IceGrid::Admin getAdmin
the property  to one.IceGrid.Registry.AdminSessionFilters
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Resource Allocation using Glacier2 and IceGrid

To allocate servers and objects, a program can establish a client session via Glacier2. Depending on the authentication method, one or both
of the following properties must be set in the Glacier2 configuration:

Glacier2.SessionManager=IceGrid/SessionManager
Glacier2.SSLSessionManager=IceGrid/SSLSessionManager

These session managers are accessible via the registry's session manager endpoints, so the Glacier2 router must be authorized to establish
a connection to these endpoints.

A client session is allowed to access any object by default. To restrict access to the  and  objects,IceGrid::Session IceGrid::Query
you must set the property  to one. However, you can use the allocation mechanism to accessIceGrid.Registry.SessionFilters
additional objects and adapters. IceGrid adds an identity filter when a client allocates an object and removes that filter again when the object
is released. When a client allocates a server, IceGrid adds an adapter identity filter for the server's indirect adapters and removes that filter
again when the server is released.

Session Considerations for Glacier2 and IceGrid

Providing access to  and  both require that you define at least one of the properties administrative sessions client sessions
 and , which presents a potential problem if you intend to access bothGlacier2.SessionManager Glacier2.SSLSessionManager

types of sessions via the same Glacier2 router.

The simplest solution is to dedicate a router instance to each type of session. However, if you need to access both types of sessions from a
single router, you can accomplish it only if you use a different authentication mechanism for each type of session. For example, you can
configure the router as follows:

Glacier2.SessionManager=IceGrid/SessionManager
Glacier2.SSLSessionManager=IceGrid/AdminSSLSessionManager

This configuration uses user name and password authentication for client sessions, and SSL authentication for administrative sessions. If
this restriction is too limiting, you must use two router instances.

Deploying Glacier2 with IceGrid

The Ice distribution includes  for Ice services such as IcePatch2 and Glacier2 that simplify the task of deployingdefault server templates
these servers in an IceGrid domain.

The relevant portion from the file  is shown below:config/template.xml

XML

<server-template id="Glacier2">
    <parameter name="instance-name" default="${application}.Glacier2"/>
    <parameter name="client-endpoints"/>   
    <parameter name="server-endpoints"/>
    <parameter name="session-timeout" default="0"/>

    <server id="${instance-name}" exe="glacier2router">
    <properties>
        <property name="Glacier2.Client.Endpoints" value="${client-endpoints}"/>
        <property name="Glacier2.Server.Endpoints" value="${server-endpoints}"/>
        <property name="Glacier2.InstanceName" value="${instance-name}"/>
        <property name="Glacier2.SessionTimeout" value="${session-timeout}"/>
    </properties>
</server-template>

Notice that the server's pathname is , meaning the program must be present in the node's executable search path.glacier2router
Another important point is the server's activation mode: it uses manual activation (the default), meaning the router must be started manually.
This requirement becomes clear when you consider that the router is the point of contact for remote clients; if the router is not running, there
is no way for a client to contact the locator and cause the router to be started on-demand.
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The template defines only a few properties; if you want to set additional properties, you can define them in the server instance property set.

Of interest is the  parameter, which allows you to configure the  property. The parameter'sinstance-name Glacier2.InstanceName
default value includes the name of the application in which the template is used. This parameter also affects the  of the objectsidentities
implemented by the router.

Consider the following sample application:

<icegrid>
    <application name="Glacier2Demo">
        <node name="Node">
            <server-instance template="Glacier2"
                client-endpoints="tcp -h 5.6.7.8 -p 8000"
                session-timeout="300"
                server-endpoints="tcp -h 10.0.0.1"/>
            ...
        </node>
    </application>
</icegrid>

Instantiating the  template creates a server identified as  (as determined by the default value for the Glacier2 Glacier2Demo.Glacier2
 parameter). The router's objects use this value as the category in their identities, such as instance-name

. The router proxy used by clients must contain a matching identity.Glacier2Demo.Glacier2/router

In order to refer to the  template in your application, you must have already configured the registry to use the Glacier2
 file as your , or copied the template into the XML file describing your application.config/templates.xml default templates

Note that IceGrid cannot start a Glacier2 router if the router's security configuration requires that a passphrase be entered. In this situation,
you have no choice but to start the router yourself so that you can provide the passphrase when prompted.

See Also

Glacier2
IceGrid Templates
Getting Started with Glacier2
Glacier2 Properties
IceGrid Properties
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IceGrid XML Reference

This section provides a reference for the XML elements that define IceGrid descriptors, in alphabetical order.

IceGrid XML files must use UTF-8 encoding.

Topics

Adapter Descriptor Element
Allocatable Descriptor Element
Application Descriptor Element
DbEnv Descriptor Element
DbProperty Descriptor Element
Description Descriptor Element
Directory Descriptor Element
Distrib Descriptor Element
IceBox Descriptor Element
IceGrid Descriptor Element
Load-Balancing Descriptor Element
Log Descriptor Element
Node Descriptor Element
Object Descriptor Element
Parameter Descriptor Element
Properties Descriptor Element
Property Descriptor Element
Replica-Group Descriptor Element
Server Descriptor Element
Server-Instance Descriptor Element
Server-Template Descriptor Element
Service Descriptor Element
Service-Instance Descriptor Element
Service-Template Descriptor Element
Variable Descriptor Element
Using Command Line Options in Descriptors
Setting Environment Variables in Descriptors

See Also

Using IceGrid Deployment
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Adapter Descriptor Element

An  element defines an indirect .adapter object adapter

This element may only appear as a child of a  or  element.server service

The following attributes are supported:

Attribute Description Required

endpoints Specifies one or more  for this object adapter. These endpoints typically do not specify aendpoints
port. This attribute is translated into a definition of the adapter's  configuration propertyEndpoints

No

id Specifies an object adapter identifier. The identifier must be unique among all adapters and replica
groups in the registry. This attribute is translated into a definition of the adapter's AdapterId
configuration property. If not defined, a default value is constructed from the adapter name and server
ID (and service name for an IceBox ).service

Yes

name The name of the object adapter as used in the server that  it.creates Yes

priority Specifies the priority of the object adapter as an integer value. The object adapter priority is used by
the  replica group  policy to determine the order of the endpoints returned by aOrdered load balancing
locate request. Endpoints are ordered from the smallest priority value to the highest. If not defined, the
value is 0.

No

register-process This attribute is only valid if the enclosing server uses an Ice version prior to 3.3. In Ice 3.3 or later,
this functionality is replaced by the . If the value is , this object adapteradministrative facility true
registers an object in the IceGrid registry that facilitates graceful shutdown of the server. Only one
object adapter in a server should set this attribute to . If not defined, the default value is .true false

No

replica-group Specifies a . A non-empty value signals that this object adapter is a member ofreplica group identifier
the indicated replica group. This attribute is translated into a definition of the adapter's 

 configuration property. If not defined, the default value is an empty string.RepliaGroupId

No

server-lifetime A value of  indicates that the lifetime of this object adapter is the same as the lifetime of itstrue
server. This information is used by the IceGrid node to determine the state of the server. Specifically,
the server is considered  when all the object adapters with the  attributeactivated server-lifetime
set to  are registered with the registry (the object adapter registers itself during activation).true
Furthermore, server deactivation is considered to begin as soon as one object adapter with the 

 attribute set to  is unregistered with the registry (the object adapterserver-lifetime true
unregisters itself during deactivation).

No

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element.

XML

<adapter name="MyAdapter"
    endpoints="default"
    id="MyAdapterId"
    replica-group="MyReplicaGroup">
    <description>A description of the adapter.</description>
    ...
</adapter>

See Also

Object Adapters
Server Descriptor Element
Service Descriptor Element
Object Adapter Endpoints
Object Adapter Replication
Creating an Object Adapter
Load Balancing
IceGrid Server Activation
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Ice Object Adapter Properties
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Allocatable Descriptor Element

An allocatable element defines an  in the IceGrid registry. Clients can allocate this object using only its identity, or they canallocatable object
allocate objects of a specific type.

This element may only appear as a child of an  element.adapter

The following attributes are supported:

Attribute Description Required

identity Specifies the identity by which this allocatable object is known. Yes

property Specifies the name of a property to generate that contains the stringified identity of this allocatable. No

type An arbitrary string used to group allocatable objects. By convention, the string represents the most-derived Slice 
 of the object, but an application is free to use another convention.type ID

No

See Also

Resource Allocation using IceGrid Sessions
Adapter Descriptor Element
Type IDs
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Application Descriptor Element

An  element defines an . An application typically contains at least one  element, but it may also beapplication IceGrid application node
used for other purposes such as defining  and  templates, ,  and .server service default templates replica groups property sets

This element must be a child of an  element. Only one  element is permitted per file.icegrid application

The following attributes are supported.

Attribute Description Required

import-default-templates If , the  configured for the IceGrid registry are imported and availabletrue default templates
for use within this application. If not specified, the default value is .false

No

name The name of the application. This name must be unique among all applications in the
registry. Within the application, child elements can refer to its name using the reserved

 .variable ${application}

Yes

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element:

XML

<icegrid>
    <application name="MyApplication" import-default-templates="true">
        <description>A description of the application.</description>
        ...
    </application>
</icegrid>

See Also

IceGrid Architecture
Node Descriptor Element
Server-Template Descriptor Element
Service-Template Descriptor Element
Replica-Group Descriptor Element
Properties Descriptor Element
IceGrid Descriptor Element
Description Descriptor Element
IceGrid Templates
Using Descriptor Variables and Parameters
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DbEnv Descriptor Element

A  element causes an IceGrid node to generate  configuration properties for the server or service in which it is defined, anddbenv Freeze
may cause the node to create a database environment directory if necessary. This element may contain  elements.dbproperty

This element may only appear as a child of a  or  element.server service

The following attributes are supported:

Attribute Description Required

home Specifies the directory to use as the database environment. If not defined, a subdirectory within the node's data
directory is used.

No

name The name of the database environment. Yes

The values of the  and  attributes are used to define the  property as shown below:name home Freeze.DbEnv. .DbHomeenv-name

Freeze.DbEnv. .DbHome=name home

An optional nested  element provides free-form descriptive text.description

Here is an example to demostrate the use of this element:

XML

<dbenv name="MyEnv" home="/opt/data/db">
    <description>A description of the database environment.</description>
    ...
</dbenv>

See Also

Freeze
DbProperty Descriptor Element
Server Descriptor Element
Service Descriptor Element
Description Descriptor Element
Freeze Properties
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DbProperty Descriptor Element

A  element defines a BerkeleyDB configuration property for a  database environment.dbproperty Freeze

This element may only appear as a child of a  element.dbenv

The following attributes are supported:

Attribute Description Required

name The name of the configuration property. Yes

value The value of the configuration property. If not defined, the value is an empty string. No

Here is an example to demonstrate the use of this element:

XML

<dbenv name="MyEnv" home="/opt/data/db">
    <description>A description of the database environment.</description>
    <dbproperty name="set_cachesize" value="0 52428800 1"/>
</dbenv>

See Also

Freeze
DbEnv Descriptor Element
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Description Descriptor Element

A  element specifies a description of its parent element.description

This element may only appear as a child of the , , , , , , , and application replica-group node server service icebox adapter dbenv
elements.

Here is an example to demonstrate the use of this element:

XML

<node name="localnode">
    <description>Free form descriptive text for localnode</description>
</node>

See Also

Application Descriptor Element
Replica-Group Descriptor Element
Node Descriptor Element
Server Descriptor Element
Service Descriptor Element
IceBox Descriptor Element
Adapter Descriptor Element
DbEnv Descriptor Element
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Directory Descriptor Element

A  element specifies a directory in a .directory distribution

This element may only appear as a child of the  element.distrib

This element supports no attributes.

See Also

Application Distribution
Distrib Descriptor Element
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Distrib Descriptor Element

A  element specifies the  files to download from an  server as well as the server's proxy.distrib distribution IcePatch2

This element may only appear as a child of an  element or a  element.application server

The following attributes are supported:

Attribute Description Required

icepatch Proxy for the IcePatch2 server. If not defined, the default value is .${application}.IcePatch2/server No

Here is an example to demonstrate the use of this element:

XML

<distrib icepatch="DemoIcePatch2/server:tcp -p 12345">  
    <directory>dir1</directory> 
    <directory>dir2/subdir</directory> 
</distrib>

See Also

Application Distribution
IcePatch2
Application Descriptor Element
Server Descriptor Element
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IceBox Descriptor Element

An  element defines an  server to be deployed on a node. It typically contains at least one  element, and may supplyicebox IceBox service
additional information such as , ,  and a .command-line options environment variables configuration properties server distribution

The element may optionally contain a single  element that configures the IceBox service manager's object adapter and must haveadapter
the name . If no such element is defined, the service manager's object adapter is disabled. Note however thatIceBox.ServiceManager
the service manager's functionality remains available as an  even when its object adapter is disabled.administrative facet

This element may only appear as a child of a  element or a  element.node server-template

This element supports the same attributes as the  element.server

The IceGrid node on which this server is deployed generates the following configuration property for the server:

IceBox.InstanceName=${server}

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element:

XML

<icebox id="MyIceBox"
        activation="on-demand"
        activation-timeout="60"
        application-distrib="false"
        deactivation-timeout="60"
        exe="/opt/Ice/bin/icebox"
        pwd="/">
    <option>--Ice.Trace.Network=1</option>
    <env>PATH=/opt/Ice/bin:$PATH</env>
    <property name="IceBox.UseSharedCommunicator.Service1" value="1"/>
    <service name="Service1" .../>
    <service-instance template="ServiceTemplate" name="Service2"/>
</icebox>

See Also

IceBox
Service Descriptor Element
Adapter Descriptor Element
Properties Descriptor Element
Node Descriptor Element
Server-Template Descriptor Element
Server Descriptor Element
Description Descriptor Element
Using Command Line Options in Descriptors
Setting Environment Variables in Descriptors
Application Distribution
Administrative Facility
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IceGrid Descriptor Element

The  element is the top-level element for IceGrid descriptors in XML files. This elements supports no attributes.icegrid

See Also

Using IceGrid Deployment



Ice 3.4.2 Documentation

1257 Copyright © 2011, ZeroC, Inc.

Load-Balancing Descriptor Element

A  element determines the  policy used by a .load-balancing load balancing replica group

This element may only appear as a child of a  element.replica-group

The following attributes are supported:

Attribute Description Required

load-sample Specifies the load sample to use for the adaptive load balancing policy. It can only be defined if  is settype
to . Legal values are ,  and  . If not specified, the load sample default value is  .adaptive 1 5 15 1

No

n-replicas Specifies the maximum number of replicas used to compute the endpoints of the replica group. If not
specified, the default value is .1

No

type Specifies the type of load balancing. Legal values are , ,  and .adaptive ordered round-robin random Yes

Here is an example to demonstrate the use of this element:

XML

<application name="MyApp">
    <replica-group id="ReplicatedAdapter">
        <load-balancing type="adaptive" load-sample="15" n-replicas="3"/>
        <description>A description of this replica group.</description>
        <object identity="WellKnownObject" .../>
    </replica-group>
    ...
</application>

See Also

Load Balancing
Object Adapter Replication
Replica-Group Descriptor Element
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Log Descriptor Element

A  element specifies the name of a log file for a server or service. A  element must be defined for each log file that can be log log accessed
 by an administrative tool. Note that it is not necessary to define a  element for the values of the  and remotely log Ice.StdErr Ice.StdOut

properties.

This element may only appear as a child of a  element or a  element.server service

The following attributes are supported:

Attribute Description Required

path The path name of the log file. If a relative path is specified, it is relative to the current working directory of the
node. The node must have sufficient access privileges to read the file.

Yes

property Specifies the name of a property in which to store the path name of the log file as given in the  attribute.path No

Here is an example to demonstrate the use of this element:

XML

<server id="MyServer" ...>
    <log path="${server}.log" property="LogFile"/>
</server>

See Also

IceGrid Administrative Sessions
Server Descriptor Element
Service Descriptor Element
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Node Descriptor Element

A  element defines an IceGrid node. The servers that the node is responsible for managing are described in child elements.node

This element may only appear as a child of an  element. Multiple  elements having the same name may appear in anapplication node
application. Their contents are merged and the last definition of  has precedence.load-factor

The following attributes are supported:

Attribute Description Required

load-factor A floating point value defining the factor that is multiplied with the node's load average. The load average is
used by the adaptive  policy to figure out which node is the least loaded. The default is  onload balancing 1.0
Unix platforms and  on Windows (where  is the number of CPUs in the node's computer).1/NCPUS NCPUS
Note that, if Unix and Windows machines are part of a , the Unix and Windows figures are notreplica group
directly comparable, but the registry still makes an attempt to pick the least-loaded node.

No

name The name must be unique among all nodes in the registry. Within the node, child elements can refer to its
name using the  . An  process representing this node must bereserved variable ${node} icegridnode
started on the desired computer and its configuration property  must match thisIceGrid.Node.Name
attribute.

Yes

Here is an example to demonstrate the use of this element:

XML

<node name="Node1" load-factor="2.0">
    <description>A description of this node.</description>
    <server id="Server1" ...>
        <property name="NodeName" value="${node}"/>
        ...
    </server>
</node>

See Also

Application Descriptor Element
Load Balancing
Object Adapter Replication
icegridnode
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Object Descriptor Element

An  element defines a  in the IceGrid registry. Clients can refer to this object using only its identity, or they canobject well-known object
search for well-known objects of a specific type.

This element may only appear as a child of an  element or a  element.adapter replica-group

The following attributes are supported:

Attribute Description Required

identity Specifies the identity by which this object is known. Yes

property Specifies the name of a property to generate that contains the stringified identity of the object. This attribute is
only allowed if this  element is a child of an  element.object adapter

No

type An arbitrary string used to group objects. By convention, the string represents the most-derived Slice  oftype ID
the object, but an application is free to use another convention.

No

Here is an example to demonstrate the use of this element:

XML

<adapter name="MyAdapter" id="WellKnownAdapter" ...>
    <object identity="WellKnownObject" type="::Module::WellKnownInterface"/>
</adapter>

In the configuration above, the object can be located via the equivalent proxies  and WellKnownObject
.WellKnownObject@WellKnownAdapter

See Also

Well-Known Objects
Adapter Descriptor Element
Replica-Group Descriptor Element
Type IDs
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Parameter Descriptor Element

A  element defines a  parameter. Template parameters must be declared with this element to be used in templateparameter template
instantiation.

This element may only appear as a child of a  element or a  element.server-template service-template

The following attributes are supported:

Attribute Description Required

name The name of the parameter. For example, if  is used as the name of a parameter, it can be referenced usingindex
 in the server or service template.${index}

Yes

default An optional default value for the parameter. This value is used if the parameter is not defined when a server or
service is instantiated.

No

Here is an example to demonstrate the use of this element:

XML

<server-template id="MyServerTemplate"> 
    <parameter name="index"/> 
    <parameter name="exepath" default="/opt/myapp/bin/server"/> 
    ...
</server-template> 

See Also

IceGrid Templates
Server-Template Descriptor Element
Service-Template Descriptor Element
Using Descriptor Variables and Parameters
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Properties Descriptor Element

The  element is used in three situations:properties

as a named property set if the  attribute is specifiedid
as a reference to a named property set if the  attribute is specifiedrefid
as an unnamed property set if the  or  attributes are not specified.id refid

A property set is useful for defining a set of  (a named property set) in application or node descriptors. Named property sets can beproperties
included in named or unnamed property sets with property set references.

A named property set element may only be a child of an  element or a  element. An unnamed property set element mayapplication node
only be a child of a , , ,  or  element. An unnamed property set elementserver icebox service server-instance service-instance
with the  attribute defined may only be a child of a  element. A reference to a named property set can only be aservice server-instance
child of a named or unnamed property set element.

The following attributes are supported:

Attribute Description Required

id Defines a new named property set with the given identifier. The identifier must be unique among all named
property sets defined in the same scope. If not specified, the properties element refers to an unnamed property set
or a property set reference.

No

refid Defines a reference to the named property set with the given identifier. If not specified, the element refers to an
unnamed or named property set.

No

service Specifies the name of an IceBox service that is defined in the enclosing  descriptor. Theserver-instance
server instance must be an IceBox server that includes a service with the given name. An unnamed property set
with this attribute defined extends the properties of the service. If not specified, the unnamed property set extends
the properties of the server instance.

No

Here is an example to demonstrate the use of this element:

XML

<application name="Simple">
   <properties id="Debug">
        <property name="Ice.Trace.Network" value="1"/>
   </properties>

    <server id="MyServer" exe="./server">
        <properties>
            <properties refid="Debug"/>
            <property name="AppProperty" value="1"/>
        </properties>
    </server>
</application>

See Also

Properties and Configuration
Application Descriptor Element
Node Descriptor Element
Server Descriptor Element
IceBox Descriptor Element
Service Descriptor Element
Server-Instance Descriptor Element
Service-Instance Descriptor Element



Ice 3.4.2 Documentation

1263 Copyright © 2011, ZeroC, Inc.

Property Descriptor Element

An IceGrid node generates a  for each of its servers and services. This file generally should not be edited manually becauseconfiguration file
any changes are lost the next time the node generates the file. The  element is the correct way to define additional properties in aproperty
configuration file.

Note that IceGrid  can retrieve the configuration properties of a server or service via the .administrative utilities administrative facility

This element may only appear as a child of a  element, a  element, an  element or a  element.server service icebox properties

The following attributes are supported:

Attribute Description Required

name Specifies the property name. Yes

value Specifies the property value. If not defined, the value is an empty string. No

Here is an example to demonstrate the use of this element:

XML

<server id="MyServer" ...>
    <property name="Ice.ThreadPool.Server.SizeMax" value="10"/>
    ...
</server>

This  element adds the following definition to the server's configuration file:property

Ice.ThreadPool.Server.SizeMax=10

See Also

Properties and Configuration
IceGrid Administrative Utilities
IceGrid and the Administrative Facility
Server Descriptor Element
Service Descriptor Element
IceBox Descriptor Element
Properties Descriptor Element



Ice 3.4.2 Documentation

1264 Copyright © 2011, ZeroC, Inc.

Replica-Group Descriptor Element

A  element creates a virtual object adapter in order to provide  and  for a collection of objectreplica-group replication load balancing
adapters. An  element declares its membership in a group by identifying the desired replica group. The element may declare adapter

 that are available in all of the participating object adapters. A  element may contain a well-known objects replica-group
 child element that specifies the load-balancing algorithm the registry should use when resolving locate requests. If notload-balancing

specified, the registry uses a random load balancing policy with the number of replicas set to 0.

This element may only appear as a child of an  element.application

The following attributes are supported:

Attribute Description Required

id Specifies the identifier of the replica group, which must be unique among all adapters and replica groups in the
registry. This identifier can be used in indirect proxies in place of an adapter identifier.

Yes

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element:

XML

<application name="MyApp">
    <replica-group id="ReplicatedAdapter">
        <load-balancing type="adaptive" load-sample="15" n-replicas="3"/>
        <description>A description of this replica group.</description>
        <object identity="WellKnownObject" .../>
    </replica-group>
    ...
</application>

In this example, the proxy  is equivalent to the proxy .WellKnownObject WellKnownObject@ReplicatedAdapter

See Also

Object Adapter Replication
Load Balancing
Adapter Descriptor Element
Application Descriptor Element
Description Descriptor Element
Well-Known Objects



Ice 3.4.2 Documentation

1265 Copyright © 2011, ZeroC, Inc.

Server Descriptor Element

A  element defines a server to be deployed on a node. It typically contains at least one  element, and may supply additionalserver adapter
information such as , , , and a .command-line options environment variables configuration properties server distribution

This element may only appear as a child of a  element or a  element.node server-template

The following attributes are supported:

Attribute Description Required

activation Specifies whether the server's  mode. Legal values are , , activation manual on-demand always
and . If not specified, manual activation is used by default.session

No

activation-timeout Defines the number of seconds a node will wait for the server to . If the timeout expires, aactivate
client waiting to receive the endpoints of an object adapter in this server will receive an empty set
of endpoints. If not defined, the default timeout is the value of the IceGrid.Node.WaitTime
property configured for the server's node.

No

allocatable Specifies whether the server can be . A server is allocated implicitly when one of itsallocated
allocatable objects is allocated. The value of this attribute is ignored if the server activation mode
is ; a server with this activation mode is always allocatable. Otherwise, if not specifiedsession
and the server activation mode is not , the server is not allocatable.session

No

application-distrib Specifies whether this server's  is dependent on the application's distribution. If thedistribution
value is , the server cannot be patched until the application has been patched. If nottrue
defined, the default value is .true

No

deactivation-timeout Defines the number of seconds a node will wait for the server to . If the timeoutdeactivate
expires, the node terminates the server process. If not defined, the default timeout is the value of
the node's configuration property .IceGrid.Node.WaitTime

No

exe The pathname of the server executable. Yes

ice-version Specifies the Ice version in use by this server. If not defined, IceGrid assumes the server uses
the same version that IceGrid itself uses. A server that uses an Ice version prior to 3.3 must
define this attribute if its adapters use the  attribute. For example, a serverregister-process
using Ice 3.2.x should use  as the value of this attribute.3.2

No

id Specifies the identifier for this server. The identifier must be unique among all servers in the
registry. Within the server, child elements can refer to its identifier using the  reserved variable

.${server}

Yes

pwd The default working directory for the server. If not defined, the server is started in the node's
current working directory.

No

user Specifies the name of the user account under which the server is activated and run. If a user
account mapper is configured for the node, the value of this attribute is used to find the
corresponding account in the map. On Unix, the node must be running as root to be able to run
servers under a different user account. On Windows, or if the node is not running as root on
Unix, the only permissible value for this attribute is an empty string or the name of the user
account under which the node is running. On Unix, if the node is running as root and this
attribute is not specified, the server is run under the user  if the server${session.id}
activation mode is  or under the user  if the activation mode is , session nobody manual

 or .on-demand always

No

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element:
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XML

<server id="MyServer"
        activation="on-demand"
        activation-timeout="60"
        application-distrib="false"
        deactivation-timeout="60"
        exe="/opt/app/bin/myserver"
        pwd="/">
    <option>--Ice.Trace.Network=1</option>
    <env>PATH=/opt/Ice/bin:$PATH</env>
    <property name="ServerId" value="${server}"/>
    <adapter name="Adapter1" .../>
</server>

See Also

Adapter Descriptor Element
Properties Descriptor Element
Node Descriptor Element
Server-Template Descriptor Element
Description Descriptor Element
Using Command Line Options in Descriptors
Setting Environment Variables in Descriptors
Application Distribution
IceGrid Server Activation
Using Descriptor Variables and Parameters
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Server-Instance Descriptor Element

A  element deploys an instance of a  element on a node.server-instance server-template

This element may only appear as a child of a  element.node

The following attributes are supported:

Attribute Description Required

template Identifies the server .template Yes

All other attributes of the element must correspond to  declared by the template. The  element must provideparameters server-instance
a value for each parameter that does not have a default value supplied by the template.

Here is an example to demonstrate the use of this element:

XML

<icegrid>
    <application name="SampleApp">
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <server id="${id}" activation="manual" .../>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate" id="TheServer"/>
        </node>
    </application>
</icegrid>

See Also

Server-Template Descriptor Element
Node Descriptor Element
IceGrid Templates
Using Descriptor Variables and Parameters
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Server-Template Descriptor Element

A  element defines a  for a  element, simplifying the task of deploying multiple instances of the sameserver-template template server
server definition. The template should contain a parameterized  element that is instantiated using a  element.server server-instance

This element may only appear as a child of an  element.application

The following attributes are supported:

Attribute Description Required

id Specifies the identifier for the server template. This identifier must be unique among all server templates in the
application.

Yes

A template may declare  that are used to instantiate the  element. You can define a default value for each parameter.parameters server
Parameters without a default value are considered mandatory and values for them must be supplied by the  element.server-instance

Here is an example to demonstrate the use of this element:

XML

<icegrid>
    <application name="SampleApp">
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <server id="${id}" activation="manual" .../>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate" id="TheServer"/>
        </node>
    </application>
</icegrid>

See Also

IceGrid Templates
Server Descriptor Element
Server-Instance Descriptor Element
Application Descriptor Element
Using Descriptor Variables and Parameters
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Service Descriptor Element

A  element defines an  service. It typically contains at least one  element, and may supply additional informationservice IceBox adapter
such as .configuration properties

This element may only appear as a child of an  element or a  element.icebox service-template

The following attributes are supported:

Attribute Description Required

entry Specifies the entry point of this service. Yes

name Specifies the name of this service. Within the service, child elements can refer to its name using the reserved
 .variable ${service}

Yes

An optional nested  element provides free-form descriptive text.description

Here is an example to demonstrate the use of this element:

XML

<icebox id="MyIceBox" ...>
    <service name="Service1" entry="service1:Create">
        <description>A description of this service.</description>
        <property name="ServiceName" value="${service}"/>
        <adapter name="MyAdapter" id="${service}Adapter" .../>
    </service>
    <service name="Service2" entry="service2:Create"/>
</icebox>

See Also

IceBox
Adapter Descriptor Element
Properties Descriptor Element
IceBox Descriptor Element
Service-Template Descriptor Element
IceBox Integration with IceGrid
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Service-Instance Descriptor Element

A  element creates an instance of a  element in an  server.service-instance service-template IceBox

This element may only appear as a child of an . elementicebox

The following attributes are supported:

Attribute Description Required

template Identifies the service .template Yes

All other attributes of the element must correspond to  declared by the template. The  element must provideparameters service-instance
a value for each parameter that does not have a default value supplied by the template.

Here is an example to demonstrate the use of this element:

XML

<icebox id="IceBoxServer" ...>
    <service-instance template="ServiceTemplate" name="Service1"/>
</icebox>

See Also

Service-Template Descriptor Element
IceBox Descriptor Element
IceGrid Templates
IceBox Integration with IceGrid
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Service-Template Descriptor Element

A  element defines a  for a  element, simplifying the task of deploying multiple instances of the sameservice-template template service
service definition. The template should contain a parameterized  element that is instantiated using a  element.service service-instance

This element may only appear as a child of an  element.application

The following attributes are supported:

Attribute Description Required

id Specifies the identifier for the service template. This identifier must be unique among all service templates in the
application.

Yes

A template may declare  that are used to instantiate the  element. You can define a default value for each parameter.parameters service
Parameters without a default value are considered mandatory and values for them must be supplied by the  element.service-instance

Here is an example to demonstrate the use of this element:

XML

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}" .../>
            </service>
        </service-template>
        <node name="Node1">
            <icebox id="IceBoxServer" ...>
                <service-instance template="ServiceTemplate" name="Service1"/>
            </icebox>
        </node>
    </application>
</icegrid>

See Also

IceGrid Templates
Service Descriptor Element
Service-Instance Descriptor Element
IceBox Integration with IceGrid
Using Descriptor Variables and Parameters
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Variable Descriptor Element

A  element defines a .variable variable

This element may only appear as a child of an  element or  element.application node

The following attributes are supported:

Attribute Description Required

name Specifies the variable name. The value of this variable is substituted whenever its name is used in variable syntax,
as in .${name}

Yes

value Specifies the variable value. If not defined, the default value is an empty string. No

Here is an example to demonstrate the use of this element:

XML

<icegrid>
    <application name="SampleApp">
        <variable name="Var1" value="foo"/>
        <variable name="Var2" value="${Var1}bar"/>
        ...
    </application>
</icegrid>

See Also

Using Descriptor Variables and Parameters
Application Descriptor Element
Node Descriptor Element
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Using Command Line Options in Descriptors

Server descriptors and  may specify command-line options that the node will pass to the program at startup. As the nodeIceBox descriptors
prepares to execute the server, it assembles the command by appending options to the server executable's pathname.

In XML, you define a command-line option using the  element:option

XML

<server id="Server1" ...>
    <option>--Ice.Trace.Protocol</option>
    ...
</server>

The node preserves the order of options, which is especially important for Java servers. For example, JVM options must appear before the
class name, as shown below:

XML

<server id="JavaServer" exe="java" ...>
    <option>-Xnoclassgc</option>
    <option>ServerClassName</option>
    <option>--Ice.Trace.Protocol</option>
    ...
</server>

The node translates these options into the following command:

java -Xnoclassgc ServerClassName --Ice.Trace.Protocol

See Also

Server Descriptor Element
IceBox Descriptor Element
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Setting Environment Variables in Descriptors

Server descriptors and  may specify environment variables that the node will define when starting a server. AnIceBox descriptors
environment variable definition uses the familiar  syntax, and you can also refer to other environment variables within the value.=name value
The exact syntax for variable references depends on the platform on which the server's descriptor is deployed.

On a Unix platform, the Bourne shell syntax is required:

LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH

On a Windows platform, the syntax uses the conventional style:

PATH=C:\Ice\lib;%PATH%

In XML, the  element supplies a definition for an environment variable:env

XML

<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH</env>
        ...
    </server>
</node>
<node name="WindowsBox">
    <server id="WindowsServer" exe="C:/app/bin/server.exe" ...>
        <env>PATH=C:\Ice\lib;%PATH%</env>
        ...
    </server>
</node>

If a value refers to an environment variable that is not defined, the reference is substituted with an empty string.

Environment variable definitions may also refer to :descriptor variables and template parameters

XML

<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>PATH=${server.distrib}/bin:$PATH</env>
        ...
    </server>
</node>

On Unix, an environment variable  can be referenced as  or . You must be careful when using the latter syntax becauseVAR $VAR ${VAR}
IceGrid assumes  refers to a descriptor variable or parameter and will report an error if no match is found. If you prefer to use this${VAR}
style to refer to environment variables, you must escape these occurrences as shown in the example below:

<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>PATH=${server.distrib}/bin:$${PATH}</env>
        ...
    </server>
</node>

IceGrid does not attempt to perform  on , but rather removes the leading  character and then performs environmentsubstitution $${PATH} $
variable substitution on .$${PATH}
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See Also

Server Descriptor Element
IceBox Descriptor Element
Using Descriptor Variables and Parameters
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Using Descriptor Variables and Parameters

Variable descriptors allow you to define commonly-used information once and refer to them symbolically throughout your application
descriptors.

On this page:

Descriptor Substitution Syntax
Limitations
Escaping a Variable

Special Descriptor Variables
Descriptor Variable Scoping Rules

Resolving a Reference
Template Parameters
Modifying a Variable

Descriptor Substitution Syntax

Substitution for a variable or parameter  is attempted whenever the symbol  is encountered, subject to the limitations and rulesVP ${VP}
described below. Substitution is case-sensitive, and a fatal error occurs if  is not defined.VP

Limitations

Substitution is only performed in string values, and excludes the following cases:

Identifier of a template descriptor definition

<server-template id="${invalid}" ...>

Name of a variable definition

<variable name="${invalid}" ...>

Name of a template parameter definition

<parameter name="${invalid}" ...>

Name of a template parameter assignment

<server-instance template="T" ${invalid}="val" ...>

Name of a node definition

<node name="${invalid}" ...>

Name of an application definition

<application name="${invalid}" ...>

Substitution is not supported for values of other types. The example below demonstrates an invalid use of substitution:
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<variable name="register" value="true"/>
<node name="Node">
    <server id="Server1" ...>
        <adapter name="Adapter1" register-process=${register} .../>

In this case, a variable cannot supply the value of  because that attribute expects a boolean value, not a string.register-process

Most values are strings, however, so this limitation is rarely a problem.

Escaping a Variable

You can prevent substitution by escaping a variable reference with an additional leading  character. For example, in order to assign the$
literal string  to a variable, you must escape it as shown below:${abc}

<variable name="x" value="$${abc}"/>

The extra  symbol is only meaningful when immediately preceding a variable reference, therefore text such as  is not modified.$ US$$55
Each occurrence of the characters  preceding a variable reference is replaced with a single  character, and that character does not$$ $
initiate a variable reference. Consider these examples:

<variable name="a" value="hi"/>
<variable name="b" value="$${a}"/>
<variable name="c" value="$$${a}"/>
<variable name="d" value="$$$${a}"/>

After substitution,  has the value ,  has the value , and  has the value .b ${a} c $hi d $${a}

Special Descriptor Variables

IceGrid defines a set of read-only variables to hold information that may be of use to descriptors. The names of these variables are reserved
and cannot be used as variable or parameter names. The table describes the purpose of each variable and defines the context in which it is
valid.

Reserved Name Description

application The name of the enclosing application.

application.distrib The pathname of the enclosing application's  directory, and an alias for distribution
}.${node.datadir}/distrib/${application

node The name of the enclosing node.

node.os The name of the enclosing node's operating system. On Unix, this is value is provided by . Onuname
Windows, the value is .Windows

node.hostname The host name of the enclosing node.

node.release The operating system release of the enclosing node. On Unix, this value is provided by . On Windows,uname
the value is obtained from the  data structure.OSVERSIONINFO

node.version The operating system version of the enclosing node. On Unix, this value is provided by . On Windows,uname
the value represents the current service pack level.

node.machine The machine hardware name of the enclosing node. On Unix, this value is provided by . On Windows,uname
the value can be x86, x64, or IA64, depending on the machine architecture.

node.datadir The absolute pathname of the enclosing node's data directory.

server The ID of the enclosing server.
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server.distrib The pathname of the enclosing server's  directory, and an alias for distribution
.${node.datadir}/servers/${server}/distrib

service The name of the enclosing service.

session.id The client session identifier. For sessions created with a user name and password, the value is the user ID; for
sessions created from a secure connection, the value is the distinguished name associated with the
connection.

The availability of a variable is easily determined in some cases, but may not be readily apparent in others. For example, the following
example represents a valid use of the  variable:${node}

XML

<icegrid>
    <application name="App">
        <server-template id="T" ...>
            <parameter name="id"/>
            <server id="${id}" ...>
                <property name="NodeName" value="${node}"/>
                ...
            </server>
        </server-template>
        <node name="TheNode">
            <server-instance template="T" id="TheServer"/>
        </node>
    </application>
</icegrid>

Although the server template descriptor is defined as a child of an application descriptor, its variables are not evaluated until it is instantiated.
Since a template  is always enclosed within a node, it is able to use the  variable.instance ${node}

Descriptor Variable Scoping Rules

Descriptors may only define variables at the application and node levels. Each node introduces a new scope, such that defining a variable at
the node level overrides (but does not modify) the value of an application variable with the same name. Similarly, a template parameter
overrides the value of a variable with the same name in an enclosing scope. A descriptor may refer to a variable defined in any enclosing
scope, but its value is determined by the nearest scope. The following figure illustrates these concepts:
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1.  
2.  
3.  
4.  

1.  
2.  
3.  

Variable scoping semantics.

In this diagram, the variable   is defined at the application level with the value  . In ,  is overridden with the value  , whereas x 1 nodeA x 2 x
 remains unchanged in . Within the context of ,  continues to have the value   in a server instance definition. However, when nodeB nodeA x 2

 is used as the name of a template parameter, the node's definition of   is overridden and  has the value   in the template's scope.x x x 3

Resolving a Reference

To resolve a variable reference , IceGrid searches for a definition of  using the following order of precedence:${var} var

Pre-defined variables
Template parameters, if applicable
Node variables, if applicable
Application variables

After the initial substitution, any remaining references are resolved recursively using the following order of precedence:

Pre-defined variables
Node variables, if applicable
Application variables

Template Parameters

Template parameters are not visible in nested template instances. This situation can only occur when an IceBox server template instantiates
a service template, as shown in the following example:
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XML

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                ...
                <property name="${name}.Identity" value="${id}-${name}"/> <!-- WRONG! -->
            </service>
        </service-template>
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <icebox id="${id}" endpoints="default" ...>
                <service-instance template="ServiceTemplate" name="Service1"/>
            </icebox>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate" id="IceBoxServer"/>
        </node>
    </application>
</icegrid>

The service template incorrectly refers to , which is a parameter of the server template.id

Template parameters can be referenced only in the body of a template; they cannot be used to define other parameters. For example, the
following is illegal:

XML

<server-template id="ServerTemplate">
    <parameter name="par1"/>
    <parameter name="par2" default="${par1}"/>
    ...
</server-template>

Modifying a Variable

A variable definition can be overridden in an inner scope, but the inner definition does not modify the outer variable. If a variable is defined
multiple times in the same scope (which is only relevant in XML definitions), the most recent definition is used for all references to that
variable. Consider the following example:

XML

<application name="MyApp">
    <variable name="x" value="1"/>
    <variable name="y" value="${x}"/>
    <variable name="x" value="2"/>
    ...
</application>

When descriptors such as these are created, IceGrid validates their variable references but does not perform substitution until the descriptor
is acted upon (such as when a node is generating a configuration file for a server). As a result, the value of   in the above example is y 2
because that is the most recent definition of  .x

See Also

Variable Descriptor Element
IceGrid Templates
Application Distribution
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IceGrid Property Set Semantics

Ice servers and clients are configured with . For servers  with IceGrid, these properties are automatically generated into aproperties deployed
configuration file from the information contained in the application descriptor. The settings in that configuration file are passed to server via
the  command-line option.--Ice.Config

Property descriptors allow you to define property sets to efficiently manage and specify properties. Here are some of the benefits of using
property sets:

You can define sets of properties at the  or  element level and reference these properties in other property sets.application node
You can specify properties for a specific  or  instance.server service

There are two kinds of property sets:

Named property sets
Named property sets are defined at the application or node level. They are useful only as the target of references from other
property sets. Specifically, a named property set has no effect unless you reference it from a  descriptor.server

Unnamed property sets
Unnamed property sets can be defined in , , ,  or  elements and define theserver service icebox server-instance service-instance
properties for a server or service. Unnamed property sets can reference named property sets.

Named and unnamed property sets are defined with the same  descriptor. The context and the attributes of a properties properties
element distinguish named property sets from unnamed property sets. Here is an example that defines a named and an unnamed property
set:

XML

<application name="App">
    <properties id="Debug">
        <property name="UseDebug" value="1"/>
    </properties>

    <node name="TheNode">
        <server id="TheServer" exe="./server">
            <properties>
                <property name="Identity" value="hello"/>
            </properties>
        </server>
    </node>
</application>

In this example, we define the named property set  and the unnamed property set of the server . The server configurationDebug TheServer
will contain only the  property because the server property set does not reference the  named property set.Identity Debug

The  element is used to reference a named property set: if a  element appears inside another properties properties properties
element, it is a reference to another property set and it must specify the  attribute. With the previous example, to reference the refid Debug
property set, we would write the following:
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1.  

2.  

XML

<application name="App">
    <properties id="Debug">
        <property name="UseDebug" value="1"/>
    </properties>

    <node name="TheNode">
        <server id="TheServer" exe="./server">
            <properties>
                <properties refid="Debug"/>
                <property name="Identity" value="hello"/>
        </properties>
        </server>
    </node>
</application>

Property sets, whether named or unnamed, are evaluated as follows:

Within a  element, IceGrid locates all references to named property sets and evaluates all property settings in theproperties
referenced property sets.
Explicit property definitions following any named references are then evaluated and added to the property set formed in the
preceding step. This means that explicit property settings override corresponding settings in any referenced property sets.

It is illegal to define a reference to a property set after setting a property value, so references to property sets must precede property
definitions. For example, the following is illegal:

XML

<properties>
    <property name="Prop1" value="Value1"/>
    <properties refid="Ref1"/>
</properties>

Just as the order of the property definitions is important, the order of property set references is also important. For example, the following two
property sets are not equivalent:

XML

<properties>
    <properties refid="Ref1"/>
    <properties refid="Ref2"/>
</properties>

<properties>
    <properties refid="Ref2"/>
    <properties refid="Ref1"/>
</properties>

Named property sets are evaluated at the point of definition. If you reference other property sets or use variables in a named property set
definition, you must make sure that the referenced property sets or variables are defined in the same scope. For example, the following is
correct:
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1.  

XML

<application name="App">

    <variable name="level" value="1"/>

    <properties id="DebugApp">
        <property name="DebugLevel value="${level}">
    </properties>

</application>

However, the following example is wrong because the  variable is not defined at the  scope:${level} application

XML

<application name="App">

    <properties id="DebugApp">
        <property name="DebugLevel value="${level}">
    </properties>

    <node name="TheNode">
        <variable name="level" value="1"/>
    </node>

</application>

If both the  and the  define the  variable, the value of the  variable in the  property setapplication node ${level} ${level} DebugApp
will be the value of the variable defined in the application descriptor.

So far, we have seen the definition of an unnamed property set only in a server descriptor. However, it is also possible to define an unnamed
property set for server or service instances. This is a good way to specify or override properties specific to a server or service instance. For
example:

XML

<application name="TheApp">
  <server-template id="Template">
  
    <parameter name="instance-name"/>
  
    <server id="${instance-name}" exe="./server">
      <properties>
        <property name="Timeout" value="30"/>
      </properties>
    </server>
  </server-template>
  
  <node name="TheNode">
    <server-instance template="Template" instance-name="MyInst">
      <properties>
        <property name="Debug" value="1"/>
        <property name="Timeout" value="-1"/>
      </properties>
    </server-instance>
  </node>
</application>

Here, the server instance overrides the  property and defines an additional  property.Timeout Debug

The server or service instance properties are evaluated as follows:
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1.  
2.  

The unnamed property set from the template server or service descriptor is evaluated.
The unnamed property set from the server or service instance descriptor is evaluated and the resulting properties are added to the
property set formed in the preceding step. This means that property settings in a server or service instance descriptor override
corresponding settings in a template server or service descriptor.

The server or service instance unnamed property set and its parameters provide two different ways to customize the properties of a server or
service template instance. It might not always be obvious which method to use: is it better to use a parameter to parameterize a given
property or is it better to just specify it in the server or service instance property set?

For example, in the previous descriptor, we could have used a parameter with a default value for the  property:Timeout

XML

<application name="TheApp">
  <server-template id="Template">
    
    <parameter name="instance-name"/>
    <parameter name="timeout" default="30"/>
    
    <server id="${instance-name}" exe="./server">
      <properties>
        <property name="Timeout" value="${timeout}"/>
      </properties>
    </server>
  </server-template>
  
  <node name="TheNode">
    <server-instance template="Template" instance-name="MyInst" timeout="-1">
      <properties>
        <property name="Debug" value="1"/>
      </properties>
    </server-instance>
  </node>
</application>

Here are some guidelines to help you decide whether to use a parameter or a property:

Use a parameter for a property that should always be set.
Use a parameter if you want to make the property obvious to the reader and user of the template.
Do not use a parameter for optional properties if you want to rely on a default value for the server.
Do not use parameters for properties that are rarely used.

See Also

Properties and Configuration
Using IceGrid Deployment
Properties Descriptor Element
Application Descriptor Element
Node Descriptor Element
Server-Instance Descriptor Element
Service-Instance Descriptor Element
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IceGrid XML Features

IceGrid provides some convenient features to simplify the task of defining descriptors in XML.

On this page:

Adding Flexibility with Targets
Including Descriptor Files

Adding Flexibility with Targets

An IceGrid XML file may contain optional definitions that are  only when specifically requested. These definitions are called targetsdeployed
and must be defined within a  element. The elements that may legally appear within a  element are determined by itstarget target
enclosing element. For example, a  element is legal inside a  element of an  element, but not inside a node target application target
element of a  element. Each  element must define a value for the  attribute, but names are not required to be unique.server target name
Rather, targets should be considered as optional components or features of an application that are deployed in certain circumstances.

The example below defines targets named  that, if requested during deployment, configure their servers with an additional property:debug

XML

<icegrid>
    <application name="MyApp">
        <node name="Node">
            <server id="Server1" ...>
                <target name="debug">
                    <property name="Ice.Trace.Network" value="2"/>
                </target>
                ...
            </server>
            <server id="Server2" ...>
                <target name="debug">
                    <property name="Ice.Trace.Network" value="2"/>
                </target>
                ...
            </server>
        </node>
    </application>
</icegrid>

Target names specified in an  can be unqualified names like , in which case every target with that name is commandicegridadmin debug
deployed, regardless of the target's nesting level. If you want to deploy targets more selectively, you can specify a fully-qualified name
instead. A fully-qualified target name consists of its unqualified name prefaced by the names or identifiers of each enclosing element. For
instance, a fully-qualified target name from the example above is .MyApp.Node.Server1.debug

Including Descriptor Files

You can include the contents of another XML file into the current file using the  element, which is replaced with the contents of theinclude
included file. The elements in the included file must be enclosed in an  element, as shown in the following example:icegrid
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XML

<!-- File: A.xml -->
<icegrid>
    <server-template id="ServerTemplate">
        <parameter name="id"/>
        ...
    </server-template>
</icegrid>

<!-- File: B.xml -->
<icegrid>
    <application name="MyApp">
        <include file="A.xml"/>
        <node name="Node">
            <server-instance template="ServerTemplate" .../>
        </node>
    </application>
</icegrid>

In , the  element identifies the name of the file to include using the  attribute. The top-level  element isB.xml include file icegrid
discarded from  and its contents are inserted at the position of the  element in .A.xml include B.xml

Note that the file name of an included file is relative to the application descriptor, not relative to the working directory.

You can include  from a file by specifying their names in the optional  attribute. If multiple targets are included, theirspecific targets targets
names must be separated by whitespace. The example below illustrates the use of a target:

XML

<!-- File: A.xml -->
<icegrid>
    <server-template id="ServerTemplate">
        <parameter name="id"/>
        ...
    </server-template>
    <target name="targetA">
        <server-template id="AnotherTemplate">
            ...
        </server-template>
    </target>
</icegrid>

<!-- File: B.xml -->
<icegrid>
    <application name="MyApp">
        <include file="A.xml" targets="targetA"/>
        <node name="Node">
            <server-instance template="ServerTemplate" .../>
            <server-instance template="AnotherTemplate" .../>
        </node>
    </application>
</icegrid>

See Also

Using IceGrid Deployment
IceGrid Administrative Utilities



Ice 3.4.2 Documentation

1287 Copyright © 2011, ZeroC, Inc.

IceGrid Server Reference

Topics

icegridregistry
icegridnode
Well-Known Registry Objects
IceGrid Persistent Data
Promoting a Registry Slave
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icegridregistry

The IceGrid registry is a centralized repository of information, including  and . A registry candeployed applications well-known objects
optionally be collocated with an IceGrid node, which conserves resources and can be convenient during development and testing. The
registry server is implemented by the  executable.icegridregistry

On this page:

Command Line Options for icegridregistry
Configuring Registry Endpoints
Registry Security Considerations
Configuring a Data Directory for the Registry
Registry Configuration Example

Command Line Options for icegridregistry

The registry supports the following command-line options:

$ icegridregistry -h
Usage: icegridregistry [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
--nowarn             Don't print any security warnings.
--readonly           Start the master registry in read-only mode.

The  option prevents any updates to the registry's database; it also prevents slaves from synchronizing their databases with--readonly
this master. This option is useful when you need to verify that the master registry's database is correct after  to become thepromoting a slave
new master.

Additional command line options are supported, including those that allow the registry to run as a , and IceWindows service or Unix daemon
includes a  to help you install an IceGrid registry as a Windows service.utility

Configuring Registry Endpoints

The IceGrid registry creates up to five sets of endpoints, configured with the following properties:

IceGrid.Registry.Client.Endpoints
Client-side endpoints supporting the following interfaces:

Ice::Locator
IceGrid::Query
IceGrid::Registry
IceGrid::Session
IceGrid::AdminSession
IceGrid::Admin

There are security implications in allowing access to administrative sessions, as explained in the next
section.

IceGrid.Registry.Server.Endpoints
Server-side endpoints for object adapter registration.

IceGrid.Registry.SessionManager.Endpoints
Optional endpoints for delegating  authentication to a .session Glacier2 router

IceGrid.Registry.AdminSessionManager.Endpoints
Optional endpoints for delegating  authentication to a .administrative session Glacier2 router

IceGrid.Registry.Internal.Endpoints
Internal endpoints used by IceGrid nodes and registry replicas. This property must be defined even if no nodes or replicas are being
used.
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Registry Security Considerations

A client that successfully establishes an  with the registry has the ability to compromise the security of the registryadministrative session
host. As a result, it is imperative that you configure the registry carefully if you intend to allow the use of administrative sessions.

Administrative sessions are disabled unless you explicitly configure the registry to use an authentication mechanism. To allow authentication
with a user name and password, you can specify a password file using the property  or useIceGrid.Registry.AdminCryptPasswords
your own  object by supplying its proxy in the property . Yourpermissions verifier IceGrid.Registry.AdminPermissionsVerifier
verifier object must implement the  interface.Glacier2::PermissionsVerifier

To authenticate administrative clients using their SSL connections, define  withIceGrid.Registry.AdminSSLPermissionsVerifier
the proxy of a verifier object that implements the  interface.Glacier2::SSLPermissionsVerifier

Configuring a Data Directory for the Registry

You must provide an empty directory in which the registry can initialize its . The pathname of this directory is supplied by thedatabases
configuration property .IceGrid.Registry.Data

The files in this directory must not be edited manually, but rather indirectly using one of the . To clear a registry'sadministrative tools
databases, first ensure the server is not currently running, then remove all of the files in its data directory and restart the server.

Registry Configuration Example

The registry requires values for the three mandatory endpoint properties, as well as the data directory property, as shown in the following
example:

IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.Data=/opt/ripper/registry

In addition, we also recommend defining , whose value affects the identities of the registry's .IceGrid.InstanceName well-known objects

The remaining configuration properties are discussed in .IceGrid Properties

See Also

Using IceGrid Deployment
Well-Known Objects
Promoting a Registry Slave
Windows Services
Resource Allocation using IceGrid Sessions
IceGrid Administrative Sessions
Glacier2 Integration with IceGrid
IceGrid Administrative Utilities
Securing a Glacier2 Router
IceGrid Persistent Data
Well-Known Registry Objects
IceGrid Properties
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icegridnode

An IceGrid node is a process that  registered server processes. You can run any number of nodes in aactivates, monitors, and deactivates
domain, but typically there is one node per host. A node must be running on each host on which servers are activated automatically, and
nodes cannot run without an IceGrid registry.

The IceGrid node server is implemented by the  executable. If you wish to run a registry and node in one process, icegridnode
 is the executable you must use.icegridnode

On this page:

Command Line Options for icegridnode
Configuring Node Endpoints
Node Security Considerations
Configuring a Data Directory for the Node
Node Configuration Example

Command Line Options for icegridnode

The node supports the following command-line options:

Usage: icegridnode [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
--nowarn             Don't print any security warnings.
--readonly           Start the collocated master registry in
                     read-only mode.

--deploy DESCRIPTOR [TARGET1 [TARGET2 ...]]
                     Add or update descriptor in file DESCRIPTOR,
                     with optional targets.

If you are running the node with a collocated registry, the  option prevents any updates to the registry's database; it also--readonly
prevents slaves from synchronizing their databases with this master. This option is useful when you need to verify that the master registry's
database is correct after  to become the new master.promoting a slave

The  option allows an application to be  automatically as the node process starts, which can be especially useful during--deploy deployed
testing. The command expects the name of the XML deployment file, and optionally allows the names of the individual [targets|IceGrid XML
Features#targets} within the file to be specified.

Additional command line options are supported, including those that allow the node to run as a , and IceWindows service or Unix daemon
includes a  to help you install an IceGrid node as a Windows service.utility

Configuring Node Endpoints

The IceGrid node's endpoints are defined by the  property and must be accessible to the registry. It is notIceGrid.Node.Endpoints
necessary to use a fixed port because each node contacts the registry at startup to provide its current endpoint information.

Node Security Considerations

It is important that you give careful consideration to the permissions of the account under which the node runs. If the servers that the node
will activate have no special , and all of the servers can use the same account, it is recommended that you do not runaccess requirements
the node under an account with system privileges, such as the root account on Unix or the Administrator account on Windows.

Configuring a Data Directory for the Node

The node requires an empty directory that it can use to store server files. The pathname of this directory is supplied by the configuration
property . To clear a node's state, first ensure the server is not currently running, then remove all of the files in its dataIceGrid.Node.Data
directory and restart the server.
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The node's  may also contain files and subdirectories used by your application's servers, such asdata directory
configuration files and Freeze database environments. Before destroying the contents of the node's data directory, make
sure that all servers are stopped and any important files are backed up.

When running a collocated node and registry server, we recommend using separate directories for the registry and node data directories.

Node Configuration Example

A minimal node configuration is shown in the following example:

IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=/opt/ripper/node

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

The value of the  property must match that of a deployed node known by the registry.IceGrid.Node.Name

The  property is used by the node to contact the registry. The value is a proxy that contains the Ice.Default.Locator registry's client
.endpoints

If you wish to run a collocated registry and node server, enable the property  and include the IceGrid.Node.CollocateRegistry
.registry's configuration properties

The remaining configuration properties are discussed in .IceGrid Properties

See Also

IceGrid Server Activation
Promoting a Registry Slave
IceGrid Persistent Data
Getting Started with IceGrid
Using IceGrid Deployment
Windows Services
IceGrid Properties
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Well-Known Registry Objects

The IceGrid registry hosts several . The following table shows the default identities of these objects and theirwell-known objects
corresponding Slice interfaces:

Default Identity Interface

IceGrid/AdminSessionManager Glacier2::SessionManager

IceGrid/AdminSessionManager-replica Glacier2::SessionManager

IceGrid/AdminSSLSessionManager Glacier2::SSLSessionManager

IceGrid/AdminSSLSessionManager-replica Glacier2::SSLSessionManager

IceGrid/Locator Ice::Locator

IceGrid/Query IceGrid::Query

IceGrid/Registry IceGrid::Registry

IceGrid/Registry-replica IceGrid::Registry

IceGrid/RegistryUserAccountMapper IceGrid::UserAccountMapper

IceGrid/RegistryUserAccountMapper-replica IceGrid::UserAccountMapper

IceGrid/SessionManager Glacier2::SessionManager

IceGrid/SSLSessionManager Glacier2::SSLSessionManager

It is a good idea to assign unique identities to these objects by configuring them with different values for the IceGrid.InstanceName
property, as shown in the following example:

IceGrid.InstanceName=MP3Grid

This property changes the identities of the well-known objects to use  instead of  as the identity category. For example,MP3Grid IceGrid
the identity of the locator becomes .MP3Grid/Locator

The client's configuration must also be changed to reflect the new identity:

Ice.Default.Locator=MP3Grid/Locator:tcp -h registryhost -p 4061

Furthermore, any uses of these identities in application code must be updated as well.

See Also

Well-Known Objects
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IceGrid Persistent Data

The IceGrid registry and node both store information in the data directories specified by the  and IceGrid.Registry.Data
 properties, respectively. This section describes what the registry and node are storing and discusses backup andIceGrid.Node.Data

recovery techniques.

On this page:

Registry Persistent Data
Node Persistent Data
Using IceGrid and SQL

Registry Persistent Data

The contents of the registry's data directory depends on the registry's database configuration. By default, the data directory contains a 
 database environment. If the registry is , the data directory might contain an SQLite database, or it might beFreeze configured to use SQL

empty if the registry is using a remote SQL server. Regardless of the storage mechanism, the registry stores the following information:

Applications  using the  operation on the  interface (which includes the IceGrid GUIdeployed addApplication IceGrid::Admin
and command-line ). Applications specify servers, well-known objects, object adapters, replica groups, andadministrative clients
allocatable objects. Applications can be removed with the  operation.removeApplication
Well-known objects registered using the  and  operations on the  interface.addObject addObjectWithType IceGrid::Admin
Well-known objects added by these operations can be removed using the  operation.removeObject
Adapter endpoints registered dynamically by servers using the  interface. The property Ice::LocatorRegistry

 must be set to a value larger than zero to allow the dynamic registration of objectIceGrid.Registry.DynamicRegistration
adapters. These adapters can be removed using the  operation.removeAdapter
Some internal proxies used by the registry to contact nodes and other registry replicas during startup. The proxies enable the
registry to notify these entities about the registry's availability.

Client session and  established with the IceGrid registry are not persistent. If the registry is restarted, these sessionsadministrative sessions
must be recreated. For client sessions in particular, this implies that objects allocated using the allocation mechanism will no longer be
allocated once the IceGrid registry restarts.

If the registry's database is corrupted or lost, you must recover the deployed applications, the well-known objects, and the adapter endpoints.
You do not need to worry about the internal proxies stored by the registry, as the nodes and registry replicas will eventually contact the
registry again.

Depending on your deployed applications and your use of the registry, you should consider backing up the registry's database, especially if
you cannot easily recover the persistent information.

For example, if you rely on dynamically-registered adapters, or on well-known objects registered programmatically via the IceGrid::Admin
interface, you should back up the registry database because recovering this information may be difficult. On the other hand, if you only
deploy a few applications from XML files, you can easily recover the applications by redeploying their XML files, and therefore backing up the
database may be unnecessary.

Be aware that restarting the registry with an empty database may cause the server information stored by the nodes to be deleted. This can
be an issue if the deployed servers have databases stored in the node data directory. The next section provides more information on this
subject.

Node Persistent Data

The IceGrid node stores information for servers deployed by IceGrid applications. This information is stored in the  subdirectory ofservers
the node's data directory. There is one subdirectory per server; the name of the subdirectory is the server's ID. Each server directory
contains configuration files, and may also contain  and the  of the server. The node's data directorydatabase environments distribution data
also contains a  directory to store per-application distribution data. This directory contains a subdirectory for each application thatdistrib
specifies a distribution and has a server deployed on the node.

If a server directory is deleted, the node recreates it at startup. The node will also recreate the server configuration files and the database
environment directories. However, the node cannot restore the prior contents of a server's database environment. It is your responsibility to
back up these database environments and restore them when necessary. If the server or application distribution data is deleted from the
node's data directory, you can easily recover the deleted information by patching these distributions again using the IceGrid administrative
tools.

If you store your server database environments outside the node's data directory (such as in a directory that is regularly backed up), or if you
do not have any database environments inside the node's data directory, you do not need to back up the contents of the node's data
directory.



Ice 3.4.2 Documentation

1294 Copyright © 2011, ZeroC, Inc.

Using IceGrid and SQL

By default, the IceGrid registry uses a  database to store its persistent state. You can configure IceGrid to use an SQL databaseFreeze
instead by setting several properties.

When using an SQL database, IceGrid stores its persistent state in four tables:

<instance-name>_<replica-name>_Applications
<instance-name>_<replica-name>_Adapters
<instance-name>_<replica-name>_Objects
<instance-name>_<replica-name>_InternalObjects

In these table names,  is the value of  and  is the value of instance-name IceGrid.InstanceName replica-name
.IceGrid.Registry.ReplicaName

A number of properties control how IceGrid accesses an SQL database:

Ice.Plugin.DB
To use the IceGrid registry with an SQL database, you must set this property to the value .IceGridSqlDB:createSqlDB
IceGrid.SQL.DatabaseType
IceGrid.SQL.DatabaseName
IceGrid.SQL.HostName
IceGrid.SQL.Port
IceGrid.SQL.UserName
IceGrid.SQL.Password

See Also

Freeze
Using IceGrid Deployment
IceGrid Administrative Utilities
Well-Known Objects
Object Adapter Endpoints
Resource Allocation using IceGrid Sessions
IceGrid Administrative Sessions
DbEnv Descriptor Element
Application Distribution
IceGrid Properties
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Promoting a Registry Slave

In a , you may need to promote a slave to be the new master if the current master becomes unavailable. Forreplicated IceGrid deployment
example, this situation can occur when the original master cannot be restarted immediately due to a hardware problem, or when your
application requires a feature that is only accessible via the master, such as the  facility or the ability to modify the resource allocation

 data.deployment

To promote a slave to become the new master, you must shut down the slave and change its  propertyIceGrid.Registry.ReplicaName
to  (or remove the property altogether). On restart, the new master notifies the nodes and registries that were active before it wasMaster
shut down. An inactive registry or node will eventually connect to the new master if its default locator proxy contains the endpoint of the new
master registry or the endpoint of a slave that is connected to the new master. If you cannot afford any down-time of the registry and want to
minimize the down-time of the master, you should run at least two slaves. That way, if the master becomes unavailable, there will always be
one registry available while you promote one of the slaves.

A slave synchronizes its database upon connecting to the new master, therefore it is imperative that you promote a slave whose database is
valid and up-to-date. To verify that the promoted master database is up-to-date, you can start the new master with the --readonly
command-line option. While this option is in force, the new master does not update its database, and slaves do not synchronize their
databases. You can review the master database with the IceGrid  and, if the deployment looks correct, you can restartadministrative tools
the master without the  option to permit updates and slave synchronization.--readonly

Note that there is nothing to prevent you from running two masters. If you start two masters and they contain different versions of the
deployment information, some slaves and nodes might get updated with out-of-date deployment information (causing some of your servers
to be deactivated). You can correct the problem by shutting down the faulty master, but it is important to keep this issue in mind when you
restart a master since it might disrupt your applications.

See Also

Registry Replication
Resource Allocation using IceGrid Sessions
Using IceGrid Deployment
IceGrid Administrative Utilities
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IceGrid and the Administrative Facility

The Ice  provides a general purpose solution for administering individual Ice programs. IceGrid extends this functionalityadministrative facility
in several convenient ways:

IceGrid automatically enables the facility in deployed servers.
IceGrid uses the  to terminate an active server, giving it an opportunity to perform an orderly shutdown. facetProcess
IceGrid provides a secure mechanism for invoking administrative operations on deployed servers.
IceGrid administrative tools use the facility to display the  of servers and services, and manipulate and monitor properties IceBox
services.

We discuss each of these items in separate sections below.

On this page:

Enabling the Administrative Facility for a Deployed Server
Endpoints

Deactivating a Deployed Server
Routing Administrative Requests

Obtaining a Proxy
Callbacks without Glacier2
Callbacks with Glacier2

Using the Administrative Facility in IceGrid Utilities
Properties
Administering IceBox Services

Enabling the Administrative Facility for a Deployed Server

As we saw in our , the configuration properties for a deployed server include definitions for the following properties:deployment example

Ice.Admin.Endpoints
Ice.Admin.ServerId

In conjunction with the  property, these definitions satisfy the requirements for enabling the Ice.Default.Locator administrative object
.adapter

Endpoints

If a server's descriptor does not supply a value for , IceGrid supplies the default value shown below:Ice.Admin.Endpoints

Ice.Admin.Endpoints=tcp -h 127.0.0.1

For , IceGrid specifies the local host interface ( ) so that administrative access is limited to clients running on thesecurity reasons 127.0.0.1
same host. This configuration permits the IceGrid node to invoke operations on the server's , but prevents remote access objectadmin
unless the client establishes an .IceGrid administrative session

Specifying a fixed port is unnecessary because the server registers its endpoints with IceGrid upon each new activation.

Deactivating a Deployed Server

An IceGrid node uses the  to gracefully deactivate a server. In programs using Ice 3.3 or later, this interface is interfaceIce::Process
implemented by the administrative facet named . In earlier versions of Ice, an object adapter implemented this interface in a specialProcess
servant if the adapter's  property was enabled.RegisterProcess

Regardless of version, the Ice run time registers an  proxy with the IceGrid registry when properly configured. RegistrationIce::Process
normally occurs during communicator initialization, but it can be delayed when a server needs to install its .own administrative facets

When the node is ready to deactivate a server, it invokes the  operation on the server's  proxy. If the server doesshutdown Ice::Process
not terminate in a timely manner, the node asks the operating system to terminate the process. Each server can be configured with its own 

. If no timeout is configured, the node uses the value of the property , which defaults to deactivation timeout IceGrid.Node.WaitTime 60
seconds.

If a server does not register an  proxy, the IceGrid node cannot request a graceful termination and must resort instead to aIce::Process
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more drastic, and potentially harmful, alternative by asking the operating system to terminate the server's process. On Unix, the node sends
the  signal to the process and, if the server does not terminate within the deactivation timeout period, sends the  signal.SIGTERM SIGKILL

On Windows, the node first sends a  event to the server and, if the server does not stop within the deactivation timeout period,Ctrl+Break
terminates the process immediately.

Servers that disable the  facet can install a signal handler in order to intercept the node's notification about pending deactivation.Process
For example, portable C++ programs could use the  for this purpose. However, we recommend that classIceUtil::CtrlCHandler
servers be allowed to use the  facet when possible.Process

Routing Administrative Requests

IceGrid defaults to using the local host interface when defining the endpoints of a deployed server's . Thisadministrative object adapter
configuration allows local clients such as the IceGrid node to access the server's  while preventing direct invocations from objectadmin
remote clients. A server's  object may still be accessed remotely, but only by clients that establish an IceGrid .admin administrative session
To facilitate these requests, IceGrid uses an intermediary object that relays requests to the server via its node. For example, the following
figure illustrates the path of a  invocation:getProperty

Routing for administrative requests on a server.

Obtaining a Proxy

During an , a client has two ways of obtaining the intermediary proxy for a server's :administrative session  objectadmin

Slice

module IceGrid {
    interface Admin {
        idempotent string getServerAdminCategory();
        idempotent Object* getServerAdmin(string id)
            throws ServerNotExistException,
                   NodeUnreachableException,
                   DeploymentException;
        // ...
    };
};

If the client wishes to construct the proxy itself and already knows the server's ID, the client need only modify the proxy of the 
 object with a new identity. The identity's category must be the return value of , while itsIceGrid::Admin getServerAdminCategory

name is the ID of the desired server. The example below demonstrates how to create the proxy and access the  of a facetProperties
server:
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1.  
2.  
3.  
4.  

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::Identity serverAdminId;
serverAdminId.category = admin->getServerAdminCategory();
serverAdminId.name = "MyServerId";
Ice::PropertiesAdminPrx props =
    Ice::PropertiesAdminPrx::checkedCast(
        admin->ice_identity(serverAdminId), "Properties");

Alternatively, the  operation returns a proxy that refers to the  object of the given server. This operation performsgetServerAdmin admin
additional validation and therefore may raise one of the exceptions shown in its signature above.

Callbacks without Glacier2

IceGrid also supports the relaying of callback requests from a back-end server to an administrative client over the client's existing connection
to the registry, which is especially important for a client using a network port that is forwarded by a firewall or protected by a secure tunnel.

For this mechanism to work properly, a client that established its  directly with IceGrid and not via a administrative session Glacier2 router
must take additional steps to ensure that the proxies for its callback objects contain the proper identities and endpoints. The 

 interface provides an operation to help with the client's preparations:IceGrid::AdminSession

Slice

module IceGrid {
interface AdminSession ... {
    idempotent Object* getAdminCallbackTemplate();
    // ...
};
};

As its name implies, the  operation returns a  that supplies the identity and endpoints a clientgetAdminCallbackTemplate template proxy
needs to configure its callback objects. The information contained in the template proxy is valid for the lifetime of the administrative session.
This operation returns a null proxy if the client's administrative session was established via a Glacier2 router, in which case the client should
use the callback strategy described in the next section instead.

The endpoints contained in the template proxy are those of an object adapter in the IceGrid registry. The client must transfer these endpoints
to the proxies for its callback objects so that callback requests from a server are sent first to IceGrid and then relayed over a bidirectional

 to the client, as shown below:connection

Routing for callback requests from a server.

Here is the complete list of steps:

Invoke  to obtain the template proxy.getAdminCallbackTemplate
Extract the category from the template proxy's identity and use it in all callback objects.
Extract the endpoints from the template proxy and use them to establish the published endpoints of the callback object adapter.
Create the callback object adapter and associate it with the administrative session's connection, thereby establishing a bidirectional
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4.  

5.  
connection with IceGrid.
Add servants to the callback object adapter.

As an example, let us assume that we have deployed an IceBox server with the server id  and our objective is to register a icebox1
 callback that monitors the state of the IceBox services. The first step is to obtain a proxy for the administrative facetServiceObserver

named :IceBox.ServiceManager

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
    IceBox::ServiceManagerPrx::checkedCast(
        obj, "IceBox.ServiceManager");

Next, we retrieve the template proxy and compose the published endpoints for our callback object adapter:

C++

Ice::ObjectPrx tmpl = admin->getAdminCallbackTemplate();
Ice::EndpointSeq endpts = tmpl->ice_getEndpoints();
string publishedEndpoints;
for (Ice::EndpointSeq::const_iterator p = endpts.begin(); p != endpts.end(); ++p) {
    if (p == endpts.begin())
        publishedEndpoints = (*p)->toString();
    else
        publishedEndpoints += ":" + (*p)->toString();
}
communicator->getProperties()->setProperty(
    "CallbackAdapter.PublishedEndpoints", publishedEndpoints);

The final steps involve creating the callback object adapter, adding a servant, establishing the bidirectional connection and registering our
callback with the service manager:

C++

Ice::ObjectAdapterPtr callbackAdapter = communicator->createObjectAdapter("CallbackAdapter");
Ice::Identity cbid;
cbid.category = tmpl->ice_getIdentity().category;
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb = IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
session->ice_getConnection()->setAdapter(callbackAdapter);
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server whenever one of its services changes state.

Callbacks with Glacier2

A client that creates an  via a  already has a bidirectional connection over which callbacks fromadministrative session Glacier2 router
administrative facets are relayed. The flow of requests is shown in the illustration below, which presents a simplified view with the router and
IceGrid services all running on the same host.
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1.  
2.  
3.  
4.  

Routing for callback requests from a server.

To prepare for , the client must perform the same steps as for any router client:receiving callbacks

Obtain a proxy for the router.
Retrieve the category to be used in callback objects.
Create the callback object adapter and associate it with the router, thereby establishing a bidirectional connection.
Add servants to the callback object adapter.

Repeating the example from the previous section, we assume that we have deployed an IceBox server with the server ID  and ouricebox1
objective is to register a  callback that monitors the state of the IceBox services. The first step is to obtain a proxy for theServiceObserver
administrative facet named :IceBox.ServiceManager

C++

IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
    IceBox::ServiceManagerPrx::checkedCast(obj, "IceBox.ServiceManager");

Now we are ready to create the object adapter and register the observer:

C++

Ice::RouterPrx router = communicator->getDefaultRouter();
Ice::ObjectAdapterPtr callbackAdapter =
    communicator->createObjectAdapterWithRouter("CallbackAdapter", router);
Ice::Identity cbid;
cbid.category = router->getCategoryForClient();
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb = IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server whenever one of its services changes state.

Using the Administrative Facility in IceGrid Utilities

This section discusses the ways in which the  make use of the administrative facility.IceGrid utilities

Properties

The command line and graphical utilities allow you to explore the configuration properties of a server or service.

One property in particular, , is given special consideration by the graphical utility. Although it is not used by the Ice run time, the BuildId
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 property gives you the ability to describe the build configuration of your application. The property's value is shown by the graphicalBuildId
utility in its own field in the attributes of a server or service, as well as in the list of properties. You can also retrieve the value of this property
using the command-line utility with the following statement:

> server property MyServerId BuildId

Or, for an IceBox service, with this command:

> service property MyServerId MyService BuildId

The utilities use the  to access these properties, via a proxy obtained as described . facetProperties above

Administering IceBox Services

IceBox provides an administrative facet that implements the  interface, which supports operations for stoppingIceBox::ServiceManager
an active service, and for starting a service that is currently inactive. These operations are available in both the command line and graphical
utilities.

IceBox also defines a  interface for receiving callbacks when services are stopped or started. The graphical utilityServiceObserver
implements this interface so that it can present an updated view of the state of an IceBox server. We presented  that demonstrateexamples
how to register an observer with the IceBox administrative facet.

See Also

Administrative Facility
The Process Facet
The Properties Facet
The Administrative Object Adapter
The admin Object
Custom Administrative Facets
Security Considerations for Administrative Facets
Portable Signal Handling in C++
Bidirectional Connections
Using IceGrid Deployment
Glacier2 Integration with IceGrid
IceGrid Administrative Sessions
IceGrid Administrative Utilities
Callbacks through Glacier2
IceBox
IceBox Administration
IceGrid Properties
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Securing IceGrid

IceGrid's registry and node services expose multiple network endpoints that a malicious client could use to gain access to IceGrid
functionality and interfere with deployed applications. This presents a significant security risk in network environments that are exposed to
untrusted clients. For example, a malicious client could connect to a node and use IceGrid's internal interfaces to deploy and run its own
server executable.

This page describes the steps you can take to secure your IceGrid application.

On this page:

IceGrid Security Overview
Understanding the Registry Endpoints

Client Endpoint
Server Endpoint
Internal Endpoint
Session Manager Endpoint
Administrative Session Manager Endpoint
Outgoing Connections

Understanding the Node Endpoints
Understanding the Administrative Endpoints with IceGrid

IceGrid Security Overview

Using a firewall is one way to prevent unauthorized use of IceGrid's facilities. Another solution is to use : you can generate SSLIceSSL
certificates for each component and configure them to trust and accept connections only from other authorized components. The remainder
of this section discusses the IceSSL solution but also provides useful information for those interested in securing IceGrid with a firewall.

To restrict access using IceSSL, we need to establish trust relationships between IceGrid registry replicas, nodes, and deployed servers.
IceSSL allows us to do this using . The trust relationships are based on the information contained in SSL certificates.configuration properties

There are several possible strategies for generating certificates. At a minimum you will need the following:

one certificate for all of the registries
one certificate for all of the nodes
one certificate for all of the servers managed by IceGrid

The certificates that you generate for registries and nodes should be protected with a password to ensure that only privileged users can start
these services. However, we do not recommend using a password to protect the certificate for deployed servers because it would need to be
specified in clear text in each server's configuration (servers that are activated by IceGrid must not prompt for a password). Furthermore, this
password might appear in multiple places, such as an XML descriptor file, the IceGrid registry database, and property files generated by
IceGrid nodes. The complexity involved in protecting access to every file that contains a clear text password could be overwhelming. Instead,
we recommend that you protect access to the server certificate using file system permissions.

Depending on your organization and the roles of each person that uses IceGrid, you may decide to create additional certificates. For
example, you might create a unique certificate for each IceGrid node instance if you deploy nodes on end-user machines and wish to
configure the IceGrid registry to authorize connections only from the nodes of trusted users.

You can use the  script to establish a  and generate certificates. The sections that follow describe the interactionsiceca certificate authority
between the registry, node, and servers, and show how to configure IceSSL to restrict access to trusted peers. For the purposes of this
discussion, we assume that the SSL certificates use the common names shown below:

IceGrid Registry
IceGrid Node
Server

The Ice distribution includes a C++ example that demonstrates how to configure a secure IceGrid deployment in the{{demo/IceGrid/secure}}
subdirectory. This example includes a script to generate certificates for a registry, a node, a Glacier2 router, and a server. For more
information, see the  file provided with the example.README

Understanding the Registry Endpoints

The IceGrid registry has three mandatory endpoints representing the client, server, and internal endpoints. The registry also has two optional
endpoints (the session manager and administrative session manager endpoints) that are only useful when .accessing IceGrid via Glacier2
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Client Endpoint

The registry client endpoint is used by Ice applications that create client sessions in order to use the  facility. It is alsoresource allocation
used by  that create sessions for managing the registry. Finally, the client endpoint is used by Ice applications that useadministrative clients
the  interface or resolve indirect proxies via the IceGrid locator.IceGrid::Query

Two distinct permission verifiers authorize the creation of  and . The remaining functionality availableclient sessions administrative sessions
via the client endpoint, such as resolving objects and object adapters using the  interface or the Ice locator mechanism, isIceGrid::Query
accessible to any client that is able to connect to the client endpoint.

It is safe to use an insecure transport for the client endpoint if it is only being used for locator queries. However, you should use a secure
transport if you have enabled client and administrative sessions (by configuring the appropriate permission verifiers). Creating a session over
an insecure transport poses a security risk because the user name and password are sent in clear text over the network.

If you include secure and insecure transports in the registry's client endpoints, you should ensure that applications that need to authenticate
with IceGrid permission verifiers use a .secure transport

It is not necessary to restrict SSL access to the client endpoints (using the property 
) as long as you use client and administrative permission verifiers forIceSSL.TrustOnly.Server.IceGrid.Registry.Client

authentication. This property is only useful for restricting access to client and administrative sessions when using null permission verifiers.
Note however that if both client and administrative sessions are enabled, you will only be able to restrict access to one set of clients since
you cannot distinguish clients that create client sessions from clients that create administrative sessions.

Server Endpoint

Ice servers use the registry's server endpoint to register their object adapter endpoints and send information to administrative clients
connected via the registry.

Securing this endpoint with IceSSL is necessary to prevent a malicious program from potentially hijacking a server by registering its
endpoints first. The property definition shown below demonstrates how to limit access to this endpoint to trusted Ice servers:

IceSSL.TrustOnly.Server.IceGrid.Registry.Server=CN="Server"

Internal Endpoint

IceGrid nodes and registry replicas use the internal endpoint to communicate with the registry. For example, nodes connect to the internal
endpoint of each active registry, and  establish a session with their master via this endpoint.registry slaves

The internal endpoint must be secured with IceSSL to prevent malicious Ice applications from gaining access to sensitive functionality that is
intended to be used only by nodes and registry replicas. You can restrict access to this endpoint with the following property:

IceSSL.TrustOnly.Server.IceGrid.Registry.Internal=CN="IceGrid Node";CN="IceGrid Registry"

Session Manager Endpoint

The session manager endpoint is used by Glacier2 to create IceGrid . The functionality exposed by this endpoint isclient sessions
unrestricted so you must either secure it or disable it (this endpoint is disabled by default). The property shown below demonstrates how to
configure IceSSL so that only Glacier2 routers are accepted by this endpoint:

IceSSL.TrustOnly.Server.IceGrid.Registry.SessionManager=CN="Glacier2 Router Client"

In this example,  is the common name of the Glacier2 router used by clients to create IceGrid client sessions.Glacier2 Router Client

Administrative Session Manager Endpoint

Glacier2 routers use the registry's administrative session manager endpoint to create IceGrid . The functionalityadministrative sessions
exposed by this endpoint is unrestricted, so you must either secure it or disable it (this endpoint is disabled by default). The property shown
below demonstrates how to configure IceSSL so that only Glacier2 routers are accepted by this endpoint:

IceSSL.TrustOnly.Server.IceGrid.Registry.AdminSessionManager=CN="Glacier2 Router Admin"
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In this example,  is the common name of the Glacier2 router used by clients to create IceGrid administrativeGlacier2 Router Admin
sessions. Note that if you use a single Glacier2 router instance for , you will need to use the sameboth client and administrative sessions
common name to restrict access to both session manager endpoints:

IceSSL.TrustOnly.Server.IceGrid.Registry.SessionManager=CN="Glacier2 Router Client"
IceSSL.TrustOnly.Server.IceGrid.Registry.AdminSessionManager=CN="Glacier2 Router Client"

Outgoing Connections

The registry establishes outgoing connections to other registries and nodes. You should configure the IceSSL.TrustOnly.Client
property to restrict connections to these trusted peers:

IceSSL.TrustOnly.Client=CN="IceGrid Registry";CN="IceGrid Node"

The registry can also connect to Glacier2 routers and permission verifier objects. To allow connections to these services, you must include in
this property the common names of Glacier2 routers that create client or administrative sessions, as well as the common names of servers
that host the permission verifier objects.

Understanding the Node Endpoints

An IceGrid node has only one endpoint, which is used for internal communications with the registry. As a result, it should be configured to
accept connections only from IceGrid registries:

IceSSL.TrustOnly.Server=CN="IceGrid Registry"

A node also establishes outgoing connections to the registry's internal endpoint, as well as the  endpoint of deployed servers.Ice.Admin
You should configure the  property as shown below to verify the identity of these peers:IceSSL.TrustOnly.Client

IceSSL.TrustOnly.Client=CN="Server";CN="IceGrid Registry"

Understanding the Administrative Endpoints with IceGrid

By default, IceGrid sets the endpoints of a deployed server's  adapter to . This setting is already quiteIce.Admin tcp -h 127.0.0.1
secure because it only accepts connections from processes running on the same host. However, since you already need to configure IceSSL
so that a server can authenticate with the IceGrid registry (servers connect to the registry to register their endpoints), you might as well use a
secure endpoint for the  adapter and configure it to accept connections only from IceGrid nodes:Ice.Admin

IceSSL.TrustOnly.Server.Ice.Admin=CN="IceGrid Node"

This is only necessary if the  endpoint is enabled (which it is by default).Ice.Admin

You can also set the  property so that the server is only permitted to connect to the IceGrid registry:IceSSL.TrustOnly.Client

IceSSL.TrustOnly.Client=CN="IceGrid Registry" 

If your server invokes on other servers, you will need to modify this setting to allow secure connections to them.

See Also

IceSSL
Configuring IceSSL
Setting up a Certificate Authority
Glacier2 Integration with IceGrid
Resource Allocation using IceGrid Sessions
IceGrid Administrative Sessions
Well-Known Objects
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IceGrid and the Administrative Facility
Registry Replication
IceSSL Properties
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IceGrid Administrative Utilities

IceGrid provides two administrative clients: a command-line tool and a graphical application.

On this page:

IceGrid Command Line Utility
Usage
Application Commands
Node Commands
Registry Commands
Server Commands
Service Commands
Adapter Commands
Object Commands
Server Template
Service Template
Configuration

IceGrid Graphical Client

IceGrid Command Line Utility

The  utility is a command-line tool for administering an IceGrid domain. Deploying an application with this utility requires anicegridadmin
XML file that defines the descriptors.

Usage

The IceGrid administration tool supports the following command-line options:

Usage: icegridadmin [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
-e COMMANDS          Execute COMMANDS.
-d, --debug          Print debug messages.
-s, --server         Start icegridadmin as a server (to parse XML
                     files).
-u, --username       Login with the given username.
-p, --password       Login with the given password.
-S, --ssl            Authenticate through SSL.
-r, --replica NAME   Connect to the replica NAME.

The  option causes the tool to execute the given commands and then exit without entering an interactive mode. The  option starts -e -s
 in a server mode that supports the  interface; a proxy for the object is printed to standard output. Ificegridadmin IceGrid::FileParser

neither  nor  is specified, the tool enters an interactive mode in which you issue commands at a prompt.-e -s

To communicate with the IceGrid registry,  establishes an . The tool uses SSL authentication if youicegridadmin administrative session
specify the  option or define its equivalent property . Otherwise,  uses-S IceGridAdmin.AuthenticateUsingSSL icegridadmin
password authentication and prompts you for the username and password if you do not specify them via command-line options or properties.
If you want  to establish its session using a , define  appropriately. See icegridadmin Glacier2 router Ice.Default.Router IceGrid

 for more information on the tool's configuration properties.Administrative Client Properties

Once the session is successfully established,  displays its command prompt. The  command displays the followingicegridadmin help
usage information:

help
Print this message.

exit, quit
Exit this program.

CATEGORY help
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Print the help section of the given CATEGORY

COMMAND help
Print the help of the given .COMMAND

The tool's commands are organized by category. The supported command categories are shown below:

application
node
registry
server
service
adapter
object
server template
service template

You can obtain more information about each category using the  command:help

>>> application help

Application Commands

application add [-n | --no-patch] DESC [TARGET ... ] [NAME=VALUE ... ]
Add applications described in the XML descriptor file . If specified the optional  are deployed.  are definedDESC targets Variables
using the  syntax. The application is automatically  unless the  or  option is used to disable it.NAME=VALUE patched -n --no-patch

application remove NAME
Remove the application named .NAME

application describe NAME
Describe the application named .NAME

application diff DESC [TARGET ...] [NAME=VALUE ...]
Print the differences between the application in the XML descriptor file  and the current deployment.  are definedDESC Variables
using the  syntax.NAME=VALUE

application update DESC [TARGET ...] [NAME=VALUE ...]
Update the application in the XML descriptor file .  are defined using the  syntax.DESC Variables NAME=VALUE

application patch [-f | --force] NAME
 the application named . If  or  is specified, IceGrid will first shut down any servers that depend on the data toPatch NAME -f --force

be patched.

application list
List all deployed applications.

Node Commands

node list
List all registered nodes.

node describe NAME
Show information about node .NAME

node ping NAME
Ping node .NAME

node load NAME
Print the load of the node .NAME

node processors [NAME]
Print the number of processor sockets for node . If  is omitted, print the number of processor sockets for each node. (The NAME NAME

 property allows you to explicitly set this value for systems where the number of socketsIceGrid.Node.ProcessorSocketCount
cannot be obtained programatically.)

node show [OPTIONS] NAME [stderr | stdout]
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Print the text from the node's standard error or standard output. The supported options are shown below:
-f, --follow
Wait for new text to be available.
-t, --tail N
Print the last  lines of text.N
-h, --head N
Print the first  lines of textN

node shutdown NAME
Shutdown node .NAME

Registry Commands

registry list
List all registered registries.

registry describe NAME
Show information about registry .NAME

registry ping NAME
Ping registry .NAME

registry show [OPTIONS] NAME [stderr | stdout]
Print the text from the registry's standard error or standard output. The supported options are shown below:

-f, --follow
Wait for new text to be available.
-t, --tail N
Print the last  lines of text.N
-h, --head N
Print the first  lines of text.N

registry shutdown NAME
Shutdown registry .NAME

Server Commands

server list
List all registered servers.

server remove ID
Remove server .ID

server describe ID
Describe server .ID

server properties ID
Get the run-time properties of server .ID

server property ID NAME
Get the run-time property  of server .NAME ID

server state ID
Get the state of server .ID

server pid ID
Get the process ID of server .ID

server start ID
Start server .ID

server stop ID
Stop server .ID

server patch ID
 server .Patch ID

server signal ID SIGNAL
Send  (such as  or ) to server .SIGNAL SIGTERM 15 ID
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server stdout ID MESSAGE
Write  on server 's standard output.MESSAGE ID

server stderr ID MESSAGE
Write  on server 's standard error.MESSAGE ID

server show [OPTIONS] ID [stderr | stdout | LOGFILE]
Print the text from the server's standard error, standard output, or the log file . The supported options are shown below:LOGFILE

-f, --follow
Wait for new text to be available.
-t, --tail N
Print the last  lines of text.N
-h, --head N
Print the first  lines of text.N

server enable ID
Enable server .ID

server disable ID
Disable server  (a disabled server can't be started on demand or administratively).ID

Service Commands

service start ID NAME
Starts service  in IceBox server .NAME ID

service stop ID NAME
Stops service  in IceBox server .NAME ID

service describe ID NAME
Describes service  in IceBox server .NAME ID

service properties ID NAME
Get the run-time properties of service  from IceBox server .NAME ID

service property ID NAME PROPERTY
Get the run-time property  of service  from IceBox server .PROPERTY NAME ID

service list ID
List the services in IceBox server .ID

Adapter Commands

adapter list
List all registered adapters.

adapter endpoints ID
Show the endpoints of adapter or replica group .ID

adapter remove ID
Remove adapter or replica group .ID

Object Commands

The  command operates on .object well-known objects

object add PROXY [TYPE]
Add a well-known object to the registry, optionally specifying its type.

object remove IDENTITY
Remove a well-known object from the registry.

object find TYPE
Find all well-known objects with the type .TYPE

object describe EXPR
Describe all well-known objects whose stringified identities match the expression . A trailing wildcard is supported in , forEXPR EXPR
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example " ".object describe Ice*

object list EXPR
List all well-known objects whose stringified identities match the expression . A trailing wildcard is supported in , forEXPR EXPR
example " ".object list Ice*

Server Template

server template instantiate APPLICATION NODE TEMPLATE  [NAME=VALUE ...]
Instantiate the requested  defined in the given application on a node.  are defined using the server template Variables NAME=VALUE
syntax.

server template describe APPLICATION TEMPLATE
Describe a   from the given application.server template TEMPLATE

Service Template

service template describe APPLICATION TEMPLATE
Describe a   from the given application.service template TEMPLATE

Configuration

icegridadmin requires that the locator proxy be defined in the configuration property . If a configuration fileIce.Default.Locator
already exists that defines this property, you can start  using the configuration file as shown below:icegridadmin

$ icegridadmin --Ice.Config=<file>

Otherwise, you can define the property on the command line:

$ icegridadmin --Ice.Default.Locator=<proxy>

Refer to the discussion of our  for more information on configuring the  property for an IceGrid client.ripper client Ice.Default.Locator

IceGrid Graphical Client

The graphical administration tool, IceGrid Admin, allows you to perform anything that you can do from the command line via a GUI. Please
refer to the instructions included with your Ice distribution for details on how to start the administration tool.

See Also

IceGrid Administrative Sessions
Glacier2 Integration with IceGrid
IceGrid XML Features
Using Descriptor Variables and Parameters
Application Distribution
Getting Started with IceGrid
IceGrid Administrative Client Properties
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IceGrid Server Activation

On this page:

Server Activation Modes
Server Activation in Detail
Requirements for Server Activation
Efficiency Considerations for Server Activation
Activating Servers with Specific User IDs
Automating Endpoint Registration

Server Activation Modes

You can choose among four activation modes for servers deployed and managed by an IceGrid node:

Manual
You must start the server explicitly via the IceGrid GUI or , or programmatically via the  interface.icegridadmin IceGrid::Admin

Always
IceGrid activates the server when its node starts. If the server stops, IceGrid automatically reactivates it.

On demand
IceGrid activates the server when a client invokes an operation on an object in the server.

Session
This mode also provides on-demand activation but requires the server to be allocated by a session.

Server Activation in Detail

On-demand server activation is a valuable feature of distributed computing architectures for a number of reasons:

It minimizes application startup times by avoiding the need to pre-start all servers.
It allows administrators to use their computing resources more efficiently because only those servers that are actually needed are
running.
It provides more reliability in the case of some server failure scenarios, e.g., the server is reactivated after a failure and may still be
capable of providing some services to clients until the failure is resolved.
It allows remote activation and deactivation.

On-demand activation occurs when an Ice client  of one of the server's object adapters via a locate request. If therequests the endpoints
server is not active at the time the client issues the request, the node activates the server and waits for the target object adapter to register
its endpoints. Once the object adapter endpoints are registered, the registry returns the endpoint information back to the client. This
sequence ensures that the client receives the endpoint information  the server is ready to receive requests.after

Requirements for Server Activation

In order to use on-demand activation for an object adapter, the adapter must have an identifier and be entered in the IceGrid registry.

When using session activation mode, IceGrid requires that the server be ; on-demand activation fails for servers that have not beenallocated
allocated.

The session activation mode recognizes an additional  in the server descriptor, }. The value of this variablereserved variable ${session.id
is the user ID or, for SSL sessions, the distinguished name associated with the session.

Efficiency Considerations for Server Activation

Once a server is activated, it remains running indefinitely (unless it uses the session activation mode). A node  onlydeactivates a server
when explicitly requested to do so. As a result, server processes tend to accumulate on the node's host.

One of the advantages of on-demand activation is the ability to manage computing resources more efficiently. Of course there are many
aspects to this, but Ice makes one technique particularly simple: servers can be configured to terminate gracefully after they have been idle
for a certain amount of time.

A typical scenario involves a server that is activated on demand, used for a while by one or more clients, and then terminated automatically
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when no requests have been made for a configurable number of seconds. All that is necessary is setting the server's configuration property 
 to the desired idle time.Ice.ServerIdleTime

For a server activated in session activation mode, IceGrid deactivates the server when the session releases the server or when the session
is destroyed.

Activating Servers with Specific User IDs

On Unix platforms you can activate server processes with specific effective user IDs, provided that the IceGrid node is running as root. If the
IceGrid node does not run as root, servers are always activated with the effective user ID of the IceGrid node process. (The same is true for
Windows — servers always run with the same user ID as the IceGrid node process.)

For the remainder of this section, we assume that the node runs as root on a Unix machine.

The  attribute of the  specifies the user ID for a server. If this attribute is not specified and the activation mode is not user server descriptor
, the default value is . Otherwise, the default value is  if the activation mode is .session nobody ${session.id} session

Since individual users often have different account names and user IDs on different machines, IceGrid provides a mechanism to map the
value of the  attribute in the server descriptor to a user account. To do this, you must configure the node to use a user account mapperuser
object. This object must implement the  interface:IceGrid::UserAccountMapper

Slice

exception UserAccountNotFoundException {};

interface UserAccountMapper {
    string getUserAccount(string user)
            throws UserAccountNotFoundException;
};

The IceGrid node invokes  and passes the value of the server descriptor's  attribute. The return value is the name ofgetUserAccount user
the user account.

IceGrid provides a built-in file-based user account mapper that you can configure for the node and the registry. The file contains any number
of user-account-ID pairs. Each pair appears on a separate line, with white space separating the user account from the identifier. For
example, the file shown below contains two entries that map two distinguished names to the user account :lisa

lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa
lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa S.

The distinguished names must be unique. If the same distinguished name appears several times in a file, the last entry is used.

You can specify the path of the user account file with the  property for the registry and the IceGrid.Registry.UserAccounts
 property for a node.IceGrid.Node.UserAccounts

To configure an IceGrid node to use the IceGrid registry file-based user account mapper, you need to set the 
 property to the well-known proxy . Alternatively, youIceGrid.Node.UserAccountMapper IceGrid/RegistryUserAccountMapper

can set this property to the proxy of your own user account mapper object. Note that if this property is set, the node ignores the setting of 
.IceGrid.Node.UserAccounts

Automating Endpoint Registration

Servers must be  to enable automatic endpoint registration. It should be noted however that IceGrid simplifies theproperly configured
configuration process in two ways:

The IceGrid  automates the creation of a  for the server, including the definition of object adapterdeployment facility configuration file
identifiers and endpoints.
A server that is activated automatically by an IceGrid node does not need to explicitly configure a proxy for the locator because the
IceGrid node defines it in the server's configuration file.

See Also

Getting Started with IceGrid
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IceGrid Architecture
Resource Allocation using IceGrid Sessions
Server Descriptor Element
Locator Configuration for a Server
Using IceGrid Deployment
IceGrid Properties
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IceGrid Troubleshooting

On this page:

Troubleshooting Activation Failures
Troubleshooting Proxy Failures
Troubleshooting Server Failures
Disabling Faulty Servers

Troubleshooting Activation Failures

Server activation failure is usually indicated by the receipt of a . This can happen for a number of reasons, but theNoEndpointException
most likely cause is an incorrect configuration. For example, an IceGrid node may fail to  because the server's executableactivate a server
file, shared libraries, or classes could not be found. There are several steps you can take in this case:

Enable activation tracing in the node by setting the configuration property .IceGrid.Node.Trace.Activator=3
Examine the tracing output and verify the server's command line and working directory are correct.
Relative pathnames specified in a command line may not be correct relative to the node's current working directory. Either replace
relative pathnames with absolute pathnames, or restart the node in the proper working directory.
Verify that the server is configured with the correct  or  settings for its shared libraries. For a Java server,PATH LD_LIBRARY_PATH
its  may also require changes.CLASSPATH

Another cause of activation failure is a server fault during startup. After you have confirmed that the node successfully spawns the server
process using the steps above, you should then  (e.g., on Unix, look for a  file in the node's currentcheck for signs of a server fault core
working directory).

Troubleshooting Proxy Failures

A client may receive  if  for an indirect proxy. This exception indicates that the proxy's objectIce::NotRegisteredException binding fails
identity or object adapter is not known by the IceGrid registry. The following steps may help you discover the cause of the exception:

Use  to verify that the object identity or object adapter identifier is actually registered, and that it matches what isicegridadmin
used by the proxy:

>>> adapter list
...
>>> object find ::Hello
...

If the problem persists, review your configuration to ensure that the locator proxy used by the client matches the registry's client
endpoints, and that those endpoints are accessible to the client (i.e., are not blocked by a firewall).
Finally, enable locator tracing in the client by setting the configuration property , then run the client again toIce.Trace.Locator=2
see if any log messages are emitted that may indicate the problem.

Troubleshooting Server Failures

Diagnosing a server failure can be difficult, especially when servers are activated automatically on remote hosts. Here are a few
suggestions:

If the server is running on a Unix host, check the current working directory of the IceGrid node process for signs of a server failure,
such as a  file.core
Judicious use of tracing can help to narrow the search. For example, if the failure occurs as a result of an operation invocation,
enable protocol tracing in the Ice run time by setting the configuration property  to discover the objectIce.Trace.Protocol=1
identity and operation name of all requests. 
Of course, the default log output channels (standard out and standard error) will probably be lost if the server is activated
automatically, so either start the server manually (see below) or . You can also use the redirect the log output Ice::Logger
interface to emit your own trace messages.
Run the server in a debugger; a server configured for automatic activation can also be started manually if necessary. However,
since the IceGrid node did not activate the server, it cannot monitor the server process and therefore will not know when the server
terminates. This will prevent subsequent activation unless you clean up the IceGrid state when you have finished debugging and
terminated the server. You can do this by starting the server using :icegridadmin
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3.  

4.  

>>> server start TheServer

This will cause the node to activate (and therefore monitor) the server process. If you do not want to leave the server running, you
can stop it with the  command.server stop

After the server is activated and is in a quiescent state, attach your debugger to the running server process. This avoids the issues
associated with starting the server manually (as described in the previous step), but does not provide as much flexibility in
customizing the server's startup environment.

Another cause for a server to fail to activate correctly is if there is a mismatch in the adapter identifiers used by the server for its adapters,
and the adapter identifiers specified in the server's deployment descriptor. After starting a server process, the node waits for the server to
activate all of its object adapters and report them as ready; if the server does not do this, the node reports a failure once a timeout expires.
The timeout is controlled by the setting of the property . (The default value is 60 seconds.)IceGrid.Node.WaitTime

You can check the status of each of a server's adapters using  or the GUI tool. While the node waits for an adapter to beicegridadmin
activated by the server, it reports the status of the adapter as "activating". If you experience timeouts before each adapter's status changes
to "active", the most likely cause is that the deployment descriptor for the server either mentions more object adapters than are actually
created by the server, or that the server uses an identifier for one or more adapters that does not match the corresponding identifier in the
deployment descriptor.

Disabling Faulty Servers

You may find it necessary to disable a server that terminates in an error condition. For example, on a Unix platform each server failure might
result in the creation of a new (and potentially quite large) core file. This problem is exacerbated when the server is used frequently, in which
case repeated cycles of activation and failure can consume a great deal of disk space and threaten the viability of the application as a whole.

As a defensive measure, you can configure an IceGrid node to disable these servers automatically using the 
 property. In the disabled state, a server cannot be activated on demand. The default value of theIceGrid.Node.DisableOnFailure

property is zero, meaning the node does not disable a server that terminates improperly. A positive value causes the node to temporarily
disable a faulty server, with the value representing the number of seconds the server should remain disabled. If the property has a negative
value, the server is disabled indefinitely, or until the server is explicitly enabled or started via an administrative action.

See Also

IceGrid Server Activation
Locator Semantics for Clients
IceGrid Administrative Utilities
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Freeze
Freeze is a collection of services that simplify the use of persistence in Ice applications, as shown below:

Layer diagram for Freeze persistence services.

The  is an associative container mapping any Slice key and value types, providing a convenient and familiar interface to aFreeze map
persistent map.  are an especially powerful facility for supporting persistent Ice objects in a highly-scalable implementation.Freeze evictors

The Freeze persistence services comprise:

Freeze evictor
A highly-scalable implementation of an Ice  that provides automatic persistence and eviction of servants with onlyservant locator
minimal application code.

Freeze map
A generic associative container. Code generators are provided that produce type-specific maps for Slice key and value types.
Applications interact with a Freeze map just like any other associative container, except the keys and values of a Freeze map are
persistent.

As you will see from the examples in this discussion, integrating a Freeze map or evictor into your Ice application is quite straightforward:
once you define your persistent data in Slice, Freeze manages the mundane details of persistence.

Freeze is implemented using Berkeley DB, a compact and high-performance embedded database. The Freeze map and evictor APIs
insulate applications from the Berkeley DB API, but do not prevent applications from interacting directly with Berkeley DB if necessary.

Topics

Freeze Evictors
Freeze Maps
Freeze Catalogs
Backing Up Freeze Databases
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Freeze Evictors

Freeze evictors combine persistence and scalability features into a single facility that is easily incorporated into Ice applications.

As an implementation of a , a Freeze evictor takes advantage of the fundamental separation between Ice object and servantservant locator
to activate servants on demand from persistent storage, and to deactivate them again using customized eviction constraints. Although an
application may have thousands of Ice objects in its database, it is not practical to have servants for all of those Ice objects resident in
memory simultaneously. The application can conserve resources and gain greater scalability by setting an upper limit on the number of
active servants, and letting a Freeze evictor handle the details of servant activation, persistence, and deactivation.

Topics

Freeze Evictor Concepts
Background Save Evictor
Transactional Evictor
Using a Freeze Evictor in the File System Server

See Also

Servant Locators
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Freeze Evictor Concepts

This page introduces the Freeze evictor.

On this page:

Describing Persistent State for an Evictor
Evictor Servant Semantics
Evictor Types
Eviction Strategy
Detecting Updates to Persistent State
Iterating an Evictor
Indexing an Evictor Database
Using a Servant Initializer
Application Design Considerations for Evictors

Describing Persistent State for an Evictor

The persistent state of servants managed by a Freeze evictor must be described in Slice. Specifically, every servant must implement a Slice
, and a Freeze evictor automatically stores and retrieves all the (Slice-defined) data members of these Slice classes. Data membersclass

that are not specified in Slice are not persistent.

A Freeze evictor relies on the Ice object factory facility to load persistent servants from disk: the evictor creates a brand new servant using
the registered factory and then restores the servant's data members. Therefore, for every persistent servant class you define, you need to
register a corresponding object factory with the Ice communicator. (For more details on object factories, refer to the  or the C++ mapping

.)Java mapping

Evictor Servant Semantics

With a Freeze evictor, each  pair is associated with its own dedicated persistent object (servant). Such a< >object identity, facet
persistent object cannot serve several identities or facets. Each servant is loaded and saved independently of other servants; in particular,
there is no special grouping for the servants that serve the facets of a given Ice object.

Similar to the way you , the Freeze evictor provides operations named , , ,activate servants with an object adapter add addFacet remove
and . They have the same signature and semantics, except that with the Freeze evictor, the mapping and the state of theremoveFacet
mapped servants is stored in a database.

Evictor Types

Freeze provides two types of evictors with different storage characteristics. The  records state changes to thebackground save evictor
database in a background thread, while the  records all state changes immediately within the context of a transaction.transactional evictor
You can choose the evictor that best fits the persistence requirements of your application.

Eviction Strategy

Both types of evictors associate a queue with their servant map and manage this queue using a "least recently used" eviction algorithm: if
the queue is full, the least recently used servant is evicted to make room for a new servant.

Here is the sequence of events for activating a servant as shown in the figure below. Let us assume that we have configured the evictor with
a size of five, that the queue is full, and that a request has arrived for a servant that is not currently active. (With a transactional evictor, we
also assume this request does not change any persistent state.)

A client invokes an operation.
The object adapter invokes on the evictor to locate the servant.
The evictor first checks its servant map and fails to find the servant, so it instantiates the servant and restores its persistent state
from the database.
The evictor adds an item for the servant (servant 1) at the head of the queue.
The queue's length now exceeds the configured maximum, so the evictor removes servant 6 from the queue as soon as it is eligible
for eviction. With a background save evictor, this occurs once there are no outstanding requests pending on servant 6, and once the
servant's state has been safely stored in the database. With a transactional save, the servant is removed from the queue
immediately.
The object adapter dispatches the request to the new servant.
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An evictor queue after restoring servant 1 and evicting servant 6.

Detecting Updates to Persistent State

A Freeze evictor considers that a servant's persistent state has been modified when a read-write operation on this servant completes. To
indicate whether an operation is read-only or read-write, you add metadata directives to the Slice definitions of the objects:

The  directive informs the evictor that an operation modifies the persistent state of the target servant.["freeze:write"]
The  directive informs the evictor that an operation does not modify the persistent state of the target.["freeze:read"]

If no metadata directive is present, an operation is assumed to not modify its target.

Here is how you could mark the operations on an interface with these metadata directives:

Slice

interface Example {
    ["freeze:read"]  string readonlyOp();
    ["freeze:write"] void   writeOp();
};

This marks  as an operation that does not modify its target, and marks  as an operation that does modify its target.readonlyOp writeOp
Because, without any directive, an operation is assumed to not modify its target, the preceding definition can also be written as follows:

Slice

interface Example {
    string readonlyOp(); // ["freeze:read"] implied
    ["freeze:write"] void writeOp();
};

The metadata directives can also be applied to an interface or a class to establish a default. This allows you to mark an interface as 
 and to only add a  directive to those operations that are read-only, for example:["freeze:write"] ["freeze:read"]
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Slice

["freeze:write"]
interface Example {
    ["freeze:read"] string readonlyOp();
                    void   writeOp1();
                    void   writeOp2();
                    void   writeOp3();
};

This marks , , and  as read-write operations, and  as a read-only operation.writeOp1 writeOp2 writeOp3 readonlyOp

Note that it is important to correctly mark read-write operations with a  metadata directive — without the directive,["freeze:write"]
Freeze will not know when an object has been modified and may not store the updated persistent state to disk.

Also note that, if you make calls directly on servants (so the calls are not dispatched via the Freeze evictor), the evictor will have no idea
when a servant's persistent state is modified; if any such direct call modifies the servant's data members, the update may be lost.

Iterating an Evictor

A Freeze evictor iterator provides the ability to iterate over the identities of the objects stored in an evictor. The operations are similar to Java
iterator methods:  returns true while there are more elements, and  returns the next identity:hasNext next

Slice

local interface EvictorIterator {
    bool hasNext();
    Ice::Identity next();
};

You create an iterator by calling  on your evictor:getIterator

Slice

EvictorIterator getIterator(string facet, int batchSize);

The new iterator is specific to a facet (specified by the  parameter). Internally, this iterator will retrieve identities in batches of facet
 objects; we recommend using a fairly large batch size to get good performance.batchSize

Indexing an Evictor Database

A Freeze evictor supports the use of indexes to quickly find persistent servants using the value of a data member as the search criteria. The
types allowed for these indexes are the same as those allowed for .Slice dictionary keys

The  and  tools can generate an  class when passed the  option:slice2freeze slice2freezej Index --index

--index , , [,case-sensitive|case-insensitive]CLASS TYPE MEMBER

CLASS is the name of the class to be generated.  denotes the type of class to be indexed (objects of different classes are not includedTYPE
in this index).  is the name of the data member in  to index. When  has type , it is possible to specify whetherMEMBER TYPE MEMBER string
the index is case-sensitive or not. The default is case-sensitive.

The generated  class supplies three methods whose definitions are mapped from the following Slice operations:Index

sequence<Ice::Identity> findFirst(  index, int firstN)member-type
Returns up to  objects of  whose  is equal to . This is useful to avoid running out of memory if thefirstN TYPE MEMBER index
potential number of objects matching the criteria can be very large.

sequence<Ice::Identity> find(  index)member-type
Returns all the objects of  whose  is equal to .TYPE MEMBER index

int count(  index)member-type
Returns the number of objects of  having  equal to .TYPE MEMBER index
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1.  

2.  
3.  
4.  

Indexes are associated with a Freeze evictor during evictor creation. See the definition of the  and createBackgroundSaveEvictor
 functions for details.createTransactionalEvictor

Indexed searches are easy to use and very efficient. However, be aware that an index adds significant write overhead: with Berkeley DB,
every update triggers a read from the database to get the old index entry and, if necessary, replace it.

If you add an index to an existing database, by default existing facets are not indexed. If you need to populate a new or empty index using
the facets stored in your Freeze evictor, set the property  to aFreeze.Evictor. .PopulateEmptyIndicesenv-name.filename
non-zero value, which instructs Freeze to iterate over the corresponding facets and create the missing index entries during the call to 

 or . When you use this feature, you must register the objectcreateBackgroundSaveEvictor createTransactionalEvictor
factories for all of the facet types before you create your evictor.

Using a Servant Initializer

In some applications, it may be necessary to initialize a servant after the servant is instantiated by the evictor but before an operation is
dispatched to the servant. The Freeze evictor allows an application to specify a servant initializer for this purpose.

To illustrate the sequence of events, let us assume that a request has arrived for a servant that is not currently active:

The evictor restores a servant for the target Ice object (and facet) from the database. This involves two steps:
The Ice run time locates and invokes the factory for the Ice facet's type, thereby obtaining a new instance with uninitialized
data members.
The data members are populated from the persistent state.

The evictor invokes the application's servant initializer (if any) for the servant.
If the evictor is a background-save evictor, it adds the servant to its cache.
The evictor dispatches the operation.

With a background-save evictor, the servant initializer is called before the object is inserted into the evictor's internal cache, and without
holding any internal lock, but in such a way that when the servant initializer is called, the servant is guaranteed to be inserted in the evictor
cache.

There is only one restriction on what a servant initializer can do: it must not make a remote invocation on the object (facet) being initialized.
Failing to follow this rule will result in deadlocks.

The  demonstrates the use of a servant initializer.file system example

Application Design Considerations for Evictors

The Freeze evictor creates a snapshot of a servant's state for persistent storage by marshaling the servant, just as if the servant were being
sent "over the wire" as a parameter to a remote invocation. Therefore, the Slice definitions for an object type must include the data members
comprising the object's persistent state.

For example, we could define a Slice class as follows:

Slice

class Stateless {
    void calc();
};

However, without data members, there will not be any persistent state in the database for objects of this type, and hence there is little value
in using the Freeze evictor for this type.

Obviously, Slice object types need to define data members, but there are other design considerations as well. For example, suppose we
define a simple application as follows:
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Slice

class Account {
    ["freeze:write"] void withdraw(int amount);
    ["freeze:write"] void deposit(int amount);

    int balance;
};

interface Bank {
    Account* createAccount();
};

In this application, we would use a Freeze evictor to manage  objects that have a data member  representing theAccount balance
persistent state of an account.

From an object-oriented design perspective, there is a glaring problem with these Slice definitions: implementation details (the persistent
state) are exposed in the client-server contract. The client cannot directly manipulate the  member because the  interfacebalance Bank
returns  proxies, not  instances. However, the presence of the data member may cause unnecessary confusion for clientAccount Account
developers.

A better alternative is to clearly separate the persistent state as shown below:

Slice

interface Account {
    ["freeze:write"] void withdraw(int amount);
    ["freeze:write"] void deposit(int amount);
};

interface Bank {
    Account* createAccount();
};

class PersistentAccount implements Account {
    int balance;
};

Now the Freeze evictor can manage  objects, while clients interact with  proxies. (Ideally, PersistentAccount Account
 would be defined in a different source file and inside a separate Slice module.)PersistentAccount

See Also

Classes
C++ Mapping for Classes
Java Mapping for Classes
Servant Activation and Deactivation
Background Save Evictor
Transactional Evictor
Dictionaries
Using a Freeze Evictor in the File System Server
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Background Save Evictor

Freeze provides two types of evictors. This page describes the background save evictor.

Freeze also provides a , with different persistence semantics. The on-disk format of these two types oftransactional evictor
evictors is the same: you can switch from one type of evictor to the other without any data transformation.

On this page:

Overview of the Background Save Evictor
Creating a Background Save Evictor
The Background Saving Thread
Synchronization Semantics for the Background Save Evictor
Preventing Servant Eviction

Overview of the Background Save Evictor

A background save evictor keeps all its servants in a map and writes the state of newly-created, modified, and deleted servants to disk
asynchronously, in a background thread. You can configure how often servants are saved; for example you could decide to save every three
minutes, or whenever ten or more servants have been modified. For applications with frequent updates, this allows you to group many
updates together to improve performance.

The downside of the background save evictor is recovery from a crash. Because saves are asynchronous, there is no way to force an
immediate save to preserve a critical update. Moreover, you cannot group several related updates together: for example, if you transfer
funds between two accounts (servants) and a crash occurs shortly after this update, it is possible that, once your application comes back up,
you will see the update on one account but not on the other. Your application needs to handle such inconsistencies when restarting after a
crash.

Similarly, a background save evictor provides no ordering guarantees for saves. If you update servant 1, servant 2, and then servant 1 again,
it is possible that, after recovering from a crash, you will see the latest state for servant 1, but no updates at all for servant 2.

The background save evictor implements the local interface , which derives from Freeze::BackgroundSaveEvictor Freeze::Evictor
.

Creating a Background Save Evictor

You create a background save evictor in C++ with the global function , and in Java with theFreeze::createBackgroundSaveEvictor
static method .Freeze.Util.createBackgroundSaveEvictor

For C++, the signatures are as follows:

C++

BackgroundSaveEvictorPtr
createBackgroundSaveEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    const string& filename,
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

BackgroundSaveEvictorPtr
createBackgroundSaveEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    DbEnv& dbEnv,
    const string& filename,
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);
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For Java, the method signatures are:

Java

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    String filename,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    com.sleepycat.db.Environment dbEnv,
    String filename,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in
the other case, you provide a  object that represents a Berkeley DB environment you opened yourself. (Usually, it is easiest to letDbEnv
Freeze take care of all interactions with Berkeley DB.)

The  parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DBenvName
home directory. (See .)Freeze.DbEnv. .DbHomeenv-name

The  parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all yourfilename
servants is stored in this file.

The  parameter represents the . It is an optional parameter in C++; in Java, pass  if you do not need ainitializer servant initializer null
servant initializer.

The  parameter is a vector or array of . It is an optional parameter in C++; in Java, pass  if your evictor doesindexes evictor indexes null
not define an index.

Finally, the  parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, FreezecreateDb
creates a new database; when false, Freeze raises a .Freeze::DatabaseException

The Background Saving Thread

All persistence activity of a background save evictor is handled in a background thread created by the evictor. This thread wakes up
periodically and saves the state of all newly-registered, modified, and destroyed servants in the evictor's queue.

For applications that experience bursts of activity that result in a large number of modified servants in a short period of time, you can also
configure the evictor's thread to begin saving as soon as the number of modified servants reaches a certain threshold.

Synchronization Semantics for the Background Save Evictor

When the saving thread takes a snapshot of a servant it is about to save, it is necessary to prevent the application from modifying the
servant's persistent data members at the same time.

The Freeze evictor and the application need to use a common synchronization to ensure correct behavior. In Java, this common
synchronization is the servant itself: the Freeze evictor synchronizes the servant (a Java object) while taking the snapshot. In C++, the
servant is required to inherit from the class : the background save evictor locks the servant through thisIceUtil::AbstractMutex
interface while taking a snapshot. On the application side, the servant's implementation is required to use the same mechanism to
synchronize all operations that access the servant's Slice-defined data members.

Preventing Servant Eviction

Occasionally, automatically evicting and reloading all servants can be inefficient. You can remove a servant from the evictor's queue by
locking this servant "in memory" using the  or  operation on the evictor:keep keepFacet
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Slice

local interface BackgroundSaveEvictor extends Evictor {
    void keep(Ice::Identity id);
    void keepFacet(Ice::Identity id, string facet);
    void release(Ice::Identity id);
    void releaseFacet(Ice::Identity id, string facet);
};

keep and  are recursive: you need to call  or  for this servant the same number of times to put it backkeepFacet release releaseFacet
in the evictor queue and make it eligible again for eviction.

Servants kept in memory (using  or ) do not consume a slot in the evictor queue. As a result, the maximum number ofkeep keepFacet
servants in memory is approximately the number of kept servants plus the evictor size. (It can be larger while you have many evictable
objects that are modified but not yet saved.)

See Also

Transactional Evictor
Freeze Evictor Concepts
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Transactional Evictor

Freeze provides two types of evictors. This page describes the transactional evictor.

Freeze also provides a , with different persistence semantics. The on-disk format of these twobackground save evictor
types of evictors is the same: you can switch from one type of evictor to the other without any data transformation.

On this page:

Overview of the Transactional Evictor
Creating a Transactional Evictor
Read and Write Operations
Synchronization Semantics for the Transactional Evictor
Transaction Propagation
Commit or Rollback on User Exception
Database Deadlocks and Automatic Retries
AMD and the Transactional Evictor
Transactions and Freeze Maps

Overview of the Transactional Evictor

A transactional evictor maintains a servant map, but only keeps read-only servants in this map. The state of these servants corresponds to
the latest data on disk. Any servant creation, update, or deletion is performed within a database transaction. This transaction is committed
(or rolled back) immediately, typically at the end of the dispatch of the current operation, and the associated servants are then discarded.

With such an evictor, you can ensure that several updates, often on different servants (possibly managed by different transactional evictors)
are grouped together: either all or none of these updates occur. In addition, updates are written almost immediately, so crash recovery is a
lot simpler: few (if any) updates will be lost, and you can maintain consistency between related persistent objects.

However, an application based on a transactional evictor is likely to write a lot more to disk than an application with a background save
evictor, which may have an adverse impact on performance.

Creating a Transactional Evictor

You create a transactional evictor in C++ with the global function , and in Java with the staticFreeze::createTransactionalEvictor
method .Freeze.Util.createTransactionalEvictor

For C++, the signatures are as follows:
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C++

typedef map<string, string> FacetTypeMap;

TransactionalEvictorPtr
createTransactionalEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    const string& filename,
    const FacetTypeMap& facetTypes = FacetTypeMap(),
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

TransactionalEvictorPtr
createTransactionalEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    DbEnv& dbEnv,
    const string& filename,
    const FacetTypeMap& facetTypes = FacetTypeMap(),
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

For Java, the method signatures are:

Java

public static TransactionalEvictor
createTransactionalEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    String filename,
    java.util.Map facetTypes,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

public static TransactionalEvictor
createTransactionalEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    com.sleepycat.db.Environment dbEnv,
    String filename,
    java.util.Map facetTypes,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in
the other case, you provide a  object that represents a Berkeley DB environment you opened yourself. (Usually, it is easier to letDbEnv
Freeze take care of all interactions with Berkeley DB.)

The  parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DBenvName
home directory. (See .)Freeze.DbEnv. .DbHomeenv-name

The  parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all yourfilename
servants is stored in this file.

The  parameter allows you to specify a single class type (Slice  string) for each facet in your new evictor (see below).facetTypes type ID
Most applications use only the default facet, represented by an empty string. This parameter is optional in C++; in Java, pass  if you donull
not want to specify such a facet-to-type mapping.
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The  parameter represents the . It is an optional parameter in C++; in Java, pass  if you do not need ainitializer servant initializer null
servant initializer.

The  parameter is a vector or array of . It is an optional parameter in C++; in Java, pass  if your evictor doesindexes evictor indexes null
not define an index.

Finally, the  parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, FreezecreateDb
creates a new database; when false, Freeze raises a .Freeze::DatabaseException

Read and Write Operations

When a transactional evictor processes an incoming request without an associated transaction, it first needs to find out whether the
corresponding operation is  (as specified by the  and  operation metadata). Thisread-only or read-write "freeze:read" "freeze:write"
is straightforward if the evictor knows the target's type; in this case, it simply instantiates and keeps a "dummy" servant to look up the
attributes of each operation.

However, if the target type can vary, the evictor needs to look up and sometimes load a read-only servant to find this information. For
read-write requests, it will then load the servant from disk a second time (within a new transaction). Once the transaction commits, the
read-only servant — sometimes freshly loaded from disk — is discarded.

When you create a transactional evictor with , you can pass a facet name to type ID map to associate acreateTransactionalEvictor
single servant type with each facet and speed up the retrieval of these operation attributes.

Synchronization Semantics for the Transactional Evictor

With a transactional evictor, there is no need to perform any synchronization on the servants managed by the evictor:

For read-only operations, the application must not modify any data member, and hence there is no need to synchronize. (Many
threads can safely read the same data members concurrently.)
For read-write operations, each operation dispatch gets its own private servant or servants (see transaction propagation below).

Not having to worry about synchronization can dramatically simplify your application code.

Transaction Propagation

Without a distributed transaction service, it is not possible to invoke several remote operations within the same transaction. Nevertheless,
Freeze supports transaction propagation for collocated calls: when a request is dispatched within a transaction, the transaction is associated
with the dispatch thread and will propagate to any other servant reached through a collocated call. If the target of a collocated call is
managed by a transactional evictor associated with the same database environment, Freeze reuses the propagated transaction to load the
servant and dispatch the request. This allows you to group updates to several servants within a single transaction.

You can also control how a transactional evictor handles an incoming transaction through optional metadata added after "freeze:write"
and . There are six valid directives:"freeze:read"

freeze:read:never
Verify that no transaction is propagated to this operation. If a transaction is present, the transactional evictor raises a 

.Freeze::DatabaseException

freeze:read:supports
Accept requests with or without a transaction, and re-use the transaction if present.  is the default for "supports" "freeze:read"
operations.

freeze:read:mandatory and freeze:write:mandatory
Verify that a transaction is propagated to this operation. If there is no transaction, the transactional evictor raises a 

.Freeze::DatabaseException

freeze:read:required and freeze:write:required
Accept requests with or without a transaction, and re-use the transaction if present. If no transaction is propagated, the transactional
evictor creates a new transaction before dispatching the request.  is the default for  operations."required" "freeze:write"

Commit or Rollback on User Exception

When a transactional evictor processes an incoming read-write request, it starts a new database transaction, loads a servant within the
transaction, dispatches the request, and then either commits or rolls back the transaction depending on the outcome of this dispatch. If the
dispatch does not raise an exception, the transaction is committed just before the response is sent back to the client. If the dispatch raises a
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system exception, the transaction is rolled back. If the dispatch raises a user exception, by default, the transaction is committed. However,
you can configure Freeze to rollback on user-exceptions by setting Freeze.Evictor.env-name.fileName

 to a non-zero value..RollbackOnUserException

Database Deadlocks and Automatic Retries

When reading and writing in separate concurrent transactions, deadlocks are likely to occur. For example, one transaction may lock pages in
a particular order while another transaction locks the same pages in a different order; the outcome is a deadlock. Berkeley DB automatically
detects such deadlocks, and "kills" one of the transactions.

With a Freeze transactional evictor, the application does not need to catch any deadlock exceptions or retry when deadlock occurs because
the transactional evictor automatically retries its transactions whenever it encounters a deadlock situation.

However, this can affect how you implement your operations: for any operation called within a transaction (mainly read-write operations), you
must anticipate the possibility of several calls for the same request, all in the same dispatch thread.

AMD and the Transactional Evictor

When a transactional evictor dispatches a read-write operation implemented using AMD, it starts a transaction before dispatching the
request, and commits or rolls back the transaction when the dispatch is done. Two threads are involved here: the  and the dispatch thread

. The dispatch thread is a thread from an Ice thread pool tasked with dispatching a request, and the callback thread is thecallback thread
thread that invokes the AMD callback to send the response to the client. These threads may be one and the same if the servant invokes the
AMD callback from the dispatch thread.

It is important to understand the threading semantics of an AMD request with respect to the transaction:

If a successful AMD response is sent from the dispatch thread, the transaction is committed  the response is sent. If a deadlockafter
occurs during this commit, the request is not retried and the client receives no indication of the failure.
If a successful AMD response is sent from another thread, the evictor commits its transaction when the dispatch thread completes,
regardless of whether the servant has sent the AMD response. The callback thread waits until the transaction has been committed
by the dispatch thread before sending the response.
If a commit results in a deadlock and the AMD response has not yet been sent, the evictor cancels the original AMD callback and
automatically retries the request again with a new AMD callback. Invocations on the original AMD callback are ignored (

 and  on this callback do nothing).ice_response ice_exception
Otherwise, if the servant sends an exception via the AMD callback, the response is sent directly to the client.

Transactions and Freeze Maps

A transactional evictor uses the same transaction objects as , which allows you to update a Freeze map within a transactionFreeze maps
managed by a transactional evictor.

You can get the current transaction created by a transactional evictor by calling . Then, you would typicallygetCurrentTransaction
retrieve the associated Freeze connection (with ) and construct a Freeze map using this connection:getConnection

Slice

local interface TransactionalEvictor extends Evictor {
    Transaction getCurrentTransaction();
    void setCurrentTransaction(Transaction tx);
};

A transactional evictor also gives you the ability to associate your own transaction with the current thread, using setCurrentTransaction
. This is useful if you want to perform many updates within a single transaction, for example to add or remove many servants in the evictor.
(A less convenient alternative is to implement all such updates within a read-write operation on some object.)

See Also

Background Save Evictor
Type IDs
Freeze Evictor Concepts
Freeze Maps
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Using a Freeze Evictor in the File System Server

In this section, we present file system implementations that use a transactional evictor. The implementations are based on the ones
discussed in , and in this section we only discuss code that illustrates use of the Freeze evictor.Object Life Cycle

In general, incorporating a Freeze evictor into your application requires the following steps:

Evaluate your existing Slice definitions for a suitable persistent object type.
If no suitable type is found, you typically define a new derived class that captures your persistent state requirements. Consider
placing these definitions in a separate file: they are only used by the server for persistence, and therefore do not need to appear in
the "public" definitions required by clients. Also consider placing your persistent types in a separate module to avoid name clashes.
If you use , generate code (using  or ) for your new definitions.indexes with your evictor slice2freeze slice2freezej
Create an evictor and register it as a servant locator with an object adapter.
Create instances of your persistent type and register them with the evictor.

Persistent Types for File System Evictor

Fortunately, it is unnecessary for us to change any of the existing file system Slice definitions to incorporate the Freeze evictor. However, we
do need to add metadata definitions to inform the evictor which :operations modify object state

Slice

module Filesystem {
    // ...

    interface Node {
        idempotent string name();

        ["freeze:write"]
        void destroy() throws PermissionDenied;
    };

    // ...

    interface File extends Node {
        idempotent Lines read();

        ["freeze:write"]
        idempotent void write(Lines text) throws GenericError;
    };

    // ...

    interface Directory extends Node {
        idempotent NodeDescSeq list();

        idempotent NodeDesc find(string name) throws NoSuchName;

        ["freeze:write"]
        File* createFile(string name) throws NameInUse;

        ["freeze:write"]
        Directory* createDirectory(string name) throws NameInUse;
    };
};

These definitions are identical to the original ones, with the exception of the added  directives.["freeze:write"]

The remaining definitions are in derived classes:
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Slice

#include <Filesystem.ice>

module Filesystem {
    class PersistentDirectory;

    class PersistentNode implements Node {
        string nodeName;
        PersistentDirectory* parent;
    };

    class PersistentFile extends PersistentNode implements File {
        Lines text;
    };

    dictionary<string, NodeDesc> NodeDict;

    class PersistentDirectory extends PersistentNode implements Directory {
        ["freeze:write"]
        void removeNode(string name);

        NodeDict nodes;
    };
};

As you can see, we have sub-classed all of the file system interfaces. Let us examine each one in turn.

The  class adds two data members:  and .PersistentNode nodeName parent

We used  instead of  because  is already used as an operation in the  interface.nodeName name name Node

The file system implementation requires that a child node knows its parent node in order to properly implement the  operation.destroy
Previous implementations had a state member of type , but that is not workable here. It is no longer possible to pass the parentDirectoryI
node to the child node's constructor because the evictor may be instantiating the child node (via a factory), and the parent node will not be
known. Even if it were known, another factor to consider is that there is no guarantee that the parent node will be active when the child
invokes on it, because the evictor may have evicted it. We solve these issues by storing a proxy to the parent node. If the child node invokes
on the parent node via the proxy, the evictor automatically activates the parent node if necessary.

The  class is very straightforward, simply adding a  member representing the contents of the file. Notice that thePersistentFile text
class extends , and therefore inherits the state members declared by the base class.PersistentNode

Finally, the  class defines the  operation, and adds the  state member representing thePersistentDirectory removeNode nodes
immediate children of the directory node. Since a child node contains only a proxy for its  parent, and not aPersistentDirectory
reference to an implementation class, there must be a Slice-defined operation that can be invoked when the child is destroyed.

If we had followed our earlier advice, we would have defined , , and  classes in a separate Node File Directory PersistentFilesystem
module, but in this example we use the existing  module for the sake of simplicity.Filesystem

Topics

Adding an Evictor to the C++ File System Server
Adding an Evictor to the Java File System Server

See Also

Object Life Cycle
Freeze Evictors
Freeze Evictor Concepts
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Adding an Evictor to the C++ File System Server

On this page:

The Server  Program in C++main
The Persistent Servant Class Definitions in C++
Implementing a Persistent  in C++FileI
Implementing a Persistent  in C++DirectoryI
Implementing  in C++NodeFactory

The Server  Program in C++main

The server's  program is responsible for creating the evictor and initializing the root directory node. Many of the administrative duties,main
such as creating and destroying a communicator, are handled by the  class. Our server  program has nowIce::Application main
become the following:
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C++

#include <PersistentFilesystemI.h>

using namespace std;
using namespace Filesystem;

class FilesystemApp : virtual public Ice::Application
{
public:

    FilesystemApp(const string& envName) :
        _envName(envName)
    {
    }

    virtual int run(int, char*[])
    {
        Ice::ObjectFactoryPtr factory = new NodeFactory;
        communicator()->addObjectFactory(factory, PersistentFile::ice_staticId());
        communicator()->addObjectFactory(factory, PersistentDirectory::ice_staticId());

        Ice::ObjectAdapterPtr adapter = communicator()->createObjectAdapter("EvictorFilesystem");

        Freeze::EvictorPtr evictor =
            Freeze::createTransactionalEvictor(adapter, _envName, "evictorfs");
        FileI::_evictor = evictor;
        DirectoryI::_evictor = evictor;

        adapter->addServantLocator(evictor, "");

        Ice::Identity rootId;
        rootId.name = "RootDir";
        if(!evictor->hasObject(rootId))
        {
            PersistentDirectoryPtr root = new DirectoryI;
            root->nodeName = "/";
            evictor->add(root, rootId);
        }

        adapter->activate();

        communicator()->waitForShutdown();
        if(interrupted())
        {
            cerr << appName() << ": received signal, shutting down" << endl;
        }

        return 0;
    }

private:

    string _envName;
};

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

Let us examine the changes in detail. First, we are now including . This header file includes all of the otherPersistentFilesystemI.h
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Freeze (and Ice) header files this source file requires.

Next, we define the class  as a subclass of , and provide a constructor taking a string argument:FilesystemApp Ice::Application

C++

FilesystemApp(const string& envName) :
        _envName(envName) { }

The string argument represents the name of the database environment, and is saved for later use in .run

One of the first tasks  performs is installing the Ice  for  and . Although theserun object factories PersistentFile PersistentDirectory
classes are not exchanged via Slice operations, they are marshalled and unmarshalled in exactly the same way when saved to and loaded
from the database, therefore factories are required. A single instance of  is installed for both types:NodeFactory

C++

Ice::ObjectFactoryPtr factory = new NodeFactory;
        communicator()->addObjectFactory(factory, PersistentFile::ice_staticId());
        communicator()->addObjectFactory(factory, PersistentDirectory::ice_staticId());

After creating the object adapter, the program initializes a  by invoking . The thirdtransactional evictor createTransactionalEvictor
argument to  is the name of the database file, which by default is created if it does not exist. The newcreateTransactionalEvictor
evictor is then added to the object adapter as a servant locator for the default category:

C++

NodeI::_evictor = Freeze::createTransactionalEvictor(adapter, _envName, "evictorfs");
        adapter->addServantLocator(NodeI::_evictor, "");

Next, the program creates the root directory node if it is not already being managed by the evictor:

C++

Ice::Identity rootId;
        rootId.name = "RootDir";
        if(!evictor->hasObject(rootId))
        {
            PersistentDirectoryPtr root = new DirectoryI;
            root->nodeName = "/";
            evictor->add(root, rootId);
        }

Finally, the  function instantiates the , passing  as the name of the database environment:main FilesystemApp db

C++

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

The Persistent Servant Class Definitions in C++

The servant classes must also be changed to incorporate the Freeze evictor. We no longer derive the servants from a common base class.
Instead,  and  each have their own  and  members, as well as a static  smart pointerFileI DirectoryI _destroyed _mutex _evictor
that points at the transactional evictor:
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C++

#include <PersistentFilesystem.h>
#include <IceUtil/IceUtil.h>
#include <Freeze/Freeze.h>

namespace Filesystem {

class FileI : virtual public PersistentFile {
public:

    FileI();

    // Slice operations... 

    static Freeze::EvictorPtr _evictor;

private:

    bool _destroyed;
    IceUtil::Mutex _mutex;
};

class DirectoryI : virtual public PersistentDirectory {
public:

    DirectoryI();

    // Slice operations...

    virtual void removeNode(const std::string&, const Ice::Current&);

    static Freeze::EvictorPtr _evictor;

public:
    bool _destroyed;
    IceUtil::Mutex _mutex;
};

In addition to the node implementation classes, we have also declared an object factory:

C++

namespace Filesystem {
    class NodeFactory : virtual public Ice::ObjectFactory {
    public:
        virtual Ice::ObjectPtr create(const std::string&);
        virtual void destroy();
    };

Implementing a Persistent  in C++FileI

The  methods are mostly trivial, because the Freeze evictor handles persistence for us:FileI
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C++

Filesystem::FileI::FileI() : _destroyed(false)
{
}

string
Filesystem::FileI::name(const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    return nodeName;
}

void
Filesystem::FileI::destroy(const Ice::Current& c)
{
    {
        IceUtil::Mutex::Lock lock(_mutex);

        if (_destroyed) {
            throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
        }
        _destroyed = true;
    }

    //
    // Because we use a transactional evictor,
    // these updates are guaranteed to be atomic.
    //
    parent?>removeNode(nodeName);
    _evictor?>remove(c.id);
}

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    return text;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    this?>text = text;
}

The code checks that the node has not been destroyed before acting on the invocation by updating or returning state. Note that destroy
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must update two separate nodes: as well as removing itself from the evictor, the node must also update the parent's node map. Because we
are using a transactional evictor, the two updates are guaranteed to be atomic, so it is impossible to the leave the file system in an
inconsistent state.

Implementing a Persistent  in C++DirectoryI

The  implementation requires more substantial changes. We begin our discussion with the  operation:DirectoryI createDirectory

C++

Filesystem::DirectoryPrx
Filesystem::DirectoryI::createDirectory(const string& name, const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    if (name.empty() || nodes.find(name) != nodes.end()) {
        throw NameInUse(name);
    }

    Ice::Identity id;
    id.name = IceUtil::generateUUID();
    PersistentDirectoryPtr dir = new DirectoryI;
    dir?>nodeName = name;
    dir?>parent = PersistentDirectoryPrx::uncheckedCast(c.adapter?>createProxy(c.id));
    DirectoryPrx proxy = DirectoryPrx::uncheckedCast(_evictor?>add(dir, id));

    NodeDesc nd;
    nd.name = name;
    nd.type = DirType;
    nd.proxy = proxy;
    nodes[name] = nd;

    return proxy;
}

After validating the node name, the operation obtains a unique identity for the child directory, instantiates the servant, and registers it with the
Freeze evictor. Finally, the operation creates a proxy for the child and adds the child to its node table.

The implementation of the  operation has the same structure as :createFile createDirectory
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C++

Filesystem::FilePrx
Filesystem::DirectoryI::createFile(const string& name,
                                   const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    if (name.empty() || nodes.find(name) != nodes.end()) {
        throw NameInUse(name);
    }

    Ice::Identity id;
    id.name = IceUtil::generateUUID();
    PersistentFilePtr file = new FileI;
    file?>nodeName = name;
    file?>parent = PersistentDirectoryPrx::uncheckedCast(c.adapter?>createProxy(c.id));
    FilePrx proxy = FilePrx::uncheckedCast(_evictor?>add(file, id));

    NodeDesc nd;
    nd.name = name;
    nd.type = FileType;
    nd.proxy = proxy;
    nodes[name] = nd;

    return proxy;
}

Implementing  in C++NodeFactory

We use a single factory implementation for creating two types of Ice objects:  and . These arePersistentFile PersistentDirectory
the only two types that the Freeze evictor will be restoring from its database.

C++

Ice::ObjectPtr
Filesystem::NodeFactory::create(const string& type)
{
    if (type == PersistentFile::ice_staticId())
        return new FileI;
    else if (type == PersistentDirectory::ice_staticId())
        return new DirectoryI;
    else {
        assert(false);
        return 0;
    }
}

void
Filesystem::NodeFactory::destroy()
{
}

The remaining Slice operations have trivial implementations, so we do not show them here.

See Also

The Server-Side main Function in C++
C++ Mapping for Classes
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Transactional Evictor
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Adding an Evictor to the Java File System Server

On this page:

The Server Main Program in Java
The Persistent Servant Class Definitions in Java
Implementing a Persistent  in JavaFileI
Implementing a Persistent  in JavaDirectoryI
Implementing  in JavaNodeFactory

The Server Main Program in Java

The server's  method is responsible for creating the evictor and initializing the root directory node. Many of the administrative duties,main
such as creating and destroying a communicator, are handled by the  class. Our server  program has now becomeIce.Application main
the following:
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Java

import Filesystem.*;

public class Server extends Ice.Application
{
    public
    Server(String envName)
    {
        _envName = envName;
    }

    public int
    run(String[] args)
    {
        Ice.ObjectFactory factory = new NodeFactory();
        communicator().addObjectFactory(factory, PersistentFile.ice_staticId());
        communicator().addObjectFactory(factory, PersistentDirectory.ice_staticId());

        Ice.ObjectAdapter adapter = communicator().createObjectAdapter("EvictorFilesystem");

        Freeze.Evictor evictor =
            Freeze.Util.createTransactionalEvictor(adapter, _envName, "evictorfs",
                                                   null, null, null, true);
        DirectoryI._evictor = evictor;
        FileI._evictor = evictor;

        adapter.addServantLocator(evictor, "");

        Ice.Identity rootId = new Ice.Identity();
        rootId.name = "RootDir";
        if(!evictor.hasObject(rootId))
        {
            PersistentDirectory root = new DirectoryI();
            root.nodeName = "/";
            root.nodes = new java.util.HashMap<java.lang.String, NodeDesc>();
            evictor.add(root, rootId);
        }

        adapter.activate();

        communicator().waitForShutdown();

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        int status = app.main("Server", args, "config.server");
        System.exit(status);
    }

    private String _envName;
}

Let us examine the changes in detail. First, we define the class  as a subclass of , and provide a constructorServer Ice.Application
taking a string argument:
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Java

    public
    Server(String envName)
    {
        _envName = envName;
    }

The string argument represents the name of the database environment, and is saved for later use in .run

One of the first tasks  performs is installing the Ice  for  and . Although theserun object factories PersistentFile PersistentDirectory
classes are not exchanged via Slice operations, they are marshalled and unmarshalled in exactly the same way when saved to and loaded
from the database, therefore factories are required. A single instance of  is installed for both types:NodeFactory

Java

        Ice.ObjectFactory factory = new NodeFactory();
        communicator().addObjectFactory(factory, PersistentFile.ice_staticId());
        communicator().addObjectFactory(factory, PersistentDirectory.ice_staticId());

After creating the object adapter, the program initializes a  by invoking . The thirdtransactional evictor createTransactionalEvictor
argument to  is the name of the database, the fourth is null to indicate that we do not use facets, the fifthcreateTransactionalEvictor
is null to indicate that we do not use a servant initializer, the sixth argument ( ) indicates no indexes are in use, and the  argumentnull true
requests that the database be created if it does not exist. The evictor is then added to the object adapter as a servant locator for the default
category:

Java

        Freeze.Evictor evictor =
            Freeze.Util.createTransactionalEvictor(adapter, _envName, "evictorfs",
                                                   null, null, null, true);
        DirectoryI._evictor = evictor;
        FileI._evictor = evictor;

        adapter.addServantLocator(evictor, "");

Next, the program creates the root directory node if it is not already being managed by the evictor:

Java

        Ice.Identity rootId = new Ice.Identity();
        rootId.name = "RootDir";
        if(!evictor.hasObject(rootId))
        {
            PersistentDirectory root = new DirectoryI();
            root.nodeName = "/";
            root.nodes = new java.util.HashMap<String, NodeDesc>();
            evictor.add(root, rootId);
        }

Finally, the  function instantiates the  class, passing  as the name of the database environment:main Server db
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Java

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        int status = app.main("Server", args, "config.server");
        System.exit(status);
    }

The Persistent Servant Class Definitions in Java

The servant classes must also be changed to incorporate the Freeze evictor. The  class now has a static state member :FileI _evictor

Java

import Filesystem.*;

public final class FileI extends PersistentFile
{
    public
    FileI()
    {
        _destroyed = false;
    }

    // Slice operations...

    public static Freeze.Evictor _evictor;
    private boolean _destroyed;
}

The  class has undergone a similar transformation:DirectoryI

Java

import Filesystem.*;

public final class DirectoryI extends PersistentDirectory
{
    public
    DirectoryI()
    {
        _destroyed = false;
        nodes = new java.util.HashMap<String, NodeDesc>();
    }

    // Slice operations...

    public static Freeze.Evictor _evictor;
    private boolean _destroyed;
}

Implementing a Persistent  in JavaFileI

The  methods are mostly trivial, because the Freeze evictor handles persistence for us.FileI
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Java

    public synchronized String
    name(Ice.Current current)
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
        }

        return nodeName;
    }

    public void
    destroy(Ice.Current current)
        throws PermissionDenied
    {
        synchronized(this) {
            if (_destroyed) {
                throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
            }
            _destroyed = true;
        }

        //
        // Because we use a transactional evictor,
        // these updates are guaranteed to be atomic.
        //
        parent.removeNode(nodeName);
        _evictor.remove(current.id);
    }

    public synchronized String[]
    read(Ice.Current current)
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
        }

        return (String[])text.clone();
    }

    public synchronized void
    write(String[] text, Ice.Current current)
        throws GenericError
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
        }

        this.text = text;
    }

The code checks that the node has not been destroyed before acting on the invocation by updating or returning state. Note that destroy
must update two separate nodes: as well as removing itself from the evictor, the node must also update the parent's node map. Because we
are using a transactional evictor, the two updates are guaranteed to be atomic, so it is impossible to the leave the file system in an
inconsistent state.

Implementing a Persistent  in JavaDirectoryI

The  implementation requires more substantial changes. We begin our discussion with the  operation:DirectoryI createDirectory

Java

    public synchronized DirectoryPrx
    createDirectory(String name, Ice.Current current)
        throws NameInUse
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
        }

        if (name.length() == 0 || nodes.containsKey(name)) {
            throw new NameInUse(name);
        }

        Ice.Identity id = current.adapter.getCommunicator().stringToIdentity(
            java.util.UUID.randomUUID().toString());
        PersistentDirectory dir = new DirectoryI();
        dir.nodeName = name;
        dir.parent = PersistentDirectoryPrxHelper.uncheckedCast(
            current.adapter.createProxy(current.id));
        DirectoryPrx proxy = DirectoryPrxHelper.uncheckedCast(_evictor.add(dir, id));

        NodeDesc nd = new NodeDesc();
        nd.name = name;
        nd.type = NodeType.DirType;
        nd.proxy = proxy;
        nodes.put(name, nd);

        return proxy;
    }

After validating the node name, the operation obtains a unique identity for the child directory, instantiates the servant, and registers it with the
Freeze evictor. Finally, the operation creates a proxy for the child and adds the child to its node table.
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The implementation of the  operation has the same structure as :createFile createDirectory

Java

    public synchronized FilePrx
    createFile(String name, Ice.Current current)
        throws NameInUse
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(current.id, current.facet, current.operation);
        }

        if (name.length() == 0 || nodes.containsKey(name)) {
            throw new NameInUse(name);
        }

        Ice.Identity id = current.adapter.getCommunicator().stringToIdentity(
            java.util.UUID.randomUUID().toString());
        PersistentFile file = new FileI();
        file.nodeName = name;
        file.parent = PersistentDirectoryPrxHelper.uncheckedCast(
            current.adapter.createProxy(current.id));
        FilePrx proxy = FilePrxHelper.uncheckedCast(_evictor.add(file, id));

        NodeDesc nd = new NodeDesc();
        nd.name = name;
        nd.type = NodeType.FileType;
        nd.proxy = proxy;
        nodes.put(name, nd);

        return proxy;
    }

The remaining Slice operations have trivial implementations, so we do not show them here.

Implementing  in JavaNodeFactory

We use a single factory implementation for creating two types of Ice objects:  and . These arePersistentFile PersistentDirectory
the only two types that the Freeze evictor will be restoring from its database.
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Java

package Filesystem;

public class NodeFactory implements Ice.ObjectFactory
{
    public Ice.Object
    create(String type)
    {
        if (type.equals(PersistentFile.ice_staticId()))
            return new FileI();
        else if (type.equals(PersistentDirectory.ice_staticId()))
            return new DirectoryI();
        else {
            assert(false);
            return null;
        }
    }

    public void
    destroy()
    {
    }
}

See Also

The Server-Side main Method in Java
Java Mapping for Classes
Transactional Evictor
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Freeze Maps

A Freeze map is a persistent, associative container in which the key and value types can be any primitive or user-defined Slice types. For
each pair of key and value types, the developer uses a code-generation tool to produce a language-specific class that conforms to the
standard conventions for maps in that language. For example, in C++, the generated class resembles a , and in Java itstd::map
implements the  interface. Most of the logic for storing and retrieving state to and from the database isjava.util.SortedMap
implemented in a Freeze base class. The generated map classes derive from this base class, so they contain little code and therefore are
efficient in terms of code size.

You can only store data types that are defined in Slice in a Freeze map. Types without a Slice definition (that is, arbitrary C++ or Java types)
cannot be stored because a Freeze map reuses the Ice-generated marshaling code to create the persistent representation of the data in the
database. This is especially important to remember when defining a  whose instances will be stored in a Freeze map; only theSlice class
"public" (Slice-defined) data members will be stored, not the private state members of any derived implementation class.

Topics

Freeze Map Concepts
Using a Freeze Map in C++
Using a Freeze Map in Java
Using a Freeze Map in the File System Server

See Also

Classes



Ice 3.4.2 Documentation

1348 Copyright © 2011, ZeroC, Inc.

Freeze Map Concepts

On this page:

Freeze Connections
Using Transactions with Freeze Maps

Using Transactions with C++
Using Transactions with Java

Iterating a Freeze Map
Recovering from Freeze Map Deadlocks
Key Sorting for Freeze Maps

Key Sorting for Freeze Maps in C++
Key Sorting for Freeze Maps in Java

Indexing a Freeze Map

Freeze Connections

In order to create a Freeze map object, you first need to obtain a Freeze  object by connecting to a database environment.Connection

As illustrated in the following figure, a Freeze map is associated with a single connection and a single database file. Connection and map
objects are not thread-safe: if you want to use a connection or any of its associated maps from multiple threads, you must serialize access to
them. If your application requires concurrent access to the same database file (persistent map), you must create several connections and
associated maps.

Freeze connections and maps.

Freeze connections provide operations that allow you to begin a transaction, access the current transaction, get the communicator
associated with a connection, close a connection, and remove a map index. See the  for more information on theseSlice API reference
operations.

Using Transactions with Freeze Maps

You may optionally use transactions with Freeze maps. Freeze transactions provide the usual ACID (atomicity, concurrency, isolation,
durability) properties. For example, a transaction allows you to group several database updates in one atomic unit: either all or none of the
updates within the transaction occur.

You start a transaction by calling  on the  object. Once a connection has an associated transaction, allbeginTransaction Connection
operations on the map objects associated with this connection use this transaction. Eventually, you end the transaction by calling  or commit

:  saves all your updates while  undoes them. The  operation returns the transactionrollback commit rollback currentTransaction
associated with a connection, if any; otherwise, it returns nil.

http://www.zeroc.com/doc/3.4.2/reference
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Slice

module Freeze {

local interface Transaction {
    void commit();
    void rollback();
}; 

local interface Connection {
    Transaction beginTransaction();
    idempotent Transaction currentTransaction();
    // ...
};
};

If you do not use transactions, every non-iterator update is enclosed in its own internal transaction, and every read-write iterator has an
associated internal transaction that is committed when the iterator is closed.

Using Transactions with C++

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they
time out):

C++

ConnectionPtr connection = ...;

TransactionPtr tx = connection->beginTransaction();
try {

    // DB updates that might throw here...

    tx->commit();

    // More code that might throw here...

} catch (...) {
    try {
        tx->rollback();
    } catch (...) {
    }
    throw;
}

The outer try-catch blocks are necessary because, if the code encounters an exception, we must roll back any updates that were made. In
turn, the attempt to roll back might throw itself, namely, if the code following the commit throws an exception (in which case the transaction
cannot be rolled back because it is already committed).

Code such as this is difficult to maintain: for example, an early return statement can cause the transaction to be neither committed nor rolled
back. The  class ensures that such errors cannot happen:TransactionHolder
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C++

namespace Freeze {
    class TransactionHolder {
    public:
        TransactionHolder(const ConnectionPtr&);
        ~TransactionHolder();

        void commit();
        void rollback();

    private:
        // Copy and assignment are forbidden.
        TransactionHolder(const TransactionHolder&);
        TransactionHolder& operator=(const TransactionHolder&);
    };
}

The constructor calls  if the connection does not already have a transaction in progress, so instantiating the holder alsobeginTransaction
starts a transaction. When the holder instance goes out of scope, its destructor calls  on the transaction and suppresses anyrollback
exceptions that the rollback attempt might throw. This ensures that the transaction is rolled back if it was not previously committed or rolled
back and ensures that an early return or an exception cannot cause the transaction to remain open:

C++

ConnectionPtr connection = ...;

{ // Open scope

    TransactionHolder tx(connection); // Begins transaction

    // DB updates that might throw here...

    tx.commit();

    // More code that might throw here...

} // Transaction rolled back here if not previously
  // committed or rolled back.

If you instantiate a  when a transaction is already in progress, it does nothing: the constructor notices that it could notTransactionHolder
begin a new transaction and turns , , and the destructor into no-ops. For example, the nested commit rollback TransactionHolder
instance in the following code is benign and does nothing:
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C++

ConnectionPtr connection = ...;

{ // Open scope

    TransactionHolder tx(connection); // Begins transaction

    // DB updates that might throw here...

    { // Open nested scope

        TransactionHolder tx2(connection); // Does nothing

        // DB updates that might throw here...

        tx2.commit(); // Does nothing

        // More code that might throw here...

    } // Destructor of tx2 does nothing

    tx.commit();

    // More code that might throw here...

} // Transaction rolled back here if not previously
  // committed or rolled back.

Using Transactions with Java

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they
time out):

Java

Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

    // DB updates that might throw here...

    tx.commit();

    // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
    try {
        tx.rollback();
    } catch (DatabaseException e) {
    }
    throw ex;
}

The catch handler ensures that the transaction is rolled back before re-throwing the exception. Note that the nested try-catch blocks are
necessary: if the transaction committed successfully but the code following the commit throws an exception, the rollback attempt will fail
therefore we need to suppress the corresponding  that is raised in that case.DatabaseException

Also use caution with early  statements:return
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Java

Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

    // DB updates that might throw here...

    if (error) {
        // ...
        return; // Oops, bad news!
    }

    // ...

    tx.commit();

    // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
    try {
        tx.rollback();
    } catch (DatabaseException e) {
    }
    throw ex;
}

The early  statement in the preceding code causes the transaction to be neither committed nor rolled back. To deal with thisreturn
situation, avoid early return statements or ensure that you either commit or roll back the transaction before returning. Alternatively, you can
use a  block to ensure that the transaction is rolled back:finally

Java

Connection connection = ...;

try {

    Transaction tx = connection.beginTransaction();

    // DB updates that might throw here...

    if (error) {
        // ...
        return; // No problem, see finally block.
    }

    // ...

    tx.commit();

    // More code that might throw here...

} finally {
    if (connection.currentTransaction() != null)
        connection.currentTransaction().rollback();
}

Iterating a Freeze Map

Iterators allow you to traverse the contents of a Freeze map. Iterators are implemented using Berkeley DB cursors and acquire locks on the
underlying database page files. In C++, both read-only ( ) and read-write iterators ( ) are available. In Java, anconst_iterator iterator
iterator is read-write if it is obtained in the context of a transaction and read-only if it is obtained outside a transaction.
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Locks held by an iterator are released when the iterator is closed (if you do not use transactions) or when the enclosing transaction ends.
Releasing locks held by iterators is very important to let other threads access the database file through other connection and map objects.
Occasionally, it is even necessary to release locks to avoid self-deadlock (waiting forever for a lock held by an iterator created by the same
thread).

To improve ease of use and make self-deadlocks less likely, Freeze often closes iterators automatically. If you close a map or connection,
associated iterators are closed. Similarly, when you start or end a transaction, Freeze closes all the iterators associated with the
corresponding maps. If you do not use transactions, any write operation on a map (such as inserting a new element) automatically closes all
iterators opened on the same map object, except for the current iterator when the write operation is performed through that iterator. In Java,
Freeze also closes a read-only iterator when no more elements are available.

There is, however, one situation in C++ where an explicit iterator close is needed to avoid self-deadlock:

you do not use transactions, and
you have an open iterator that was used to update a map (it holds a write lock), and
in the same thread, you read that map.

Read operations in C++ never close iterators automatically: you need to either use transactions or explicitly close the iterator that holds the
write lock. This is not an issue in Java because you cannot use an iterator to update a map outside of a transaction.

Recovering from Freeze Map Deadlocks

If you use multiple threads to access a database file, Berkeley DB may acquire locks in conflicting orders (on behalf of different transactions
or iterators). For example, an iterator could have a read-lock on page P1 and attempt to acquire a write-lock on page P2, while another
iterator (on a different map object associated with the same database file) could have a read-lock on P2 and attempt to acquire a write-lock
on P1.

When this occurs, Berkeley DB detects a deadlock and resolves it by returning a "deadlock" error to one or more threads. For all non-iterator
operations performed outside any transaction, such as an insertion into a map, Freeze catches such errors and automatically retries the
operation until it succeeds. (In that case, the most-recently acquired lock is released before retrying.) For other operations, Freeze reports
this deadlock by raising . In that case, the associated transaction or iterator is also automatically rolledFreeze::DeadlockException
back or closed. A properly written application must expect to catch deadlock exceptions and retry the transaction or iteration.

Key Sorting for Freeze Maps

Keys in Freeze maps and indexes are always sorted. By default, Freeze sorts keys according to their Ice-encoded binary representation; this
is very efficient but the resulting order is rarely meaningful for the application. Starting with Ice 3.0, Freeze offers the ability to specify your
own comparator objects so that you can customize the traversal order of your maps. Note however that the comparator of a Freeze map
should remain the same throughout the life of the map. Berkeley DB stores records according to the key order provided by this comparator;
switching to another comparator will cause undefined behavior.

Key Sorting for Freeze Maps in C++

In C++, you specify the name of your comparator objects during code generation. The generated map provides the standard features of 
, so that iterators return entries according to the order you have defined for the main key with your comparator object. The std::map

, , and  functions provide range-searches (see the definition of these functions on ).lower_bound upper_bound equal_range std::map

Apart from these standard features, the  provides additional functions and methods to perform range searches usinggenerated map
secondary keys. The additional functions are , , and , where lowerBoundForMember upperBoundForMember equalRangeForMember

 is the name of the secondary-key member. These functions return regular iterators on the Freeze map.Member

Key Sorting for Freeze Maps in Java

In Java, you supply comparator objects (instances of the standard Java interface ) at run time when instantiatingjava.util.Comparator
the generated map class. The  accepts a comparator for the main key and optionally a collection of comparators formap constructor
secondary keys. The map also provides a number of methods for performing range searches on the main key and on secondary keys.

Indexing a Freeze Map

Freeze maps support efficient reverse lookups: if you define an index when you generate your map (with  or slice2freeze
), the generated code provides additional methods for performing reverse lookups. If your value type is a structure or aslice2freezej

class, you can also index on a member of the value, and several such indexes can be associated with the same Freeze map.

Indexed searches are easy to use and very efficient. However, be aware that an index adds significant write overhead: with Berkeley DB,
every update triggers a read from the database to get the old index entry and, if necessary, replace it.

If you later add an index to an existing map, Freeze automatically populates the index the next time you open the map. Freeze populates the
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index by instantiating each map entry, so it is important that you register the object factories for any class types in your map before you open
the map.

Note that the index key comparator of a Freeze map index should remain the same throughout the life of the index. Berkeley DB stores
records according to the key order provided by this comparator; switching to another comparator will cause undefined behavior.

See Also

Using a Freeze Map in C++
Using a Freeze Map in Java
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Using a Freeze Map in C++

This page describes the C++ code generator and demonstrates how to use a Freeze map in a C++ program.

On this page:

 Command-Line Optionsslice2freeze
Generating a Simple Map for C++
The Freeze Map Class in C++
Using Iterators with Freeze Maps in C++
Sample Freeze Map Program in C++

slice2freeze Command-Line Options

The Slice-to-Freeze compiler, , creates C++ classes for Freeze maps. The compiler offers the following command-lineslice2freeze
options in addition to the :standard options

--header-ext EXT

Changes the file extension for the generated header files from the default   to the extension specified by .h EXT

--source-ext EXT

Changes the file extension for the generated source files from the default   to the extension specified by .cpp EXT

--add-header ]HDR[,GUARD

This option adds an include directive for the specified header at the beginning of the generated source file (preceding any other include
directives). If  is specified, the include directive is protected by the specified guard.GUARD

For example:

--add-header precompiled.h,_PRECOMPILED_H__ 

results in the following directives at the beginning of the generated source file:

C++

#ifndef __PRECOMPILED_H__
#define __PRECOMPILED_H__
#include <precompiled.h>
#endif

As this example demonstrates, the  option is useful mainly for integrating the generated code with a compiler's precompiled--add-header
header mechanism.

This option can be repeated to create include directives for several files.

--include-dir DIR

Modifies  directives in source files to prepend the path name of each header file with the directory . The discussion of #include DIR
 provides more information.slice2cpp

--dll-export SYMBOL

Use  to control DLL exports or imports. See the  description for details.SYMBOL slice2cpp

--dict [,sort[, ]]NAME,KEY,VALUE COMPARE

Generate a Freeze map class named  using  as key and  as value. This option may be specified multiple times to generateNAME KEY VALUE
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several Freeze maps.  may be a scoped C++ name, such as . By default, keys are sorted using theirNAME Demo::Struct1ObjectMap
binary Ice-encoded representation. Include  to sort with the  functor class. If  is not specified, the default value is sort COMPARE COMPARE

.std::less<KEY>

--dict-index MAP[, ] [,case-sensitive|case-insensitive][,sort[, ]]MEMBER COMPARE

Add an index to the Freeze map named . If  is specified, the map value type must be a structure or a class, and  must beMAP MEMBER MEMBER
a member of this structure or class. Otherwise, the entire value is indexed. When the indexed member (or entire value) is a string, the index
can be case-sensitive (default) or case-insensitive. An index adds additional member functions to the generated C++ map:

iterator findBy , bool = true);MEMBER(MEMBER_TYPE
const_iterator findBy ,bool = true) const;MEMBER(MEMBER_TYPE
iterator beginFor ();MEMBER
const_iterator begin_For () const;MEMBER
iterator endFor ();MEMBER
const_iterator endFor () const;MEMBER
iterator lowerBoundFor ;MEMBER(MEMBER_TYPE)
const_iterator lowerBoundFor  const;MEMBER(MEMBER_TYPE)
iterator upperBoundFor ;MEMBER(MEMBER_TYPE)
const_iterator upperBoundFor  const;MEMBER(MEMBER_TYPE)
std::pair<iterator, iterator> equalRangeFor ;MEMBER(MEMBER_TYPE)
std::pair<const_iterator, const_iterator> equalRangeFor (  const;MEMBER MEMBER_TYPE)
int MEMBERCount( ) const;MEMBER_TYPE

When  is not specified, these functions are  (const and non-const),  (const and non-const), MEMBER findByValue lowerBoundForValue
, and so on. When  is specified, its first letter is capitalized in the  function name.  correspondsvalueCount MEMBER findBy MEMBER_TYPE

to an in-parameter of the type of  (or the type of the value when  is not specified). For example, if  is a string, MEMBER MEMBER MEMBER
 is a .MEMBER_TYPE const std::string&

By default, keys are sorted using their binary Ice-encoded representation. Include  to sort with the  functor class. If sort COMPARE COMPARE
is not specified, the default value is .std::less<MEMBER_TYPE>

findByMEMBER returns an iterator to the first element in the Freeze map that matches the given index value. It returns  if there is noend()
match. When the second parameter is true (the default), the returned iterator provides only the elements with an exact match (and then skips
to ). Otherwise, the returned iterator sets a starting position and then provides all elements until the end of the map, sorted accordingend()
to the index comparator.

lowerBoundForMEMBER returns an iterator to the first element in the Freeze map whose index value is not less than the given index value.
It returns  if there is no such element. The returned iterator provides all elements until the end of the map, sorted according to theend()
index comparator.

upperBoundForMEMBER returns an iterator to the first element in the Freeze map whose index value is greater than the given index value.
It returns  if there is no such element. The returned iterator provides all elements until the end of the map, sorted according to theend()
index comparator.

beginForMEMBER returns an iterator to the first element in the map.

endForMEMBER returns an iterator to the last element in the map.

equalRangeForMEMBER returns a range (pair of iterators) of all the elements whose index value matches the given index value. This
function is similar to  (see above).findByMEMBER

MEMBERCount returns the number of elements in the Freeze map whose index value matches the given index value.

Please note that index-derived iterators do not allow you to set new values in the underlying map.

--index  [,case-sensitive|case-insensitive]CLASS,TYPE,MEMBER

Generate an .  is the name of the class to be generated.  denotes the type of class to be indexedindex class for a Freeze evictor CLASS TYPE
(objects of different classes are not included in this index).  is the name of the data member in  to index. When  hasMEMBER TYPE MEMBER
type , it is possible to specify whether the index is case-sensitive or not. The default is case-sensitive.string

Generating a Simple Map for C++

As an example, the following command generates a simple map:

$ slice2freeze --dict StringIntMap,string,int StringIntMap
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This command directs the compiler to create a map named , with the Slice key type  and the Slice value type .StringIntMap string int
The final argument is the base name for the output files, to which the compiler appends the  and  suffixes. As a result, this command.h .cpp
produces two C++ source files,  and .StringIntMap.h StringIntMap.cpp

The Freeze Map Class in C++

If you examine the contents of the header file created by the example in the previous section, you will discover that a Freeze map is an
instance of the template class :Freeze::Map

C++

// StringIntMap.h
typedef Freeze::Map<std::string, Ice::Int, ...> StringIntMap;

The  template class closely resembles the STL container class , as shown in the following class definition:Freeze::Map std::map

C++

namespace Freeze {
template<...> class Map {
public:
    typedef ... value_type;
    typedef ... iterator;
    typedef ... const_iterator;

    typedef size_t size_type;
    typedef ptrdiff_t difference_type;

    Map(const Freeze::ConnectionPtr& connection, 
        const std::string& dbName,
        bool createDb = true,
        const Compare& compare = Compare());

    template<class _InputIterator>
    Map(const Freeze::ConnectionPtr& connection, 
        const std::string& dbName, 
        bool createDb,
        _InputIterator first, _InputIterator last,
        const Compare& compare = Compare());

    static void recreate(const Freeze::ConnectionPtr& connection,
                         const std::string& dbName,
                         const Compare& compare = Compare());

    bool operator==(const Map& rhs) const;
    bool operator!=(const Map& rhs) const;

    void swap(Map& rhs);

    iterator begin();
    const_iterator begin() const;

    iterator end();
    const_iterator end() const;

    bool empty() const;
    size_type size() const;
    size_type max_size() const;

    iterator insert(iterator /*position*/, const value_type& elem);

    std::pair<iterator, bool> insert(const value_type& elem);
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    template <typename InputIterator>
    void insert(InputIterator first, InputIterator last);

    void put(const value_type& elem);

    template <typename InputIterator>
    void put(InputIterator first, InputIterator last);

    void erase(iterator position);
    size_type erase(const key_type& key);
    void erase(iterator first, iterator last);

    void clear();

    void destroy(); // Non-standard.

    iterator find(const key_type& key);
    const_iterator find(const key_type& key) const;

    size_type count(const key_type& key) const;

    iterator lower_bound(const key_type& key);
    const_iterator lower_bound(const key_type& key) const;
    iterator upper_bound(const key_type& key);
    const_iterator upper_bound(const key_type& key) const;

    std::pair<iterator, iterator>
    equal_range(const key_type& key);

    std::pair<const_iterator, const_iterator> 
    equal_range(const key_type& key) const;

    const Ice::CommunicatorPtr&
    communicator() const;

    ...
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};
}

The semantics of the  methods are identical to those of  unless otherwise noted. In particular, the overloaded Freeze::Map std::map
 method shown below ignores the  argument:insert position

C++

iterator insert(iterator /*position*/, const value_type& elem);

A Freeze map class supports only those methods shown above; other features of , such as allocators and overloaded arraystd::map
operators, are not available.

Non-standard methods that are specific to Freeze maps are discussed below:

Constructors
The following overloaded constructors are provided:

C++

Map(const Freeze::ConnectionPtr& connection, 
    const std::string& dbName,
    bool createDb = true,
    const Compare& compare = Compare());

template<class _InputIterator>
Map(const Freeze::ConnectionPtr& connection, 
    const std::string& dbName, 
    bool createDb,
    _InputIterator first, _InputIterator last,
    const Compare& compare = Compare());

The first constructor accepts a connection, the database name, a flag indicating whether to create the database if it does not exist,
and an object used to compare keys. The second constructor accepts all of the parameters of the first, with the addition of iterators
from which elements are copied into the map. 

Note that a database can only contain the persistent state of one map type. Any attempt to instantiate maps of different types on the
same database results in undefined behavior.

Map copy
The  function copies an existing database:recreate

C++

static void recreate(const Freeze::ConnectionPtr& connection,
                     const std::string& dbName,
                     const Compare& compare = Compare())

The  parameter specifies an existing database name. The copy has the name . For example, if thedbName <dbName>.old-<uuid>
database name is , the copy might be named MyDB

. (Obviously, a different UUID is used each time you recreate aMyDB.old-edefd55a-e66a-478d-a77b-f6d53292b873
database).

destroy
This method deletes the database from its environment and from the . If a transaction is not currently open, theFreeze catalog
method creates its own transaction in which to perform this task.

communicator
This method returns the communicator with which the map's connection is associated.

Using Iterators with Freeze Maps in C++

A Freeze map's iterator works like its counterpart in . The iterator class supports one convenient (but nonstandard) method:std::map
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C++

void set(const mapped_type& value)

Using this method, a program can replace the value at the iterator's current position.

Sample Freeze Map Program in C++

The program below demonstrates how to use a  to store < ,  > pairs in a database. You will notice that there areStringIntMap string int
no explicit  or  operations called by the program; instead, simply using the map has the side effect of accessing the database.read write

C++

#include <Freeze/Freeze.h>
#include <StringIntMap.h>

int
main(int argc, char* argv[])
{
    // Initialize the Communicator.
    //
    Ice::CommunicatorPtr communicator = Ice::initialize(argc, argv);

    // Create a Freeze database connection.
    //
    Freeze::ConnectionPtr connection = Freeze::createConnection(communicator, "db");

    // Instantiate the map.
    //
    StringIntMap map(connection, "simple");

    // Clear the map.
    //
    map.clear();

    Ice::Int i;
    StringIntMap::iterator p;

    // Populate the map.
    //
    for (i = 0; i < 26; i++) {
        std::string key(1, 'a' + i);
        map.insert(make_pair(key, i));
    }

    // Iterate over the map and change the values.
    //
    for (p = map.begin(); p != map.end(); ++p)
        p.set(p->second + 1);

    // Find and erase the last element.
    //
    p = map.find("z");
    assert(p != map.end());
    map.erase(p);

    // Clean up.
    //
    connection->close();
    communicator->destroy();

    return 0;
}
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Prior to instantiating a Freeze map, the application must connect to a Berkeley DB database environment:

C++

Freeze::ConnectionPtr connection = Freeze::createConnection(communicator, "db");

The second argument is the name of a Berkeley DB database environment; by default, this is also the file system directory in which
Berkeley DB creates all database and administrative files. Note that  with the prefix  can modify a number ofproperties Freeze.DbEnv
environment settings, including the file system directory. For the preceding example, you could change the directory to  byFreezeDir
setting the property  to .Freeze.DbEnv.db.DbHome FreezeDir

Next, the code instantiates the  on the connection. The constructor's second argument supplies the name of the databaseStringIntMap
file, which by default is created if it does not exist:

C++

StringIntMap map(connection, "simple");

After instantiating the map, we clear it to make sure it is empty in case the program is run more than once:

C++

map.clear();

Next, we populate the map using a single-character string as the key:

C++

for (i = 0; i < 26; i++) {
    std::string key(1, 'a' + i);
    map.insert(make_pair(key, i));
}

Iterating over the map will look familiar to  users. However, to modify a value at the iterator's current position, we use thestd::map
nonstandard  method:set

C++

for (p = map.begin(); p != map.end(); ++p)
    p.set(p->second + 1);

Next, the program obtains an iterator positioned at the element with key  , and erases it:z

C++

p = map.find("z");
assert(p != map.end());
map.erase(p);

Finally, the program closes the database connection:

C++

connection->close();

It is not necessary to explicitly close the database connection, but we demonstrate it here for the sake of completeness.

See Also
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Using the Slice Compilers
slice2cpp Command-Line Options
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Using a Freeze Map in Java

This section describes the Java code generator and demonstrates how to use a Freeze map in a Java program.

On this page:

 Command Line Optionsslice2freezej
Generating a Simple Map for Java

 Ant Taskslice2freezej
The Freeze Map Class in Java
Using Iterators with Freeze Maps in Java
Generating Indices for Freeze Maps in Java
Sample Freeze Map Program in Java

slice2freezej Command Line Options

The Slice-to-Freeze compiler, , creates Java classes for Freeze maps. The compiler offers the following command-lineslice2freezej
options in addition to the :standard options

--dict NAME,KEY,VALUE

Generate a Freeze map class named  using  as key and  as value. This option may be specified multiple times to generateNAME KEY VALUE
several Freeze maps.  may be a scoped Java name, such as .NAME Demo.Struct1ObjectMap

--dict-index MAP[,MEMBER][,case-sensitive|case-insensitive]

Add an  to the Freeze map named . If  is specified, the map value type must be a structure or a class, and  must beindex MAP MEMBER MEMBER
the name of a member of that type. If  is not specified, the entire value is indexed. When the indexed member (or entire value) is aMEMBER
string, the index can be case-sensitive (default) or case-insensitive.

--index CLASS,TYPE,MEMBER[,case-sensitive|case-insensitive]

Generate an .  is the name of the index class to be generated.  denotes the type of class to beindex class for a Freeze evictor CLASS TYPE
indexed (objects of different classes are not included in this index).  is the name of the data member in  to index. When MEMBER TYPE MEMBER
has type , it is possible to specify whether the index is case-sensitive or not. The default is case-sensitive.string

--meta META

Define the global metadata directive . Using this option is equivalent to defining the global metadata  in each named Slice file, asMETA META
well as in any file included by a named Slice file.

Generating a Simple Map for Java

As an example, the following command generates a simple map:

$ slice2freezej --dict StringIntMap,string,int

This command directs the compiler to create a map named , with the Slice key type  and the Slice value type .StringIntMap string int
The compiler produces one Java source file: .StringIntMap.java

slice2freezej Ant Task

In addition to the , Ice also includes an ant task for executing . The classes for ant task for executing slice2java slice2freezej
 are stored in the same JAR file ( ) as . Both tasks also share the same logic forSlice2FreezeJTask ant-ice.jar Slice2JavaTask

locating a compiler in your execution environment and for managing dependencies between Slice files.

The  supports the parameters listed below:Slice2FreezeJTask

Attribute Description Required
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dependencyfile Specifies an alternate name for the dependency file. If you specify a relative filename, it is relative to
ant's current working directory. If not specified, the task uses the name  by default. If you do not.depend
define this attribute and  is defined, the task creates the  file in the designatedoutputdir .depend
output directory (see ).outputdir

No

ice Instructs the Slice compiler to permit symbols that have the reserved prefix . This parameter is usedIce
in the Ice build system and is not normally required by applications.

No

outputdir Specifies the directory in which the Slice compiler generates Java source files. If not specified, the task
uses ant's current working directory.

No

translator Specifies the path name of the Slice compiler. If not specified, the task locates the Slice compiler in its
execution environment as described for .slice2java

No

Several Slice compiler options must be defined as nested elements of the task:

define
Defines a preprocessor macro. The element supports the attributes  and (optionally) , as shown below:name value

XML

<define name="FOO">
<define name="BAR" value="5">

These definitions are equivalent to the command-line options  and , respectively.-DFOO -DBAR=5

dict
Generates a Freeze map. This element is equivalent to the   and supports three attributes: , ,--dict command line option name key
and .value

dictindex
Generates an index for a Freeze map. This element is equivalent to the   and supports three--dict-index command line option
attributes: , , and .name member casesensitive

fileset
Specifies the set of Slice files to be compiled. Refer to the ant documentation of its  type for more information.FileSet

includepath
Specifies the include file search path for Slice files. In ant terminology,  is a . Refer to the antincludepath path-like structure
documentation of its  type for more information.Path

index
Generates an index for a Freeze evictor. This element is equivalent to the   and supports four--index command line option
attributes: , , , and .name type member casesensitive

meta
Defines a global metadata directive in each Slice file as well as in each included Slice file. The element supports the attributes name
and .value

To enable the  in your ant project, define the following  element in your project's build file:Slice2FreezeJTask taskdef

XML

<taskdef name="slice2freezej" classname="Slice2FreezeJTask"/>

This configuration assumes thatant-ice.jaris already present in ant's class path. Alternatively, you can specify the JAR explicitly as follows:

XML

<taskdef name="slice2freezej" classpath="/opt/Ice/lib/ant-ice.jar" classname="Slice2FreezeJTask"/>

Once activated, you can invoke the task to translate your Slice files. The example shown below is a simplified version of the ant project for
the  demo:library
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XML

<target name="generate" depends="init">
    <mkdir dir="generated"/>
    <slice2java outputdir="generated">
        <fileset dir="." includes="Library.ice"/>
    </slice2java>
    <slice2freezej ice="on" outputdir="generated">
        <fileset dir="/opt/Ice/slice/Ice" includes="BuiltinSequences.ice"/>
        <fileset dir="." includes="Library.ice"/>
        <dict name="StringIsbnSeqDict" key="string" value="Ice::StringSeq"/>
    </slice2freezej>
</target>

This invocation of the  task enables the  option because the generated Freeze map relies on a type that is defined inslice2freezej ice
an Ice namespace and therefore loads the Slice file  directly.BuiltinSequences.ice

The Freeze Map Class in Java

The class generated by  implements the  interface, as shown below:slice2freezej Freeze.Map

Java

package Freeze;

public interface Map<K, V> extends NavigableMap<K, V>
{
    void fastPut(K key, V value);
    void close();
    int closeAllIterators();
    void destroy();

    public interface EntryIterator<T> extends java.util.Iterator<T>
    {
        void close();
        void destroy(); // an alias for close
    }
}

The  interface implements standard Java interfaces and provides nonstandard methods that improve efficiency and supportMap
database-oriented features.  defines the following methods:Map

fastPut
Inserts a new key-value pair. This method is more efficient than the standard  method because it avoids the overhead of readingput
and decoding the previous value associated with the key (if any).

close
Closes the database associated with this map along with all open iterators. A map must be closed when it is no longer needed,
either by closing the map directly or by closing the Freeze  object with which this map is associated.Connection

closeAllIterators
Closes all open iterators and returns the number of iterators that were closed. We discuss iterators in more detail in the next section.

destroy
Removes the database associated with this map along with any indices.

Map inherits much of its functionality from the  interface, which derives from the standard Java interface Freeze.NavigableMap
 and also supports a subset of the  interface from Java6:java.util.SortedMap java.util.NavigableMap
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Java

package Freeze;

public interface NavigableMap<K, V> extends java.util.SortedMap<K, V>
{
    java.util.Map.Entry<K, V> firstEntry();
    java.util.Map.Entry<K, V> lastEntry();

    java.util.Map.Entry<K, V> ceilingEntry(K key);
    java.util.Map.Entry<K, V> floorEntry(K key);
    java.util.Map.Entry<K, V> higherEntry(K key);
    java.util.Map.Entry<K, V> lowerEntry(K key);

    K ceilingKey(K key);
    K floorKey(K key);
    K higherKey(K key);
    K lowerKey(K key);

    java.util.Set<K> descendingKeySet();
    NavigableMap<K, V> descendingMap();

    NavigableMap<K, V> headMap(K toKey, boolean inclusive);
    NavigableMap<K, V> tailMap(K fromKey, boolean inclusive);
    NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
                              K toKey, boolean toInclusive);

    java.util.Map.Entry<K, V> pollFirstEntry();
    java.util.Map.Entry<K, V> pollLastEntry();

    boolean fastRemove(K key);
}

The generated class does not implement  because Freeze maps must remain compatiblejava.util.NavigableMap
with Java5.

The  interface provides a number of useful methods:NavigableMap

firstEntry
lastEntry
Returns the first and last key-value pair, respectively.

ceilingEntry
Returns the key-value pair associated with the least key greater than or equal to the given key, or null if there is no such key.

floorEntry
Returns the key-value pair associated with the greatest key less than or equal to the given key, or null if there is no such key.

higherEntry
Returns the key-value pair associated with the least key greater than the given key, or null if there is no such key.

lowerEntry
Returns the key-value pair associated with the greatest key less than the given key, or null if there is no such key.

ceilingKey
floorKey
higherKey
lowerKey
These methods have the same semantics as those described above, except they return only the key portion of the matching
key-value pair or null if there is no such key.

descendingKeySet
Returns a set representing a reverse-order view of the keys in this map.
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descendingMap
Returns a reverse-order view of the entries in this map.

headMap
Returns a view of the portion of this map whose keys are less than (or equal to, if inclusive is true) the given key.

tailMap
Returns a view of the portion of this map whose keys are greater than (or equal to, if inclusive is true) the given key.

subMap
Returns a view of the portion of this map whose keys are within the given range.

pollFirstEntry
pollLastEntry
Removes and returns the first and last key-value pair, respectively.

fastRemove
Removes an existing key-value pair. As for , this method is a more efficient alternative to the standard  methodfastPut remove
that returns true if a key-value pair was removed, or false if no match was found.

Many of these methods raise  if you fail to construct the Freeze map using a custom comparatorUnsupportedOperationException
object. The only exceptions are , , , , and . (The same applies to firstEntry lastEntry pollFirstEntry pollLastEntry fastRemove

 objects created for secondary keys.)NavigableMap

Note that  also inherits overloaded methods named , , and  from the  interface. TheseNavigableMap headMap tailMap subMap SortedMap
methods have the same semantics as the ones defined in  but they omit the boolean arguments (refer to the JDKNavigableMap
documentation for complete details). Although these methods are declared as returning a , the actual type of the returned objectSortedMap
is a  that you can downcast if necessary.NavigableMap

There are some limitations in the sub maps returned by the ,  and  methods:headMap tailMap subMap

A new entry in the Freeze map cannot be added via a sub map, therefore calling  raises .put UnsupportedOperationException
An existing entry in the Freeze map cannot be removed via a sub map or iterator for a .secondary key

Now let us examine the contents of the source file created by the example in the previous section:

Java

public class StringIntMap extends ...
    // implements Freeze.Map<String, Integer>
{
    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb,
        java.util.Comparator<String> comparator);

    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb);

    public StringIntMap(
        Freeze.Connection connection,
        String dbName);
}

StringIntMap derives from an internal Freeze base class that implements the interface . TheFreeze.Map<String, Integer>
generated class defines several overloaded constructors whose arguments are described below:

connection
The  object.Freeze connection

dbName
The name of the database in which to store this map's persistent state. Note that a database can only contain the persistent state of
one map type. Any attempt to instantiate maps of different types on the same database results in undefined behavior.

createDb



Ice 3.4.2 Documentation

1368 Copyright © 2011, ZeroC, Inc.

A flag indicating whether the map should create the database if it does not already exist. If this argument is not specified, the default
value is .true

comparator
An object used to compare the map's keys. If this argument is not specified, the default behavior compares the encoded form of the
keys.

Using Iterators with Freeze Maps in Java

You can iterate over a Freeze map just as you can with any container that implements the  interface. For example, thejava.util.Map
code below displays the key and value of each element:

Java

StringIntMap m = new StringIntMap(...);
java.util.Iterator<java.util.Map.Entry<String, Integer>> i = m.entrySet().iterator();
while (i.hasNext()) {
    java.util.Map.Entry<String, Integer> e = i.next();
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
}

Generally speaking, a program should . (An iterator that is garbage collected without beingclose an iterator when it is no longer necessary
closed emits a warning message.) However, an explicit close was not necessary in the preceding example because Freeze automatically
closes a read-only iterator when it reaches the last element (a read-only iterator is one that is opened outside of any transaction). If instead
our program had stopped using the iterator prior to reaching the last element, an explicit close would have been necessary:

Java

StringIntMap m = new StringIntMap(...);
java.util.Iterator<java.util.Map.Entry<String, Integer>> i = m.entrySet().iterator();
while (i.hasNext()) {
    java.util.Map.Entry<String, Integer> e = i.next();
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
    if (e.getValue().intValue() == 5)
        break;
}
((Freeze.Map.EntryIterator)i).close();

Closing the iterator requires downcasting it to a Freeze-specific interface named . The definition of thisFreeze.Map.EntryIterator
interface was shown in the previous section.

Freeze maps also support the enhanced  loop functionality in Java5. Here is a simpler way to write our original program:for

Java

StringIntMap m = new StringIntMap(...);
for (java.util.Map.Entry<String, Integer> e : m.entrySet()) {
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
}

As in the first example, Freeze automatically closes the iterator when no more elements are available. Although the enhanced  loop isfor
convenient, it is not appropriate for all situations because the loop hides its iterator and therefore prevents the program from accessing the
iterator in order to close it. In this case, you can use the traditional  loop instead of the  loop, or you can invoke while for

 on the map as shown below:closeAllIterators



Ice 3.4.2 Documentation

1369 Copyright © 2011, ZeroC, Inc.

Java

StringIntMap m = new StringIntMap(...);
for (java.util.Map.Entry<String, Integer> e : m.entrySet()) {
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
    if (e.getValue().intValue() == 5)
        break;
}
int num = m.closeAllIterators();
assert(num <= 1); // The iterator may already be closed.

The  method returns an integer representing the number of iterators that were actually closed. This value can becloseAllIterators
useful for diagnostic purposes, such as to assert that a program is correctly closing its iterators.

Generating Indices for Freeze Maps in Java

Using the  option to define an index for a secondary key causes  to generate the following additional code--dict-index slice2freezej
in a Freeze map:

A static nested class named , which allows you to supply a custom comparator object for each index in theIndexComparators
map.
An overloading of the map constructor that accepts an instance of .IndexComparators
An overloading of the  method that accepts an instance of .recreate IndexComparators
Searching, counting, and range-searching methods for finding key-value pairs using the secondary key.

We discuss each of these additions in more detail below. In this discussion,  refers to the optional argument of the MEMBER --dict-index
option, and  refers to the type of that member. As explained earlier, if  is not specified,  creates anMEMBER_TYPE MEMBER slice2freezej
index for the value type of the map. The sample code presented in this section assumes we have generated a Freeze map using the
following command:

Java

$ slice2freezej --dict StringIntMap,string,int --dict-index StringIntMap

By default, index keys are sorted using their binary Ice-encoded representation. This is an efficient sorting scheme but does not necessarily
provide a meaningful traversal order for applications. You can choose a different order by providing an instance of the IndexComparators
class to the map constructor. This class has a public data member holding a comparator (an instance of java.util.Comparator<

) for each index in the map. The class also provides an empty constructor as well as a convenience constructor that allowsMEMBER_TYPE>
you to instantiate and initialize the object all at once. The name of each data member is . If  is not specified, theMEMBERComparator MEMBER

 class has a single data member named . Note that much of the functionality offered by a mapIndexComparators valueComparator
index requires that you provide a custom comparator.

Here is the definition of  for :IndexComparators StringIntMap

Java

public class StringIntMap ... {
    public static class IndexComparators {
        public IndexComparators() {}

        public IndexComparators(java.util.Comparator<Integer> valueComparator);

        public java.util.Comparator<Integer> valueComparator;
    }

    ...
}

To instantiate a Freeze map using your custom comparators, you must use the overloaded constructor that accepts the 
 object. For our , this constructor has the following definition:IndexComparators StringIntMap



Ice 3.4.2 Documentation

1370 Copyright © 2011, ZeroC, Inc.

Java

public class StringIntMap ... {
    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb,
        java.util.Comparator<String> comparator,
        IndexComparators indexComparators);

    ...
}

Now we can instantiate our  as follows:StringIntMap

Java

java.util.Comparator<String> myMainKeyComparator = ...;
StringIntMap.IndexComparators indexComparators = new StringIntMap.IndexComparators();
indexComparators.valueComparator = ...;
StringIntMap m = new StringIntMap(connection, "stringIntMap", true,
                                  myMainKeyComparator, indexComparators);

If you later need to change the index configuration of a Freeze map, you can use one of the  methods to update the database.recreate
Here are the definitions from :StringIntMap

Java

public class StringIntMap ... {
    public static void recreate(
        Freeze.Connection connection,
        String dbName,
        java.util.Comparator<String> comparator);

    public static void recreate(
        Freeze.Connection connection,
        String dbName,
        java.util.Comparator<String> comparator,
        IndexComparators indexComparators);

    ...
}

The first overloading is generated for every map, whereas the second overloading is only generated when the map has at least one index.
As its name implies, the  method creates a new copy of the database. More specifically, the method removes any existing indices,recreate
copies every key-value pair to a temporary database, and finally replaces the old database with the new one. As a side-effect, this process
also populates any remaining indices. The first overloading of  is useful when you have regenerated the map to remove the lastrecreate
index and wish to clean up the map's database state.

slice2freezej also generates a number of index-specific methods. The names of these methods incorporate the member name (MEMBER
), or use  if  is not specified. In each method name, the value of  is used unchanged if it appears at the beginning ofvalue MEMBER MEMBER
the method's name. Otherwise, if  is used elsewhere in the method name, its first letter is capitalized. The index methods areMEMBER
described below:

public Freeze.Map.EntryIterator<Map.Entry<K, V>>
 findBy (  index)MEMBER MEMBER_TYPE

public Freeze.Map.EntryIterator<Map.Entry<K, V>>
findBy (  index, boolean onlyDups)MEMBER MEMBER_TYPE
Returns an iterator over elements of the Freeze map starting with an element with whose index value matches the given index
value. If there is no such element, the returned iterator is empty (  always returns false). When the second parameter is truehasNext
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(or is not provided), the returned iterator provides only "duplicate" elements, that is, elements with the very same index value.
Otherwise, the iterator sets a starting position in the map, and then provides elements until the end of the map, sorted according to
the index comparator. Any attempt to modify the map via this iterator results in an .UnsupportedOperationException

public int Count(  index)MEMBER MEMBER_TYPE
Returns the number of elements in the Freeze map whose index value matches the given index value.

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
 headMapFor (  to, boolean inclusive)MEMBER MEMBER_TYPE

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
headMapFor (  to)MEMBER MEMBER_TYPE
Returns a view of the portion of the Freeze map whose keys are less than (or equal to, if  is true) the given key. If inclusive

 is not specified, the method behaves as if  is false.inclusive inclusive

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
tailMapFor (  from, boolean inclusive)MEMBER MEMBER_TYPE

public NavigableMap< , Set<Map.Entry<K, V>>>}}MEMBER_TYPE
tailMapFor (  from)MEMBER MEMBER_TYPE
Returns a view of the portion of the Freeze map whose keys are greater than (or equal to, if  is true) the given key. If inclusive

 is not specified, the method behaves as if  is true.inclusive inclusive

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
subMapFor (  from, boolean fromInclusive,MEMBER MEMBER_TYPE

                 to, boolean toInclusive)MEMBER_TYPE

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
subMapFor (  from,  to)MEMBER MEMBER_TYPE MEMBER_TYPE
Returns a view of the portion of the Freeze map whose keys are within the given range. If  and  arefromInclusive toInclusive
not specified, the method behaves as if  is true and  is false.fromInclusive toInclusive

public NavigableMap< , Set<Map.Entry<K, V>>>MEMBER_TYPE
mapFor ()MEMBER
Returns a view of the entire Freeze map ordered by the index key.

For the methods returning a , the key type is the secondary key type and the value is the set of matching key-value pairsNavigableMap
from the Freeze map. (For the sake of readability, we have omitted the  prefix from  and .) In other words, thejava.util Set Map.Entry
returned map is a mapping of the secondary key to all of the entries whose value contains the same key. Any attempt to add, remove, or
modify an element via a sub map view or an iterator of a sub map view results in an .UnsupportedOperationException

Note that iterators returned by the  methods, as well as those created for sub map views, ,findByMEMBER may need to be closed explicitly
just like iterators obtained for the main Freeze map.

Here are the definitions of the index methods for :StringIntMap
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Java

public Freeze.Map.EntryIterator<Map.Entry<String, Integer>>
findByValue(Integer index);

public Freeze.Map.EntryIterator<Map.Entry<String, Integer>>
findByValue(Integer index, boolean onlyDups);

public int valueCount(Integer index);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
headMapForValue(Integer to, boolean inclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
headMapForValue(Integer to);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
tailMapForValue(Integer from, boolean inclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
tailMapForValue(Integer from);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
subMapForValue(Integer from, boolean fromInclusive,
               Integer to, boolean toInclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
subMapForValue(Integer from, Integer to);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
mapForValue();

Sample Freeze Map Program in Java

The program below demonstrates how to use a  to store < , > pairs in a database. You will notice that there areStringIntMap string int
no explicit  or  operations called by the program; instead, simply using the map has the side effect of accessing the database.read write
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Java

public class Client
{
    public static void
    main(String[] args)
    {
        // Initialize the Communicator.
        //
        Ice.Communicator communicator = Ice.Util.initialize(args);

        // Create a Freeze database connection.
        //
        Freeze.Connection connection = Freeze.Util.createConnection(communicator, "db");

        // Instantiate the map.
        //
        StringIntMap map = new StringIntMap(connection, "simple", true);

        // Clear the map.
        //
        map.clear();

        int i;

        // Populate the map.
        //
        for (i = 0; i < 26; i++) {
            final char[] ch = { (char)('a' + i) };
            map.put(new String(ch), i);
        }

        // Iterate over the map and change the values.
        //
        for (java.util.Map.Entry<String, Integer> e : map.entrySet()) {
            Integer in = e.getValue();
            e.setValue(in.intValue() + 1);
        }

        // Find and erase the last element.
        //
        boolean b;
        b = map.containsKey("z");
        assert(b);
        b = map.fastRemove("z");
        assert(b);

        // Clean up.
        //
        map.close();
        connection.close();
        communicator.destroy();

        System.exit(0);
    }
}

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB database environment:

Java

Freeze.Connection connection = Freeze.Util.createConnection(communicator, "db");
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The second argument is the name of a Berkeley DB database environment; by default, this is also the file system directory in which Berkeley
DB creates all database and administrative files.

Next, the code instantiates the  on the connection. The constructor's second argument supplies the name of the databaseStringIntMap
file, and the third argument indicates that the database should be created if it does not exist:

Java

StringIntMap map = new StringIntMap(connection, "simple", true);

After instantiating the map, we clear it to make sure it is empty in case the program is run more than once:

Java

map.clear();

We populate the map, using a single-character string as the key. As with , the key and value types must be Java objectsjava.util.Map
but the compiler takes care of autoboxing the integer argument:

Java

for (i = 0; i < 26; i++) {
    final char[] ch = { (char)('a' + i) };
    map.put(new String(ch), i);
}

Iterating over the map is no different from iterating over any other map that implements the  interface:java.util.Map

Java

for (java.util.Map.Entry<String, Integer> e : map.entrySet()) {
    Integer in = e.getValue();
    e.setValue(in.intValue() + 1);
}

Next, the program verifies that an element exists with key , and then removes it using :z fastRemove

Java

b = map.containsKey("z");
assert(b);
b = map.fastRemove("z");
assert(b);

Finally, the program closes the map and its connection.

Java

map.close();
connection.close();

See Also

Using the Slice Compilers
Using the Slice Compiler for Java
Freeze Map Concepts
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1.  
2.  

3.  
4.  

Using a Freeze Map in the File System Server

We can use a Freeze map to add persistence to the file system server, and we'll present implementations in both C++ and Java. However, a 
 is often a better choice for applications (such as the file system server) in which the persistent value is an Ice object.Freeze evictor

In general, incorporating a Freeze map into your application requires the following steps:

Evaluate your existing Slice definitions for suitable key and value types.
If no suitable key or value types are found, define new (possibly derived) types that capture your persistent state requirements.
Consider placing these definitions in a separate file: these types are only used by the server for persistence, and therefore do not
need to appear in the "public" definitions required by clients. Also consider placing your persistent types in a separate module to
avoid name clashes.
Generate a Freeze map for your persistent types using the Freeze compiler.
Use the Freeze map in your operation implementations.

Choosing Key and Value Types for the File System

Our goal is to implement the file system using Freeze maps for all persistent storage, including files and their contents. There are various
options for how to implement the server. For this example, the server is stateless; whenever a client invokes an operation, the server
accesses the database to satisfy the request. Implementing the server in this way has the advantage that it scales very well: we do not need
a separate servant for each node; instead two , one for directories and one for files, are sufficient. This keeps the memorydefault servants
requirements of the server to a minimum and also allows us to rely on the database for transactions and locking. (This is a very common
implementation technique for servers that act as a front end to a database: the server is a simple facade that implements each operation by
accessing the database.)

Our first step is to select the Slice types we will use for the key and value types for our maps. For each file, we need to store the name of the
file, its parent directory, and the contents of the file. For directories, we also store the name and parent directory, as well as a dictionary that
keeps track of the subdirectories and files in that directory. This leads to Slice definitions (in file ) as follows:FilesystemDB.ice

Slice

#include <Filesystem.ice>
#include <Ice/Identity.ice>

module FilesystemDB {
    struct FileEntry {
        string name;
        Ice::Identity parent;
        Filesystem::Lines text;
    };

    dictionary<string, Filesystem::NodeDesc> StringNodeDescDict;

    struct DirectoryEntry {
        string name;
        Ice::Identity parent;
        StringNodeDescDict nodes;
    };
};

Note that the definitions are placed into a separate module, so they do not affect the existing definitions of the non-persistent version of the
application. For reference, here is the definition of  once more:NodeDesc
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Slice

module Filesystem {
    // ...

    enum NodeType { DirType, FileType };

    struct NodeDesc {
        string name;
        NodeType type;
        Node* proxy;
    };

    // ...
};

To store the persistent state for the file system, we use two Freeze maps: one map for files and one map for directories. For files, we map
the identity of the file to its corresponding  structure and, similarly, for directories, we map the identity of the directory to itsFileEntry
corresponding  structure.DirectoryEntry

When a request arrives from a client, the object identity is available in the server. The server uses the identity to retrieve the state of the
target node for the request from the database and act on that state accordingly.

Topics

Adding a Freeze Map to the C++ File System Server
Adding a Freeze Map to the Java File System Server

See Also

Default Servants
Freeze Evictors
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Adding a Freeze Map to the C++ File System Server

Here we present a C++ implementation of the .file system server

On this page:

Generating the File System Maps in C++
The Server Main Program in C++
The Servant Class Definitions in C++
Implementing  with a Freeze Map in C++FileI
Implementing  with a Freeze Map in C++DirectoryI

Generating the File System Maps in C++

Now that we have selected our key and value types, we can generate the maps as follows:

$ slice2freeze -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB::IdentityFileEntryMap,Ice::Identity,\
    FilesystemDB::FileEntry \
    IdentityFileEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice
$ slice2freeze -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB::IdentityDirectoryEntryMap,Ice::Identity,\
    FilesystemDB::DirectoryEntry \
    IdentityDirectoryEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map classes are named  and .IdentityFileEntryMap IdentityDirectoryEntryMap

The Server Main Program in C++

The server's  program is very simple:main
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C++

#include <FilesystemI.h>
#include <IdentityFileEntryMap.h>
#include <IdentityDirectoryEntryMap.h>
#include <Ice/Application.h>
#include <Freeze/Freeze.h>

using namespace std;
using namespace Filesystem;
using namespace FilesystemDB;

class FilesystemApp : public virtual Ice::Application
{
public:

    FilesystemApp(const string& envName)
        : _envName(envName)
    {
    }

    virtual int run(int, char*[])
    {
        shutdownOnInterrupt();

        Ice::ObjectAdapterPtr adapter =
            communicator()->createObjectAdapter("MapFilesystem");

        const Freeze::ConnectionPtr connection(
            Freeze::createConnection(communicator(), _envName));

        const IdentityFileEntryMap fileDB(connection, FileI::filesDB());
        const IdentityDirectoryEntryMap dirDB(
                                    connection,
                                    DirectoryI::directoriesDB());

        adapter->addDefaultServant(new FileI(communicator(), _envName), "file");
        adapter->addDefaultServant(new DirectoryI(communicator(), _envName), "");

        adapter->activate();

        communicator()->waitForShutdown();

        if(interrupted())
            cerr << appName() << ": received signal, shutting down" << endl;

        return 0;
    }

private:

    string _envName;
};

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

Let us examine the code in detail. First, we are now including  and . These headerIdentityFileEntry.h IdentityDirectoryEntry.h
files includes all of the other Freeze (and Ice) header files we need.

Next, we define the class  as a subclass of , and provide a constructor taking a string argument:FilesystemApp Ice::Application
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C++

    FilesystemApp(const string& envName)
        : _envName(envName) {}

The string argument represents the name of the database environment, and is saved for later use in .run

The interesting part of  are the few lines of code that create the database connection and the two maps that store files and directories,run
plus the code to add the two default servants:

C++

        const Freeze::ConnectionPtr connection(
            Freeze::createConnection(communicator(), _envName));

        const IdentityFileEntryMap fileDB(connection, FileI::filesDB());
        const IdentityDirectoryEntryMap dirDB(
                                    connection,
                                    DirectoryI::directoriesDB());

        adapter->addDefaultServant(new FileI(communicator(), _envName), "file");
        adapter->addDefaultServant(new DirectoryI(communicator(), _envName), "");

run keeps the database connection open for the duration of the program for performance reasons. As we will see shortly, individual
operation implementations will use their own connections; however, it is substantially cheaper to create second (and subsequent
connections) than it is to create the first connection.

For the default servants, we use  as the category for files. For directories, we use the empty default category.file

The Servant Class Definitions in C++

The class definition for  is very simple:FileI

C++

namespace Filesystem {
    class FileI : public File {
    public:
        FileI(const Ice::CommunicatorPtr& communicator,
              const std::string& envName);

        // Slice operations...

        static std::string filesDB();

    private:
        void halt(const Freeze::DatabaseException& ex) const;

        const Ice::CommunicatorPtr _communicator;
        const std::string _envName;
    };
}

The  class stores the communicator and the environment name. These members are initialized by the constructor. The FileI filesDB
static member function returns the name of the file map, and the  member function is used to stop the server if it encounters ahalt
catastrophic error.

The  class looks very much the same, also storing the communicator and environment name. The  staticDirectoryI directoriesDB
member function returns the name of the directory map.



Ice 3.4.2 Documentation

1380 Copyright © 2011, ZeroC, Inc.

C++

namespace Filesystem {
    class DirectoryI : public Directory {
    public:
        DirectoryI(const Ice::CommunicatorPtr& communicator,
                   const std::string& envName);

        // Slice operations...

        static std::string directoriesDB();

    private:
        void halt(const Freeze::DatabaseException& ex) const;

        const Ice::CommunicatorPtr _communicator;
        const std::string _envName;
    };
}

Implementing  with a Freeze Map in C++FileI

The  constructor and the  and  member functions have trivial implementations:FileI filesDB halt

C++

FileI::FileI(const Ice::CommunicatorPtr& communicator,
             const string& envName)
    : _communicator(communicator), _envName(envName)
{
}

string
FileI::filesDB()
{
    return "files";
}

void
FileI::halt(const Freeze::DatabaseException& ex) const
{
    Ice::Error error(_communicator->getLogger());
    error << "fatal exception: " << ex << "\n*** Aborting application ***";

    abort();
}

The Slice operations all follow the same implementation strategy: we create a database connection and the file map and place the body of
the operation into an infinite loop:
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C++

string
FileI::someOperation(/* ... */ const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            
            // Operation implementation here...

        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Each operation creates its own database connection and map for concurrency reasons: the database takes care of all the necessary locking,
so there is no need for any other synchronization in the server. If the database detects a deadlock, the code handles the corresponding 

 and simply tries again until the operation eventually succeeds; any other database exception indicates thatDeadlockException
something has gone seriously wrong and terminates the server.

Here is the implementation of the  method:name

C++

string
FileI::name(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }
            return p->second.name;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

The implementation could hardly be simpler: the default servant uses the identity in the  object to index into the file map. If a recordCurrent
with this identity exists, it returns the name of the file as stored in the  structure in the map. Otherwise, if no such entry exists, itFileEntry
throws . This happens if the file existed at some time in the past but has since been destroyed.ObjectNotExistException

The  implementation is almost identical. It returns the text that is stored by the :read FileEntry
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C++

Lines
FileI::read(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }
            return p->second.text;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

The  implementation updates the file contents and calls  on the iterator to update the map with the new contents:write set

C++

void
FileI::write(const Filesystem::Lines& text, const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }
            FileEntry entry = p->second;
            entry.text = text;
            p.set(entry);
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Finally, the  implementation for files must update two maps: it needs to remove its own entry in the file map as well as update the destroy
 map in the parent to remove itself from the parent's map of children. This raises a potential problem: if one update succeeds but thenodes

other one fails, we end up with an inconsistent file system: either the parent still has an entry to a non-existent file, or the parent lacks an
entry to a file that still exists.

To make sure that the two updates happen atomically,  performs them in a transaction:destroy
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C++

void
FileI::destroy(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());
    IdentityDirectoryEntryMap dirDB(connection, DirectoryI::directoriesDB());

    for (;;) {
        try {
            Freeze::TransactionHolder txn(connection);

            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }
            FileEntry entry = p->second;

            IdentityDirectoryEntryMap::iterator pp = dirDB.find(entry.parent);
            if (pp == dirDB.end()) {
                halt(Freeze::DatabaseException(
                       __FILE__, __LINE__,
                       "consistency error: file without parent"));
            }

            DirectoryEntry dirEntry = pp->second;
            dirEntry.nodes.erase(entry.name);
            pp.set(dirEntry);

            fileDB.erase(p);
            txn.commit();
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

As you can see, the code first establishes a transaction and then locates the file in the parent directory's map of nodes. After removing the
file from the parent, the code updates the parent's persistent state by calling  on the parent iterator and then removes the file from the fileset
map before committing the transaction.

Implementing  with a Freeze Map in C++DirectoryI

The  implementation returns the string , and the  implementation is the same as for DirectoryI::directoriesDB directories halt
, so we do not show them here.FileI

Turning to the constructor, we must cater for two different scenarios:

The server is started with a database that already contains a number of nodes.
The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be present in the database. Accordingly, the constructor looks
for the root directory (with the fixed identity ); if the root directory does not exist in the database, it creates it:RootDir



Ice 3.4.2 Documentation

1384 Copyright © 2011, ZeroC, Inc.

C++

DirectoryI::DirectoryI(const Ice::CommunicatorPtr& communicator, const string& envName)
    : _communicator(communicator), _envName(envName)
{
    const Freeze::ConnectionPtr connection =
        Freeze::createConnection(_communicator, _envName);
    IdentityDirectoryEntryMap dirDB(connection, directoriesDB());

    for (;;) {
        try {
            Ice::Identity rootId;
            rootId.name = "RootDir";
            IdentityDirectoryEntryMap::const_iterator p = dirDB.find(rootId);
            if (p == dirDB.end()) {
                DirectoryEntry d;
                d.name = "/";
                dirDB.put(make_pair(rootId, d));
            }
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Next, let us examine the implementation of . Similar to the  operation,  mustcreateDirectory FileI::destroy createDirectory
update both the parent's nodes map and create a new entry in the directory map. These updates must happen atomically, so we perform
them in a separate transaction:
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C++

DirectoryPrx
DirectoryI::createDirectory(const string& name, const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityDirectoryEntryMap directoryDB(connection, directoriesDB());

    for (;;) {
        try {
            Freeze::TransactionHolder txn(connection);

            IdentityDirectoryEntryMap::iterator p =
                directoryDB.find(c.id);
            if (p == directoryDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }

            DirectoryEntry entry = p->second;
            if (name.empty() || entry.nodes.find(name) != entry.nodes.end()) {
                throw NameInUse(name);
            }

            DirectoryEntry d;
            d.name = name;
            d.parent = c.id;

            Ice::Identity id;
            id.name = IceUtil::generateUUID();
            DirectoryPrx proxy = DirectoryPrx::uncheckedCast(c.adapter->createProxy(id));

            NodeDesc nd;
            nd.name = name;
            nd.type = DirType;
            nd.proxy = proxy;
            entry.nodes.insert(make_pair(name, nd));

            p.set(entry);
            directoryDB.put(make_pair(id, d));

            txn.commit();

            return proxy;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

After establishing the transaction, the code ensures that the directory does not already contain an entry with the same name and then
initializes a new , setting the name to the name of the new directory, and the parent to its own identity. The identity of theDirectoryEntry
new directory is a UUID, which ensures that all directories have unique identities. In addition, the UUID prevents the  of aaccidental rebirth
file or directory in the future.

The code then initializes a new  structure with the details of the new directory and, finally, updates its own map of children as wellNodeDesc
as adding the new directory to the map of directories before committing the transaction.

The  implementation is almost identical, so we do not show it here. Similarly, the  and  implementations arecreateFile name destroy
almost identical to the ones for , so let us move to :FileI list
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C++

NodeDescSeq
DirectoryI::list(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityDirectoryEntryMap directoryDB(connection, directoriesDB());

    for (;;) {
        try {
            IdentityDirectoryEntryMap::iterator p = directoryDB.find(c.id);
            if (p == directoryDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__, __LINE__);
            }
            NodeDescSeq result;
            for (StringNodeDescDict::const_iterator q = p->second.nodes.begin();
                 q != p->second.nodes.end(); ++q) {
                result.push_back(q->second);
            }
            return result;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Again, the code is very simple: it iterates over the  map, adding each  structure to the returned sequence.nodes NodeDesc

The  implementation is even simpler, so we do not show it here.find

See Also

Freeze Maps
Object Identity and Uniqueness
The Current Object
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Adding a Freeze Map to the Java File System Server

Here we present a Java implementation of the .file system server

On this page:

Generating the File System Maps in Java
The Server Main Program in Java
Implementing  with a Freeze Map in JavaFileI
Implementing  with a Freeze Map in JavaDirectoryI

Generating the File System Maps in Java

Now that we have selected our key and value types, we can generate the maps as follows:

$ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB.IdentityFileEntryMap,Ice.Identity,\
    FilesystemDB.FileEntry \
    IdentityFileEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice
$ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB.IdentityDirectoryEntryMap,Ice.Identity,\
    FilesystemDB.DirectoryEntry \
    IdentityDirectoryEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map classes are named  and .IdentityFileEntryMap IdentityDirectoryEntryMap

The Server Main Program in Java

The server's main program is very simple:



Ice 3.4.2 Documentation

1388 Copyright © 2011, ZeroC, Inc.

Java

import Filesystem.*;
import FilesystemDB.*;

public class Server extends Ice.Application
{
    public
    Server(String envName)
    {
        _envName = envName;
    }

    public int
    run(String[] args)
    {
        Ice.ObjectAdapter adapter = communicator().createObjectAdapter("MapFilesystem");

        Freeze.Connection connection = null;
        try {
            connection = Freeze.Util.createConnection(communicator(), _envName);
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(connection, FileI.filesDB(), true); 
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB(), true);

            adapter.addDefaultServant(new FileI(communicator(), _envName), "file");
            adapter.addDefaultServant(new DirectoryI(communicator(), _envName), "");
            
            adapter.activate();
            
            communicator().waitForShutdown();
        } finally {
            connection.close();
        }
            
        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        app.main("MapServer", args, "config.server");
        System.exit(0);
    }

    private String _envName;
}

First, we import the  and  packages.Filesystem FilesystemDB

Next, we define the class  as a subclass of , and provide a constructor taking a string argument:FilesystemApp Ice.Application

Java

    FilesystemApp(const string& envName)
        : _envName(envName) {}

The string argument represents the name of the database environment, and is saved for later use in .run

The interesting part of  are the few lines of code that create the database connection and the two maps that store files and directories,run
plus the code to add the two default servants:
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Java

            connection = Freeze.Util.createConnection(communicator(), _envName);
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(connection, FileI.filesDB(), true); 
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB(), true);

            adapter.addDefaultServant(new FileI(communicator(), _envName), "file");
            adapter.addDefaultServant(new DirectoryI(communicator(), _envName), "");

run keeps the database connection open for the duration of the program for performance reasons. As we will see shortly, individual
operation implementations will use their own connections; however, it is substantially cheaper to create second (and subsequent
connections) than it is to create the first connection.

For the default servants, we use  as the category for files. For directories, we use the empty default category.file

Implementing  with a Freeze Map in JavaFileI

The class definition for  is very simple:FileI

Java

public class FileI extends _FileDisp
{
    public
    FileI(Ice.Communicator communicator, String envName)
    {
        _communicator = communicator;
        _envName = envName;
    }

    // Slice operations...

    public static String
    filesDB()
    {
        return "files";
    }

    private void
    halt(Freeze.DatabaseException e)
    {
        java.io.StringWriter sw = new java.io.StringWriter();
        java.io.PrintWriter pw = new java.io.PrintWriter(sw);
        e.printStackTrace(pw);
        pw.flush();
        _communicator.getLogger().error(
            "fatal database error\n" + sw.toString() + "\n*** Halting JVM ***");
        Runtime.getRuntime().halt(1);
    }

    private Ice.Communicator _communicator;
    private String _envName;
}

The  class stores the communicator and the environment name. These members are initialized by the constructor. The FileI filesDB
static method returns the name of the file map, and the  member function is used to stop the server if it encounters a catastrophic error.halt

The Slice operations all follow the same implementation strategy: we create a database connection and the file map and place the body of
the operation into an infinite loop:
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Java

    public String
    someOperation(/* ... */ Ice.Current c)
    {
        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {

                    // Operation implementation here...

                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Each operation creates its own database connection and map for concurrency reasons: the database takes care of all the necessary locking,
so there is no need for any other synchronization in the server. If the database detects a deadlock, the code handles the corresponding 

 and simply tries again until the operation eventually succeeds; any other database exception indicates thatDeadlockException
something has gone seriously wrong and terminates the server.

Here is the implementation of the  method:name

Java

    public String
    name(Ice.Current c)
    {
        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try
        {
            IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    return entry.name;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

The implementation could hardly be simpler: the default servant uses the identity in the  object to index into the file map. If a recordCurrent
with this identity exists, it returns the name of the file as stored in the  structure in the map. Otherwise, if no such entry exists, itFileEntry
throws . This happens if the file existed at some time in the past but has since been destroyed.ObjectNotExistException
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The  implementation is almost identical. It returns the text that is stored by the :read FileEntry

Java

    public String[]
    read(Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    return entry.text;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

The  implementation updates the file contents and calls  on the iterator to update the map with the new contents:write put

Java

    public void
    write(String[] text, Ice.Current c)
        throws GenericError
    {
        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    entry.text = text;
                    fileDB.put(c.id, entry);
                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Finally, the  implementation for files must update two maps: it needs to remove its own entry in the file map as well as update the destroy
 map in the parent to remove itself from the parent's map of children. This raises a potential problem: if one update succeeds but thenodes
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other one fails, we end up with an inconsistent file system: either the parent still has an entry to a non-existent file, or the parent lacks an
entry to a file that still exists.

To make sure that the two updates happen atomically,  performs them in a transaction:destroy

Java

    public void
    destroy(Ice.Current c)
        throws PermissionDenied
    {
        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB = new IdentityFileEntryMap(connection, filesDB());
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, DirectoryI.directoriesDB());

            for (;;) {
                Freeze.Transaction txn = null;
                try {
                    txn = connection.beginTransaction();

                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }

                    DirectoryEntry dirEntry = (DirectoryEntry)dirDB.get(entry.parent);
                    if (dirEntry == null) {
                        halt(new Freeze.DatabaseException(
                                 "consistency error: file without parent"));
                    }

                    dirEntry.nodes.remove(entry.name);
                    dirDB.put(entry.parent, dirEntry);

                    fileDB.remove(c.id);

                    txn.commit();
                    txn = null;
                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                } finally {
                    if (txn != null) {
                        txn.rollback();
                    }
                }
            }
        }
        finally
        {
            connection.close();
        }
    }

As you can see, the code first establishes a transaction and then locates the file in the parent directory's map of nodes. After removing the
file from the parent, the code updates the parent's persistent state by calling  on the parent iterator and then removes the file from the fileput
map before committing the transaction.

Implementing  with a Freeze Map in JavaDirectoryI

The  implementation returns the string , and the  implementation is the same as for DirectoryI.directoriesDB directories halt
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, so we do not show them here.FileI

Turning to the constructor, we must cater for two different scenarios:

The server is started with a database that already contains a number of nodes.
The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be present in the database. Accordingly, the constructor looks
for the root directory (with the fixed identity ); if the root directory does not exist in the database, it creates it:RootDir

Java

    public
    DirectoryI(Ice.Communicator communicator, String envName)
    {
        _communicator = communicator;
        _envName = envName;

        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, directoriesDB());

            for (;;) {
                try {
                    Ice.Identity rootId = new Ice.Identity("RootDir", "");
                    DirectoryEntry entry = dirDB.get(rootId);
                    if (entry == null) {
                        dirDB.put(rootId, new DirectoryEntry("/",
new Ice.Identity("", ""), null));
                    }
                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Next, let us examine the implementation of . Similar to the  operation,  mustcreateDirectory FileI::destroy createDirectory
update both the parent's nodes map and create a new entry in the directory map. These updates must happen atomically, so we perform
them in a separate transaction:
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Java

    public DirectoryPrx
    createDirectory(String name, Ice.Current c)
        throws NameInUse
    {
        Freeze.Connection connection = Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, directoriesDB());

            for (;;) {
                Freeze.Transaction txn = null;
                try {
                    txn = connection.beginTransaction();

                    DirectoryEntry entry = dirDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    if(name.length() == 0 || entry.nodes.get(name) != null) {
                        throw new NameInUse(name);
                    }

                    DirectoryEntry newEntry = new DirectoryEntry(name, c.id, null);
                    Ice.Identity id = new Ice.Identity(java.util.UUID.randomUUID().toString(),
"");
                    DirectoryPrx proxy =
DirectoryPrxHelper.uncheckedCast(c.adapter.createProxy(id));

                    entry.nodes.put(name, new NodeDesc(name, NodeType.DirType, proxy));
                    dirDB.put(c.id, entry);
                    dirDB.put(id, newEntry);

                    txn.commit();
                    txn = null;

                    return proxy;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                } finally {
                    if(txn != null) {
                        txn.rollback();
                    }
                }
            }
        } finally {
            connection.close();
        }
    }

After establishing the transaction, the code ensures that the directory does not already contain an entry with the same name and then
initializes a new , setting the name to the name of the new directory, and the parent to its own identity. The identity of theDirectoryEntry
new directory is a UUID, which ensures that all directories have unique identities. In addition, the UUID prevents the  of aaccidental rebirth
file or directory in the future.

The code then initializes a new  structure with the details of the new directory and, finally, updates its own map of children as wellNodeDesc
as adding the new directory to the map of directories before committing the transaction.

The  implementation is almost identical, so we do not show it here. Similarly, the  and  implementations arecreateFile name destroy
almost identical to the ones for , so let us move to :FileI list
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Java

    public NodeDesc[]
    list(Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection, directoriesDB());

            for (;;) {
                try {
                    DirectoryEntry entry = dirDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    NodeDesc[] result = new NodeDesc[entry.nodes.size()];
                    java.util.Iterator<NodeDesc> p = entry.nodes.values().iterator();
                    for (int i = 0; i < entry.nodes.size(); ++i) {
                        result[i] = p.next();
                    }
                    return result;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Again, the code is very simple: it iterates over the  map, adding each  structure to the returned sequence.nodes NodeDesc

The  implementation is even simpler, so we do not show it here.find

See Also

Freeze Maps
The Current Object
Object Identity and Uniqueness
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Freeze Catalogs

In each database environment, Freeze maintains an internal table that contains type information describing all the databases in the
environment. This table is an instance of a  in which the key is a string representing the database name and the value is anFreeze map
instance of :Freeze::CatalogData

Slice

module Freeze {
    struct CatalogData {
        bool evictor;
        string key;
        string value;
    };
};

An entry describes an  database if the  member is true, in which case the  and  members are empty strings. Anevictor evictor key value
entry that describes a Freeze map sets  to false; the  and  members contain the Slice types used when the map wasevictor key value
defined.

FreezeScript tools such as  and  access the catalog to obtain type information when none is supplied by the user. Youtransformdb dumpdb
can also use  to display the catalog of a database environment.dumpdb

Freeze applications may access the catalog in the same manner as any other Freeze map. For example, the following C++ code displays
the contents of a catalog:

C++

#include <Freeze/Catalog.h>
...
string envName = ...;
Freeze::ConnectionPtr conn = Freeze::createConnection(communicator, envName);
Freeze::Catalog catalog(conn, Freeze::catalogName());
for (Freeze::Catalog::const_iterator p = catalog.begin();
    p != catalog.end(); ++p) {
    if (p->second.evictor)
        cout << p->first << ": evictor" << endl;
    else
        cout << p->first << ": map<" << p->second.key
             << ", " << p->second.value << ">" << endl;
}
conn->close();

The equivalent Java code is shown below:

Java

String envName = ...;
Freeze.Connection conn = Freeze.Util.createConnection(communicator, envName);
Freeze.Catalog catalog = new Freeze.Catalog(conn, Freeze.Util.catalogName(), true);
for (java.util.Map.Entry<String, Freeze.CatalogData> e :
     catalog.entrySet()) {
    String name = e.getKey();
    Freeze.CatalogData data = e.getValue();
    if (data.evictor)
        System.out.println(name + ": evictor");
    else
        System.out.println(name + ": map<" + data.key + ", " + data.value + ">");
}
conn.close();
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See Also

Freeze Maps
Freeze Evictors
FreezeScript
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Backing Up Freeze Databases

When you store important information in a Freeze database environment, you should consider regularly backing up the database
environment.

There are two forms of backups: cold backups, where you just copy your database environment directory while no application is using these
files (very straightforward), and hot backups, where you backup a database environment while an application is actively reading and writing
data.

In order to perform a hot backup on a Freeze environment, you need to configure this Freeze environment with two non-default settings:

Freeze.DbEnv.envName.OldLogsAutoDelete=0
This instructs Freeze to keep old log files instead of periodically deleting them. This setting is necessary for proper hot backups; it
implies that you will need to take care of deleting old files yourself (typically as part of your periodic backup procedure).

Freeze.DbEnv.envName.DbPrivate=0
By default, Freeze is configured with  set to 1, which means only one process at a time can safely access the databaseDbPrivate
environment. When performing hot backups, you need to access this database environment concurrently from various Berkeley DB
utilities (such as  or ), so you need to set this property to 0.db_archive db_hotbackup

The  C++ demo in your Ice distribution shows one way to perform such backups and recovery. Please consult theFreeze/backup
Berkeley DB documentation for further details.

See Also

Freeze
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FreezeScript
Freeze supplies a valuable set of services for simplifying the use of persistence in Ice applications. However, while Freeze makes it easy for
an application to manage its persistent state, there are additional administrative responsibilities that must also be addressed:

Migration
As an application evolves, it is not unusual for the types describing its persistent state to evolve as well. When these changes occur,
a great deal of time can be saved if existing databases can be migrated to the new format while preserving as much information as
possible.

Inspection
The ability to examine a database can be helpful during every stage of the application's lifecycle, from development to deployment.

FreezeScript provides tools for performing both of these activities on Freeze  and  databases. These databases have amap evictor
well-defined structure because the key and value of each record consist of the marshaled bytes of their respective Slice types. This design
allows the FreezeScript tools to operate on any Freeze database using only the Slice definitions for the database types.

Topics

Migrating a Freeze Database
Inspecting a Freeze Database
FreezeScript Descriptor Expression Language
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1.  
2.  

Migrating a Freeze Database

The FreezeScript tool  migrates a database created by a Freeze  or . It accomplishes this by comparing the "old"transformdb map evictor
Slice definitions (i.e., the ones that describe the current contents of the database) with the "new" Slice definitions, and making whatever
modifications are necessary to ensure that the transformed database is compatible with the new definitions.

This would be difficult to achieve by writing a custom transformation program because that program would require static knowledge of the old
and new types, which frequently define many of the same symbols and would therefore prevent the program from being loaded. The 

 tool avoids this issue using an interpretive approach: the Slice definitions are parsed and used to drive the migration of thetransformdb
database records.

The tool supports two modes of operation:

Automatic migration – the database is migrated in a single step using only the default set of transformations.
Custom migration – you supply a script to augment or override the default transformations.

Topics

Automatic Database Migration
Custom Database Migration
FreezeScript Transformation XML Reference
Using transformdb

See Also

Freeze Maps
Freeze Evictors
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Automatic Database Migration

On this page:

Type Compatibility Rules for Automatic Migration
Default Values for Automatic Migration
Running an Automatic Migration

The default transformations performed by  preserve as much information as possible. However, there are practical limits totransformdb
the tool's capabilities, since the only information it has is obtained by performing a comparison of the Slice definitions.

For example, suppose our old definition for a structure is the following:

Slice

struct AStruct {
    int i;
};

We want to migrate instances of this struct to the following revised definition:

Slice

struct AStruct {
    int j;
};

As the developers, we know that the  member has been renamed from  to , but to  it appears that member  wasint i j transformdb i
removed and member  was added. The default transformation results in exactly that behavior: the value of  is lost, and  is initialized to aj i j
default value. If we need to preserve the value of  and transfer it to , then we need to use .i j custom migration

The changes that occur as a type system evolves can be grouped into three categories:

Data members
The data members of class and structure types are added, removed, or renamed. As discussed above, the default transformations
initialize new and renamed data members to .default values

Type names
Types are added, removed, or renamed. New types do not pose a problem for database migration when used to define a new data
member; the member is initialized with  as usual. On the other hand, if the new type replaces the type of an existingdefault values
data member, then type compatibility becomes a factor (see the following item). 

Removed types generally do not cause problems either, because any uses of that type must have been removed from the new Slice
definitions (e.g., by removing data members of that type). There is one case, however, where removed types become an issue, and
that is for . polymorphic classes

Renamed types are a concern, just like renamed data members, because of the potential for losing information during migration.
This is another situation for which  is recommended.custom migration

Type content
Examples of changes of type content include the key type of a dictionary, the element type of a sequence, or the type of a data
member. If the old and new types are not , then the default transformation emits a warning, discards the current value,compatible
and reinitializes it with a .default value

Type Compatibility Rules for Automatic Migration

Changes in the type of a value are restricted to certain sets of compatible changes. This section describes the type changes supported by
the default transformations. All incompatible type changes result in a warning indicating that the current value is being discarded and a
default value for the new type assigned in its place. Additional flexibility is provided by .custom migration

Boolean

A value of type  can be transformed to and from . The legal string values for a  value are  and .bool string bool "true" "false"
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Integer

The integer types , , , and  can be transformed into each other, but only if the current value is within range of the newbyte short int long
type. These integer types can also be transformed into .string

Floating Point

The floating-point types  and  can be transformed into each other, as well as to . No attempt is made to detect a lossfloat double string
of precision during transformation.

String

A  value can be transformed into any of the primitive types, as well as into enumeration and proxy types, but only if the value is astring
legal string representation of the new type. For example, the string value  can be transformed into the enumeration , but only if"Pear" Fruit

 is an enumerator of .Pear Fruit

Enum

An enumeration can be transformed into an enumeration with the same , or into a string. Transformation between enumerations istype ID
performed symbolically. For example, consider our old type below:

Slice

enum Fruit { Apple, Orange, Pear };

Suppose the enumerator  is being transformed into the following new type:Pear

Slice

enum Fruit { Apple, Pear };

The transformed value in the new enumeration is also , despite the fact that  has changed positions in the new type. However, ifPear Pear
the old value had been , then the default transformation emits a warning because that enumerator no longer exists, and initializesOrange
the new value to  (the default value).Apple

If an enumerator has been renamed, then  is required to convert enumerators from the old name to the new one.custom migration

Sequence

A sequence can be transformed into another sequence type, even if the new sequence type does not have the same type id as the old type,
but only if the element types are compatible. For example,  can be transformed into , regardless of thesequence<short> sequence<int>
names given to the sequence types.

Dictionary

A dictionary can be transformed into another dictionary type, even if the new dictionary type does not have the same  as the old type,type ID
but only if the key and value types are compatible. For example,  can be transformed into dictionary<int, string>

, regardless of the names given to the dictionary types.dictionary<long, string>

Caution is required when changing the key type of a dictionary, because the default transformation of keys could result in duplication. For
example, if the key type changes from  to , any  value outside the range of  results in the key being initialized to aint short int short
default value (namely zero). If zero is already used as a key in the dictionary, or another out-of-range key is encountered, then a duplication
occurs. The transformation handles key duplication by removing the duplicate element from the transformed dictionary. (Custom migration
can be useful in these situations if the default behavior is not acceptable.)

Structure

A  type can only be transformed into another  type with the same . Data members are transformed as appropriate forstruct struct type ID
their types.

Proxy

A proxy value can be transformed into another proxy type, or into . Transformation into another proxy type is done with the samestring
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semantics as in a language mapping: if the new type does not match the old type, then the new type must be a base type of the old type
(that is, the proxy is widened).

Class

A  type can only be transformed into another  type with the same . A data member of a  type is allowed to beclass class type ID class
widened to a base type. Data members are transformed as appropriate for their types. See  for more information onTransforming Objects
transforming classes.

Default Values for Automatic Migration

Data types are initialized with default values, as shown.

Type Default Value

Boolean false

Numeric Zero ( )0

String Empty string

Enumeration The first enumerator

Sequence Empty sequence

Dictionary Empty dictionary

Struct Data members are initialized recursively

Proxy Nil

Class Nil

Running an Automatic Migration

In order to use automatic transformation, we need to supply the following information to :transformdb

The old and new Slice definitions
The old and new types for the database key and value
The database environment directory, the database file name, and the name of a new database environment directory to hold the
transformed database

Here is an example of a  command:transformdb

$ transformdb --old old/MyApp.ice --new new/MyApp.ice \
--key int,string --value ::Employee db emp.db newdb

Briefly, the  and  options specify the old and new Slice definitions, respectively. These options can be specified as many times--old --new
as necessary in order to load all of the relevant definitions. The  option indicates that the database key is evolving from  to --key int

. The  option specifies that  is used as the database value type in both old and new type definitions, andstring --value ::Employee
therefore only needs to be specified once. Finally, we provide the pathname of the database environment directory ( ), the file name of thedb
database ( ), and the pathname of the database environment directory for the transformed database ( ).emp.db newdb

See Also

Custom Database Migration
Type IDs
Using transformdb
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Custom Database Migration

Custom migration is useful when your types have changed in ways that make  difficult or impossible. It is also convenientautomatic migration
to use custom migration when you have complex initialization requirements for new types or new data members, because custom migration
enables you to perform many of the same tasks that would otherwise require you to write a throwaway program.

Custom migration operates in conjunction with automatic migration, allowing you to inject your own transformation rules at well-defined
intercept points in the automatic migration process. These rules are called , and are written in XML.transformation descriptors

On this page:

Simple Example of Custom Migration
Overview of Transformation Descriptors
Transformation Flow of Execution
Transformation Descriptor Scopes
Guidelines for Transformation Descriptors

Simple Example of Custom Migration

We can use a simple example to demonstrate the utility of custom migration. Suppose our application uses a  whose key type is Freeze map
 and whose value type is an enumeration, defined as follows:string

Slice

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

We now wish to rename the enumerator , as shown in our new definition:DaimlerChrysler

Slice

enum BigThree { Ford, Daimler, GeneralMotors };

According to the , all occurrences of the  enumerator would be transformed into ,rules for default transformations DaimlerChrysler Ford
because  no longer exists in the new definition and therefore the default value  is used instead.Chrysler Ford

To remedy this situation, we use the following transformation descriptors:

XML

<transformdb>
    <database key="string" value="::BigThree">
        <record>
            <if test="oldvalue == ::Old::DaimlerChrysler">
                <set target="newvalue" value="::New::Daimler"/>
            </if>
        </record>
    </database>
</transformdb>

When executed, these descriptors convert occurrences of  in the old type system into  in the transformedDaimlerChrysler Daimler
database's new type system.

Overview of Transformation Descriptors

As we saw in the previous example, FreezeScript  are written in XML.transformation descriptors

A transformation descriptor file has a well-defined structure. The top-level descriptor in the file is . A <transformdb> <database>
descriptor must be present within  to define the key and value types used by the database. Inside , the <transformdb> <database>

 descriptor triggers the transformation process.<record>

During transformation, type-specific actions are supported by the  and  descriptors, both of which are children of <transform> <init>
. One  descriptor and one  descriptor may be defined for each type in the new Slice definitions. Each<transformdb> <transform> <init>
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1.  
2.  

3.  
4.  

time  creates a new instance of a type, it executes the  descriptor for that type, if one is defined. Similarly, each time transformdb <init>
 transforms an instance of an old type into a new type, the  descriptor for the new type is executed.transformdb <transform>

The , , , and  descriptors may contain general-purpose action descriptors such as , <database> <record> <transform> <init> <if>
, and . These actions resemble statements in programming languages like C++ and Java, in that they are executed in the<set> <echo>

order of definition and their effects are cumulative. Actions can make use of the  that should look familiar to C++ andexpression language
Java programmers.

Transformation Flow of Execution

The transformation descriptors are executed as follows:

<database> is executed first. Each child descriptor of  is executed in the order of definition. If a  descriptor<database> <record>
is present, database transformation occurs at that point. Any child descriptors of  that follow  are not<database> <record>
executed until transformation completes.
During transformation of each record,  creates instances of the new key and value types, which includes thetransformdb
execution of the  descriptors for those types. Next, the old key and value are transformed into the new key and value, in the<init>
following manner:

Locate the  descriptor for the type.<transform>
If no descriptor is found, or the descriptor exists and it does not preclude default transformation, then transform the data as
in .automatic database migration
If the  descriptor exists, execute it.<transform>
Finally, execute the child descriptors of .<record>

Transformation Descriptor Scopes

The  descriptor creates a global scope, allowing child descriptors of  to define symbols that are accessible in any<database> <database>
descriptor.

In order for a global symbol to be available to a  or  descriptor, the symbol must be defined before<transform> <init>
the  descriptor is executed.<record>

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the 
 descriptor creates a local scope and defines the symbols  and  to represent a value in its old and new forms. Child<transform> old new

descriptors of  can also define new symbols in the local scope, as long as those symbols do not clash with an existing symbol<transform>
in that scope. It is legal to add a new symbol with the same name as a symbol in an outer scope, but the outer symbol will not be accessible
during the descriptor's execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered
during transformation. This can be accomplished as shown below:

XML

<transformdb>
    <database key="string" value="::Ice::Identity">
        <define name="categoryCount" type="int" value="0"/>
        <record/>
        <echo message="categoryCount = " value="categoryCount"/>
    </database>
    <transform type="::Ice::Identity">
        <if test="new.category == 'Accounting'">
            <set target="categoryCount" value="categoryCount + 1"/>
        </if>
    </transform>
</transformdb>

In this example, the  descriptor introduces the symbol  into the global scope, defining it as type  with an<define> categoryCount int
initial value of zero. Next, the  descriptor causes transformation to proceed. Each occurrence of the type  causes<record> Ice::Identity
its  descriptor to be executed, which examines the  member and increases  if necessary. Finally,<transform> category categoryCount
after transformation completes, the  descriptor displays the final value of .<echo> categoryCount

To reinforce the relationships between descriptors and scopes, consider the following diagram. Several descriptors are shown, including the
symbols they define in their local scopes. In this example, the  descriptor has a dictionary target and therefore the default symbol<iterate>
for the element value, , hides the symbol of the same name in the parent  descriptor's scope.value <init>
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This situation can be avoided by assigning a different symbol name to the element value.

In addition to symbols in the  scope, child descriptors of  can also refer to symbols from the  and <iterate> <iterate> <init>
 scopes.<database>

Relationship between descriptors and scopes.

Guidelines for Transformation Descriptors

There are three points at which you can intercept the transformation process: when transforming a record ( ), when transforming<record>
an instance of a type ( ), and when creating an instance of a type ( ).<transform> <init>

In general,  is used when your modifications require access to both the key and value of the record. For example, if the database<record>
key is needed as a factor in an equation, or to identify an element in a dictionary, then  is the only descriptor in which this type of<record>
modification is possible. The  descriptor is also convenient to use when the number of changes to be made is small, and does not<record>
warrant the effort of writing separate  or  descriptors.<transform> <init>

The  descriptor has a more limited scope than . It is used when changes must potentially be made to all instances<transform> <record>
of a type (regardless of the context in which that type is used) and access to the old value is necessary. The  descriptor does<transform>
not have access to the database key and value, therefore decisions can only be made based on the old and new instances of the type in
question.

Finally, the  descriptor is useful when access to the old instance is not required in order to properly initialize a type. In most cases,<init>
this activity could also be performed by a  descriptor that simply ignored the old instance, so  may seem redundant.<transform> <init>
However, there is one situation where  is required: when it is necessary to initialize an instance of a type that is introduced by the<init>
new Slice definitions. Since there are no instances of this type in the current database, a  descriptor for that type would never<transform>
be executed.
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See Also

Automatic Database Migration
Freeze Maps
FreezeScript Transformation XML Reference
FreezeScript Descriptor Expression Language
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FreezeScript Transformation XML Reference

This page describes the XML elements comprising the FreezeScript transformation descriptors.

On this page:

 Descriptor Element<transformdb>
 Descriptor Element<database>

 Descriptor Element<record>
 Descriptor Element<transform>

 Descriptor Element<init>
 Descriptor Element<iterate>

 Descriptor Element<if>
 Descriptor Element<set>
 Descriptor Element<add>

 Descriptor Element<define>
 Descriptor Element<remove>

 Descriptor Element<fail>
 Descriptor Element<delete>

 Descriptor Element<echo>

<transformdb> Descriptor Element

The top-level descriptor in a descriptor file. It requires at least one  descriptor, and supports any number of  and <database> <transform>
 child descriptors. This descriptor has no attributes.<init>

<database> Descriptor Element

The attributes of this descriptor define the old and new key and value types for the database to be transformed, and optionally the name of
the database to which these types apply. It supports any number of child descriptors, but at most one  descriptor. The <record>

 descriptor also creates a  for user-defined symbols.<database> global scope

The attributes supported by the  descriptor are described in the following table:<database>

Name Description

name Specifies the name of the database defined by this descriptor. (Optional)

key Specifies the Slice types of the old and new keys. If the types are the same, only one needs to be specified. Otherwise, the types
are separated by a comma.

value Specifies the Slice types of the old and new values. If the types are the same, only one needs to be specified. Otherwise, the
types are separated by a comma.

As an example, consider the following  descriptor. In this case, the  to be transformed currently has key type <database> Freeze map int
and value type , and is migrating to a key type of :::Employee string

XML

<database key="int,string" value="::Employee">

<record> Descriptor Element

Commences the transformation. Child descriptors are executed for each record in the database, providing the user with an opportunity to
examine the record's old key and value, and optionally modify the new key and value. Default transformations, as well as  and<transform>

 descriptors, are executed before the child descriptors. The  descriptor introduces the following symbols into a local<init> <record>
scope: , , , , . These symbols are accessible to child descriptors, but not to  or oldkey newkey oldvalue newvalue facet <transform>

 descriptors. The  and  symbols are read-only. The  symbol is a string indicating the facet name of the<init> oldkey oldvalue facet
object in the current record, and is only relevant for  databases.Freeze evictor

Use caution when modifying database keys to ensure that duplicate keys do not occur. If a duplicate database key is encountered,
transformation fails immediately.
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Note that database transformation only occurs if a  descriptor is present.<record>

<transform> Descriptor Element

Customizes the transformation for all instances of a type in the  Slice definitions. The children of this descriptor are executed after thenew
optional  has been performed. Only one  descriptor can be specified for a type, but a default transformation <transform> <transform>
descriptor is not required for every type. The symbols  and  are introduced into a local scope and represent the old and new values,old new
respectively. The  symbol is read-only. The attributes supported by this descriptor are described in the following table:old

Name Description

type Specifies the Slice  for the type's new definition.type ID

default If , no default transformation is performed on values of this type. If not specified, the default value is .false true

base This attribute determines whether  descriptors of base class types are executed. If , the <transform> true <transform>
descriptor of the immediate base class is invoked. If no descriptor is found for the immediate base class, the class hierarchy is
searched until a descriptor is found. The execution of any base class descriptors occurs after execution of this descriptor's
children. If not specified, the default value is .true

rename Indicates that a type in the old Slice definitions has been renamed to the new type identified by the  attribute. The valuetype
of this attribute is the type ID of the old Slice definition. Specifying this attribute relaxes the  for , strict compatibility rules enum

 and  types.struct class

Below is an example of a  descriptor that initializes a new data member:<transform>

XML

<transform type="::Product">
    <set target="new.salePrice" value="old.listPrice * old.discount"/>
</transform>

For class types,  first attempts to locate a  descriptor for the object's most-derived type. If no descriptor istransformdb <transform>
found,  proceeds up the class hierarchy in an attempt to find a descriptor. The base object type, , is the root of everytransformdb Object
class hierarchy and is included in the search for descriptors. It is therefore possible to define a  descriptor for type ,<transform> Object
which will be invoked for every class instance.

Note that  descriptors are executed recursively. For example, consider the following Slice definitions:<transform>

Slice

struct Inner {
    int sum;
};
struct Outer {
    Inner i;
};

When  is performing the default transformation on a value of type , it recursively performs the default transformation ontransformdb Outer
the  member, then executes the  descriptor for , and finally executes the  descriptor for .Inner <transform> Inner <transform> Outer
However, if default transformation is disabled for , then no transformation is performed on the  member and therefore the Outer Inner

 descriptor for  is not executed.<transform> Inner

<init> Descriptor Element

Defines custom initialization rules for all instances of a type in the new Slice definitions. Child descriptors are executed each time the type is
instantiated. The typical use case for this descriptor is for types that have been introduced in the new Slice definitions and whose instances
require default values different than what  supplies. The symbol  is introduced into a local scope to represent thetransformdb value
instance. The attributes supported by this descriptor are described in the following table:

Name Description

type Specifies the Slice  of the type's new definition.type ID
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Here is a simple example of an  descriptor:<init>

XML

<init type="::Player">
    <set target="value.currency" value="100"/>
</init>

Note that, like ,  descriptors are executed recursively. For example, if an  descriptor is defined for a <transform> <init> <init> struct
type, the  descriptors of the 's members are executed before the 's descriptor.<init> struct struct

<iterate> Descriptor Element

Iterates over a dictionary or sequence, executing child descriptors for each element. The symbol names selected to represent the element
information may conflict with existing symbols in the enclosing scope, in which case those outer symbols are not accessible to child
descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not specified, the default symbol is .i

element The symbol name used for the sequence element. If not specified, the default symbol is .elem

key The symbol name used for the dictionary key. If not specified, the default symbol is .key

value The symbol name used for the dictionary value. If not specified, the default symbol is .value

Shown below is an example of an  descriptor that sets the new data member  to  if the employee's salary is<iterate> reviewSalary true
greater than $3000:

XML

<iterate target="new.employeeMap" key="id" value="emp">
    <if test="emp.salary > 3000">
        <set target="emp.reviewSalary" value="true"/>
    </if>
</iterate>

<if> Descriptor Element

Conditionally executes child descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

test A boolean .expression

Child descriptors are executed if the expression in  evaluates to true.test

<set> Descriptor Element

Modifies a value. The  and  attributes are mutually exclusive. If  denotes a dictionary element, that element must alreadyvalue type target
exist (i.e.,  cannot be used to add an element to a dictionary). The attributes supported by this descriptor are described in the following<set>
table:

Name Description

target An  that must select a modifiable value.expression

value An  that must evaluate to a value compatible with the target's type.expression
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type If specified, set the target to be an instance of the given Slice class. The value is a  from the new Slice definitions. Thetype ID
class must be compatible with the target's type.

length An integer expression representing the desired new length of a sequence. If the new length is less than the current size of the
sequence, elements are removed from the end of the sequence. If the new length is greater than the current size, new
elements are added to the end of the sequence. If  or  is also specified, it is used to initialize each new element.value type

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Transformation fails immediately if a range error occurs. If not specified, the default value is .false

The  descriptor below modifies a member of a dictionary element:<set>

XML

<set target="new.parts['P105J3'].cost" value="new.parts['P105J3'].cost * 1.05"/>

This  descriptor adds an element to a sequence and initializes its value:<set>

XML

<set target="new.partsList" length="new.partsList.length + 1" value="'P105J3'"/>

As another example, the following  descriptor changes the value of an enumeration:<set>

XML

<set target="new.ingredient" value="::New::Apple"/>

Notice in this example that the value refers to a  in the new Slice definitions.symbol

<add> Descriptor Element

Adds a new element to a sequence or dictionary. It is legal to add an element while traversing the sequence or dictionary using ,<iterate>
however the traversal order after the addition is undefined. The  and  attributes are mutually exclusive, as are the  and key index value

 attributes. If neither  nor  is specified, the new element is initialized with a default value. The attributes supported by thistype value type
descriptor are described in the following table:

Name Description

target An  that must select a modifiable sequence or dictionary.expression

key An  that must evaluate to a value compatible with the target dictionary's key type.expression

index An  that must evaluate to an integer value representing the insertion position. The new element is inserted before expression
. The value must not exceed the length of the target sequence.index

value An  that must evaluate to a value compatible with the target dictionary's value type, or the target sequence'sexpression
element type.

type If specified, set the target value or element to be an instance of the given Slice class. The value is a  from the new Slicetype ID
definitions. The class must be compatible with the target dictionary's value type, or the target sequence's element type.

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Transformation fails immediately if a range error occurs. If not specified, the default value is .false

Below is an example of an  descriptor that adds a new dictionary element and then initializes its member:<add>

XML

<add target="new.parts" key="'P105J4'"/>
<set target="new.parts['P105J4'].cost" value="3.15"/>
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<define> Descriptor Element

Defines a new symbol in the current scope. The attributes supported by this descriptor are described in the following table:

Name Description

name The name of the new symbol. An error occurs if the name matches an existing symbol in the current scope.

type The name of the symbol's formal Slice type. For user-defined types, the name should be prefixed with  or  to::Old ::New
indicate the source of the type. The prefix can be omitted for primitive types.

value An  that must evaluate to a value compatible with the symbol's type.expression

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Execution fails immediately if a range error occurs. If not specified, the default value is .false

Below are two examples of the  descriptor. The first example defines the symbol  to have type , and<define> identity Ice::Identity
proceeds to initialize its members using :<set>

XML

<define name="identity" type="::New::Ice::Identity"/>
<set target="identity.name" value="steve"/>
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in our discussion of  to define the symbol custom database migration
 and assign it a default value:manufacturer

XML

<define name="manufacturer" type="::New::BigThree" value="::New::Daimler"/>

<remove> Descriptor Element

Removes an element from a sequence or dictionary. It is legal to remove an element while traversing a sequence or dictionary using 
, however the traversal order after removal is undefined. The attributes supported by this descriptor are described in the<iterate>

following table:

Name Description

target An  that must select a modifiable sequence or dictionary.expression

key An  that must evaluate to a value compatible with the key type of the target dictionary.expression

index An  that must evaluate to an integer value representing the index of the sequence element to be removed.expression

<fail> Descriptor Element

Causes transformation to fail immediately. If  is specified, transformation fails only if the  evaluates to . The attributestest expression true
supported by this descriptor are described in the following table:

Name Description

message A message to display upon transformation failure.

test A boolean .expression

The following  descriptor terminates the transformation if a range error is detected:<fail>
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XML

<fail message="range error occurred in ticket count!" test="old.ticketCount > 32767"/>

<delete> Descriptor Element

Causes transformation of the current database record to cease, and removes the record from the transformed database. This descriptor has
no attributes.

<echo> Descriptor Element

Displays values and informational messages. If no attributes are specified, only a newline is printed. The attributes supported by this
descriptor are described in the following table:

Name Description

message A message to display.

value An . The value of the expression is displayed in a structured format.expression

Shown below is an  descriptor that uses both  and  attributes:<echo> message value

XML

<if test="old.ticketCount > 32767">
    <echo message="deleting record with invalid ticket count: " value="old.ticketCount"/>
    <delete/>
</if>

See Also

Custom Database Migration
Freeze Maps
Freeze Evictors
Automatic Database Migration
FreezeScript Descriptor Expression Language



Ice 3.4.2 Documentation

1414 Copyright © 2011, ZeroC, Inc.

Using transformdb

On this page:

Execution Modes for transformdb
Using Database Catalogs during Transformation
Slice Options for transformdb
Type Options for transformdb
General Options for transformdb
Database Arguments for transformdb
Performing an Automatic Migration

Migrating a Single Database
Migrating All Databases

Performing a Migration Analysis
Generated File
Invocation Modes

Performing a Custom Migration
 Usage Strategiestransformdb

Transforming Objects
Using  on an Open Environmenttransformdb

Execution Modes for transformdb

The tool operates in one of three modes:

Automatic migration
Custom migration
Analysis

The only difference between  and  migration modes is the source of the transformation descriptors: for automatic migration, automatic custom
 internally generates and executes a default set of descriptors, whereas for custom migration the user specifies an externaltransformdb

file containing the transformation descriptors to be executed.

In analysis mode,  creates a file containing the default transformation descriptors it would have used during automatictransformdb
migration. You would normally review this file and possibly customize it prior to executing the tool again in its custom migration mode.

Using Database Catalogs during Transformation

Freeze maintains schema information in a  for each database environment. If necessary,  will use the catalog tocatalog transformdb
determine the names of the databases in the environment, and to determine the key and value types of a particular database. There are two
advantages to the tool's use of the catalog:

Allows  to operate on all of the databases in a single invocationtransformdb
Eliminates the need for you to specify type information for a database.

For example, you can use automatic migration to transform all of the databases at one time, as shown below:

$ transformdb [options] old-env new-env

Since we omitted the name of a database to be migrated,  uses the catalog in the environment  to discover all of thetransformdb old-env
databases and their types, generates default transformations for each database, and performs the migration. However, we must still ensure
that  has loaded the old and new Slice types used by  of the databases in the environment.transformdb all

Slice Options for transformdb

The tool supports the  common to all Slice processors, with the exception of the include directory ( ) option.standard command-line options -I
The options specific to  are described below:transformdb

--old SLICE
--new SLICE
Loads the old or new Slice definitions contained in the file . These options may be specified multiple times if several files mustSLICE
be loaded. However, it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files
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are loaded that share a common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains
only  statements for each of the Slice files to be loaded. No duplication is possible in this case if the included files use#include
include guards correctly.

--include-old DIR
--include-new DIR
Adds the directory  to the set of include paths for the old or new Slice definitions.DIR

Type Options for transformdb

In invocation modes for which  requires that you define the types used by a database, you must specify one of the followingtransformdb
options:

--key [, ]TYPE TYPE
--value [, ]TYPE TYPE
Specifies the Slice type(s) of the database key and value. If the type does not change, then the type only needs to be specified
once. Otherwise, the old type is specified first, followed by a comma and the new type. For example, the option --key

 indicates that the database key is migrating from  to . On the other hand, the option int,string int string --key int,int
indicates that the key type does not change, and could be given simply as . Type changes are restricted to those--key int
allowed by the , but custom migration provides additional flexibility.compatibility rules

-e
Indicates that a  database is being migrated. As a convenience, this option automatically sets the database key andFreeze evictor
value types to those appropriate for the Freeze evictor, and therefore the  and  options are not necessary.--key --value
Specifically, the key type of a Freeze evictor database is , and the value type is . TheIce::Identity Freeze::ObjectRecord
latter is defined in the Slice file ; however, this file does not need to be loaded into your old andFreeze/EvictorStorage.ice
new Slice definitions.

General Options for transformdb

These options may be specified during analysis or migration, as indicated below:

-i
Requests that  ignore type changes that violate the . If this option is not specified, transformdb compatibility rules transformdb
fails immediately if such a violation occurs. With this option, a warning is displayed but  continues the requestedtransformdb
action. The  option can be specified in analysis or automatic migration modes.-i

-p
During migration, this option requests that   whose type is no longer found in the new Slicetransformdb purge object instances
definitions.

-c
Use catastrophic recovery on the old Berkeley DB database environment prior to migration.

-w
Suppress duplicate warnings during migration. This option is especially useful to minimize diagnostic messages when 

 would otherwise emit the same warning many times, such as when it detects the same issue in every record of atransformdb
database.

Database Arguments for transformdb

In addition to the options described above,  accepts as many as three arguments that specify the names of databases andtransformdb
database environments:

dbenv
The pathname of the old database environment directory.

db
The name of an existing database file in .  never modifies this database.dbenv transformdb

newdbenv
The pathname of the database environment directory to contain the transformed database(s). This directory must exist and must not
contain an existing database whose name matches a database being migrated.

Performing an Automatic Migration

You can use  to automatically migrate one database or all databases in an environment.transformdb
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Migrating a Single Database

Use the following command line to migrate one database:

$ transformdb [slice-opts] [type-opts] [gen-opts] dbenv db newdbenv

If you omit , the tool obtains type information for database  from the . For example, consider the following command,type-opts db catalog
which uses automatic migration to transform a database with a key type of  and value type of  into a database with the same keyint string
type and a value type of :long

$ transformdb --key int --value string,long dbhome data.db newdbhome

Note that we did not need to specify the Slice options  or  because our key and value types are primitives. Upon successful--old --new
completion, the file  contains our transformed database.newdbhome/data.db

Migrating All Databases

To migrate all databases in the environment, use a command like the one shown below:

$ transformdb [slice-opts] [gen-opts] dbenv newdbenv

In this invocation mode, you must ensure that  has loaded the old and new Slice definitions for all of the types it will encountertransformdb
among the databases in the environment.

Performing a Migration Analysis

Custom migration is a two-step process: you first write the transformation descriptors, and then execute them to transform a database. To
assist you in the process of creating a descriptor file,  can generate a default set of transformation descriptors by comparingtransformdb
your old and new Slice definitions. This feature is enabled by specifying the following option:

-o FILE
Specifies the descriptor file  to be created during analysis. No migration occurs in this invocation mode.FILE

Generated File

The generated file contains a  descriptor for each type that appears in both old and new Slice definitions, and an <transform> <init>
descriptor for types that appear only in the new Slice definitions. In most cases, these descriptors are empty. However, they can contain XML
comments describing changes detected by  that may require action on your part.transformdb

For example, let us revisit the enumeration we defined in our discussion of :custom database migration

Slice

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

This enumeration has evolved into the one shown below. In particular, the  enumerator has been renamed to reflect aDaimlerChrysler
corporate name change:

Slice

enum BigThree { Ford, Daimler, GeneralMotors };

Next we run  in analysis mode:transformdb

$ transformdb --old old/BigThree.ice --new new/BigThree.ice --key string \
--value ::BigThree -o transform.xml
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The generated file  contains the following descriptor for the enumeration :transform.xml BigThree

XML

<transform type="::BigThree">
    <!-- NOTICE: enumerator `DaimlerChrysler' has been removed -->
</transform>

The comment indicates that enumerator  is no longer present in the new definition, reminding us that we need to addDaimlerChrysler
logic in this  descriptor to change all occurrences of  to .<transform> DaimlerChrysler Daimler

The descriptor file generated by  is well-formed and does not require any manual intervention prior to being executed.transformdb
However, executing an unmodified descriptor file is simply the equivalent of using automatic migration.

Invocation Modes

The sample command line shown in the previous section specified the key and value types of the database explicitly. This invocation mode
has the following general form:

$ transformdb [slice-opts] [type-opts] [gen-opts] -o FILE

Upon successful completion, the generated file contains a  descriptor that records the type information supplied by <database> type-opts
, in addition to the  and  descriptors described earlier.<transform> <init>

For your convenience, you can omit  and allow  to obtain type information from the catalog instead:type-opts transformdb

$ transformdb [slice-opts] [gen-opts] -o FILE dbenv

In this case, the generated file contains a  descriptor for each database in the catalog. Note that in this invocation mode, <database>
 must assume that the names of the database key and value types have not changed, since the only type informationtransformdb

available is the catalog in the old database environment. If the tool is unable to locate a new Slice definition for a database's key or value
type, it emits a warning message and generates a placeholder value in the output file that you must modify prior to migration.

Performing a Custom Migration

After preparing a descriptor file, either by writing one completely yourself, or modifying one generated by the analysis mode described in the
previous section, you are ready to migrate a database. One additional option is provided for migration:

-f FILE
Execute the transformation descriptors in the file .FILE

To transform one database, use the following command:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv db newdbenv

The tool searches the descriptor file for a  descriptor whose  attribute matches . If no match is found, it searches for a <database> name db
 descriptor that does not have a  attribute.<database> name

If you want to transform all databases in the environment, you can omit the database name:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv newdbenv

In this case, the descriptor file must contain a  element for each database in the environment.<database>

Continuing our enumeration example from the analysis discussion above, assume we have modified  to convert the transform.xml
 enumerator, and are now ready to execute the transformation:Chrysler
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$ transformdb --old old/BigThree.ice --new new/BigThree.ice -f transform.xml \
dbhome bigthree.db newdbhome

transformdb Usage Strategies

If it becomes necessary for you to transform a Freeze database, we generally recommend that you attempt to use automatic migration first,
unless you already know that custom migration is necessary. Since transformation is a non-destructive process, there is no harm in
attempting an automatic migration, and it is a good way to perform a sanity check on your  arguments (for example, to ensuretransformdb
that all the necessary Slice files are being loaded), as well as on the database itself. If  detects any incompatible typetransformdb
changes, it displays an error message for each incompatible change and terminates without doing any transformation. In this case, you may
want to run  again with the  option, which ignores incompatible changes and causes transformation to proceed.transformdb -i

Pay careful attention to any warnings that  emits, as these may indicate the need for using custom migration. For example, iftransformdb
we had attempted to transform the database containing the  enumeration from previous sections using automatic migration, anyBigThree
occurrences of the  enumerator would display the following warning:Chrysler

warning: unable to convert 'Chrysler' to ::BigThree

If custom migration appears to be necessary, use analysis to generate a default descriptor file, then review it for  comments and editNOTICE
as necessary. Liberal use of the  descriptor can be beneficial when testing your descriptor file, especially from within the <echo> <record>
descriptor where you can display old and new keys and values.

Transforming Objects

The polymorphic nature of Slice classes can cause problems for database migration. As an example, the Slice parser can ensure that a set
of Slice definitions loaded into  is complete for all types but classes (and exceptions, but we ignore those because they aretransformdb
not persistent).  cannot know that a database may contain instances of a subclass that is derived from one of the loadedtransformdb
classes but whose definition is not loaded. Alternatively, the type of a class instance may have been renamed and cannot be found in the
new Slice definitions.

By default, these situations result in immediate transformation failure. However, the  option is a (potentially drastic) way to handle these-p
situations: if a class instance has no equivalent in the new Slice definitions and this option is specified,  removes the instancetransformdb
any way it can. If the instance appears in a sequence or dictionary element, that element is removed. Otherwise, the database record
containing the instance is deleted.

Now, the case of a class type being renamed is handled easily enough using custom migration and the  attribute of the rename
 descriptor. However, there are legitimate cases where the destructive nature of the  option can be useful. For example, if a<transform> -p

class type has been removed and it is simply easier to start with a database that is guaranteed not to contain any instances of that type, then
the  option may simplify the broader migration effort.-p

This is another situation in which running an automatic migration first can help point out the trouble spots in a potential migration. Using the 
 option,  emits a warning about the missing class type and continues, rather than halting at the first occurrence, enabling-p transformdb

you to discover whether you have forgotten to load some Slice definitions, or need to rename a type.

Using  on an Open Environmenttransformdb

It is possible to use  to migrate databases in an environment that is currently open by another process, but if you are nottransformdb
careful you can easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both 

 and the other process to set . This property has a default value of one, thereforetransformdb Freeze.DbEnv. .DbPrivate=0env-name
you must explicitly set it to zero. Note that  makes no changes to the existing database environment, but it requires exclusivetransformdb
access to the new database environment until transformation is complete.

If you run  on an open environment but neglect to set , you can expect transformdb Freeze.DbEnv. .DbPrivate=0env-name
 to terminate immediately with an error message stating that the database environment is locked. Before running transformdb
 on an open environment, we strongly recommend that you first verify that the other process was also configured with transformdb

.Freeze.DbEnv. .DbPrivate=0env-name

See Also

Automatic Database Migration
Custom Database Migration
Using the Slice Compilers
Freeze Catalogs
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Freeze Evictors
Freeze Properties
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Inspecting a Freeze Database

The FreezeScript tool  is used to examine a Freeze database. Its simplest invocation displays every record of the database, but thedumpdb
tool also supports more selective activities. In fact,  supports a scripted mode that shares many of the same XML descriptors as dumpdb

, enabling sophisticated filtering and reporting.transformdb

Topics

Using dumpdb
FreezeScript Inspection XML Reference
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Using dumpdb

This page describes  and provides advice on how to best use it.dumpdb

On this page:

Overview of Inspection Descriptors
Inspection Flow of Execution
Inspection Descriptor Scopes
Command Line Options for dumpdb
Database Arguments for dumpdb

 Use Casesdumpdb
Dump an Entire Database
Dump Selected Records
Creating a Sample Descriptor File
Executing a Descriptor File
Examine the Catalog

Using  on an Open Environmentdumpdb

Overview of Inspection Descriptors

dumpdb can read  from an XML file. A  descriptor file has a well-defined structure. The top-level descriptor in the file is descriptors dumpdb
. A  descriptor must be present within  to define the key and value types used by the database. Inside <dumpdb> <database> <dumpdb>

, the  descriptor triggers database traversal. Shown below is an example that demonstrates the structure of a<database> <record>
minimal descriptor file:

XML

<dumpdb>
    <database key="string" value="::Employee">
        <record>
            <echo message="Key: " value="key"/>
            <echo message="Value: " value="value"/>
        </record>
    </database>
</dumpdb>

During traversal, type-specific actions are supported by the  descriptor, which is a child of . One  descriptor may<dump> <dumpdb> <dump>
be defined for each type in the Slice definitions. Each time  encounters an instance of a type, the  descriptor for that type isdumpdb <dump>
executed.

The , , and  descriptors may contain general-purpose action descriptors such as  and . These<database> <record> <dump> <if> <echo>
actions resemble statements in programming languages like C++ and Java, in that they are executed in the order of definition and their
effects are cumulative. Actions can make use of the FreezeScript .expression language

Although  descriptors are not allowed to modify the database, they can still define local symbols for scripting purposes. Once adumpdb
symbol is defined by the  descriptor, other descriptors such as , , and  can be used to manipulate the<define> <set> <add> <remove>
symbol's value.

Inspection Flow of Execution

The descriptors are executed as follows:

<database> is executed first. Each child descriptor of  is executed in the order of definition. If a  descriptor<database> <record>
is present, database traversal occurs at that point. Any child descriptors of  that follow  are not executed<database> <record>
until traversal completes.
For each record,  interprets the key and value, invoking  descriptors for each type it encounters. For example, if thedumpdb <dump>
value type of the database is a , then  first attempts to invoke a  descriptor for the structure type, and thenstruct dumpdb <dump>
recursively interprets the structure's members in the same fashion.

Inspection Descriptor Scopes

The  descriptor creates a global scope, allowing child descriptors of  to define symbols that are accessible in any<database> <database>
descriptor.
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In order for a global symbol to be available to a  descriptor, the symbol must be defined before the <dump> <record>
descriptor is executed.

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the 
 descriptor creates a local scope and defines the symbol  to represent a value of the specified type. Child descriptors of <dump> value
 can also define new symbols in the local scope, as long as those symbols do not clash with an existing symbol in that scope. It is<dump>

legal to add a new symbol with the same name as a symbol in an outer scope, but the outer symbol will not be accessible during the
descriptor's execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered
during database traversal. This can be accomplished as shown below:

XML

<dumpdb>
    <database key="string" value="::Ice::Identity">
        <define name="categoryCount" type="int" value="0"/>
        <record/>
        <echo message="categoryCount = " value="categoryCount"/>
    </database>
    <dump type="::Ice::Identity">
        <if test="value.category == `Accounting'">
            <set target="categoryCount" value="categoryCount + 1"/>
        </if>
    </dump>
</dumpdb>

In this example, the  descriptor introduces the symbol  into the global scope, defining it as type  with an<define> categoryCount int
initial value of zero. Next, the  descriptor causes traversal to proceed. Each occurrence of the type  causes its <record> Ice::Identity

 descriptor to be executed, which examines the  member and increases  if necessary. Finally, after<dump> category categoryCount
traversal completes, the  descriptor displays the final value of .<echo> categoryCount

To reinforce the relationships between descriptors and scopes, consider the diagram in the figure below. Several descriptors are shown,
including the symbols they define in their local scopes. In this example, the  descriptor has a dictionary target and therefore the<iterate>
default symbol for the element value, , hides the symbol of the same name in the parent  descriptor's scope.value <dump>

This situation can be avoided by assigning a different symbol name to the element value.

In addition to symbols in the  scope, child descriptors of  can also refer to symbols from the  and <iterate> <iterate> <dump>
 scopes.<database>
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Relationship between descriptors and scopes.

Command Line Options for dumpdb

The tool supports the  common to all Slice processors listed. The options specific to  are describedstandard command-line options dumpdb
below:

--load SLICE
Loads the Slice definitions contained in the file . This option may be specified multiple times if several files must be loaded.SLICE
However, it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files are loaded
that share a common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains only 

 statements for each of the Slice files to be loaded. No duplication is possible in this case if the included files use include#include
guards correctly.

--key TYPE
--value TYPE
Specifies the Slice type of the database key and value. If these options are not specified, and the  option is not used, -e dumpdb
obtains type information from the .Freeze catalog

-e
Indicates that a  database is being examined. As a convenience, this option automatically sets the database key andFreeze evictor
value types to those appropriate for the Freeze evictor, and therefore the  and  options are not necessary.--key --value
Specifically, the key type of a Freeze evictor database is , and the value type is . TheIce::Identity Freeze::ObjectRecord
latter is defined in the Slice file , however this file does not need to be explicitly loaded. If thisFreeze/EvictorStorage.ice
option is not specified, and the  and  options are not used,  obtains type information from the --key --value dumpdb Freeze catalog
.

-o FILE
Create a file named  containing sample descriptors for the loaded Slice definitions. If type information is not specified, FILE dumpdb
obtains it from the . If the  option is used, its expression is included in the sample descriptors. DatabaseFreeze catalog --select
traversal does not occur when the  option is used.-o

-f FILE
Execute the descriptors in the file named . The file's  descriptor specifies the key and value types; therefore it isFILE <database>
not necessary to supply type information.

--select EXPR
Only display those records for which the   is true. The expression can refer to the symbols  and .expression EXPR key value

-c, --catalog
Display information about the databases in an environment, or about a particular database. This option presents the type information
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contained in the .Freeze catalog

Database Arguments for dumpdb

If  is invoked to examine a database, it requires two arguments:dumpdb

dbenv
The pathname of the database environment directory.

db
The name of the database file.  opens this database as read-only, and traversal occurs within a transaction.dumpdb

To display  information using the  option, the database environment directory  is required. If the database file argument  iscatalog -c dbenv db
omitted,  displays information about every database in the catalog.dumpdb

dumpdb Use Cases

The  support several modes of operation:command line options

Dump an entire database.
Dump selected records of a database.
Emit a sample descriptor file.
Execute a descriptor file.
Examine the catalog.

These use cases are described in the following sections.

Dump an Entire Database

The simplest way to examine a database with  is to dump its entire contents. You must specify the database key and value types,dumpdb
load the necessary Slice definitions, and supply the names of the database environment directory and database file. For example, this
command dumps a Freeze map database whose key type is  and value type is :string Employee

$ dumpdb --key string --value ::Employee --load Employee.ice db emp.db

As a convenience, you may omit the key and value types, in which case  obtains them from the :dumpdb catalog

$ dumpdb --load Employee.ice db emp.db

Dump Selected Records

If only certain records are of interest to you, the  option provides a convenient way to filter the output of  using an --select dumpdb
. In the following example, we select employees from the accounting department:expression

$ dumpdb --load Employee.ice --select "value.dept == 'Accounting'" db emp.db

In cases where the database records contain polymorphic class instances, you must be careful to specify an expression that can be
successfully evaluated against all records. For example,  fails immediately if the expression refers to a data member that does notdumpdb
exist in the class instance. The safest way to write an expression in this case is to check the type of the class instance before referring to any
of its data members.

In the example below, we assume that a Freeze evictor database contains instances of various classes in a class hierarchy, and we are only
interested in instances of  whose employee count is greater than 10:Manager

$ dumpdb -e --load Employee.ice \
--select "value.servant.ice_id == '::Manager' and value.servant.group.length > 10" \
db emp.db

Alternatively, if  has derived classes, then the expression can be written in a different way so that instances of  and any ofManager Manager
its derived classes are considered:
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$ dumpdb -e --load Employee.ice \
--select "value.servant.ice_isA('::Manager') and value.servant.group.length > 10" \
db emp.db

Creating a Sample Descriptor File

If you require more sophisticated filtering or scripting capabilities, then you must use a descriptor file. The easiest way to get started with a
descriptor file is to generate a template using :dumpdb

$ dumpdb --key string --value ::Employee --load Employee.ice -o dump.xml

The output file  is complete and can be executed immediately if desired, but typically the file is used as a starting point for furtherdump.xml
customization. Again, you may omit the key and value types by specifying the database instead:

$ dumpdb --load Employee.ice -o dump.xml db emp.db

If the  option is specified, its expression is included in the generated  descriptor as the value of the  attribute in an --select <record> test
 descriptor.<if>

dumpdb terminates immediately after generating the output file.

Executing a Descriptor File

Use the  option when you are ready to execute a descriptor file. For example, we can execute the descriptor we generated in the previous-f
section using this command:

$ dumpdb -f dump.xml --load Employee.ice db emp.db

Examine the Catalog

The  option displays the contents of the database environment's :-c catalog

$ dumpdb -c db

The output indicates whether each database in the environment is associated with an evictor or a map. For maps, the output includes the
key and value types.

If you specify the name of a database,  only displays the type information for that database:dumpdb

$ dumpdb -c db emp.db

Using  on an Open Environmentdumpdb

It is possible to use  to migrate databases in an environment that is currently open by another process, but if you are not careful youdumpdb
can easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both  and thedumpdb
other process to set . This property has a default value of one, therefore you must explicitly setFreeze.DbEnv. .DbPrivate=0env-name
it to zero.

If you run  on an open environment but neglect to set , you can expect  todumpdb Freeze.DbEnv. .DbPrivate=0env-name dumpdb
terminate immediately with an error message stating that the database environment is locked. Before running  on an opendumpdb
environment, we strongly recommend that you first verify that the other process was also configured with Freeze.DbEnv.env-name

..DbPrivate=0

See Also

Using the Slice Compilers



Ice 3.4.2 Documentation

1426 Copyright © 2011, ZeroC, Inc.

Freeze Catalogs
Freeze Evictors
FreezeScript Descriptor Expression Language
Freeze Properties
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FreezeScript Inspection XML Reference

This page describes the XML elements comprising the FreezeScript inspection descriptors.

On this page:

 Descriptor Element<dumpdb>
 Descriptor Element<database>

 Descriptor Element<record>
 Descriptor Element<dump>

 Descriptor Element<iterate>
 Descriptor Element<if>

 Descriptor Element<set>
 Descriptor Element<add>

 Descriptor Element<define>
 Descriptor Element<remove>

 Descriptor Element<fail>
 Descriptor Element<echo>

<dumpdb> Descriptor Element

The top-level descriptor in a descriptor file. It requires one child descriptor, , and supports any number of  descriptors.<database> <dump>
This descriptor has no attributes.

<database> Descriptor Element

The attributes of this descriptor define the key and value types of the database. It supports any number of child descriptors, but at most one 
 descriptor. The  descriptor also creates a  for user-defined symbols.<record> <database> global scope

The attributes supported by the  descriptor are described in the following table:<database>

Name Description

key Specifies the Slice type of the database key.

value Specifies the Slice type of the database value.

As an example, consider the following  descriptor. In this case, the  to be examined has key type  and value<database> Freeze map int
type :::Employee

XML

<database key="int" value="::Employee">

<record> Descriptor Element

Commences the database traversal. Child descriptors are executed for each record in the database, but after any  descriptors are<dump>
executed. The  descriptor introduces the read-only symbols ,  and  into a local scope. These symbols are<record> key value facet
accessible to child descriptors, but not to  descriptors. The  symbol is a string indicating the  of the object in the<dump> facet facet name
current record, and is only relevant for  databases.Freeze evictor

Note that database traversal only occurs if a  descriptor is present.<record>

<dump> Descriptor Element

Executed for all instances of a Slice type. Only one  descriptor can be specified for a type, but a  descriptor is not required<dump> <dump>
for every type. The read-only symbol  is introduced into a local scope. The attributes supported by this descriptor are described in thevalue
following table:

Name Description
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type Specifies the Slice .type ID

base If  denotes a Slice class, this attribute determines whether the  descriptor of the base class is invoked. If ,type <dump> true
the base class descriptor is invoked after executing the child descriptors. If not specified, the default value is .true

contents For  and  types, this attribute determines whether descriptors are executed for members of the value. For class struct
 and  types, this attribute determines whether descriptors are executed for elements. If not specified,sequence dictionary

the default value is .true

Below is an example of a  descriptor that searches for certain products:<dump>

XML

<dump type="::Product">
    <if test="value.description.find('scanner') != -1">
        <echo message="Scanner SKU: " value="value.SKU"/>
    </if>
</dump>

For class types,  first attempts to locate a  descriptor for the object's most-derived type. If no descriptor is found, dumpdb <dump> dumpdb
proceeds up the class hierarchy in an attempt to find a descriptor. The base object type, , is the root of every class hierarchy and isObject
included in the search for descriptors. It is therefore possible to define a  descriptor for type , which will be invoked for every<dump> Object
class instance.

Note that  descriptors are executed recursively. For example, consider the following Slice definitions:<dump>

Slice

struct Inner {
    int sum;
};
struct Outer {
    Inner i;
};

When  is interpreting a value of type , it executes the  descriptor for , then recursively executes the dumpdb Outer <dump> Outer <dump>
descriptor for the  member, but only if the  attribute of the  descriptor has the value .Inner contents Outer true

<iterate> Descriptor Element

Iterates over a dictionary or sequence, executing child descriptors for each element. The symbol names selected to represent the element
information may conflict with existing symbols in the enclosing scope, in which case those outer symbols are not accessible to child
descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not specified, the default symbol is .i

element The symbol name used for the sequence element. If not specified, the default symbol is .elem

key The symbol name used for the dictionary key. If not specified, the default symbol is .key

value The symbol name used for the dictionary value. If not specified, the default symbol is .value

Shown below is an example of an  descriptor that displays the name of an employee if the employee's salary is greater than<iterate>
$3000.
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XML

<iterate target="value.employeeMap" key="id" value="emp">
    <if test="emp.salary > 3000">
        <echo message="Employee: " value="emp.name"/>
    </if>
</iterate>

<if> Descriptor Element

Conditionally executes child descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

test A boolean .expression

Child descriptors are executed if the expression in  evaluates to true.test

<set> Descriptor Element

Modifies a value. The  and  attributes are mutually exclusive. If  denotes a dictionary element, that element must alreadyvalue type target
exist (i.e.,  cannot be used to add an element to a dictionary). The attributes supported by this descriptor are described in the following<set>
table:

Name Description

target An  that must select a modifiable value.expression

value An  that must evaluate to a value compatible with the target's type.expression

type The Slice  of a class to be instantiated. The class must be compatible with the target's type.type ID

length An integer  representing the desired new length of a sequence. If the new length is less than the current size of theexpression
sequence, elements are removed from the end of the sequence. If the new length is greater than the current size, new
elements are added to the end of the sequence. If  or  is also specified, it is used to initialize each new element.value type

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Transformation fails immediately if a range error occurs. If not specified, the default value is .false

The  descriptor below modifies a member of a dictionary element:<set>

XML

<set target="new.parts['P105J3'].cost" value="new.parts['P105J3'].cost * 1.05"/>

This  descriptor adds an element to a sequence and initializes its value:<set>

XML

<set target="new.partsList" length="new.partsList.length + 1" value="'P105J3'"/>

<add> Descriptor Element

Adds a new element to a sequence or dictionary. It is legal to add an element while traversing the sequence or dictionary using ,<iterate>
however the traversal order after the addition is undefined. The  and  attributes are mutually exclusive, as are the  and key index value

 attributes. If neither  nor  is specified, the new element is initialized with a default value. The attributes supported by thistype value type
descriptor are described in the following table:

Name Description
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target An  that must select a modifiable sequence or dictionary.expression

key An  that must evaluate to a value compatible with the target dictionary's key type.expression

index An  that must evaluate to an integer value representing the insertion position. The new element is inserted before expression
. The value must not exceed the length of the target sequence.index

value An  that must evaluate to a value compatible with the target dictionary's value type, or the target sequence'sexpression
element type.

type The Slice  of a class to be instantiated. The class must be compatible with the target dictionary's value type, or thetype ID
target sequence's element type.

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Transformation fails immediately if a range error occurs. If not specified, the default value is .false

Below is an example of an  descriptor that adds a new dictionary element and then initializes its member:<add>

XML

<add target="new.parts" key="'P105J4'"/>
<set target="new.parts['P105J4'].cost" value="3.15"/>

<define> Descriptor Element

Defines a new symbol in the current scope. The attributes supported by this descriptor are described in the following table:

Name Description

name The name of the new symbol. An error occurs if the name matches an existing symbol in the current scope.

type The name of the symbol's formal Slice type.

value An  that must evaluate to a value compatible with the symbol's type.expression

convert If , additional type conversions are supported: between integer and floating point, and between integer and enumeration.true
Execution fails immediately if a range error occurs. If not specified, the default value is .false

Below are two examples of the  descriptor. The first example defines the symbol  to have type , and<define> identity Ice::Identity
proceeds to initialize its members using :<set>

XML

<define name="identity" type="::Ice::Identity"/>
<set target="identity.name" value="steve"/>
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in our discussion of  to define the symbol custom database migration
 and assign it a default value:manufacturer

XML

<define name="manufacturer" type="::BigThree" value="::DaimlerChrysler"/>

<remove> Descriptor Element

Removes an element from a sequence or dictionary. It is legal to remove an element while traversing a sequence or dictionary using 
, however the traversal order after removal is undefined. The attributes supported by this descriptor are described in the<iterate>

following table:

Name Description
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target An  that must select a modifiable sequence or dictionary.expression

key An  that must evaluate to a value compatible with the key type of the target dictionary.expression

index An  that must evaluate to an integer value representing the index of the sequence element to be removed.expression

<fail> Descriptor Element

Causes transformation to fail immediately. If  is specified, transformation fails only if the expression evaluates to . The attributestest true
supported by this descriptor are described in the following table:

Name Description

message A message to display upon transformation failure.

test A boolean .expression

The following  descriptor terminates the transformation if a range error is detected:<fail>

XML

<fail message="range error occurred in ticket count!" test="value.ticketCount > 32767"/>

<echo> Descriptor Element

Displays values and informational messages. If no attributes are specified, only a newline is printed. The attributes supported by this
descriptor are described in the following table:

Name Description

message A message to display.

value An . The value of the expression is displayed in a structured format.expression

Shown below is an  descriptor that uses both  and  attributes:<echo> message value

XML

<if test="value.ticketCount > 32767">
    <echo message="range error occurred in ticket count: " value="value.ticketCount"/>
</if>

See Also

Freeze Maps
Freeze Evictors
Facets and Versioning
Custom Database Migration
FreezeScript Descriptor Expression Language
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FreezeScript Descriptor Expression Language

An expression language is provided for use in FreezeScript descriptors.

On this page:

Operators in FreezeScript
Literals in FreezeScript
Symbols in FreezeScript
The  Keyword in FreezeScriptnil
Accessing Elements in FreezeScript
Reserved Keywords in FreezeScript
Implicit Data Members in FreezeScript
Calling Functions in FreezeScript

String Member Functions
Dictionary Member Functions
Object Member Functions
Global Functions

Operators in FreezeScript

The language supports the usual complement of operators: , , , {+}, , , , , , , , , , , , . Note that the  characterand or not - / * % < > == != <= >= ( ) <
must be escaped as  in order to comply with XML syntax restrictions.&lt;

Literals in FreezeScript

Literal values can be specified for integer, floating point, boolean, and string. The expression language supports the same syntax for literal
 as that of Slice, with one exception: string literals must be enclosed in single quotes.values

Symbols in FreezeScript

Certain descriptors introduce symbols that can be used in expressions. These symbols must comply with the naming rules for Slice
identifiers (i.e., a leading letter followed by zero or more alphanumeric characters). Data members are accessed using dotted notation, such
as .value.memberA.memberB

Expressions can refer to Slice constants and enumerators using scoped names. In a  descriptor, there are two sets of Slicetransformdb
definitions, therefore the expression must indicate which set of definitions it is accessing by prefixing the scoped name with  or .::Old ::New
For example, the expression  evaluates to  if the data member  has theold.fruitMember == ::Old::Pear true fruitMember
enumerated value . In , only one set of Slice definitions is present and therefore the constant or enumerator can be identifiedPear dumpdb
without any special prefix.

The  Keyword in FreezeScriptnil

The keyword  represents a nil value of type . This keyword can be used in expressions to test for a nil object value, and can alsonil Object
be used to set an object value to nil.

Accessing Elements in FreezeScript

Dictionary and sequence elements are accessed using array notation, such as  or . An error occurs if anuserMap['joe'] stringSeq[5]
expression attempts to access a dictionary or sequence element that does not exist. For dictionaries, the recommended practice is to check
for the presence of a key before accessing it:

XML

<if test="userMap.containsKey('joe') and userMap['joe'].active">

(This example shows that you can also  in FreezeScript.)call functions

Similarly, expressions involving sequences should check the length of the sequence:
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XML

<if test="stringSeq.length > 5 and stringSeq[5] == 'fruit'">

The  member is an .length implicit data member

Reserved Keywords in FreezeScript

The following keywords are reserved: , , , , , .and or not true false nil

Implicit Data Members in FreezeScript

Certain Slice types support implicit data members:

Dictionary and sequence instances have a member  representing the number of elements.length
Object instances have a member  denoting the actual type of the object.ice_id

Calling Functions in FreezeScript

The expression language supports two forms of function invocation: member functions and global functions. A member function is invoked
on a particular data value, whereas global functions are not bound to a data value. For instance, here is an expression that invokes the find
member function of a  value:string

old.stringValue.find('theSubstring') != -1

And here is an example that invokes the global function :stringToIdentity

stringToIdentity(old.stringValue)

If a function takes multiple arguments, the arguments must be separated with commas.

String Member Functions

The  data type supports the following member functions:string

int find(string match[, int start])
Returns the index of the substring, or  if not found. A starting position can optionally be supplied.-1

string replace(int start, int len, string str)
Replaces a given portion of the string with a new substring, and returns the modified string.

string substr(int start[, int len])
Returns a substring beginning at the given start position. If the optional length argument is supplied, the substring contains at most 

 characters, otherwise the substring contains the remainder of the string.len

Dictionary Member Functions

The  data type supports the following member function:dictionary

bool containsKey(key)
Returns  if the dictionary contains an element with the given key, or  otherwise. The  argument must have a valuetrue false key
that is compatible with the dictionary's key type.

Object Member Functions

Object instances support the following member function:

bool ice_isA(string id)
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Returns  if the object implements the given interface type, or  otherwise. This function cannot be invoked on a nil object.true false

Global Functions

The following global functions are provided:

string generateUUID()
Returns a new UUID.

string identityToString(Ice::Identity id)
Converts an identity into its string representation.

string lowercase(string str)
Returns a new string converted to lowercase.

string proxyToString(Ice::ObjectPrx prx)
Returns the string representation of the given proxy.

Ice::Identity stringToIdentity(string str)
Converts a string into an .Ice::Identity

Ice::ObjectPrx stringToProxy(string str)
Converts a string into a proxy.

string typeOf(val)
Returns the formal Slice type of the argument.

See Also

Constants and Literals
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IceSSL
Security is an important consideration for many distributed applications, both within corporate intranets as well as over untrusted networks,
such as the Internet. The ability to protect sensitive information, ensure its integrity, and verify the identities of the communicating parties is
essential for developing secure applications. With those goals in mind, Ice includes the IceSSL  that provides these capabilities usingplug-in
the Secure Socket Layer (SSL) protocol.

Although security is an optional component of Ice, it is not an afterthought. The IceSSL plug-in integrates easily into existing Ice applications,
in most cases requiring nothing more than configuration changes. Naturally, some additional effort is required to create the necessary
security infrastructure for an application, but in many enterprises this work will have already been done.

IceSSL is available for C++, Java and .NET applications. Python, PHP and Ruby applications can use IceSSL for C++ via
configuration.

On this page:

Overview of SSL
Public Key Infrastructure
Requirements

Overview of SSL

The Secure Socket Layer (SSL) protocol is the de facto standard for secure network communication. Its support for authentication,
non-repudiation, data integrity, and strong encryption makes it the logical choice for securing Ice applications.

SSL is the protocol  that enables Web browsers to conduct secure transactions and therefore is one of the most commonly used protocols[1]
for secure network communication. You do not need to know the technical details of the SSL protocol in order to use IceSSL successfully
(and those details are outside the scope of this text). However, it would be helpful to have a high-level understanding of how the protocol
works and the infrastructure required to support it.

SSL provides a secure environment for communication (without sacrificing too much performance) by combining a number of cryptographic
techniques:

public key encryption
symmetric (shared key) encryption
message authentication codes
digital certificates

When a client establishes an SSL connection to a server, a  is performed. During a typical handshake, digital certificates thathandshake
identify the communicating parties are validated, and symmetric keys are exchanged for encrypting the session traffic. Public key encryption,
which is too slow to be used for the bulk of a session's data transfer, is used heavily during the handshaking phase. Once the handshake is
complete, SSL uses message authentication codes to ensure data integrity, allowing the client and server to communicate at will with
reasonable assurance that their messages are secure.

Public Key Infrastructure

Security requires trust, and public key cryptography by itself does nothing to establish trust. SSL addresses the issue of trust using Public
Key Infrastructure (PKI) , which binds public keys to identities using certificates. A certificate  creates a certificate for an entity, called[2] issuer
the . The subject is often a person, but it may also be a computer or a specific application. The subject's identity is represented by a subject

, which includes information such as the subject's name, organization and location. A certificate alone is not sufficient todistinguished name
establish the subject's identity, however, as anyone can create a certificate for a particular distinguished name.

In order to authenticate a certificate, we need a third-party to guarantee that the certificate belongs to the subject described by the
distinguished name. This third party, called a Certificate Authority (CA), expresses this guarantee by using its own private key to sign the
subject's certificate. Combining the CA's certificate with the subject's certificate forms a  that provides SSL with most of thecertificate chain
information it needs to authenticate the remote peer. In many cases, the chain contains only the aforementioned two certificates, but it is also
possible for the chain to be longer when the  CA issues a certificate that the subject may use to sign other certificates. Regardless of theroot
length of the chain, this scheme can only work if we trust that the root CA has sufficiently verified the identity of the subject before issuing the
certificate.

An implementation of the SSL protocol also needs to know which root CAs we trust. An application supplies that information as a list of
certificates representing the trusted root CAs. With that list in hand, the SSL implementation authenticates a peer by obtaining the peer's
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certificate chain and examining it carefully for validity. If we view the chain as a hierarchy with the root CA certificate at the top and the peer's
certificate at the bottom, we can describe SSL's validation activities as follows:

The root CA certificate must be self-signed and be present among the application's trusted CA certificates.
All other certificates in the chain must be signed by the one immediately preceding it.
The certificates must not be expired or revoked.

These tests certify that the chain is valid, but applications often require the chain to undergo more intensive scrutiny to determine whether
the chain is .trustworthy

Commercial CAs exist to supply organizations with a reliable source of certificates, but in many cases a private CA is completely sufficient.
You can create and manage your CA using freely-available tools, and in fact Ice includes a  that simplify this process.collection of utilities

Depending on your implementation language, it may also possible to avoid the use of certificates altogether; encryption is still used to
obscure the session traffic, but the benefits of authentication are sacrificed in favor of reduced complexity and administration.

Requirements

Integrating IceSSL into your application often requires no changes to your source code, but does involve the following administrative tasks:

creating a public key infrastructure (if necessary)
configuring the IceSSL plug-in
modifying your application's configuration to install the IceSSL plug-in and use secure connections

The remainder of this discussion concentrates on plug-in configuration and programming.

Topics

Using IceSSL
Configuring IceSSL
Programming IceSSL
Advanced IceSSL Topics
Setting up a Certificate Authority
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Using IceSSL

Incorporating IceSSL into your application requires installing the plug-in, configuring it according to your security requirements, and creating
SSL endpoints.

On this page:

Installing IceSSL
C++ Applications
Java Applications
.NET Applications
Ice Touch Applications

Creating SSL Endpoints
Endpoint Security Considerations

Installing IceSSL

Ice supports a generic  that allows extensions (such as IceSSL) to be installed dynamically without changing the applicationplug-in facility
source code. The  property provides language-specific information that enables the Ice run time to install a plug-in.Ice.Plugin

C++ Applications

The executable code for the IceSSL C++ plug-in resides in a shared library on Unix and a dynamic link library (DLL) on Windows. The format
for the  property is shown below:Ice.Plugin

Ice.Plugin.IceSSL=IceSSL:createIceSSL

The last component of the property name ( ) becomes the plug-in's official identifier for configuration purposes, but the IceSSL plug-inIceSSL
requires its identifier to be . The property value  is sufficient to allow the Ice run time to locate the IceSSLIceSSL IceSSL:createIceSSL
library (on both Unix and Windows) and initialize the plug-in. The only requirement is that the library reside in a directory that appears in the
shared library path (  on most Unix platforms,  on Windows).LD_LIBRARY_PATH PATH

Additional  are usually necessary as well.configuration properties

Java Applications

The format for the  property is shown below:Ice.Plugin

Ice.Plugin.IceSSL=IceSSL.PluginFactory

The last component of the property name ( ) becomes the plug-in's official identifier for configuration purposes, but the IceSSL plug-inIceSSL
requires its identifier to be . The property value  is the name of a class that allows the Ice run time toIceSSL IceSSL.PluginFactory
initialize the plug-in. The IceSSL classes are included in , therefore no other changes to your  are necessary.Ice.jar CLASSPATH

Additional  are usually necessary as well.configuration properties

.NET Applications

The format for the  property is shown below:Ice.Plugin

Ice.Plugin.IceSSL=C:/Ice/bin/IceSSL.dll:IceSSL.PluginFactory

The last component of the property name ( ) becomes the plug-in's official identifier for configuration purposes, but the IceSSL plug-inIceSSL
requires its identifier to be . The property value contains the file name of the IceSSL assembly as well as the name of a class, IceSSL

, that allows the Ice run time to initialize the plug-in.IceSSL.PluginFactory

You may also specify a partially or fully qualified assembly name instead of the file name in an  property. For example, you canIce.Plugin
use the following configuration to load the plug-in from the release version of the assembly provided in ZeroC's binary distribution:
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Release Key

Ice.Plugin.IceSSL=IceSSL,Version=3.4.2.0,Culture=neutral,PublicKeyToken=cdd571ade22f2f16:IceSSL.PluginFactory

Alternatively, if you have built the Ice source code yourself, you can load the development version of the assembly as shown below:

Development Key

Ice.Plugin.IceSSL=IceSSL,Version=3.4.2.0,Culture=neutral,PublicKeyToken=1f998c50fec78381:IceSSL.PluginFactory

You  use a fully qualified assembly name to load the IceSSL plug-in from the Global Assembly Cache.must

Additional  are usually necessary as well.configuration properties

Ice Touch Applications

The IceSSL plug-in is included in the Ice Touch run time and installed automatically, therefore it is not necessary to explicitly load it.
However,  are usually necessary.configuration properties

Creating SSL Endpoints

Installing the IceSSL plug-in enables you to use a new protocol, , in your endpoints. For example, the following  listssl adapter endpoint
creates a TCP endpoint, an SSL endpoint, and a UDP endpoint:

MyAdapter.Endpoints=tcp -p 4063:ssl -p 4064:udp -p 4063

As this example demonstrates, it is possible for a UDP endpoint to use the same port number as a TCP or SSL endpoint, because UDP is a
different protocol and therefore has an indepdendent set of ports. It is not possible for a TCP endpoint and an SSL endpoint to use the same
port number, because SSL is essentially a layer over TCP.

Using SSL in  is equally straightforward:proxy endpoints

MyProxy=MyObject:tcp -p 4063:ssl -p 4064:udp -p 4063

Endpoint Security Considerations

Defining an object adapter's endpoints to use multiple protocols, , has obvious security implications. If your intent is to useas shown above
SSL to protect session traffic and/or restrict access to the server, then you should only define SSL endpoints.

There can be situations, however, in which insecure endpoint protocols are advantageous. The figure below illustrates an environment in
which TCP endpoints are allowed behind the firewall, but external clients are required to use SSL:
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An application of multiple protocol endpoints.

The firewall in the illustration is configured to block external access to TCP port 4063 and to forward connections to port 4064 to the server
machine.

One reason for using TCP behind the firewall is that it is more efficient than SSL and requires less administrative work. Of course, this
scenario assumes that internal clients can be trusted, which is not true in many environments.

For more information on using SSL in complex network architectures, refer to our discussion of the .Glacier2 router

See Also

Plug-in Facility
Configuring IceSSL
Object Adapter Endpoints
Proxy Endpoints
Glacier2
Ice Plug-In Properties
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Configuring IceSSL

After , an application typically needs to define a handful of additional  to configure settings such as the location ofinstalling IceSSL properties
certificate and key files. This page provides an introduction to configuring the plug-in for each of the supported language mappings.

On this page:

C++ Configuration for IceSSL
DSA Example for C++
RSA and DSA Example for C++
ADH Example for C++

Java Configuration for IceSSL
DSA Example for Java
ADH Example for Java

.NET Configuration for IceSSL
Managing Certificates with the Microsoft Management Console
Using Certificate Files
Using Certificate Stores
Importing Certificates

Ice Touch Configuration for IceSSL
Keychains

Configuring Ciphersuites
Configuring Ciphersuites in C++
Configuring Ciphersuites in Java

Configuring Trust Relationships
Trusted Peers
Verification Depth

Configuring Secure Proxies
IceSSL Diagnostics

System Logging in Java
System Logging in .NET

C++ Configuration for IceSSL

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey.pem
IceSSL.KeyFile=privkey.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password

The  property is a convenient way to specify the default location of your certificate and key files. The three propertiesIceSSL.DefaultDir
that follow it define the files containing the program's certificate, private key, and trusted CA certificate, respectively. This example assumes
the files contain RSA keys, and IceSSL requires the files to use the Privacy Enhanced Mail (PEM) encoding. Finally, the IceSSL.Password
property specifies the password of the private key.

Note that it is a security risk to define a password in a plain text file, such as an Ice configuration file, because anyone who can gain read
access to your configuration file can obtain your password. IceSSL also supports  to supply a password.alternate ways

DSA Example for C++

If you used DSA to generate your keys, one additional property is necessary:
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Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey_dsa.pem
IceSSL.KeyFile=privkey_dsa.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password
IceSSL.Ciphers=DEFAULT:DSS

The  property adds support for DSS authentication to the plug-in's default set of ciphersuites.IceSSL.Ciphers

RSA and DSA Example for C++

It is also possible to specify certificates and keys for both RSA and DSA by including two filenames in the  and IceSSL.CertFile
 properties. The filenames must be separated using the platform's path separator. The example below demonstrates theIceSSL.KeyFile

Unix separator (a colon):

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey_rsa.pem:pubkey_dsa.pem
IceSSL.KeyFile=privkey_rsa.pem:privkey_dsa.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password
IceSSL.Ciphers=DEFAULT:DSS

On Windows, you would use a semicolon to separate the filenames.

ADH Example for C++

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH is not a good choice in most cases because, as its name
implies, there is no authentication of the communicating parties, and it is vulnerable to man-in-the-middle attacks. However, it still provides
encryption of the session traffic and requires very little administration and therefore may be useful in certain situations. The configuration
properties shown below demonstrate how to use ADH:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.Ciphers=ADH
IceSSL.VerifyPeer=0

The  property enables support for ADH, which is disabled by default.IceSSL.Ciphers

The  property changes the plug-in's default behavior with respect to certificate verification. Without this setting,IceSSL.VerifyPeer
IceSSL rejects a connection if the peer does not supply a certificate (as is the case with ADH).

Java Configuration for IceSSL

IceSSL uses Java's native format for storing keys and certificates: the keystore.

A keystore is represented as a file containing key pairs and associated certificates, and is usually administered using the  utilitykeytool
supplied with the Java run time. Keystores serve two roles in Java's SSL architecture:

A keystore containing a key pair identifies the peer and is usually closely guarded.
A keystore containing public certificates represents the identities of trusted peers and can be freely shared. These keystores are
also referred to as "truststores" when they are used to store only trusted certificate chains.

A single keystore file can fulfill both of these purposes.

Java supports a pluggable architecture for keystore implementations in which a system property selects a particular implementation as the
default keystore type. IceSSL uses the default keystore type unless otherwise specified.

A password is assigned to each key pair in a keystore, as well as to the keystore itself. IceSSL must be provided with the password for the
key pair, but the keystore password is optional. If a keystore password is specified, it is used only to verify the keystore's integrity. IceSSL



Ice 3.4.2 Documentation

1442 Copyright © 2011, ZeroC, Inc.

1.  

2.  
3.  

requires that all of the key pairs in a keystore have the same password.

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=keys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

IceSSL resolves the filenames defined in its configuration properties as follows:

Attempt to open the file as a class loader resource. This is especially useful for deploying applications with special security
restrictions, such as applets.
Attempt to open the file in the local file system.
If  is defined, prepend its value and try steps 1 and 2 again. The  property is aIceSSL.DefaultDir IceSSL.DefaultDir
convenient way to specify the default location of your keystore and truststore files.

The  property specifies the password of the key pair. Note that it is a security risk to define a password in a plain text file,IceSSL.Password
such as an Ice configuration file, because anyone who can gain read access to your configuration file can obtain your password. IceSSL also
supports  to supply a password.alternate ways

DSA Example for Java

Java supports both RSA and DSA keys. No additional properties are necessary to use DSA:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=dsakeys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

ADH Example for Java

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH is not a good choice in most cases because, as its name
implies, there is no authentication of the communicating parties, and it is vulnerable to man-in-the-middle attacks. However, it still provides
encryption of the session traffic and requires very little administration and therefore may be useful in certain situations. The configuration
properties shown below demonstrate how to use ADH:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Ciphers=NONE (DH_anon)
IceSSL.VerifyPeer=0

The  property enables support for ADH, which is disabled by default.IceSSL.Ciphers

The  property changes the plug-in's default behavior with respect to certificate verification. Without this setting,IceSSL.VerifyPeer
IceSSL rejects a connection if the peer does not supply a certificate (as is the case with ADH).

.NET Configuration for IceSSL

The Common Language Runtime (CLR) in .NET uses certificate stores as the persistent repositories of certificates and keys. Furthermore,
the CLR maintains two distinct sets of certificate stores, one for the current user and another for the local machine. Although it is possible to
load a certificate and its corresponding private key from a regular file, the CLR requires trusted CA certificates to reside in an appropriate
certificate store.

Managing Certificates with the Microsoft Management Console

On Windows, you can use the Microsoft Management Console (MMC) to browse the contents of the various certificate stores. To start the
console, run  from a command window, or choose Run from the Start menu and enter .MMC.EXE MMC.EXE
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Once the console is running, you need to install the Certificates "snap-in" by choosing Add/Remove Snap-in from the File menu. Click the
Add button, choose Certificates in the popup window and click Add. If you wish to manage certificates for the current user, select My Current
Account and click Finish. To manage certificates for the local computer, select Computer Account and click Next, then select Local Computer
and click Finish.

When you have finished adding snap-ins, close the Add Standalone Snap-in window and click OK on the Add/Remove Snap-in window.
Your Console Root window now contains a tree structure that you can expand to view the available certificate stores. If you have a certificate
in a file that you want to add to a store, click on the desired store, then open the Action menu and select All Tasks/Import.

Using Certificate Files

Our first example demonstrates how to configure IceSSL with a file that contains the program's certificate and key:

Ice.Plugin.IceSSL=IceSSL.dll:IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=cert.pfx
IceSSL.Password=password

The  property is a convenient way to specify the default location of your certificate file. This file must use the PersonalIceSSL.DefaultDir
Information Exchange (PFX, also known as PKCS#12) format and contain both a certificate and its corresponding private key. The 

 property specifies the password used to secure the file.IceSSL.Password

Note that it is a security risk to define a password in a plain text file, such as an Ice configuration file, because anyone who can gain read
access to your configuration file can obtain your password. IceSSL also supports  to supply a password.alternate ways

This configuration assumes that any trusted CA certificates necessary to authenticate the program's peers are already installed in an
appropriate certificate store. You may also use a configuration property to automatically import a certificate from a file, as described in below.

Using Certificate Stores

If the program's certificate and private key are already installed in a certificate store, you can select it using the IceSSL.FindCert
configuration property as shown in the following example:

Ice.Plugin.IceSSL=IceSSL.dll:IceSSL.PluginFactory
IceSSL.FindCert.LocalMachine.My=subject:"Quote Server"

An  property executes a query in a particular certificate store and selects all of the certificates that match the givenIceSSL.FindCert
criteria. In the example above, the location of the certificate store is , and the store's name is . When using MMC toLocalMachine My
browse the certificate stores, this specification is equivalent to the store "Personal" in the location "Certificates (Local Computer)."

The other legal value for the location component of the property name is . The following table shows the valid values for theCurrentUser
store name component and their equivalents in MMC.

Property Name MMC Name

AddressBook Other People

AuthRoot Third-Party Root Certification Authorities

CertificateAuthority Intermediate Certification Authorities

Disallowed Untrusted Certificates

My Personal

Root Trusted Root Certification Authorities

TrustedPeople Trusted People

TrustedPublisher Trusted Publishers

The search criteria consists of  pairs that perform case-insensitive comparisons against the fields of each certificate in thename:value
specified store, and the special property value  selects every certificate in the store. Typically, however, the criteria should select a single*
certificate. In a server, IceSSL must supply the CLR with the certificate that represents the server's identity; if a configuration matches
several certificates, IceSSL chooses one (in an undefined manner) and logs a warning to notify you of the situation.
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Selecting a certificate from a store is more secure than using a certificate file via the  property because it is notIceSSL.CertFile
necessary to specify a plain-text password. MMC prompts you for the password when initially importing a certificate into a store, so the
password is not required when an application uses that certificate to identify itself.

Importing Certificates

IceSSL can be configured to import a certificate into a particular store. The Ice demos and test suites use this capability to ensure that the
CA certificate is present, which avoids the need for a user to manually import the certificate using MMC before using the Ice sample
programs and tests.

The  property uses the same format for its name as the  property described above, in that theIceSSL.ImportCert IceSSL.FindCert
certificate store's location and name are part of the property name:

IceSSL.ImportCert.LocalMachine.AuthRoot=cacert.pem

The property's value is the name of a certificate file and an optional password. If a file is protected with a password, append the password to
the property value using a semicolon as the separator. IceSSL uses the value of  to complete the file name ifIceSSL.DefaultDir
necessary. The CLR accepts a number of encoding formats for the certificate, including PEM, DER and PFX.

The store name should be chosen with care. When installing a trusted CA certificate, authentication succeeds only when the certificate is
installed into one of the following stores:

LocalMachine.Root
LocalMachine.AuthRoot
CurrentUser.Root

Note that administrative privileges are required when installing a certificate into a  store.LocalMachine

If you specify a store name other than those listed in the table above, IceSSL creates a new store with the given name and adds the
certificate to it. Once installed in the specified store, the application (or the user) is responsible for removing the certificate when it is no
longer necessary.

Ice Touch Configuration for IceSSL

In Ice Touch, certificate files are loaded from the application's resource bundle. If the application's target platform is Mac OS, certificate files
can also be loaded directly from the file system. Consider the following properties:

IceSSL.DefaultDir=certs
IceSSL.CertAuthFile=cacert.der
IceSSL.CertFile=cert.pfx
IceSSL.Password=password

The  property is a convenient way to specify the location of your certificate files. Defining IceSSL.DefaultDir IceSSL.DefaultDir
means IceSSL searches for certificate files relative to the specified directory. For the properties in the example above, IceSSL composes the
pathnames  and . If  is not defined, IceSSL uses the certificate filecerts/cacert.der certs/cert.pfx IceSSL.DefaultDir
pathnames exactly as they are supplied.

As mentioned earlier, IceSSL has different semantics for locating certificate files depending on the target platform. For the iPhone and
iPhone simulator, IceSSL attempts to open a certificate file in the application's resource bundle as  if Resources/ /DefaultDir file

 is defined, or as simply  otherwise. If the target platform is Mac OS and the certificate file cannotIceSSL.DefaultDir Resources/file
be found in the resource bundle, IceSSL also attempts to open the file in the file system as  if a default directory is/DefaultDir file
specified, or as simply  otherwise.file

IceSSL requires that the CA certificate file specified by  use the DER format. The certificate file in IceSSL.CertAuthFile
 must use the Personal Information Exchange (PFX, also known as PKCS#12) format and contain both a certificate andIceSSL.CertFile

its corresponding private key. The  property specifies the password used to secure the certificate file.IceSSL.Password

Keychains

IceSSL imports the certificate specified by  into a keychain. IceSSL uses the  keychain by default unless youIceSSL.CertFile login
choose a different one by defining the  property:IceSSL.Keychain
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IceSSL.Keychain=Test Keychain

The  keychain is the user's default keychain, which is normally unlocked after logging into the system. IceSSL does not usually requirelogin
a password to import a certificate into the  keychain. However, if your  keychain is not unlocked automatically, or if you havelogin login
selected a different keychain, you can supply a password using the  property:IceSSL.KeychainPassword

IceSSL.KeychainPassword=password

Configuring Ciphersuites

A ciphersuite represents a particular combination of encryption, authentication and hashing algorithms. The IceSSL plug-ins for C++ and
Java allow you to configure the ciphersuites that their underlying SSL engines are allowed to negotiate during handshaking with a peer. By
default, IceSSL uses the underlying engine's default ciphersuites, but you can define a property to customize the list as we demonstrated
above with the ADH examples. Normally the default configuration is chosen to eliminate relatively insecure ciphersuites such as ADH, which
is the reason it must be explicitly enabled.

Configuring Ciphersuites in C++

The value of the  property is given directly to the low-level OpenSSL library, on which IceSSL is based. Therefore,IceSSL.Ciphers
OpenSSL determines the allowable ciphersuites, which in turn depend on how the OpenSSL distribution was compiled. You can obtain a
complete list of the supported ciphersuites using the  command:openssl

$ openssl ciphers

This command will likely generate a long list. To simplify the selection process, OpenSSL supports several classes of ciphers, as shown in
the following table.

Class Description

ALL All possible combinations.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.

Classes and ciphers can be excluded by prefixing them with an exclamation point. The special keyword  sorts the cipher list in@STRENGTH
order of their strength, so that SSL gives preference to the more secure ciphers when negotiating a cipher suite. The  keyword@STRENGTH
must be the last element in the list.

For example, here is a good value for the  property:IceSSL.Ciphers

ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

This value excludes the ciphers with low bit strength and known problems, and orders the remaining ciphers according to their strength.

Note that no warning is given if an unrecognized cipher is specified.

Configuring Ciphersuites in Java

IceSSL for Java interprets the value of  as a sequence of expressions that filter the selected ciphersuites using name andIceSSL.Ciphers
pattern matching. If the property is not defined, the Java security provider's default ciphersuites are used. The following table defines the
valid expressions that may appear in the property value.

Expression Description

NONE Disables all ciphersuites. If specified, it must appear first.
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ALL Enables all supported ciphersuites. If specified, it must appear first. This expression should be used with caution, as it may
enable low-security ciphersuites.

NAME Enables the ciphersuite matching the given name.

!NAME Disables the ciphersuite matching the given name.

(EXP) Enables ciphersuites whose names contain the regular expression .EXP

!(EXP) Disables ciphersuites whose names contain the regular expression .EXP

To determine the set of enabled ciphersuites, the plug-in begins with a list of ciphersuite names containing the default set as determined by
the security provider. The expressions in the property value add and remove ciphersuites from this list and are evaluated in the order of
appearance. For example, consider the following property definition:

IceSSL.Ciphers=NONE (RSA.*AES) !(EXPORT)

The expressions in this property have the following effects:

NONE clears the list of enabled ciphersuites.
(RSA.*AES) is a regular expression that enables ciphersuites whose names contain the string "RSA" followed by "AES", meaning
ciphersuites using RSA authentication and AES encryption.
!(EXPORT) is a regular expression that disables any of the selected ciphersuites whose names contain the string "EXPORT",
meaning ciphersuites having export-quality strength.

As another example, this property adds anonymous Diffie-Hellman to the default set of ciphersuites and disables export ciphersuites:

IceSSL.Client.Ciphers=(DH_anon) !(EXPORT)

Finally, this example selects only one ciphersuite:

IceSSL.Client.Ciphers=NONE SSL_RSA_WITH_RC4_128_SHA

Configuring Trust Relationships

Declaring that you  implies that you trust any peer whose certificate was signed directly or indirectly by thattrust a certificate authority
certificate authority. It is necessary to use this broad definition of trust in some applications, such as a public Web server. In more controlled
environments, it is a good idea to restrict access as much as possible, and IceSSL provides a number of ways for you to do that.

Trusted Peers

After the low-level SSL engine has completed its authentication process, IceSSL can be configured to take additional steps to verify whether
a peer should be trusted. The  family of properties defines a collection of acceptance and rejection filters that IceSSLIceSSL.TrustOnly
applies to the distinguished name of a peer's certificate in order to determine whether to allow the connection to proceed. IceSSL permits the
connection if the peer's distinguished name matches any of the acceptance filters and does not match any of the rejection filters.

A distinguished name uniquely identifies a person or entity and is generally represented in the following textual form:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.", OU=Servers, CN=Quote Server

Suppose we are configuring a client to communicate with the server whose distinguished name is shown above. If we know that the client is
allowed to communicate only with this server, we can enforce this rule using the following property:

IceSSL.TrustOnly=O="ZeroC, Inc.", OU=Servers, CN=Quote Server

With this property in place, IceSSL allows a connection to proceed only if the distinguished name in the server's certificate matches this filter.
The property may contain multiple filters, separated by semicolons, if the client needs to communicate with more than one server. Additional
variations of the property are also supported.
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If the  properties do not provide the selectivity you require, the next step is to install a .IceSSL.TrustOnly custom certificate verifier

Verification Depth

In order to authenticate a peer, SSL obtains the peer's certificate chain, which includes the peer's certificate as well as that of the root CA.
SSL verifies that each certificate in the chain is valid, but there still remains a subtle security risk. Suppose that we have identified a trusted
root CA (via its certificate), and a peer has supplied a valid certificate chain signed by our trusted root CA. It is possible for an attacker to
obtain a special signing certificate that is signed by our root CA and therefore trusted implicitly. The attacker can use this certificate to sign
fraudulent certificates with the goal of masquerading as a trusted peer, presumably for some nefarious purpose.

We could use the  properties described above in an attempt to defend against such an attack. However, the attackerIceSSL.TrustOnly
could easily manufacture a certificate containing a distinguished name that satisfies the trust properties.

If you know that all trusted peers present certificate chains of a certain length, set the property  so that IceSSLIceSSL.VerifyDepthMax
automatically rejects longer chains. The default value of this property is two, therefore you may need to set it to a larger value if you expect
peers to present longer chains.

In situations where you cannot make assumptions about the length of a peer's certificate chain, yet you still want to examine the chain before
allowing the connection, you should install a .custom certificate verifier

Configuring Secure Proxies

Proxies may contain any combination of secure and insecure endpoints. An application that requires secure communication can guarantee
that proxies it manufactures itself, such as those created by calling , contain only secure endpoints. However, thestringToProxy
application cannot make the same assumption about proxies received as the result of a remote invocation.

The simplest way to guarantee that all proxies use only secure endpoints is to define the  configuration property:Ice.Override.Secure

Ice.Override.Secure=1

Setting this property is equivalent to invoking the   on every proxy. When enabled, proxy method ice_secure(true) attempting to establish
 using a proxy that does not contain a secure endpoint results in .a connection NoEndpointException

If you want the default behavior of proxies to give precedence to secure endpoints, you can set this property instead:

Ice.Default.PreferSecure=1

Note that proxies may still attempt to establish connections to insecure endpoints, but they try all secure endpoints first. This is equivalent to
invoking  on a proxy.ice_preferSecure(true)

IceSSL Diagnostics

You can use two configuration properties to obtain more information about the plug-in's activities. Setting IceSSL.Trace.Security=1
enables the plug-in's diagnostic output, which includes a variety of messages regarding events such as ciphersuite selection, peer
verification and trust evaluation. The other property, , determines how much information is logged about networkIce.Trace.Network
events such as connections and packets. Note that the output generated by  also includes other transports such asIce.Trace.Network
TCP and UDP.

System Logging in Java

In Java, you can use a system property that displays a great deal of information about SSL certificates and connections, including the
ciphersuite that is selected for use by each connection. For example, the following command sets the system property that activates the
diagnostics:

$ java -Djavax.net.debug=ssl MyProgram

System Logging in .NET

Enabling additional tracing output in .NET requires the creation of an XML file such as the one shown below:
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XML

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
    <system.diagnostics>
        <trace autoflush="true"/>
        <sources>
            <source name="System.Net">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
            <source name="System.Net.Sockets">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
            <source name="System.Net.Cache">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
        </sources>
        <sharedListeners>
            <add
            name="System.Net"
            type="System.Diagnostics.TextWriterTraceListener"
            initializeData="trace.txt"
            />
        </sharedListeners>
        <switches>
            <add name="System.Net" value="Verbose"/>
            <add name="System.Net.Sockets" value="Verbose"/>               
            <add name="System.Net.Cache" value="Verbose"/>
        </switches>
    </system.diagnostics>
</configuration>

In this example, the output is stored in the file . To activate tracing, give the XML file the same name as your executable with a trace.txt
 extension (such as ), and place it in the same directory as the executable..config server.exe.config

See Also

Proxy Methods
Filtering Proxy Endpoints
Public Key Infrastructure
Using IceSSL
Programming IceSSL
Advanced IceSSL Topics
IceSSL Properties
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Programming IceSSL

The IceSSL  are flexible enough to satisfy the requirements of many applications, and IceSSL supports a public APIconfiguration properties
that offers even more functionality for those applications that need it.

Topics

Programming IceSSL in C++
Programming IceSSL in Java
Programming IceSSL in .NET

See Also

Configuring IceSSL
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Programming IceSSL in C++

This page describes the C++ API for the IceSSL plug-in.

On this page:

The IceSSL Plugin Interface in C++
Obtaining SSL Connection Information in C++
Installing a Certificate Verifier in C++
Using Certificates in C++
Using Distinguished Names in C++

The IceSSL Plugin Interface in C++

Applications can interact directly with the IceSSL plug-in using the native C++ class . A reference to a  objectIceSSL::Plugin Plugin
must be obtained from the communicator in which the plug-in is installed:

C++

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr = communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);

The  class supports the following methods:Plugin

C++

namespace IceSSL
{
class Plugin : public Ice::Plugin
{
public:
    virtual void setContext(SSL_CTX*) = 0;
    virtual SSL_CTX* getContext() = 0;

    virtual void setCertificateVerifier(const CertificateVerifierPtr&) = 0;

    virtual void setPasswordPrompt(const PasswordPromptPtr&) = 0;
};
typedef IceUtil::Handle<Plugin> PluginPtr;
}

The  and  methods are rarely used in practice. The  method installs a customsetContext getContext setCertificateVerifier
certificate verifier object that the plug-in invokes for each new connection. The  method provides an alternate way tosetPasswordPrompt
supply IceSSL with passwords. We discuss certificate verifiers below and revisit the other methods in our discussion of advanced IceSSL

.programming

Obtaining SSL Connection Information in C++

You can obtain information about any SSL connection using the  operation on a . It returns an getInfo  objectConnection
 class instance that derives from the Slice class . The Slice base class isIceSSL::NativeConnectionInfo IceSSL::ConnectionInfo

defined as follows:
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Slice

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the C++ class  is defined as follows:NativeConnectionInfo

C++

class NativeConnectionInfo : public ConnectionInfo {
public:
    std::vector<CertificatePtr> nativeCerts;
};

typedef IceUtil::Handle<NativeConnectionInfo> NativeConnectionInfoPtr;

Installing a Certificate Verifier in C++

A new connection undergoes a series of verification steps before an application is allowed to use it. The low-level SSL engine executes 
 and, assuming the certificate chain is successfully validated, IceSSL performs  ascertificate validation procedures additional verification

directed by its configuration properties. Finally, if a certificate verifier is installed, IceSSL invokes it to provide the application with an
opportunity to decide whether to allow the connection to proceed.

The  interface has only one method:CertificateVerifier

C++

namespace IceSSL
{
class CertificateVerifier : public IceUtil::Shared
{
public:

    virtual bool verify(const NativeConnectionInfoPtr&) = 0;
};
typedef IceUtil::Handle<CertificateVerifier> CertificateVerifierPtr;
}

IceSSL rejects the connection if  returns , and allows it to proceed if the method returns . The  method receivesverify false true verify
a  object that describes the connection's attributes.NativeConnectionInfo

The  member is a vector of certificates representing the peer's certificate chain. The vector is structured so that the firstnativeCerts
element is the peer's certificate, followed by its signing certificates in the order they appear in the chain, with the root CA certificate as the
last element. The vector is empty if the peer did not present a certificate chain.
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The  member is a description of the ciphersuite that SSL negotiated for this connection. The local and remote address information iscipher
provided in  and , respectively.localAddress remoteAddress

A bug in Windows XP prevents IceSSL from obtaining the remote address information when using IPv6.

The  member indicates whether the connection is inbound (a server connection) or outbound (a client connection). Finally, if incoming
 is true, the  member supplies the name of the object adapter that hosts the endpoint.incoming adapterName

The following class is a simple implementation of a certificate verifier:

C++

class Verifier : public IceSSL::CertificateVerifier
{
public:

    bool verify(const IceSSL::NativeConnectionInfo& info)
    {
        if (!info.nativeCerts.empty())
        {
            string dn = info.nativeCerts[0].getIssuerDN();
            transform(dn.begin(), dn.end(), dn.begin(), ::tolower);
            if (dn.find("zeroc") != string::npos)
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string  is present in the issuer's distinguished name of the peer'szeroc
certificate. In a more realistic implementation, the application is likely to perform detailed inspection of the certificate chain.

Installing the verifier is a simple matter of calling  on the plug-in interface:setCertificateVerifier

C++

IceSSL::PluginPtr sslPlugin = // ...
sslPlugin->setCertificateVerifier(new Verifier);

You should install the verifier before any SSL connections are established.

You can also install a certificate verifier  to avoid making changes to the code of an existing application.using a custom plug-in

Using Certificates in C++

The  class contains a vector of  objects representing the peer's certificate chain.  is aConnectionInfo Certificate Certificate
reference-counted convenience class that hides the complexity of the underlying OpenSSL API. Its methods are inspired by the Java class 

:X509Certificate
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C++

namespace IceSSL
{
class Certificate : public IceUtil::Shared
{
public:

    Certificate(X509*);

    static CertificatePtr load(const string&);
    static CertificatePtr decode(const string&);

    bool operator==(const Certificate&) const;
    bool operator!=(const Certificate&) const;

    PublicKeyPtr getPublicKey() const;

    bool verify(const PublicKeyPtr&) const;

    string encode() const;

    bool checkValidity() const;
    bool checkValidity(const IceUtil::Time&) const;

    IceUtil::Time getNotAfter() const;
    IceUtil::Time getNotBefore() const;

    string getSerialNumber() const;

    DistinguishedName getIssuerDN() const;
    vector<pair<int, string> > getIssuerAlternativeNames();

    DistinguishedName getSubjectDN() const;
    vector<pair<int, string> > getSubjectAlternativeNames();

    int getVersion() const;

    string toString() const;

    X509* getCert() const;
};
typedef IceUtil::Handle<Certificate> CertificatePtr;
}

The more commonly-used methods are described below; refer to the documentation in  for information on the methodsIceSSL/Plugin.h
that are not covered.

The static method  creates a certificate from the contents of a PEM-encoded file. If an error occurs, the function raises load
; the reason member provides a description of the problem.IceSSL::CertificateReadException

Use  to obtain a certificate from a PEM-encoded string representing a certificate. The caller must be prepared to catch decode
 if  fails; the reason member provides a description of the problem.IceSSL::CertificateEncodingException decode

The  method creates a PEM-encoded string that represents the certificate. The return value can later be passed to  toencode decode
recreate the certificate.

The  methods determine whether the certificate is valid. The overloading with no arguments returns true if the certificate ischeckValidity
valid at the current time; the other overloading accepts an  object and returns true if the certificate is valid at the given time.IceUtil::Time

The  and  methods return instances of  that define the certificate's valid period.getNotAfter getNotBefore IceUtil::Time

The methods  and  supply the distinguished names of the certificate's issuer (i.e., the CA that signed thegetIssuerDN getSubjectDN
certificate) and subject (i.e., the person or entity to which the certificate was issued). The methods return instances of the class 

, another convenience class that is described below.IceSSL::DistinguishedName
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Finally, the  method returns a human-readable string describing the certificate.toString

Using Distinguished Names in C++

X.509 certificates use a distinguished name to identify a person or entity. The name is an ordered sequence of relative distinguished names
that supply values for fields such as common name, organization, state, and country. Distinguished names are commonly displayed in
stringified form according to the rules specified by RFC 2253, as shown in the following example:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.", OU=Servers, CN=Quote Server

DistinguishedName is a convenience class provided by IceSSL to simplify the tasks of parsing, formatting and comparing distinguished
names.

C++

namespace IceSSL
{
class DistinguishedName
{
public:

    DistinguishedName(const std::string&);
    DistinguishedName(const std::list<std::pair<std::string, std::string> >&);

    bool operator==(const DistinguishedName&) const;
    bool operator!=(const DistinguishedName&) const;
    bool operator<(const DistinguishedName&) const;

    bool match(const DistinguishedName&) const;

    operator std::string() const;
};
}

The first overloaded constructor accepts a string argument representing a distinguished name encoded using the rules set forth in RFC
2253. The new  instance preserves the order of the relative distinguished names in the string. The caller must beDistinguishedName
prepared to catch  if an error occurs during parsing.IceSSL::ParseException

The second overloaded constructor requires a list of type-value pairs representing the relative distinguished names. The new 
 instance preserves the order of the relative distinguished names in the list.DistinguishedName

The overloaded operator functions , , and  perform an exact match of distinguished names in whichoperator== operator!= operator<
the order of the relative distinguished names is important. For two distinguished names to be equal, they must have the same relative
distinguished names in the same order.

The  function performs a partial comparison that does not consider the order of relative distinguished names. If  and  arematch N1 N2
instances of ,  returns true if all of the relative distinguished names in  are present in .DistinguishedName N1.match(N2) N2 N1

Finally, the string conversion operator encodes the distinguished name in the format described by RFC 2253.

See Also

Using Connections
Public Key Infrastructure
Configuring IceSSL
Advanced IceSSL Topics
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Programming IceSSL in Java

This page describes the Java API for the IceSSL plug-in.

On this page:

The IceSSL Plugin Interface in Java
Obtaining SSL Connection Information in Java
Installing a Certificate Verifier in Java
Converting Certificates in Java

The IceSSL Plugin Interface in Java

Applications can interact directly with the IceSSL plug-in using the native Java interface . A reference to a  objectIceSSL.Plugin Plugin
must be obtained from the communicator in which the plug-in is installed:

Java

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The  interface supports the following methods:Plugin

Java

package IceSSL;

public interface Plugin extends Ice.Plugin
{
    void setContext(javax.net.ssl.SSLContext context);
    javax.net.ssl.SSLContext getContext();

    void setCertificateVerifier(CertificateVerifier verifier);
    CertificateVerifier getCertificateVerifier();

    void setPasswordCallback(PasswordCallback callback);
    PasswordCallback getPasswordCallback();

    void setKeystoreStream(java.io.InputStream stream);

    void setTruststoreStream(java.io.InputStream stream);

    void addSeedStream(java.io.InputStream stream);
}

The methods are summarized below:

setContext
getContext
These methods are for  and rarely used in practice.advanced use cases

setCertificateVerifier
getCertificateVerifier
These methods install and retrieve a custom certificate verifier object that the plug-in invokes for each new connection. 

 returns null if a verifier has not been set.getCertificateVerifier

setPasswordCallback
getPasswordCallback
These methods install and retrieve a password callback object that supplies IceSSL with passwords. getPasswordCallback
returns null if a callback has not been set. Using  is a  to setting passwords insetPasswordCallback more secure alternative
clear-text configuration files.
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setKeystoreStream
Supplies an input stream for a keystore containing the key pair. The  property is ignored if this method is calledIceSSL.Keystore
with a non-null value. You may supply the same input stream object to this method and to  if your keystoresetTruststoreStream
contains your key pair as well as your trusted CA certificates.

setTruststoreStream
Supplies an input stream for a truststore containing your trusted CA certificates. The  property is ignored ifIceSSL.Truststore
this method is called with a non-null value. You may supply the same input stream object to this method and to 

 if your keystore contains your key pair as well as your trusted CA certificates.setKeystoreStream

addSeedStream
Adds an input stream that supplies seed data for the random number generator. You may call this method multiple times if
necessary.

Obtaining SSL Connection Information in Java

You can obtain information about any SSL connection using the  operation on a . It returns an getInfo  objectConnection
 class instance that derives from the Slice class . The Slice base class isIceSSL.NativeConnectionInfo IceSSL::ConnectionInfo

defined as follows:

Slice

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the Java class  is defined as follows.NativeConnectionInfo

Java

public class NativeConnectionInfo extends ConnectionInfo
{
    public java.security.cert.Certificate[] nativeCerts;
}

Installing a Certificate Verifier in Java

A new connection undergoes a series of verification steps before an application is allowed to use it. The low-level SSL engine executes 
 and, assuming the certificate chain is successfully validated, IceSSL performs  ascertificate validation procedures additional verification

directed by its configuration properties. Finally, if a certificate verifier is installed, IceSSL invokes it to provide the application with an
opportunity to decide whether to allow the connection to proceed.

The  interface has only one method:CertificateVerifier
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Java

package IceSSL;

public interface CertificateVerifier
{
    boolean verify(NativeConnectionInfo info);
}

IceSSL rejects the connection if  returns , and allows it to proceed if the method returns . The  method receivesverify false true verify
a  object that describes the connection's attributes.NativeConnectionInfo

The  member of the  is an array of certificates representing the peer's certificate chain. The array isnativeCerts NativeConnectionInfo
structured so that the first element is the peer's certificate, followed by its signing certificates in the order they appear in the chain, with the
root CA certificate as the last element. This member is null if the peer did not present a certificate chain.

The  member is a description of the ciphersuite that SSL negotiated for this connection. The local and remote address information iscipher
provided in  and , respectively. The  member indicates whether the connection is inbound (alocalAddress remoteAddress incoming
server connection) or outbound (a client connection). Finally, if  is , the  member supplies the name of theincoming true adapterName
object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

Java

import java.security.cert.X509Certificate;
import javax.security.auth.x500.X500Principal;

class Verifier implements IceSSL.CertificateVerifier
{
    public boolean
    verify(IceSSL.NativeConnectionInfo info)
    {
        if (info.nativeCerts != null)
        {
            X509Certificate cert = (X509Certificate)info.nativeCerts[0];
            X500Principal p = cert.getIssuerX500Principal();
            if (p.getName().toLowerCase().indexOf("zeroc") != -1)
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string  is present in the issuer's distinguished name of the peer'szeroc
certificate. In a more realistic implementation, the application is likely to perform detailed inspection of the certificate chain.

Installing the verifier is a simple matter of calling  on the plug-in interface:setCertificateVerifier

Java

IceSSL.Plugin sslPlugin = // ...
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established. An alternate way of installing the verifier is to define the 
 property with the class name of your verifier implementation. IceSSL instantiates the class using its defaultIceSSL.CertVerifier

constructor.

You can also install a certificate verifier using a  to avoid making changes to the code of an existing application.custom plug-in

Converting Certificates in Java
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Java does not provide a simple way to create a certificate object from a PEM-encoded string, therefore IceSSL offers the following
convenience method:

Java

package IceSSL;

public final class Util
{
    // ...

    public static java.security.cert.X509Certificate
    createCertificate(String certPEM)
        throws java.security.cert.CertificateException;
}

Given a string in the PEM format,  returns the equivalent  object.createCertificate X509Certificate

See Also

Using Connections
Public Key Infrastructure
Configuring IceSSL
Advanced IceSSL Topics
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Programming IceSSL in .NET

This page describes the .NET API for the IceSSL plug-in.

On this page:

The IceSSL Plugin Interface in C#
Obtaining SSL Connection Information in C#
Installing a Certificate Verifier in C#
Converting Certificates in C#

The IceSSL Plugin Interface in C#

Applications can interact directly with the IceSSL plug-in using the native C# interface . A reference to a  objectIceSSL.Plugin Plugin
must be obtained from the communicator in which the plug-in is installed:

C#

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The  interface supports the following methods:Plugin

C#

namespace IceSSL
{
    using System.Security.Cryptography.X509Certificates;

    abstract public class Plugin : Ice.Plugin
    {
        abstract public void
        setCertificates(X509Certificate2Collection certs);

        abstract public void
        setCertificateVerifier(CertificateVerifier verifier);

        abstract public CertificateVerifier
        getCertificateVerifier();

        abstract public void
        setPasswordCallback(PasswordCallback callback);

        abstract public PasswordCallback
        getPasswordCallback();
    }
}

The methods are summarized below:

setCertificates
This method is for  and rarely used in practice.advanced use cases

setCertificateVerifier
getCertificateVerifier
These methods install and retrieve a custom certificate verifier object that the plug-in invokes for each new connection. 

 returns null if a verifier has not been set.getCertificateVerifier

setPasswordCallback
getPasswordCallback
These methods install and retrieve a password callback object that supplies IceSSL with passwords. getPasswordCallback
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returns null if a callback has not been set. Using  is a  to setting passwords insetPasswordCallback more secure alternative
clear-text configuration files.

Obtaining SSL Connection Information in C#

You can obtain information about any SSL connection using the  operation on a . It returns an getInfo  objectConnection
 class instance that derives from the Slice class . The Slice base class isIceSSL.NativeConnectionInfo IceSSL::ConnectionInfo

defined as follows:

Slice

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the C# class  is defined as follows.NativeConnectionInfo

C#

public sealed class NativeConnectionInfo : ConnectionInfo
{
    public System.Security.Cryptography.X509Certificates.X509Certificate2[] nativeCerts;
}

Installing a Certificate Verifier in C#

A new connection undergoes a series of verification steps before an application is allowed to use it. The low-level SSL engine executes 
 and, assuming the certificate chain is successfully validated, IceSSL performs  ascertificate validation procedures additional verification

directed by its configuration properties. Finally, if a certificate verifier is installed, IceSSL invokes it to provide the application with an
opportunity to decide whether to allow the connection to proceed.

The  interface has only one method:CertificateVerifier

C#

namespace IceSSL
{
    public interface CertificateVerifier
    {
        bool verify(NativeConnectionInfo info);
    }
}

IceSSL rejects the connection if  returns , and allows it to proceed if the method returns . The  method receivesverify false true verify
a  object that describes the connection's attributes.NativeConnectionInfo
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The  member of  is an array of certificates representing the peer's certificate chain. The array isnativeCerts NativeConnectionInfo
structured so that the first element is the peer's certificate, followed by its signing certificates in the order they appear in the chain, with the
root CA certificate as the last element. This member is null if the peer did not present a certificate chain.

The  member is a description of the ciphersuite that SSL negotiated for this connection. The local and remote address information iscipher
provided in  and , respectively. The  member indicates whether the connection is inbound (a serverlocalAddress remoteAddr incoming
connection) or outbound (a client connection). Finally, if  is true, the  member supplies the name of the objectincoming adapterName
adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

C#

using System.Security.Cryptography.X509Certificates;

class Verifier : IceSSL.CertificateVerifier
{
    public boolean
    verify(IceSSL.NativeConnectionInfo info)
    {
        if (info.nativeCerts != null)
        {
            X500DistinguishedName dn = info.nativeCerts[0].IssuerName;
            if (dn.Name.ToLower().Contains("zeroc"))
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string  is present in the issuer's distinguished name of the peer'szeroc
certificate. In a more realistic implementation, the application is likely to perform detailed inspection of the certificate chain.

Installing the verifier is a simple matter of calling  on the plug-in interface:setCertificateVerifier

C#

IceSSL.Plugin sslPlugin = // ...
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established. An alternate way of installing the verifier is to define the 
 property with the class name of your verifier implementation. IceSSL instantiates the class using its defaultIceSSL.CertVerifier

constructor.

You can also install a certificate verifier using a  to avoid making changes to the code of an existing application.custom plug-in

Converting Certificates in C#

IceSSL offers the following convenience method to create a certificate object from a PEM-encoded string:
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C#

namespace IceSSL
{
    using System.Security.Cryptography.X509Certificates;

    public sealed class Util
    {
        // ...

        public static X509Certificate2
        createCertificate(string certPEM);
    }
}

Given a string in the PEM format,  returns the equivalent  object.createCertificate X509Certificate2

See Also

Using Connections
Public Key Infrastructure
Configuring IceSSL
Advanced IceSSL Topics
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Advanced IceSSL Topics

This page discusses some additional capabilities of the IceSSL plug-in.

On this page:

Managing Certificate Passwords
Dynamic Properties
Password Callbacks in C++
Password Callbacks in Java
Password Callbacks in .NET

Manually Configuring IceSSL
Using Custom Plug-ins with IceSSL

Managing Certificate Passwords

IceSSL may need to obtain a password if it loads a file that contains secure data, such as an encrypted private key. An application can
supply a plain-text password in a , but doing so is a potential security risk. For example, if you define the property onconfiguration property
the application's command-line, it may be possible for other users on the same host to see the password simply by obtaining a list of active
processes. If you define the property in a configuration file, the password is only as secure as the file in which it is defined.

In highly secure environments where access to a host is tightly restricted, a password can safely be supplied as a plain-text configuration
property, or the need for the password can be eliminated altogether by using unsecured key files.

In situations where password security is a concern, the application generally needs to take additional action.

Dynamic Properties

A common technique is to prompt the user for a password and transfer the user's input to a configuration property that the application
defines dynamically, as shown below:

C++

string password = // ...
Ice::InitializationData initData;
initData.properties = Ice::createProperties(argc, argv);
initData.properties->setProperty("IceSSL.Password", password);
Ice::CommunicatorPtr comm = Ice::initialize(initData);

The password must be present in the property set before the communicator is initialized, since IceSSL needs the password during its
initialization, and the communicator initializes plug-ins automatically by default.

Password Callbacks in C++

If a password is required but the application has not configured one, IceSSL prompts the user at the terminal during the plug-in's
initialization. This behavior is not suitable for some types of applications, such as a program that runs automatically at system startup as a 

.Unix daemon or Windows service

A terminal prompt is equally undesirable for graphical applications, which would generally prefer to prompt the user in an application window.
The dynamic property technique described in the previous section is usually appropriate in this situation.

If your application must supply a password, and you do not want to use a configuration property or a terminal prompt, your remaining option
is to install a  object in the plug-in using the  method. The  class is defined asPasswordPrompt setPasswordPrompt PasswordPrompt
follows:
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C++

namespace IceSSL
{
class PasswordPrompt : public IceUtil::Shared
{
public:

    virtual std::string getPassword() = 0;
};
typedef IceUtil::Handle<PasswordPrompt> PasswordPromptPtr;
}

IceSSL invokes  on the object when a password is required. If the object returns an incorrect password, IceSSL tries again, upgetPassword
to the limit defined by the  property.IceSSL.PasswordRetryMax

Note that you must delay the initialization of the IceSSL plug-in until after the  object is installed. To illustrate this point,PasswordPrompt
consider the following example:

C++

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr = communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt); // OOPS!

This code is incorrect because the  object is installed too late: the communicator is already initialized, which meansPasswordPrompt
IceSSL has already attempted to load the file that required a password.

The correct approach is to define the  configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing
the plug-ins, as shown below:

C++

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr = communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt);
pluginMgr->initializePlugins();

We assume the communicator was initialized with . After installing the  object, the applicationIce.InitPlugins=0 PasswordPrompt
invokes  on the plug-in manager to complete the plug-in initialization process.initializePlugins

Password Callbacks in Java

If you do not want to use configuration properties to define passwords, you can install a  object in the plug-in using aPasswordCallback
configuration property, or using the  method. The  interface has the following definition:setPasswordCallback PasswordCallback
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Java

public interface PasswordCallback
{
    char[] getPassword(String alias);
    char[] getTruststorePassword();
    char[] getKeystorePassword();
}

The methods are described below:

getPassword
Supplies the password for the key with the given alias. The return value must not be null.

getTruststorePassword
Supplies the password for a truststore. The method may return null, in which case the integrity of the truststore is not verified.

getKeystorePassword to obtain the password for a keystore.
Supplies the password for a keystore. The method may return null, in which case the integrity of the keystore is not verified.

For each of these methods, IceSSL clears the contents of the returned array as soon as possible.

The simplest way to install the callback is by defining the configuration property . The property's value is theIceSSL.PasswordCallback
name of your callback implementation class. IceSSL instantiates the class using its default constructor.

To install the callback manually, you must delay the initialization of the IceSSL plug-in until after the  object is installed.PasswordCallback
To illustrate this point, consider the following example:

Java

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!

This code is incorrect because the  object is installed too late: the communicator is already initialized, which meansPasswordCallback
IceSSL has already attempted to retrieve the certificate that required a password.

The correct approach is to define the  configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing
the plug-ins, as shown below:

Java

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with . After installing the  object, the applicationIce.InitPlugins=0 PasswordCallback
invokes  on the plug-in manager to complete the plug-in initialization process.initializePlugins

Password Callbacks in .NET

If you do not want to use configuration properties to define passwords, you can install a  object in the plug-in using aPasswordCallback
configuration property, or using the  method. The  interface has the following definition:setPasswordCallback PasswordCallback
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C#

using System.Security;

public interface PasswordCallback
{
    SecureString getPassword(string file);
    SecureString getImportPassword(string file);
}

The methods are described below:

getPassword
Supplies the password for the given file. The method may return null if no password is required.

getImportPassword
Supplies the password for a file from which certificates are imported into the certificate store. The method may return null if no
password is required.

The simplest way to install the callback is by defining the configuration property . The property's value is theIceSSL.PasswordCallback
name of your callback implementation class. IceSSL instantiates the class using its default constructor.

To install the callback manually, you must delay the initialization of the IceSSL plug-in until after the  object is installed.PasswordCallback
To illustrate this point, consider the following example:

C#

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!

This code is incorrect because the  object is installed too late: the communicator is already initialized, which meansPasswordCallback
IceSSL has already attempted to retrieve the certificate that required a password.

The correct approach is to define the  configuration property:Ice.InitPlugins

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured plug-ins. The application becomes responsible for initializing
the plug-ins, as shown below:

C#

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with . After installing the  object, the applicationIce.InitPlugins=0 PasswordCallback
invokes  on the plug-in manager to complete the plug-in initialization process.initializePlugins

Manually Configuring IceSSL

The  supports a method in each of the supported language mappings that provides an application with more control over interfacePlugin
the plug-in's configuration.

In C++ and Java, an application can call the  method to supply a pre-configured "context" object used by the underlying SSLsetContext
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engines. In .NET, the  method accepts a collection of certificates that the plug-in should use. In all cases, using one ofsetCertificates
these methods causes IceSSL to ignore (at a minimum) the configuration properties related to certificates and keys. The application is
responsible for accumulating its certificates and keys, and must also deal with any password requirements.

Describing the use of these plug-in methods in detail is outside the scope of this manual, however it is important to understand their
prerequisites. In particular, the application needs to have the communicator load the plug-in but not actually initialize it until after the
application has had a chance to interact directly with it. (The previous section showed examples of this technique.) The application must
define the  configuration property:Ice.InitPlugins

Ice.InitPlugins=0

With this setting, the application becomes responsible for completing the plug-in initialization process by invoking  oninitializePlugins
the . The C# example below demonstrates the proper steps:PluginManager

C#

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
X509Certificate2Collection certs = // ...
sslPlugin.setCertificates(certs);
pluginMgr.initializePlugins();

Using Custom Plug-ins with IceSSL

The Ice  is not restricted to protocol implementations. Ice only requires that a plug-in implement the  interfaceplug-in facility Ice::Plugin
and support the language-specific mechanism for dynamic loading.

The customization options of the IceSSL plug-in make it possible for you to install an application-specific implementation of a certificate
verifier in an existing program. For example, you could install a custom certificate verifier in a Glacier2 router without the need to modify
Glacier2's source code or rebuild the executable. You would have to write a C++ plug-in to accomplish this, since Glacier2 is written in C++.
In short, your plug-in must interact with the IceSSL plug-in and install a certificate verifier.

For this technique to work, it is important that the plug-ins be loaded in a particular order. Specifically, the IceSSL plug-in must be loaded
first, followed by the certificate verifier plug-in. By default, Ice loads plug-ins in an undefined order, but you can use the property 

 to specify a particular order.Ice.PluginLoadOrder

As an example, let's write a plug-in that installs our simple . Here is the definition of our plug-in class:C++ certificate verifier
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C++

class VerifierPlugin : public Ice::Plugin
{
public:
    VerifierPlugin(const Ice::CommunicatorPtr & comm) :
        _comm(comm)
    {
    }

    virtual void initialize()
    {
        Ice::PluginManagerPtr pluginMgr = _comm->getPluginManager();
        Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
        IceSSL::PluginPtr sslPlugin = IceSSL::PluginPtr::dynamicCast(plugin);
        sslPlugin->setCertificateVerifier(new Verifier);
    }

    virtual void destroy()
    {
    }

private:
    Ice::CommunicatorPtr _comm;
};

The class implements the two operations in the  interface,  and . The code in  installs thePlugin initialize destroy initialize
certificate verifier object, while nothing needs to be done in .destroy

The next step is to write the plug-in's factory function, which the communicator invokes to obtain an instance of the plug-in:

C++

extern "C"
{

Ice::Plugin*
createVerifierPlugin(
    const Ice::CommunicatorPtr & communicator,
    const string & name,
    const Ice::StringSeq & args)
{
    return new VerifierPlugin(communicator);
}

}

We can give the function any name; in this example, we chose .createVerifierPlugin

Finally, to install the plug-in we need to define the following properties:

C++

Ice.PluginLoadOrder=IceSSL,Verifier
Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.Verifier=Verifier:createVerifierPlugin

The value of  guarantees that IceSSL is loaded first. The plug-in specification Ice.PluginLoadOrder
 identifies the name of the shared library or DLL and the name of the registration function.Verifier:createVerifierPlugin

There are a few more details you must attend to, such as ensuring that the factory function is exported properly and building the shared
library or DLL that contains the new plug-in. Our discussion of the  provides more information on developing a plug-in.plug-in facility
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See Also

The Server-Side main Function in C++
Configuring IceSSL
Programming IceSSL in C++
Programming IceSSL in Java
Programming IceSSL in .NET
Plug-in Facility
IceSSL Properties
Ice Plug-In Properties



Ice 3.4.2 Documentation

1470 Copyright © 2011, ZeroC, Inc.

Setting up a Certificate Authority

During development, it is convenient to have a simple way of creating new certificates. OpenSSL includes all of the necessary infrastructure
for setting up your own certificate authority (CA), but it requires getting more familiar with OpenSSL than is really necessary. To simplify the
process, Ice includes the Python script , located in the  subdirectory of your Ice installation, that hides the complexity of OpenSSLiceca bin
and allows you to quickly perform the essential tasks:

initializing a new root CA
generating new certificate requests
signing certificate requests to create a valid certificate chain
converting certificates to match platform-specific requirements.

You are not obligated to use this script; IceSSL accepts certificates from any source as long as they are provided in the appropriate formats.
However, you may find this tool sufficient for your development needs, and possibly even for your deployed application as well.

On this page:

Initializing a Certificate Authority
Generating Certificate Requests
Signing Certificate Requests
Importing Certificates
Certificate Authority Diagnostics

Initializing a Certificate Authority

Some of the script's activities use a directory that contains configuration files and a database of issued certificates. The script selects a
default location for this directory that depends on your platform, or you can specify the parent directory explicitly by defining the 

 environment variable and the script will use  for its files.ICE_CA_HOME $ICE_CA_HOME/ca

The script command  initializes a new CA by preparing a database directory and generating the root CA certificate and privateiceca init
key. It accepts the following command-line arguments:

$ python iceca init [--no-password] [--overwrite]

Upon execution, the script first checks the database directory to determine whether it has already been initialized. If so, the script terminates
immediately with a warning unless you specify the  option, in which case the script overwrites the previous contents of the--overwrite
directory.

Next, the script displays the database directory it is using and begins to prompt you for the information it needs to generate the root CA
certificate and private key. It offers a default choice for the CA's distinguished name and allows you to change it:

The subject name for your CA will be
CN=Grid-CA ,  O=GridCA-server
Do you want to keep this as the CA subject name? (y/n) [y]

To specify an alternate value for the distinguished name, enter  and type the new information, otherwise hit Enter to proceed.n

Enter the email address of the CA: ca-admin@company.com

The address you provide in response to this prompt is shown to users that create certificate requests. Enter the address to which such
requests should be sent.

The script shows its progress as it generates the certificate and private key, then prompts you for a pass phrase. If you prefer not to secure
your CA's private key with a pass phrase, use the  option when starting the script.--no-password

Upon completion, the script emits the following instructions:



Ice 3.4.2 Documentation

1471 Copyright © 2011, ZeroC, Inc.

The CA is initialized.

You need to distribute the following files to all machines that
can request certificates:

C:\iceca\req.cnf
C:\iceca\ca_cert.pem

These files should be placed in the user's home directory in
~/.iceca. On Windows, place these files in <ice-install>/config.

In this example, the  environment variable was set to . As the script states, the files  and ICE_CA_HOME C:\iceca req.cnf ca_cert.pem
must be present on each host that can generate a certificate request. The script suggests a location for these files, which is the default
directory used by the scripts if  is not defined.ICE_CA_HOME

The  file contains the root CA's certificate. Your IceSSL configurations must identify this certificate (in its proper form for eachca_cert.pem
platform) as a trusted certificate. For example, you can use this file directly in the configuration of the C++ plug-in:

IceSSL.CertAuthFile=C:\iceca\ca_cert.pem

For .NET applications, you should  into the proper store.import the certificate file

In Java, you need to add the certificate to your truststore:

$ keytool -import -trustcacerts -file ca_cert.pem -keystore ca.jks
Enter keystore password:

The keytool program requires you to enter a password, which you could use as the value of the property .IceSSL.TruststorePassword

Now that your certificate authority is initialized, you can begin generating certificate requests.

Generating Certificate Requests

The script command  uses the files you created while  to generate a request for a new certificate. Iticeca request initializing the CA
accepts the following command-line arguments:

$ python iceca request [--overwrite] [--no-password] file common-name [email]

The script looks for the files  and  in the directory defined by the  environment variable. If that variablereq.cnf ca_cert.pem ICE_CA_HOME
is not defined, the script uses a default directory that depends on your platform.

The purpose of the script is to generate two files: a private key and a file containing the certificate request. The request file must be
transmitted to the certificate authority for signing, which produces a valid certificate chain.

The argument  is used as a prefix for the names of the two output files created by the script:file

file_key.pem contains the private key
file_req.pem contains the certificate request

If the output files already exist, you must specify  to force the script to overwrite them.--overwrite

The  argument defines the common name component of the certificate's distinguished name. If the optional  argumentcommon-name email
is provided, it is also included in the certificate request.

During execution, the script displays its progress as it generates the necessary files. It will prompt you for a pass phrase unless you used the
 option, and finish by showing the names of the files it created as well as instructions on how to proceed. The example--no-password

below shows the output from generating a request for an IceGrid node using a filename prefix of :node
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$ iceca request node "IceGrid Node"

Created key: node_key.pem
Created certificate request: node_req.pem

The certificate request must be signed by the CA. Send the
certificate request file to the CA at the following email
address:
ca-admin@company.com

The file  is the new private key for the node; this file must be kept secure. The file  must be given to thenode_key.pem node_req.pem
certificate authority. As a convenience, the script displays the CA's email address that you entered .during initialization

Signing Certificate Requests

As a certificate authority, you are responsible for certifying the validity of certificate requests by signing them with your private key. The
product of signing a request is a valid certificate chain that a person or application can use as an identity. The  commandiceca sign
performs this task for you and accepts the following command-line arguments:

$ python iceca sign [--overwrite] --in <req> --out <cert> [--ip <ip> --dns <dns>]

The input file  is the certificate request, and the output file  is the resulting certificate chain. The script does not overwrite the file req cert
 unless you also specify . The  and  options allow you to add subject alternative names to the certificate forcert --overwrite --{ip --dns

IP and DNS addresses, respectively.

Continuing our , we can sign the node's request with the following command:previous example

$ python iceca sign --in node_req.pem --out node_cert.pem

If the CA's private key is protected by a pass phrase, we must enter that first. Next, the script displays the relevant information from the
certificate request and asks you to confirm that you wish to sign the certificate:

The Subject's Distinguished Name is as follows
organizationName      :PRINTABLE:'Company.com'
commonName            :PRINTABLE:'IceGrid Node TestNode'
Certificate is to be certified until Jun 15 18:32:36 2011 GMT
Sign the certificate? [y/n]:

After reviewing the request, enter  to sign the certificate, and  again to finish the process. Upon completion, the script stores the certificatey y
chain in the file  in your current working directory. This file, together with the node's private key we created when node_cert.pem

, establishes a secure identity for the node.generating the request

Importing Certificates

For Java and .NET users, the private key and certificate chain must be converted into a suitable format for your platform. The script
command  simplifies this process and accepts the following command-line arguments:iceca import

$ python iceca import [--overwrite] [--key-pass password] [--store-pass password]
  [--java alias cert key keystore] [--cs cert key out-file]

The script does not overwrite an existing file unless you specify . To avoid interactive prompts for passwords, you can use the--overwrite
 option to specify the password for the private key, and the  option to define the password for the Java--key-pass --store-pass

keystore. Completing our node example from prior sections, the command below imports the private key and certificate chain into a Java
keystore:

$ python iceca import --java mycert node_cert.pem node_key.pem cert.jks
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The value  represents the alias associated with this entry in the keystore, and  is the name of the new keystore file. In anmycert cert.jks
IceSSL configuration, the property  refers to this file.IceSSL.Keystore

The equivalent command for .NET is shown below:

$ python iceca import --cs node_cert.pem node_key.pem cert.pfx

The file  uses the PKCS#12 encoding and contains the certificate chain and private key. You can import this certificate into acert.pfx
store, or refer directly to the file using the configuration property .IceSSL.CertFile

Certificate Authority Diagnostics

If you encounter a problem while using the  script, or simply want to learn more about the underlying OpenSSL commands used byiceca
the script, you can run the script with the  option as shown below:--verbose

$ python iceca --verbose command ...

This option causes the script to display the commands as it executes them.

The script creates temporary files and directories that are normally deleted prior to the script's completion. If you would like to examine the
contents of these files and directories, use the  option:--keep

$ python iceca --keep command ...

See Also

Configuring IceSSL
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Glacier2
Glacier2 is a lightweight firewall traversal solution for Ice applications.

We present many examples of client/server applications in this manual, most of which assume that the client and server
programs are running either on the same host, or on multiple hosts with no network restrictions. We can justify this
assumption because this is an instructional text, but a real-world network environment is usually much more complicated:
client and server hosts with access to public networks often reside behind protective router-firewalls that not only restrict
incoming connections, but also allow the protected networks to run in a private address space using Network Address
Translation (NAT). These features, which are practically mandatory in today's hostile network environments, also disrupt
the ideal world in which our examples are running.

Topics

Common Firewall Traversal Issues
About Glacier2
How Glacier2 Works
Getting Started with Glacier2
Callbacks through Glacier2
Glacier2 Helper Classes
Securing a Glacier2 Router
Glacier2 Session Management
Dynamic Request Filtering with Glacier2
Glacier2 Request Buffering
How Glacier2 uses Request Contexts
Configuring Glacier2 behind an External Firewall
Advanced Glacier2 Client Configurations
IceGrid and Glacier2 Integration
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Common Firewall Traversal Issues

Let's assume that a client and server need to communicate over an untrusted network, and that the client and server hosts reside in private
networks behind firewalls:

Scenario 1: Client request in a typical network.

Although the diagram looks fairly straightforward, there are several troublesome issues:

A dedicated port on the server's firewall must be opened and configured to forward messages to the server.
If the server uses multiple endpoints (e.g., to support both TCP and SSL), then a firewall port must be dedicated to each endpoint.
The client's proxy must be configured to use the server's "public" endpoint, which is the host name and dedicated port of the firewall.
If the server returns a proxy as the result of a request, the proxy must not contain the server's private endpoint because that
endpoint is inaccessible to the client.

To complicate the scenario even further, the illustration below adds a callback from the server to the client. Callbacks imply that the client is
also a server, therefore all of the issues associated with previous illustration now apply to the client as well.

Scenario 2: Callbacks in a typical network.

As if this was not complicated enough already, the illustration below adds multiple clients and servers. Each additional server (including
clients requiring callbacks) adds more work for the firewall administrator as more ports are dedicated to forwarding requests.

Scenario 3: Multiple clients and servers with callbacks in a typical network.

Clearly, these scenarios do not scale well, and are unnecessarily complex. Fortunately, Ice provides a solution in .Glacier2

See Also

About Glacier2
How Glacier2 Works
Getting Started with Glacier2
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About Glacier2

Glacier2, the router-firewall for Ice applications, addresses  with minimal impact on clients or servers (orcommon firewall traversal issues
firewall administrators). In the illustration below, Glacier2 becomes the server firewall for Ice applications. What is not obvious in the diagram,
however, is how Glacier2 eliminates much of the complexity of firewall traversal.

Complex network environments are a fact of life. Unfortunately, the cost of securing an enterprise's network is increased application
complexity and administrative overhead. Glacier2 helps to minimize these costs by providing a low-impact, efficient and secure router for Ice
applications.

Glacier2 has the following advantages and limitations.

Advantages

Clients often require only minimal changes to use Glacier2.
Only one front-end port is necessary to support any number of servers, allowing a Glacier2 router to easily receive connections from
a port-forwarding firewall.
The number of connections to back-end servers is reduced. Glacier2 effectively acts as a connection concentrator, establishing a
single connection to each back-end server to forward requests from any number of clients. Similarly, connections from back-end
servers to Glacier2 for the purposes of sending callbacks are also concentrated.
Servers are unaware of Glacier2's presence, and require no modifications whatsoever to use Glacier2. From a server's perspective,
Glacier2 is just another local client, therefore servers are no longer required to advertise "public" endpoints in the proxies they
create. Furthermore, back-end services such as  can continue to be used transparently via a Glacier2 router.IceGrid
Callbacks through Glacier2 are supported without requiring new connections from servers to clients. In other words, a callback from
a server to a client is sent over an existing connection from the client to the server, thereby eliminating the administrative
requirements associated with supporting callbacks in the client firewall.
Glacier2 requires no knowledge of the application's Slice definitions and therefore is very efficient: it routes request and reply
messages without unmarshalling the message contents.
In addition to its primary responsibility of forwarding Ice requests, Glacier2 offers support for user-defined session management and

, , and .authentication inactivity timeouts request buffering and batching

Limitations

Datagram protocols, such as UDP, are not supported.
Callback objects in a client must use a Glacier2-supplied category in their identities.

See Also

How Glacier2 Works
Common Firewall Traversal Issues
Callbacks through Glacier2
IceGrid
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How Glacier2 Works

The Ice core supports a generic router facility, represented by the  interface, that allows a third-party service to "intercept"Ice::Router
requests on a properly-configured proxy and deliver them to the intended server. Glacier2 is an implementation of this service, although
other implementations are certainly possible.

Glacier2 normally runs on a host in the private network behind a , but it can also operate on a host with access to bothport-forwarding firewall
public and private networks. In this configuration it follows that Glacier2 must have endpoints on each network.

For the sake of example, the router's public address is 5.6.7.8 and its private address is 10.0.0.1.

In the client, proxies must be configured to use Glacier2 as a router. This configuration can be done statically for all proxies created by a
communicator, or programmatically for a particular proxy. A proxy configured to use a router is called a .routed proxy

When a client invokes an operation on a routed proxy, the client connects to one of Glacier2's client endpoints and sends the request as if
Glacier2 is the server. Glacier2 then establishes an outgoing connection to the client's intended server in the private network, forwards the
request to that server, and returns the reply (if any) to the client. Glacier2 is essentially acting as a local client on behalf of the remote client.

If a server returns a proxy as the result of an operation, that proxy contains the server's endpoints in the private network, as usual.
(Remember, the server is unaware of Glacier2's presence, and therefore assumes that the proxy is usable by the client that requested it.) In
the absence of a router, a client would receive an exception if it attempted to use such a proxy. When configured with a router, however, the
client ignores the proxy's endpoints and always sends requests to the router's client endpoints instead.

Glacier2's server endpoints, which reside in the private network, are only used when a server makes a .callback to a client

See Also

Callbacks through Glacier2
Configuring Glacier2 behind an External Firewall



Ice 3.4.2 Documentation

1478 Copyright © 2011, ZeroC, Inc.

1.  
2.  
3.  
4.  
5.  
6.  
7.  

Getting Started with Glacier2

On this page:

Using Glacier2
Configuring the Router
Writing a Password File
Starting the Router
Configuring a Glacier2 Client
Glacier2 Object Identities
Creating a Glacier2 Session
Glacier2 Session Expiration
Glacier2 Session Destruction

Using Glacier2

Using Glacier2 in a minimal configuration involves the following tasks:

Write a  for the router.configuration file
Write a  for the router. (Glacier2 also supports  to authenticate users.)password file other ways
Decide whether to use the router's internal session manager, or supply your own .session manager
Start the router on a host with access to the public and private networks.
Modify the  to use the router.client configuration
Modify the client to create a .router session
Ensure that the  for as long as the client requires it.router session remains active

For the sake of example, the router's public address is 5.6.7.8 and its private address is 10.0.0.1.

Configuring the Router

The following router configuration properties establish the necessary endpoint and define when a session expires due to inactivity:

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 4063
Glacier2.SessionTimeout=60

The endpoint defined by  is used by the Ice run time in a client to interact directly with the router. It is alsoGlacier2.Client.Endpoints
the endpoint where requests from routed proxies are sent. This endpoint is defined on the public network interface because it must be
accessible to clients. Furthermore, the endpoint uses a fixed port because clients may be statically configured with a proxy for this endpoint.
The port numbers 4063 (for TCP) and 4064 (for SSL) are reserved for Glacier2 by the Internet Assigned Numbers Authority (IANA).

This sample configuration uses TCP as the endpoint protocol, although in most cases, .SSL is preferable

A client must  in order to use a Glacier2 router. Our setting for the  property causes the routercreate a session Glacier2.SessionTimeout
to destroy sessions that have been idle for at least 60 seconds. It is not mandatory to define a timeout, but it is recommended, otherwise
session state might accumulate in the router.

Note that this configuration enables the router to forward requests from clients to servers. Additional configuration is necessary to support 
 from servers to clients.callbacks

You must also decide which authentication scheme (or schemes) to use. A  mechanism is available, as are file-based more sophisticated
.strategies

If clients access a  via the router, additional router configuration is typically necessary.location service

Writing a Password File

The router's simplest authentication mechanism uses an access control list in a text file consisting of user name-password pairs. The
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password is a 13-character string encoded using the  algorithm, similar to a  file on a typical Unix system.crypt passwd

The property  specifies the name of the password file:Glacier2.CryptPasswords

Glacier2.CryptPasswords=passwords

The format of the password file is very simple. Each user name-password pair must reside on a separate line, with whitespace separating
the user name from the password. For example, the following password file contains an entry for the user name :test

test xxMqsnnDcK8tw

You can use the  utility (included in the OpenSSL toolkit) to generate crypt passwords:openssl

$ openssl
OpenSSL> passwd
Password:
Verifying - Password:
xxMqsnnDcK8tw

At the prompt, issue the  command. You are asked for a password, and then asked to confirm the password, at which point the utilitypasswd
displays a -encoded version of your password that you can paste into the router's password file.crypt

The -based authentication scheme is not intended for use in secure applications. We recommend installing acrypt
custom  that uses a more secure form of authentication instead.permissions verifier

Starting the Router

The router supports the following command-line options:

$ glacier2router -h
Usage: glacier2router [options]
Options:
-h, --help     Show this message.
-v, --version  Display the Ice version.
--nowarn       Suppress warnings.

The  option prevents the router from displaying warning messages at startup when it is unable to contact a permissions verifier--nowarn
object or a session manager object specified by its configuration.

Additional command line options are supported, including those that allow the router to run as a , and IceWindows service or Unix daemon
includes a  to help you install the router as a Windows service.utility

Assuming our configuration properties are stored in a file named , you can start the router with the following command:config

$ glacier2router --Ice.Config=config

Configuring a Glacier2 Client

The following properties configure a client to use a Glacier2 router:

Ice.Default.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063
Ice.ACM.Client=0
Ice.RetryIntervals=-1



Ice 3.4.2 Documentation

1480 Copyright © 2011, ZeroC, Inc.

The  property defines the router proxy. Its endpoints must match those in .Ice.Default.Router Glacier2.Client.Endpoints

The  property governs the behavior of  (ACM), which conserves resources by periodicallyIce.ACM.Client Active Connection Management
closing idle outgoing connections. This feature must be disabled in a client that uses a Glacier2 router, otherwise ACM might transparently
close a client's connection to a router and thereby terminate the router session prematurely. ACM is enabled by default, and therefore must
be disabled by setting this property to zero.

Finally, setting  to -1 disables , which are not useful for proxies configured to use a Glacier2 router.Ice.RetryIntervals automatic retries

Glacier2 Object Identities

A Glacier2 router hosts two well-known objects. The default identities of these objects are  and ,Glacier2/router Glacier2/admin
corresponding to the  and  interfaces, respectively. If an application requires the use of multipleGlacier2::Router Glacier2::Admin
different (that is, not replicated) routers, it is a good idea to assign unique identities to these objects by configuring the routers with different
values of the  property, as shown in the following example:Glacier2.InstanceName

Glacier2.InstanceName=PublicRouter

This property changes the category of the object identities, which become  and . ThePublicRouter/router PublicRouter/admin
client's configuration must also be changed to reflect the new identity:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063

One exception to this rule is if you deploy multiple Glacier2 routers as replicas, for example, to gain redundancy or to distribute the
message-forwarding load over a number of machines. In that case, all the routers must use the same instance name, and the router clients
can use proxies with multiple endpoints, such as:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063:tcp -h 6.10.7.8 -p 4063

Creating a Glacier2 Session

Session management is provided by the  interface:Glacier2::Router
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Slice

module Glacier2 {
    exception PermissionDeniedException {
        string reason;
    };

    interface Router extends Ice::Router {
        Session* createSession(string userId, string password)
            throws PermissionDeniedException,
                   CannotCreateSessionException;

        Session* createSessionFromSecureConnection()
            throws PermissionDeniedException,
                   CannotCreateSessionException;

        idempotent string getCategoryForClient();

        void refreshSession()
            throws SessionNotExistException;

        void destroySession()
            throws SessionNotExistException;

        idempotent long getSessionTimeout();
    };
};

The interface defines two operations for creating sessions:  and . The routercreateSession createSessionFromSecureConnection
requires each client to create a session using one of these operations; only after the session is created will the router forward requests on
behalf of the client.

The  operation expects a user name and password and, depending on the , returns either a createSession router's configuration Session
proxy or nil. When using the default authentication scheme, the given user name and password must match an entry in the router's password
file in order to successfully create a session.

The  operation does not require a user name and password because it authenticates the clientcreateSessionFromSecureConnection
using the credentials associated with the client's  to the router.SSL connection

To create a session, the client typically obtains the router proxy from the communicator, downcasts the proxy to the Glacier2::Router
interface, and invokes one of the  operations. The sample code below demonstrates how to do it in C++; the code will look verycreate
similar in the other language mappings.

C++

Ice::RouterPrx defaultRouter = communicator->getDefaultRouter();
Glacier2::RouterPrx router = Glacier2::RouterPrx::checkedCast(defaultRouter);
string username = ...;
string password = ...;
Glacier2::SessionPrx session;
try
{
    session = router->createSession(username, password);
}
catch(const Glacier2::PermissionDeniedException& ex)
{
    cout << "permission denied:\n" << ex.reason << endl;
}
catch(const Glacier2::CannotCreateSessionException& ex)
{
    cout << "cannot create session:\n" << ex.reason << endl;
}

If the router is configured with a , the  and  operations maysession manager createSession createSessionFromSecureConnection
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return a proxy for an object implementing the  interface (or an application-specific derived interface). The clientGlacier2::Session
receives a null proxy if no session manager is configured.

A non-nil session proxy returned by a  operation must be configured with the router that created it because the session object is onlycreate
accessible via the router. If the router is configured as the client's default router at the time  or createSession

 is invoked, as is the case in the example above, then the session proxy is already properlycreateSessionFromSecureConnection
configured and nothing else is required. Otherwise, the client must explicitly configure the session proxy with a router using the ice_router
proxy method.

If the client wishes to destroy the session explicitly, it must invoke  on the router proxy. If a client does not destroy itsdestroySession
session, the router destroys it automatically when it expires due to inactivity. A client can obtain the inactivity timeout value by calling 

 and keep the session alive by  if necessary.getSessionTimeout periodically calling refreshSession

The  operation is used to implement  over bidirectional connections.getCategoryForClient callbacks

Example
An example of a Glacier2 client is provided in the directory .demo/Glacier2/callback

Glacier2 Session Expiration

A Glacier2 router may be configured to destroy sessions after a period of inactivity. This feature allows the router, as well as a custom 
, to reclaim resources acquired during the session, but it requires some coordination between the router and its clients.session manager

Ideally you would select a  that is long enough to accommodate the usage patterns of your clients. For example, a sessionsession timeout
timeout of thirty seconds is a reasonable choice for a client that invokes an operation on a back-end server once every five seconds.
However, that timeout could disrupt a different client that has long periods of inactivity, such as when its invocations are prompted by human
interaction.

If you cannot predict with certainty the usage patterns of your clients, we recommend modifying the clients so that they actively prevent their
sessions from expiring. A client simply needs to make an invocation at regular intervals, where the period is less than the router's timeout by
a comfortable margin. Typically a client creates a dedicated thread whose only purpose is keeping the session alive. It can accomplish this
by invoking  on the router proxy, or by invoking the  operation on the proxy of any back-end object that isrefreshSession ice_ping
accessed via the router (including the  proxy, if one was returned by ). Ice includes  that you canSession createSession helper classes
use to simplify the task of create a session and keeping it alive.

Note that if a session times out, the next client invocation raises . To re-establish the session, the client mustConnectionLostException
explicitly re-create it. If the client uses , it must also re-create the callback adapter and re-register its callback servants.callbacks

Glacier2 Session Destruction

A router session is destroyed automatically when the , and when a client explicitly destroys its session. The router alsosession expires
destroys a session if certain connection errors occur while attempting to route a request. These errors are represented by the run-time
exceptions , , and . In other words, if any of these exceptions occur whileSocketException TimeoutException ProtocolException
Glacier2 attempts to establish a connection to the target back-end server, or forward a request to the target back-end server, the router
automatically destroys the session.

See Also

Callbacks through Glacier2
Securing a Glacier2 Router
Glacier2 Session Management
Glacier2 Properties
Windows Services
Active Connection Management
Automatic Retries
Glacier2 Helper Classes
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Callbacks through Glacier2

Callbacks from servers to clients are commonly used in distributed applications, often to notify the client about an event such as the
completion of a long-running calculation or a change to a database record. Unfortunately, supporting callbacks in a complicated network
environment presents its own . Ice overcomes these obstacles using a Glacier2 router and bidirectional connections.set of problems

On this page:

Bidirectional Connections with Glacier2
Callbacks and Connection Closure
Configuring the Router for Callbacks
Configuring the Client's Object Adapter with a Router
Callback Object Identities
Nested Invocations with a Router
Handling Session Timeouts

Example
The  example illustrates the use of callbacks with Glacier2. The  file in the directorydemo/Glacier2/callback README
provides instructions on running the example, and comments in the configuration file describe the properties in detail.

Bidirectional Connections with Glacier2

While a regular unrouted connection allows requests to flow in only one direction (from client to server), a  enablesbidirectional connection
requests to flow in both directions. This capability is necessary to circumvent the network restrictions that commonly cause firewall traversal

, namely, client-side firewalls that prevent a server from establishing an independent connection directly to the client. By sendingissues
callback requests over the existing connection from the client to the server (more accurately, from the client to the router), we have created a
virtual connection back to the client.

This diagram shows the steps involved in making a callback using Glacier2:

The client has a routed proxy for the server and makes an invocation. A connection is established to the router's client endpoint and
the request is sent to the router.
The router, using information from the client's proxy, establishes a connection to the server and forwards the request. In this
example, one of the arguments in the request is a proxy for a callback object in the client.
The server makes a callback to the client. For this to succeed, the proxy for the callback object must contain endpoints that are
accessible to the server. The only path back to the client is through the router, therefore the proxy contains the router's server

. The server connects to the router and sends the request.endpoints
The router forwards the callback request to the client using the bidirectional connection established in step 1.

The arrows in the above illustration indicate the flow of requests; notice that two connections are used between the router and the server.
Since the server is unaware of the router, it does not use routed proxies, and therefore does not use bidirectional connections.

It is also possible for applications to manually configure bidirectional connections without the use of a router.
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Callbacks and Connection Closure

When a client terminates, it closes its connection to the router. If a server later attempts to make a callback to the client, the attempt fails
because the router has no connection to the client over which to forward the request. This situation is no worse than if the server attempted
to contact the client directly, which would be prevented by the client's firewall. However, this illustrates the inherent limitation of bidirectional
connections: the lifetime of a client's callback proxy is bounded by the lifetime of the client's router session.

Configuring the Router for Callbacks

In order for the router to support callbacks from servers, it needs to have endpoints in the private network.

The configuration file shown below adds the property :Glacier2.Server.Endpoints

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 4063
Glacier2.Server.Endpoints=tcp -h 10.0.0.1

As this example shows, the server endpoint does not require a fixed port.

Configuring the Client's Object Adapter with a Router

A client that receives callbacks is also a server, and therefore must have an object adapter. Typically, an object adapter has endpoints in the
local network, but those endpoints are of no use to a server in our restricted network environment. We really want the client's callback proxy
to contain the router's server endpoints, and we accomplish that by configuring the client's object adapter with a proxy for the router.?

Note that multiple object adapters created by the same communicator cannot use the same router.

We supply the router's proxy by creating the object adapter with , or by defining the object adaptercreateObjectAdapterWithRouter
property  as shown below:.Routeradapter

CallbackAdapter.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063

For each object adapter, the Ice run time maintains a  that are embedded in proxies created by that adapter. Normally, thislist of endpoints
list simply contains the local endpoints defined for the object adapter but, when the adapter is configured with a router, the list only contains
the router's server endpoints.

An object adapter configured in this way allows the client to receive callback requests via the router. If the client also wants to service
requests via local (non-routed) endpoints, the client must  for these requests.create a separate adapter

Callback Object Identities

Glacier2 assigns a unique category to each client for use in the  of the client's callback objects. The client creates proxies thatidentities
contain this identity category and pass these proxies to back-end servers for use in making callback requests to the client. This category
serves two purposes:

Upon receipt of a callback request from a back-end server, the router uses the request's category to identify the intended client.
The category is sufficiently random that, without knowing the category in advance, it is practically impossible for a misbehaving or
malicious back-end server to send callback requests to an arbitrary client.

A client can obtain its assigned category by calling  on the  interface as shown in the example below:getCategoryForClient Router

C++

Glacier2::RouterPrx router = // ...
string category = router->getCategoryForClient();
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Nested Invocations with a Router

If a router client intends to receive callbacks and make nested twoway invocations, it is important that the client be configured correctly.
Specifically, you must  to at least two threads.increase the size of the client thread pool

Handling Session Timeouts

If the client's session , the next invocation raises . The client can recover from this situation bytimes out ConnectionLostException
re-creating the session, re-creating the callback adapter, and adding all the callback servants to the  (ASM) of theActive Servant Map
re-created adapter.

See Also

Bidirectional Connections
Object Adapter Endpoints
Object Identity
Getting Started with Glacier2
The Active Servant Map
Glacier2 Properties
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Glacier2 Helper Classes

Ice includes a number of helper classes to help you build robust Glacier2 clients.

The  ClassGlacier2::Application
GUI Helper Classes

The  ClassSessionFactoryHelper
The  ClassSessionHelper
The  InterfaceSessionCallback

The  ClassGlacier2::Application

You may already be familiar with the  class, which encapsulates some basic Ice functionality such as communicatorIce::Application
initialization, communicator destruction, and proper handling of signals and exceptions. The  extends Glacier2::Application

 to add functionality that is commonly needed by Glacier2 clients:Ice::Application

Keeps a session alive by periodically sending "ping" requests from a background thread
Automatically restarts a session if a failure occurs
Optionally creates an object adapter for callbacks
Destroys the session when the application completes

The C++ definition of  is shown below. (The Java and C# versions offer identical functionality so we do not showGlacier2::Application
them here.)

C++

namespace Glacier2 {

class Application : public Ice::Application {
public:
    Application();
    Application(Ice::SignalPolicy policy);

    virtual int runWithSession(int argc, char* argv[]) = 0;

    virtual Glacier2::SessionPrx createSession() = 0;

    virtual void sessionDestroyed();

    static Glacier2::RouterPrx router();

    static Glacier2::SessionPrx session();

    void restart();

    std::string categoryForClient();

    Ice::Identity createCallbackIdentity(const std::string& name);

    Ice::ObjectPrx addWithUUID(const Ice::ObjectPtr& servant);

    Ice::ObjectAdapterPtr objectAdapter();
};

}

The following methods are supported:

Application()
Instantiating the class using its default constructor has the same semantics as calling .Application(Ice::HandleSignals)

Application(Ice::SignalPolicy policy)
This constructor allows you to indicate whether the class should handle signals. The  enumeration contains twoSignalPolicy
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enumerators:  and . If you specify , the class automatically shuts down orHandleSignals NoSignalHandling HandleSignals
destroys its communicator upon receipt of certain signals. Refer to the  documentation in the relevantIce::Application
language mapping chapter for more information on signal handling.

int runWithSession(int argc, char* argv[])
This method must be overridden by a subclass and represents the "main loop" of the application. It is called after the communicator
has been initialized and the Glacier2 session has been established. The argument vector passed to this method contains the
arguments passed to  with all Ice-related options removed. The implementation of  mustApplication::main runWithSession
return zero to indicate success and non-zero to indicate failure; the value returned by  becomes the return valuerunWithSession
of . Application::main

 can call  to restart the session. This destroys the current session, creates a new session (by calling runWithSession restart
), and calls  again. The  base class also restarts the session if createSession runWithSession Application

 raises (or allows to be raised) any of the following exceptions: runWithSession

Ice::ConnectionLostException
Ice::ConnectionRefusedException
Ice::RequestFailedException
Ice::TimeoutException
Ice::UnknownLocalException

All other exceptions cause the current session to be destroyed without restarting.

Glacier2::SessionPrx createSession()
This method must be overridden by a subclass to create the application's Glacier2 session. A successful call to  iscreateSession
followed by a call to . The application terminates if  raises (or allows to be raised) an runWithSession createSession

.Ice::LocalException

void sessionDestroyed()
A subclass can optionally override this method to take action when connectivity with the Glacier2 router is lost.

Glacier2::RouterPrx router()
Returns the proxy for the Glacier2 router.

Glacier2::SessionPrx session()
Returns the proxy for the current session.

void restart()
Causes  to destroy the current session, create a new session (by calling ), and start a new mainApplication createSession
loop (in ). This method does not return but rather raises a  that is trapped by runWithSession RestartSessionException

.Application

std::string categoryForClient()
Returns the category to be used in the identities of all of the client's callback objects. Clients must use this category for the router to
forward  to the intended client. The method raises  if no session is currently active.callback requests SessionNotExistException

Ice::Identity createCallbackIdentity(const std::string& name)
Creates a new Ice identity for a callback object with the given identity name.

Ice::ObjectPrx addWithUUID(const Ice::ObjectPtr& servant)
Adds a servant to the callback object adapter's Active Servant Map using a UUID for the identity name.

Ice::ObjectAdapterPtr objectAdapter()
Returns the object adapter used for callbacks, creating the object adapter if necessary.

Example
The Ice distribution includes an example in  that shows how to use the demo/Glacier2/callback

 class.Glacier2::Application

GUI Helper Classes

The "main loop" design imposed by the  class is not suitable for graphical applications, therefore Ice alsoGlacier2::Application
includes a collection of Java and C# classes that better accommodate the needs of GUI programs:

Glacier2.SessionFactoryHelper
This class simplifies the task of creating a Glacier2 session. It provides overloaded  methods that support the twoconnect
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authentication styles (user name/password and SSL credentials) accepted by the Glacier2 router, and returns an instance of 
 for each new session.Glacier2.SessionHelper

Glacier2.SessionHelper
This class encapsulates a Glacier2 session and provides much of the same functionality as . TheGlacier2::Application
application must supply an instance of  when creating the session;  invokes thisGlacier2.SessionCallback SessionHelper
callback object when important events occur in the session's lifecycle.

Glacier2.SessionCallback
An application implements this interface to receive notification about session lifecycle events.

The classes are discussed further in the subsections below.

Example
You can find sample applications that make use of these classes in the  directory of your Icedemo/Glacier2/chat
distribution.

The  ClassSessionFactoryHelper

The  class provides convenience methods for configuring the settings that are commonly used to create aSessionFactoryHelper
Glacier2 session, such as the router's host and port number. Once the application has completed its configuration, it calls one of the 

 methods to initialize a communicator, establish a Glacier2 session, and receive a  object with which it canconnect SessionHelper
manage the new session. An application should create a new  object for each router instance that it uses.SessionFactoryHelper

SessionFactoryHelper creates an  object if the application does not pass one to the Ice.InitializationData
 constructor.  also creates a new property set if necessary, and then sets someSessionFactoryHelper SessionFactoryHelper

configuration properties required by Glacier2 clients. The resulting  object is eventually used in  to initializeInitializationData connect
a new communicator.

The Java definition of  is shown below (the C# version is nearly identical and is not shown here):SessionFactoryHelper
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Java

package Glacier2;

public class SessionFactoryHelper {

    public SessionFactoryHelper(SessionCallback callback)
        throws Ice.InitializationException;

    public SessionFactoryHelper(Ice.InitializationData initData, SessionCallback callback)
        throws Ice.InitializationException;

    public SessionFactoryHelper(Ice.Properties properties, SessionCallback callback)
        throws Ice.InitializationException;

    public void setRouterIdentity(Ice.Identity identity);
    public Ice.Identity getRouterIdentity();

    public void setRouterHost(String hostname);
    public String getRouterHost();

    public void setSecure(boolean secure);
    public boolean getSecure();

    public void setTimeout(int timeoutMillisecs);
    public int getTimeout();

    public void setPort(int port);
    public int getPort();

    public Ice.InitializationData getInitializationData();

    public void setConnectContext(java.util.Map<String, String> ctx);

    public SessionHelper connect();
    public SessionHelper connect(String username, String password);
}

The following methods are supported:

SessionFactoryHelper(SessionCallback callback)
This constructor is useful when your application has no other configuration requirements. The constructor allocates an 

 object and a new property set. The callback argument must not be null.InitializationData

SessionFactoryHelper(Ice.InitializationData initData, SessionCallback callback)
Use this constructor when you want to prepare your own instance of . The  argument must not beInitializationData callback
null.

SessionFactoryHelper(Ice.Properties properties, SessionCallback callback)
This constructor is convenient when you wish to supply an initial set of properties. The callback argument must not be null.

void setRouterIdentity(Ice.Identity identity)
Ice.Identity getRouterIdentity()
Determines the object identity of the Glacier2 router. Note that this setting is only used if  is undefined.Ice.Default.Router

void setRouterHost(String hostname)
String getRouterHost()
Determines the host name of the Glacier2 router. Note that this setting is only used if  is undefined.Ice.Default.Router

void setSecure(boolean secure)
boolean getSecure()
Determines whether the connection to the Glacier2 router must be secure. Note that this setting is only used if 

 is undefined.Ice.Default.Router

void setTimeout(int timeoutMillisecs)
int getTimeout()
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Determines the timeout setting (in milliseconds) for the connection to the Glacier2 router. No timeout is used if the argument is less
than or equal to zero. Note that this setting is only used if  is undefined.Ice.Default.Router

void setPort(int port)
int getPort()
Determines the port on which the Glacier2 router is listening. Note that this setting is only used if  isIce.Default.Router
undefined.

Ice.InitializationData getInitializationData()
Returns a reference to the  object that will be used during communicator initialization. If necessary, anInitializationData
application can make modifications to this object prior to calling .connect

void setConnectContext(java.util.Map<String, String> ctx)
Sets the request context to be used when creating a session. This method must be invoked prior to .connect

SessionHelper connect()
Initializes a communicator, creates a Glacier2 session using SSL credentials, and returns a new  object. The SessionHelper

 method is invoked on the session callback if the session was created successfully, otherwise the callback's connected
 method is invoked.connectFailed

SessionHelper connect(String username, String password)
Initializes a communicator, creates a Glacier2 session using the given user name and password, and returns a new 

 object. The  method is invoked on the session callback if the session was created successfully,SessionHelper connected
otherwise the callback's  method is invoked.connectFailed

The  ClassSessionHelper

The  class encapsulates a Glacier2 session and keeps the session alive by periodically "pinging" the router. SessionHelper
 also provides several convenience methods for common session-related actions:SessionHelper

Java

package Glacier2;

public class SessionHelper {

    public void destroy();

    public Ice.Communicator communicator();

    public String categoryForClient()
        throws SessionNotExistException;

    public Ice.ObjectPrx addWithUUID(Ice.Object servant)
        throws SessionNotExistException;

    public Glacier2.SessionPrx session()
        throws SessionNotExistException;

    public boolean isConnected();

    public Ice.ObjectAdapter objectAdapter()
        throws SessionNotExistException;
}

The following methods are supported:

void destroy()
Destroys the Glacier2 session.

Ice.Communicator communicator()
Returns the communicator created by the .SessionHelper

String categoryForClient()
Returns the category that must be used in the identities of all callback objects. Raises  if no sessionSessionNotExistException
is currently active.
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Ice.ObjectPrx addWithUUID(Ice.Object servant)
Adds a servant to the callback object adapter using a UUID for the identity name. Raises  if noSessionNotExistException
session is currently active.

Glacier2.SessionPrx session()
Returns a proxy for the Glacier2 session. Raises  if no session is currently active.SessionNotExistException

boolean isConnected()
Returns true if the session is currently active, false otherwise.

Ice.ObjectAdapter objectAdapter()
Returns the callback object adapter, creating it if necessary. Raises  if no session is currentlySessionNotExistException
active.

The  InterfaceSessionCallback

An application must supply an instance of  when instantiating a  object. The callback methodsSessionCallback SessionFactoryHelper
allow the application to receive notification about events in the lifecycle of the session:

Java

package Glacier2;

public interface SessionCallback {

    void createdCommunicator(SessionHelper session);

    void connected(SessionHelper session)
        throws SessionNotExistException;

    void disconnected(SessionHelper session);

    void connectFailed(SessionHelper session, Throwable ex);
}

The following callback methods are supported:

void createdCommunicator(SessionHelper session)
Called after successfully initializing a communicator.

void connected(SessionHelper session)
Called after successfully establishing the Glacier2 session. The method can raise  to force the newSessionNotExistException
session to be destroyed.

void disconnected(SessionHelper session)
Called after the Glacier2 session is destroyed.

void connectFailed(SessionHelper session, Throwable ex)
Called if a failure occurred while attempting to establish a Glacier2 session.

See Also

The Server-Side main Function in C++
Callbacks through Glacier2
Glacier2 Session Management
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Securing a Glacier2 Router

As a firewall, a Glacier2 router represents a doorway into a private network, and in most cases that doorway should have a good lock. The
obvious first step is to use  for the router's client endpoints. This allows you to secure the message traffic and restrict access to clientsSSL
having the proper credentials. However, the router takes security even further by providing access control and filtering capabilities.

On this page:

Glacier2 Access Control
Password Authentication
Certificate Authentication
Interaction with a Permissions Verifier
Obtaining SSL Credentials for a Router Client

Request Filtering
Address Filters
Category Filters
Identity Filters
Adapter Filters
Proxy Filters
Client Impact

Glacier2 Routing Table
Glacier2 Administrative Interface

Glacier2 Access Control

The authentication capabilities of SSL may not be sufficient for all applications: the certificate validation phase of the SSL handshake verifies
that the user is who he says he is, but how do we know that he should be allowed to use the router? Glacier2 addresses this issue through
the use of an access control facility that supports two forms of authentication: passwords and certificates. You can configure the router to
use whichever authentication method is most appropriate for your application, or you can configure both methods in the same router.

Password Authentication

The router verifies the user name and password arguments to its  operation before it forwards any requests on behalf ofcreateSession
the client. Given that the password is sent "in the clear," it is important to protect these values by using an SSL connection with the router.

There are two ways for the router to verify a user name and password. By default, the router uses a file-based access control list, but you
can override this behavior by installing a proxy for an application-defined verifier object. Configuration properties define the password file
name or the verifier proxy; if you install a verifier proxy, the password file is ignored. Since we have already discussed the , wepassword file
will focus on the custom verifier interface here.

An application that has special requirements can implement the interface  to gain programmaticGlacier2::PermissionsVerifier
control over access to a router. This can be especially useful in situations where a repository of account information already exists (such as
an LDAP directory), in which case duplicating that information in another file would be tedious and error-prone.

The Slice definition for the interface contains just one operation:

Slice

module Glacier2 {
    interface PermissionsVerifier {
        idempotent bool checkPermissions(string userId, string password, out string reason);
    };
};

The router invokes  on the verifier object, passing it the user name and password arguments that were given to checkPermissions
. The operation must return true if the arguments are valid, and false otherwise. If the operation returns false, a reason cancreateSession

be provided in the output parameter.

To configure a router with a custom verifier, set the configuration property  with the proxy for theGlacier2.PermissionsVerifier
object.

In situations where authentication is not necessary, such as during development or when running in a trusted environment, you can use
Glacier2's built-in "null" permissions verifier. This object accepts any combination of user name and password, and you can enable it with the
following property definition:
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Glacier2.PermissionsVerifier=Glacier2/NullPermissionsVerifier

Note that the category of the object's identity (  in this example) must match the value of the property .Glacier2 Glacier2.InstanceName

Example
A sample implementation of the  interface is provided in the PermissionsVerifier demo/Glacier2/callback
directory.

Certificate Authentication

The  operation does not require a user name or password because the client's SSL connectioncreateSessionFromSecureConnection
to the router already supplies the credentials necessary to sufficiently identify the client, in the form of X.509 certificates.

It is up to you to decide what constitutes sufficient identification. For example, a single certificate could be shared by all clients if there is no
need to distinguish between them, or you could generate a unique certificate for each client or a group of clients. Glacier2 does not enforce
any particular policy, but simply delegates the decision of whether to accept the client's credentials to an application-defined object that
implements the  interface:Glacier2::SSLPermissionsVerifier

Slice

module Glacier2 {
    interface SSLPermissionsVerifier {
        idempotent bool authorize(SSLInfo info, out string reason);
    };
};

Router clients may only use  if the router is configured with a proxy for an createSessionFromSecureConnection
 object. The implementation of  must return true to allow the client to establish a session. To rejectSSLPermissionsVerifier authorize

the session, ?  must return false and may optionally provide a value for , which is returned to the client as a member of authorize reason
.PermissionDeniedException

The verifier examines the members of  to authenticate a client:SSLInfo

Slice

module Glacier2 {
    struct SSLInfo {
        string remoteHost;
        int remotePort;
        string localHost;
        int localPort;
        string cipher;
        Ice::StringSeq certs;
    };
};

The structure includes address information about the remote and local hosts, and a string that describes the ciphersuite negotiated for the
SSL connection between the client and the router. These values are generally of interest for logging purposes, whereas the  membercerts
supplies the information the verifier needs to make its decision. The client's certificate chain is represented as a sequence of strings that use
the Privacy Enhanced Mail (PEM) encoding.

The first element of the sequence corresponds to the client's certificate, followed by its signing certificates. The certificate of the root
Certificate Authority (CA) is the last element of the sequence. An empty sequence indicates that the client did not supply a certificate chain.

Although the certificate chain has already been validated by the SSL implementation, a verifier implementation typically needs to examine it
in detail before making its decision. As a result, the verifier will need to convert the contents of  into a more usable form. Some Icecerts
platforms, such as Java and .NET, already provide certificate abstractions, and IceSSL supplies its own for C++ users. IceSSL for Java and
.NET defines the method , which accepts a PEM-encoded string and returns an instance of theIceSSL.Util.createCertificate
platform's certificate class. In C+, the class  has a constructor that accepts a PEM-encoded string.IceSSL::Certificate

In addition to examining certificate attributes such as the distinguished name of the subject and issuer, it is also important that a verifier
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consider the .length of the certificate chain

To install your verifier, set the  property with the proxy of your verifier object.Glacier2.SSLPermissionsVerifier

In situations where authentication is not necessary, such as during development or when running in a trusted environment, you can use
Glacier2's built-in "null" permissions verifier. This object accepts the credentials of any client, and you can enable it with the following
property definition:

Glacier2.SSLPermissionsVerifier=Glacier2/NullSSLPermissionsVerifier

Note that the category of the object's identity (  in this example) must match the value of the property .Glacier2 Glacier2.InstanceName

Interaction with a Permissions Verifier

The router attempts to contact the configured permissions verifiers at startup. If an object is unreachable, the router logs a warning message
but continues its normal operation (you can suppress the warning using the  option.) The router does not contact a verifier again--nowarn
until it needs to invoke an operation on the object. For example, when a client asks the router to create a new session, the router makes
another attempt to contact the verifier; if the object is still unavailable, the router logs a message and returns 

 to the client.PermissionDeniedException

Obtaining SSL Credentials for a Router Client

Servers that wish to receive information about a client's SSL connection to the router can define the Glacier2.AddConnectionContext
property. When enabled, the router adds several entries to the request context of each invocation it forwards to a server, providing
information such as the client's encoded certificate (if supplied) and addressing details. If the client's connection uses SSL, the router defines
the  entry in the context. A server can check for the presence of this entry and also extract additional context entries as_con.peerCert
shown below in this example:

C++

void unlockDoor(string id, const Ice::Current& curr)
{
    Ice::Context::const_iterator i = curr.ctx.find("_con.peerCert");
    if (i != curr.ctx.end()) {
        string certPEM;
        certPEM = i->second;
        cout << "Client address = "
             << curr.ctx["_con.remoteAddress"]
             << ":" << curr.ctx["_con.remotePort"] << endl;
        ...
    }
    ...
}

If the client supplied a certificate, the server can decode and examine it using the techniques discussed for .IceSSL

Request Filtering

The Glacier2 router is capable of filtering requests based on a variety of criteria, which helps to ensure that clients do not gain access to
unintended objects.

Address Filters

To prevent a client from accessing arbitrary back-end hosts or ports, you can configure a Glacier2 router to validate the address information
in each proxy that the client attempts to use. Two properties determine the router's filtering behavior:

Glacier2.Filter.Address.Accept
An address is accepted if it matches an entry in this property and does not match an entry in 

.Glacier2.Filter.Address.Reject

Glacier2.Filter.Address.Reject
An address is rejected if it matches an entry in this property.
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The value of each property is a list of :  pairs separated by spaces, as shown in the example below:address port

Glacier2.Filter.Address.Accept=192.168.1.5:4063 192.168.1.6:4063

This configuration allows clients to use only two hosts in the back-end network, and only one port on each host. A client that attempts to use
a proxy containing any other host or port receives an  on its initial request.ObjectNotExistException

You can also use ranges, groups and wildcards when defining your address filters. For example, the following property value shows how to
use an address range:

Glacier2.Filter.Address.Accept=192.168.1.[5-6]:4063

This property is equivalent to the first example, but the range notation allows us to define the filter more concisely. Similarly, we can restate
the property using the group notation by separating values with a comma:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:4063

The wildcard notation uses the * character to substitute for a value:

Glacier2.Filter.Address.Accept=10.0.*.1:4063

The range, group, and wildcard notation is also supported when specifying ports, as shown below:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:[10000-11000]
Glacier2.Filter.Address.Reject=192.168.1.[5,6]:[10500,10501]

In this configuration, the router allows clients to access all of the ports in the range  to , except for the two ports  and 10000 11000 10500
.10501

At first glance, you might think that the following property definition is pointless because it would prevent clients from accessing any
back-end server:

Glacier2.Filter.Address.Reject=*

In reality, this configuration only prevents clients from accessing servers using direct proxies, that is, proxies that contain endpoints. As a
result, the property causes Glacier2 to accept only .indirect proxies

By default, a Glacier2 router forwards requests for any address, which is equivalent to defining the property 
.Glacier2.Filter.Address.Accept=*

Category Filters

The  type contains two string members: category and name. You can configure a router with a list of valid identityIce::Identity
categories, in which case it only routes requests for objects in those categories. The configuration property 

 supplies the category list:Glacier2.Filter.Category.Accept

Glacier2.Filter.Category.Accept=cat1 cat2

This property does not affect the routing of  from back-end servers to router clients.callback requests

By default a Glacier2 router forwards requests for any category.

If a category contains spaces, you can enclose the value in single or double quotes. If a category contains a quote character, it must be
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escaped with a leading backslash.

Glacier2 can optionally manipulate the category filter automatically. When you set  to a valueGlacier2.Filter.Category.AcceptUser
of 1, the router adds the session's user name (for password authentication) or distinguished name (for SSL authentication) to the list of
accepted categories. To ensure the uniqueness of your categories, you may prefer setting the property to a value of 2, which causes the
router to prepend an underscore to the user name or distinguished name before adding it to the list.

A session manager can also configure category filters  using Glacier2's  interface.dynamically SessionControl

Identity Filters

The ability to filter on identity categories, as described in the previous section, is a convenient way to limit clients to particular groups of
objects. For even stricter control over the identities that clients are allowed to access, you can use the 

 property. The value of this property is a list of identities, separated by whitespace, representingGlacier2.Filter.Identity.Accept
the  objects the router's clients may use.only

If an identity contains spaces, you can enclose the value in single or double quotes. If an identity contains a quote character, it must be
escaped with a leading backslash.

Clearly, specifying a static list of identities is only practical for a small set of objects. Furthermore, in many applications, the complete set of
identities cannot be known in advance, such as when objects are created on a per-session basis and use UUIDs in their identities. For these
situations, category-based filtering is generally sufficient. However, a session manager can also use Glacier2's  interface, dynamic filtering

, to manage the set of valid identities at run time.SessionControl

Adapter Filters

Applications often use  in their back-end network to simplify server administration and take advantage of the benefits offered byIceGrid
indirect proxies. Once you have configured Glacier2 with an appropriate , clients can use indirect proxies to refer to objects inlocator proxy
IceGrid-managed servers. Indirect proxies come in two forms: one that contains only an identity, and one that contains an identity and an
object adapter identifier. You can use the category and identity filters described in previous sections to control identity-only proxies, and you
can use the property  to enforce restrictions on indirect proxies that use an object adapterGlacier2.Filter.AdapterId.Accept
identifier.

For example, the following property definition allows a client to use the proxy  but not the proxy factory@WidgetAdapter
:factory@SecretAdapter

Glacier2.Filter.AdapterId.Accept=WidgetAdapter

If an adapter identifier contains spaces, you can enclose the value in single or double quotes. If an adapter identifier contains a quote
character, it must be escaped with a leading backslash.

A session manager can also configure this filter  using Glacier2's  interface.dynamically SessionControl

Proxy Filters

The Glacier2 router maintains an internal routing table that contains an entry for each proxy used by a router client; the size of the routing
table grows in proportion to the number of clients and their proxy usage. Furthermore, the amount of memory that the routing table
consumes is affected by the number of endpoints in each proxy. Glacier2 provides two properties that you can use to limit the size of the
routing table and defend against malicious router clients.

The property  specifies the maximum number of entries allowed in the routing table. If the size of theGlacier2.RoutingTable.MaxSize
table exceeds the value of this property, the router evicts older entries on a least-recently-used basis. (Eviction of proxies from the routing
table is transparent to router clients.) The default size of the routing table is 1000, but you may need to define a different value depending on
the needs of your application. While experimenting with different values, you may find it useful to define the property 

 to see a log of the router's activities with respect to the routing table.Glacier2.Trace.RoutingTable

The property  sets a limit on the size of a stringified proxy. The Ice run time places no limits on the sizeGlacier2.Filter.ProxySizeMax
of proxy components such as identities and host names, but a malicious client could manufacture very large proxies in a denial-of-service
attack on a Glacier2 router. By setting this property to a reasonably small value, you can prevent proxies from consuming excessive memory
in the router process.

Client Impact

The Glacier2 router immediately terminates a client's session if it attempts to use a proxy that is rejected by an address filter or exceeds the
size limit defined by the property . The Ice run time in the client responds by raising Glacier2.Filter.ProxySizeMax

 to the application.ConnectionLostException
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For category, identity, and adapter identifier filters, the router raises  if any of the filters rejects a proxy andObjectNotExistException
none of the filters accepts it.

To obtain more information on the router's reasons for terminating a session or rejecting a request, set the following property and examine
the router's log output:

Glacier2.Client.Trace.Reject=1

Glacier2 Routing Table

The Glacier2 router maintains an internal routing table for each session. The routing table holds every proxy used by its session.
Consequently, the size of the routing table grows in proportion to the number of proxies used by a session. Furthermore, the amount of
memory that all of the routing tables consume grows with the number of active sessions.

The property  allows you to specify an upper limit on the number of entries in the routing table. If theGlacier2.RoutingTable.MaxSize
size of the table exceeds the value of this property, the router evicts older entries on a least-recently-used basis. (Eviction of proxies from the
routing table is transparent to router clients.) The default size of the routing table is 1000, but you may need to define a different value
depending on the needs of your application. While experimenting with different values, you may find it useful to define the property 

 to see a log of the router's activities with respect to the routing table.Glacier2.Trace.RoutingTable

The router does not remove entries from a session's routing table except when evicting an old entry to make room for a new one. In
particular, an exception that occurs while routing a request for a proxy does  cause that proxy to be removed from the routing table. Notenot
however that the routing table is destroyed upon session destruction.

Glacier2 Administrative Interface

Glacier2 supports an administrative interface that allows you to shut down a router programmatically:

Slice

module Glacier2 {
    interface Admin {
        idempotent void shutdown();
    };
};

To prevent unwanted clients from using the  interface, the object is only accessible on the endpoints defined by the Admin
 property. This property has no default value, meaning you must define the property in order to make the Glacier2.Admin.Endpoints

 object accessible.Admin

If you decide to define , choose your endpoints carefully. We generally recommend the use of endpoints thatGlacier2.Admin.Endpoints
are accessible only from behind a firewall.

See Also

Glacier2 Properties
IceSSL
Getting Started with Glacier2
Callbacks through Glacier2
Dynamic Request Filtering with Glacier2
IceGrid and Glacier2 Integration
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Glacier2 Session Management

A Glacier2 router requires a client to  and forwards requests on behalf of the client until its session expires. A sessioncreate a session
expires when it is explicitly destroyed, or when it times out due to inactivity.

You can configure a router to use a custom session manager if your application needs to track the router's session activities. For example,
your application may need to acquire resources and initialize the state of back-end services for each new session, and later reclaim those
resources when the session expires.

As with the , Glacier2 provides two session manager interfaces that an application can implement. The authentication facility
 interface receives notifications about sessions that use password authentication, while the SessionManager SSLSessionManager

interface is for sessions authenticated using SSL certificates.

On this page:

Glacier2 Session Manager Interfaces
Glacier2 Session Timeouts
Invocation Timeouts on Routed Proxies
Connection Caching for Session Managers

Glacier2 Session Manager Interfaces

The relevant Slice definitions are shown below:

Slice

module Glacier2 {
    exception CannotCreateSessionException {
        string reason;
    };

    interface Session {
        void destroy();
    };

    interface SessionManager {
        Session* create(string userId, SessionControl* control)
            throws CannotCreateSessionException;
    };

    interface SSLSessionManager {
        Session* create(SSLInfo info, SessionControl* control)
            throws CannotCreateSessionException;
    };
};

When a client  by invoking  on the  interface, the router validates the client's user name andcreates a session createSession Router
password and then calls . Similarly, a call to  causes the router toSessionManager::create createSessionFromSecureConnection
invoke . The  structure provides details about the client's SSL connection. The second argumentSSLSessionManager::create SSLInfo
to the  operations is a proxy for a  object, which a session can use to perform .create SessionControl dynamic filtering

The  operations must return the proxy of a new  object, or raise  and provide ancreate Session CannotCreateSessionException
appropriate reason. The  proxy returned by  is ultimately returned to the client as the result of  or Session create createSession

.createSessionFromSecureConnection

Glacier2 invokes the  operation on a  proxy when the session expires, giving a custom session manager the opportunitydestroy Session
to reclaim resources that were acquired for the session during .create
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The  operations may be called with information that identifies an existing session. For example, this can occurcreate
when a client loses its connection to the router but its previous session has not yet expired (and therefore the router has
not yet invoked  on its  proxy). A session manager implementation must be prepared to handle thisdestroy Session
situation.

To configure the router with a custom session manager, define the properties  or Glacier2.SessionManager
 with the proxies of the session manager objects. If necessary, you can configure a router with proxies forGlacier2.SSLSessionManager

both types of session managers. If a session manager proxy is not supplied, the call to  or createSession
 always returns a null proxy.createSessionFromSecureConnection

The router attempts to contact the configured session manager at startup. If the object is unreachable, the router logs a warning message
but continues its normal operation (you can suppress the warning using the  option). The router does not contact the session--nowarn
manager again until it needs to invoke an operation on the object. For example, when a client asks the router to create a new session, the
router makes another attempt to contact the session manager; if the session manager is still unavailable, the router logs a message and
returns  to the client.CannotCreateSessionException

Example
A sample implementation of the  interface is provided in the  directory.SessionManager demo/Glacier2/callback

Glacier2 Session Timeouts

The value of the  property specifies the number of seconds a session must be inactive before it expires. ThisGlacier2.SessionTimeout
property is not defined by default, which means sessions never expire due to inactivity. If a non-zero value is specified, it is very important
that the application chooses a value that does not result in premature session expiration. For example, if it is normal for a client to create a
session and then have long periods of inactivity, then a suitably long timeout must be chosen, or the client must actively keep its session
alive, or timeouts must be disabled altogether.

Once a session has expired (or been destroyed for some other reason), the client will no longer be able to send requests via the router and
receive a  instead. The client must explicitly create a new session in order to continue using the router. IfConnectionLostException
necessary, a client can use a  to keep its session alive.dedicated thread

In general, we recommend the use of an appropriate session timeout, otherwise resources created for each session will accumulate in the
router. However, you can safely disable the session timeout if the server regularly  to the client. In that case, Glacier2 willcalls back
automatically destroy the session if a failure occurs while forwarding a server callback to the client.

Invocation Timeouts on Routed Proxies

If your client requires invocation timeouts for routed proxies, you must set the timeout on the router proxy that you use to establish the
session. This is because the Ice run time forwards the invocation to Glacier2, and the timeout applies to that invocation.

In other words, whatever timeout you set on the router proxy that you use to create the session is the timeout that applies to all routed
proxies. Do not attempt to override the timeout on a per-proxy basis; if you do, any setting other than the timeout used to establish the
session results in a . This is because proxies with different timeout values establish separate connections, butConnectionLostException
there can be only one connection to Glacier2.

A future version of Ice may make it illegal to set a timeout on a routed proxy.

For invocations made by Glacier2 to the server, whatever timeout value is set on the  proxy that is used to make an invocation applies tofirst
all proxies for the same object. This is because Glacier2 adds the proxy to its routing table during the first invocation and, thereafter, reuses
that cached proxy for all invocations to the same object identity. Here is an example to illustrate this:
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C++

// 10-second session timeout for router.
ObjectPrx router = communicator->stringToProxy("Glacier2/router:tcp -h host1 -p 4063 -t 10000");
communicator->setDefaultRouter(RouterPrx::uncheckedCast(router));

// Ping with 20-second timeout
communicator->stringToProxy("id:tcp -h host2 -p 12345 -t 20000")->ice_ping();

// Ping with 30-second timeout
communicator->stringToProxy("id:tcp -h host2 -p 12345 -t 30000")->ice_ping();

In this case, all invocations made by the client use a 10-second timeout to forward the invocations to Glacier2. The first call to ,ice_ping
when forwarded by Glacier2 to the server, uses a 20-second timeout. The second call to  also uses a 20-second timeout, evenice_ping
though the proxy specifies a 30-second timeout.

If you have a timeout on both the client-Glacier2 and the Glacier2-server connections, the timeout on the client-Glacier2 connection should
be slightly longer; otherwise, invocation timeouts that are encountered by Glacier2 when it forwards an operation to the server cannot be
propagated back to the client.

Connection Caching for Session Managers

You can distribute the load among multiple session manager objects by configuring the router with a session manager proxy that contains
multiple endpoints. Glacier2 disables  on this proxy so that each invocation on a session manager attempts to use aconnection caching
different endpoint.

This behavior achieves a basic form of load balancing without depending on the  features provided by IceGrid. Be aware thatreplication
including an invalid endpoint in your session manager proxy, such as the endpoint of a session manager server that is not currently running,
can cause router clients to experience delays during session creation.

If your session managers are in an IceGrid replica group, refer to  for more information on the router'sIceGrid and Glacier2 Integration
caching behavior.

See Also

Getting Started with Glacier2
Securing a Glacier2 Router
Dynamic Request Filtering with Glacier2
IceGrid and Glacier2 Integration
Object Adapter Replication
Glacier2 Properties
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Dynamic Request Filtering with Glacier2

Glacier2 can be  to filter requests, and also allows a session manager to customize filters for each session at run time viastatically configured
its  interface:SessionControl

Slice

module Glacier2 {
    interface SessionControl {
        StringSet* categories();
        StringSet* adapterIds();
        IdentitySet* identities();
        void destroy();
    };
};

The router creates a  object for each client session and supplies a proxy for the object to the session manager SessionControl create
operations. Note that the  proxy is null unless the router is .SessionControl configured with server endpoints

Invoking the  operation causes the router to destroy the client's session, which eventually results in an invocation of  ondestroy destroy
the application-defined  object, if one was provided.Session

The interface operations , , and  return proxies to objects representing the modifiable filters for thecategories adapterIds identities
session. The router initializes these filters using their respective static configuration properties.

The  object uses a  to manage the category and adapter identifier filters:SessionControl StringSet

Slice

module Glacier2 {
    interface StringSet {
        idempotent void add(Ice::StringSeq additions);
        idempotent void remove(Ice::StringSeq deletions);
        idempotent Ice::StringSeq get();
    };
};

Similarly, the  interface manages the identity filters:IdentitySet

Slice

module Glacier2 {
    interface IdentitySet {
        idempotent void add(Ice::IdentitySeq additions);
        idempotent void remove(Ice::IdentitySeq deletions);
        idempotent Ice::IdentitySeq get();
    };
};

In both interfaces, the  operation silently ignores duplicates, and the  operation silently ignores non-existent entries.add remove

Dynamic filtering is often necessary when each session must be restricted to a particular group of objects. Upon session creation, a session
manager typically allocates a number of objects in back-end servers for that session to use. To prevent other sessions from accessing these
objects (intentionally or not), the session manager can configure the session's filters so that it is only permitted to use the objects that were
created for it.

For example, a session manager can retain the  proxy and add a new identity to the  as each new object isSessionControl IdentitySet
created for the session. A simpler solution is to create a unique category for the session, add it to the session's category filter, and use that
category in the identities of all objects accessible to that session. Using a category filter in this way reserves an identity namespace for each
session and avoids the need to update the filter for each new object.

To aid in logging and debugging, you can select a category that identifies the client, such as the user name that was supplied during session
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creation, or an attribute of the client's certificate such as the common name, as long as the selected category is sufficiently unique that it will
not conflict with another client's session. You must also ensure that the categories you assign to sessions never match the categories of
back-end objects that are not meant to be accessed by router clients. As an example, consider the following session manager
implementation:

C++

class SessionManagerI : public Glacier2::SessionManager
{
public:

    virtual Glacier2::SessionPrx
    create(const string& username, const Glacier2::SessionControlPrx& ctrl,
           const Ice::Current& curr)
    {
        string category = "_" + username;
        ctrl->categories()->add(category);
        // ...
    }
};

This session manager derives a category for the session by prepending an underscore to the user name and then adds this category to the
session's filter. As long as our back-end objects do not use a leading underscore in their identity categories, this strategy guarantees that a
session's category can never match the category of a back-end object.

For your convenience, Glacier2 already includes support for .automatic category filtering

See Also

Callbacks through Glacier2
Securing a Glacier2 Router
Glacier2 Session Management
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Glacier2 Request Buffering

A Glacier2 router can forward requests in buffered or unbuffered mode. In addition, the buffering mode can be set independently for each
direction (client-to-server and server-to-client).

The configuration properties  and  govern the buffering behavior. TheGlacier2.Client.Buffered Glacier2.Server.Buffered
former affects buffering of requests from clients to servers, and the latter affects buffering of requests from servers to clients. If a property is
not specified, the default value is , which enables buffering. A property value of  selects the unbuffered mode.1 0

The primary difference between the two modes is in the way requests are forwarded:

Buffered
The router queues incoming requests and outgoing replies for delivery in a separate thread.

Unbuffered
The router forwards requests in the same thread that received the request.

Although unbuffered mode consumes fewer resources than buffered mode, certain features such as  and request overriding request batching
are available only in buffered mode.

See Also

How Glacier2 uses Request Contexts
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How Glacier2 uses Request Contexts

The Glacier2 router examines the  of an incoming request for special keys that affect how the router forwards the request. Thesecontext
contexts have the same semantics regardless of whether the request is sent from client to server or from server to client.

On this page:

The  Context_fwd
The  Context_ovrd
Forwarding Batch Requests
Context Forwarding

The  Context_fwd

The  context determines the proxy mode that the router uses when forwarding the request. The value associated with the  key_fwd _fwd
must be a string containing one or more of the characters shown in the following table:

Value Mode 

d datagram 

D Batch datagram

o Oneway 

O Batch oneway 

s Secure 

t Twoway 

z Compress 

Legal values for the _  context keyfwd .

These characters match the corresponding .stringified proxy options

For requests whose  context specify a batch mode, the forwarding behavior of the router depends on whether it is ._fwd batching requests

If the  key is not present in a request context, the mode used by the router to forward that request depends on the mode used by the_fwd
client's proxy as well as the router's own configuration:

If the client used twoway mode, the router also uses twoway mode.
If the client sent the request as a oneway or batch oneway, the router's behavior is determined by its .configuration properties

The  Context_ovrd

In buffered mode, the router allows a new incoming request to override any pending requests that are still in the router's queue, effectively
replacing any pending requests with the new request.

For a new request to override a pending request, both requests must meet the following criteria:

they specify the  key in the request context with the same value_ovrd
they are oneway requests
they are requests on the same object.

This feature is intended to be used by clients that are sending frequent oneway requests in which the most recent request takes precedence.
This feature minimizes the number of requests that are forwarded to the server when requests are sent frequently enough that they
accumulate in the router's queue before the router has a chance to process them.

Note that the properties  and  can be used to add a delay to the routerGlacier2.Client.SleepTime Glacier2.Server.SleepTime
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once it has sent all pending requests. Setting a delay increases the likelihood of overrides actually taking effect. These properties are
described in the next section.

Forwarding Batch Requests

Clients can direct the router to forward oneway requests in batches by including the  or  characters in the  context. If the router isD O _fwd
configured for buffered mode and several such requests accumulate in its queue, the router forwards them together in a  rather than asbatch
individual requests.

In addition, the properties  and  determine whether onewayGlacier2.Client.AlwaysBatch Glacier2.Server.AlwaysBatch
requests are always batched regardless of the  context. The former property affects requests from clients to servers, while the latter_fwd
affects requests from servers to clients. If a property is defined with a non-zero value, then all requests whose  context includes the o_fwd
character or were sent as oneway invocations are treated as if  were specified instead, and are batched when possible. Likewise, requestsO
whose  context includes the d character or were sent as datagram invocations are treated as if  were specified. If a property is not_fwd D
defined, the router only batches requests if specifically directed to do so by the  context._fwd

The configuration properties  and  can be used to force the router'sGlacier2.Client.SleepTime Glacier2.Server.SleepTime
delivery threads to sleep for the specified number of milliseconds after the router has sent all of its pending requests. (Incoming requests are
queued during this period.) The delay is useful to increase the effectiveness of batching because it makes it more likely for additional
requests to accumulate in a batch before the batch is sent. If these properties are not defined, or their value is zero, the corresponding
thread does not sleep after sending queued requests.

Context Forwarding

The configuration properties  and  determine whether theGlacier2.Client.ForwardContext Glacier2.Server.ForwardContext
router includes the context when forwarding a request. The former property affects requests from clients to servers, while the latter affects
requests from servers to clients. If a property is not defined or has the value zero, the router does not include the context when forwarding
requests.

See Also

Request Contexts
Proxy and Endpoint Syntax
Batched Invocations
Glacier2 Properties
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Configuring Glacier2 behind an External Firewall

The Glacier2 router requires only one external port to receive connections from clients and therefore can easily coexist with a network
firewall device.

For example, consider the network shown in the following illustration:

The Glacier2 router in the example above has both of its endpoints in the private network and its host requires only one IP address, unlike
the example we showed in the discussion of  in which the Glacier2 host straddled both networks.bidirectional connections

We assume that the firewall has been configured to forward connections from port 4064 to the router's client endpoint at port 9998.
Meanwhile, the client must be configured to use the firewall's address information in its router proxy, as shown below:

Ice.Default.Router=Glacier2/router:ssl -h 5.6.7.8 -p 4064

The Glacier2 router configuration for this example requires the following properties:

Glacier2.Client.Endpoints=ssl -h 10.0.0.1 -p 9998
Glacier2.Client.PublishedEndpoints=ssl -h 5.6.7.8 -p 4064
Glacier2.Server.Endpoints=tcp -h 10.0.0.1 -p 9999

We need to specify  for the client object adapter because the router is located behind a firewall. Without this property,published endpoints
any proxies that the router creates would use the endpoints specified in , but of course those endpoints areGlacier2.Client.Endpoints
inaccessible to clients outside the firewall. The  property forces the Ice run time to use the given endpoints in proxiesPublishedEndpoints
created by the client object adapter.

Note also that the server endpoint in this example includes a fixed port , but a fixed port is not required in the server endpoint for the(9999)
router to operate properly.

See Also

Callbacks through Glacier2
Object Adapter Endpoints
Glacier2 Properties
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1.  

2.  

Advanced Glacier2 Client Configurations

This section details strategies that Glacier2 clients can use to address more advanced requirements.

On this page:

Callback Strategies with Multiple Object Adapters
Using Multiple Routers

Callback Strategies with Multiple Object Adapters

An application that needs to support callback requests from a router as well as requests from local clients should use multiple object
adapters to ensure that proxies created by these object adapters contain the appropriate endpoints. For example, suppose we have the
network configuration as shown in the following illustration:

Notice that the two local area networks use the same private network addresses, which is not an unrealistic scenario.

Now, if the callback client were to use a single object adapter for handling both callback requests and local requests, then any proxies
created by that object adapter would contain the application;s local endpoints as well as the router's server endpoints. As you might imagine,
this could cause some subtle problems.

When the local client attempts to establish a connection to the callback client via one of these proxies, it might arbitrarily select one
of the router;s server endpoints to try first. Since the router's server endpoints use addresses in the same network, the local client
attempts to make a connection over the local network, with two possible outcomes: the connection attempts to those endpoints fail,
in which case they are skipped and the real local endpoints are attempted; or, even worse, one of the endpoints might accidentally
be valid in the local network, in which case the local client has just connected to some unintended server.
The server may encounter similar problems when attempting to establish a local connection to the router in order to make a callback
request.

The solution is to dedicate an object adapter solely to handling callback requests, and another one for servicing local clients. The object
adapter dedicated to callback requests must be .configured with the router proxy

Using Multiple Routers

A client is not limited to using only one router at a time: the   allows a client to configure its routed proxies asproxy method ice_router
necessary. With respect to callbacks, a client must create a new callback object adapter for each router that can forward callback requests to
the client. A client must also be aware of the  in use by the routers.object identities

See Also

Getting Started with Glacier2
Callbacks through Glacier2
Proxy Methods
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IceGrid and Glacier2 Integration

IceGrid is a server activation and location service. This section describes the ways in which you can integrate Glacier2 and IceGrid.

On this page:

Configuring Router Clients for IceGrid
Using Replicated Session Managers

Configuring Router Clients for IceGrid

It is not uncommon for a Glacier2 client to require access to a locator service such as IceGrid. In the absence of Glacier2, a locator client
would typically define the property  with a stringified proxy for the . However, when that locatorIce.Default.Locator locator service
service is accessed via a Glacier2 router, the configuration requirements are slightly different. It is no longer necessary for the client's
configuration to include ; this property must be defined in the router's configuration instead.Ice.Default.Locator

For example, consider the following network architecture:

In this case the Glacier2 router's configuration must include the property shown below:

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 4061

Using Replicated Session Managers

An IceGrid application might want to use  to increase the availability of Glacier2 session managers. When you configure anreplication
indirect proxy for a session manager (and ), the Ice run time in the router queries the locator to obtainconfigure Glacier2 with a locator proxy
a proxy for a session manager replica.

By default, this proxy is cached for 10 minutes, meaning the router uses the same session manager proxy to create sessions for a 10-minute
period, after which it queries the locator again. If you want to distribute the session-creation load among the session manager replicas more
evenly, you can decrease the locator cache timeout using configuration properties.

For example, the following settings use a timeout of 30 seconds:

Glacier2.SessionManager.LocatorCacheTimeout=30
Glacier2.SSLSessionManager.LocatorCacheTimeout=30

As you can see, timeouts are specified individually for the  and  proxies. You can also disableSessionManager SSLSessionManager
caching completely by using a value of 0, in which case the router queries the locator before every invocation on a session manager. See
the discussion of  for more details.session management

See Also
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IceGrid
Glacier2 Session Management
Getting Started with IceGrid
Object Adapter Replication
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1.  

IceBox
IceBox is an easy-to-use framework for Ice application services. The Service Configurator pattern  is a useful technique for configuring[1]
services and centralizing their administration. In practical terms, this means services are developed as dynamically-loadable components
that can be configured into a general purpose "super server" in whatever combinations are necessary. IceBox is an implementation of the
Service Configurator pattern for Ice services.

A generic IceBox server replaces the typical monolithic Ice server you normally write. The IceBox server is configured via properties with the
application-specific services it is responsible for loading and managing, and it can be administered remotely. There are several advantages
in using this architecture:

Services loaded by the same IceBox server can be configured to take advantage of Ice's . For example, ifcollocation optimizations
one service is a client of another service, and those services reside in the same IceBox server, then invocations between them can
be optimized.
Composing an application consisting of various services is done by configuration, not by compiling and linking. This decouples the
service from the server, allowing services to be combined or separated as needed.
Multiple Java services can be active in a single instance of a Java Virtual Machine (JVM). This conserves operating system
resources when compared to running several monolithic servers, each in its own JVM.
Services implement an IceBox service interface, providing a common framework for developers and a centralized administrative
facility.
IceBox support is , the server activation and deployment service.integrated into IceGrid

IceBox offers a refreshing change of perspective: developers focus on writing services, not applications. The definition of an application
changes as well; using IceBox, an application becomes a collection of discrete services whose composition is determined dynamically by
configuration, rather than statically by the linker.

Topics

Developing IceBox Services
Configuring IceBox Services
Starting the IceBox Server
IceBox Administration

References
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Developing IceBox Services

On this page:

The IceBox  InterfaceService
IceBox Service Example in C++

C++ Service Entry Point
IceBox Service Example in Java
IceBox Service Example in C#
IceBox Service Failures

The IceBox  InterfaceService

Writing an IceBox service requires implementing the IceBox  interface:Service

Slice

module IceBox {
local interface Service {
    void start(string name, Ice::Communicator communicator, Ice::StringSeq args);
    void stop();
};
};

As you can see, a service needs to implement only two operations,  and . These operations are invoked by the server;  isstart stop start
called after the service is loaded, and  is called when the IceBox server is shutting down.stop

The  operation is the service's opportunity to initialize itself; this typically includes creating an object adapter and servants. The start name
and  parameters supply information from the service's , and the  parameter is an args configuration communicator Ice::Communicator
object created by the server for use by the service. Depending on the service configuration, this communicator instance may be shared by

 in the same IceBox server, therefore care should be taken to ensure that items such as object adapters are given uniqueother services
names.

The  operation must reclaim any resources used by the service. Generally, a service deactivates its object adapter, and may also needstop
to invoke  on the object adapter in order to ensure that all pending requests have been completed before the clean upwaitForDeactivate
process can proceed. The server is responsible for destroying the communicator instance that was passed to .start

Whether the service's implementation of  should explicitly destroy its object adapter depends on other factors. For example, the adapterstop
should be destroyed if the service uses a shared communicator, especially if the service could eventually be restarted. In other
circumstances, the service can allow its adapter to be destroyed as part of the communicator's destruction.

These interfaces are declared as  for a reason: they represent a contract between the server and the service, and are not intended tolocal
be used by remote clients. Any interaction the service has with remote clients is done via servants created by the service.

IceBox Service Example in C++

The example we present here is taken from the  sample program provided in the Ice distribution.IceBox/hello

The class definition for our service is quite straightforward, but there are a few aspects worth mentioning:
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C++

#include <IceBox/IceBox.h>

#if defined(_WIN32)
#   define HELLO_API __declspec(dllexport)
#else
#   define HELLO_API /**/
#endif

class HELLO_API HelloServiceI : public IceBox::Service {
public:
    virtual void start(const std::string&,
                       const Ice::CommunicatorPtr&,
                       const Ice::StringSeq&);
    virtual void stop();

private:
    Ice::ObjectAdapterPtr _adapter;
};

First, we include the IceBox header file so that we can derive our implementation from . Second, the preprocessorIceBox::Service
definitions are necessary because, on Windows, this service resides in a Dynamic Link Library (DLL), therefore we need to export the class
so that the server can load it properly.

The member definitions are equally straightforward:

C++

#include <Ice/Ice.h>
#include <HelloServiceI.h>
#include <HelloI.h>

using namespace std;

void
HelloServiceI::start(
    const string& name,
    const Ice::CommunicatorPtr& communicator,
    const Ice::StringSeq& args)
{
    _adapter = communicator->createObjectAdapter(name);
    Ice::ObjectPtr object = new HelloI(communicator);
    _adapter->add(object, communicator->stringToIdentity("hello"));
    _adapter->activate();
}

void
HelloServiceI::stop()
{
    _adapter->deactivate();
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown),start HelloI
and activates the object adapter. The  method simply deactivates the object adapter.stop

C++ Service Entry Point

The last piece of the puzzle is the  function, which the IceBox server calls to obtain an instance of the service:entry point
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C++

extern "C" {
    HELLO_API IceBox::Service*
    create(Ice::CommunicatorPtr communicator)
    {
        return new HelloServiceI;
    }
}

In this example, the  function returns a new instance of the  service. The name of the function is not important, but it mustcreate Hello
have the signature shown above. In particular, the function must have C linkage, accept a single parameter of type 

, and return a native pointer to .Ice::CommunicatorPtr IceBox::Service

C linkage is required so that the IceBox server can locate this function in a dynamically-loaded library. The restrictions imposed on functions
with C linkage prevent us from using the normal Ice calling conventions, which never return native pointers and always pass smart pointers
by const reference. For example, such a function cannot return an object type (such as a smart pointer), which forces us to return a native
pointer instead.

Configuring IceBox Services provides more information on entry points and describes how to configure your service into an IceBox server.

IceBox Service Example in Java

As with the C++ example presented in the previous section, the complete source for the Java example can be found in the IceBox/hello
directory of the Ice distribution. The class definition for our service looks as follows:

Java

public class HelloServiceI implements IceBox.Service
{
    public void
    start(String name, Ice.Communicator communicator, String[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        Ice.Object object = new HelloI(communicator);
        _adapter.add(object, communicator.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void
    stop()
    {
        _adapter.deactivate();
    }

    private Ice.ObjectAdapter _adapter;
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown),start HelloI
and activates the object adapter. The  method simply deactivates the object adapter.stop

The server requires a service implementation to have a default constructor. This is the  for a Java IceBox service; that is, theentry point
server dynamically loads the service implementation class and invokes the default constructor to obtain an instance of the service.

This example is a trivial service, and yours will likely be much more interesting, but this does demonstrate how easy it is to write an IceBox
service. After compiling the service implementation class, it can be configured into an IceBox server as described in Configuring IceBox

.Services

IceBox Service Example in C#

The complete source for the C# example can be found in the  directory of the Ice distribution. The class definition for ourIceBox/hello
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service looks as follows:

C#

class HelloServiceI : IceBox.Service
{
    public void
    start(string name, Ice.Communicator communicator, string[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        _adapter.add(new HelloI(), communicator.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void
    stop()
    {
        _adapter.deactivate();
    }

    private Ice.ObjectAdapter _adapter;
}

The  method creates an object adapter with the same name as the service, activates a single servant of type  (not shown),start HelloI
and activates the object adapter. The  method simply deactivates the object adapter.stop

The server requires a service implementation to have a default constructor. This is the entry point for a C# IceBox service; that is, the server
dynamically loads the service implementation class from an assembly and invokes the default constructor to obtain an instance of the
service.

This example is a trivial service, and yours will likely be much more interesting, but this does demonstrate how easy it is to write an IceBox
service. After compiling the service implementation class, it can be configured into an IceBox server as described in Configuring IceBox

.Services

IceBox Service Failures

An exception raised by a service's implementation of its entry point, , or  methods causes IceBox to log a message. An exceptionstart stop
that occurs during server startup also results in .server termination

A service implementation can indicate a failure by raising :IceBox::FailureException

Slice

module IceBox {
local exception FailureException {
    string reason;
};
};

Note that, as a local exception, C++ users must instantiate  with file and line number information:FailureException

C++

throw IceBox::FailureException(__FILE__, __LINE__, "my error message");

See Also

Configuring IceBox Services
Starting the IceBox Server
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Configuring IceBox Services

On this page:

Installing an IceBox Service
IceBox Service Configuration in C++
IceBox Service Configuration in Java
IceBox Service Configuration in C#
Using a Shared Communicator
Inheriting Properties from the IceBox Server
Load Order for IceBox Services

Installing an IceBox Service

A service is configured into an IceBox server using a single  property. This property serves several purposes: it definesIceBox.Service
the name of the service, it provides the server with the service entry point, and it defines properties and arguments for the service.

The format of the property is shown below:

IceBox.Service.name=entry_point [args]

The  component of the property key is the service name (IceStorm, in this example). This name is passed to the service's name start
operation, and must be unique among all services configured in the same IceBox server. It is possible, though rarely necessary, to load two
or more instances of the same service under different names.

The first argument in the property value is the entry point specification. Any arguments following the entry point specification are examined. If
an argument has the form , then it is interpreted as a property definition that appears in the property set of the communicator--name=value
passed to the service  operation. These arguments are removed, and any remaining arguments are passed to the  operation instart start
the  parameter.args

IceBox Service Configuration in C++

For a C++ service, the entry point must have the form , where  is the simple name of the service's sharedlibrary[,version]:symbol library
library or DLL, and  is the name of the entry point function. A "simple name" is one without any platform-specific prefixes orsymbol
extensions; the server adds appropriate decorations depending on the platform. The version is optional. If specified, the version is embedded
in the library name.

As an example, here is how we could configure , which is implemented as an IceBox service in C++:IceStorm

IceBox.Service.IceStorm=IceStormService,34:createIceStorm

IceBox uses the information provided in the entry point specification to compose a library name. For the IceStorm example shown above,
IceBox on Windows would compose the library name . If IceBox is compiled with debug information, it appendsIceStormService34.dll
a  to the library name, so the name becomes  instead.d IceStormService34d.dll

The exact name of the library that is loaded depends on the naming conventions of the platform IceBox executes on. For
example, on Apple machines, the library name is .libIceStormService34.dylib

The shared library or DLL must reside in a directory that appears in  on Windows or the shared library search path (such as PATH
) on POSIX systems.LD_LIBRARY_PATH

The entry point function, , must have the signature that we originally presented in our :symbol example

C++

extern "C" IceBox::Service* function(Ice::CommunicatorPtr);

The communicator instance passed to this function is the IceBox server's communicator and should only be used for administrative
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purposes. For example, the entry point function could use this communicator's logger to display log messages. For a service's normal
operations, it must use the communicator that it receives as an argument to its  method.start

Here is a sample configuration for our C++ service:

IceBox.Service.Hello=HelloService:create --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in  on WindowsHello HelloService.dll
or  on Linux, and the entry point function  is invoked to create an instance of the service. The argument libHelloService.so create

 is converted into a property definition, and the arguments  and  become the two elements in the --Ice.Trace.Network=1 hello there
 sequence parameter that is passed to the  method.args start

IceBox Service Configuration in Java

For a Java service, the entry point is simply the complete class name (including any package) of the service implementation class. The class
must reside in the class path of the server, and must define a public constructor.

To instantiate the service, the IceBox server first checks to see if the service defines a constructor taking an argument of type 
. If so, the service invokes this constructor and passes the server's communicator, which should only be used forIce.Communicator

administrative purposes. For example, the entry point function could use this communicator's logger to display log messages. For a service's
normal operations, it must use the communicator that it receives as an argument to its  method.start

If the service does not define a constructor taking an  argument, the server invokes the service's default constructor.Ice.Communicator

Here is a sample configuration for our :Java example

IceBox.Service.Hello=HelloServiceI --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in the class . TheHello HelloServiceI
argument  is converted into a property definition, and the arguments  and  become the two--Ice.Trace.Network=1 hello there
elements in the  sequence parameter that is passed to the  method.args start

IceBox Service Configuration in C#

The entry point of a .NET service has the form assembly:class. The assembly component can be specified as the name of a DLL present in 
, or as the full name of an assembly residing in the Global Assembly Cache (GAC), such as PATH

. The class component is the complete class name of the service implementation class,hello,Version=0.0.0.0,Culture=neutral
which must define a public constructor.

To instantiate the service, the IceBox server first checks to see if the service defines a constructor taking an argument of type 
. If so, the service invokes this constructor and passes the server's communicator, which should only be used forIce.Communicator

administrative purposes. For example, the entry point function could use this communicator's logger to display log messages. For a service's
normal operations, it must use the communicator that it receives as an argument to its  method.start

If the service does not define a constructor taking an  argument, the server invokes the service's default constructor.Ice.Communicator

Here is a sample configuration for our :C# example

IceBox.Service.Hello=helloservice.dll:HelloServiceI --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in the assembly named Hello
, implemented by the class . The argument  is converted into a propertyhelloservice.dll HelloServiceI --Ice.Trace.Network=1

definition, and the arguments  and  become the two elements in the  sequence parameter that is passed to the hello there args start
method.

Using a Shared Communicator

A service can be configured to use a shared communicator using the  property:IceBox.UseSharedCommunicator.name
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IceBox.UseSharedCommunicator.Hello=1

The default behavior if this property is not specified is to create a new communicator instance for the service. However, if collocation
 between services are desired, each of those services must be configured to use the shared communicator.optimizations

Inheriting Properties from the IceBox Server

By default, a service does not inherit the server's configuration properties. For example, consider the following server configuration:

IceBox.Service.Weather=... --Ice.Config=svc.cfg
Ice.Trace.Network=1

The  service only receives the properties that are defined in its  property. In the example above, the service'sWeather IceBox.Service
communicator is initialized with the properties from the file .svc.cfg

If services need to inherit the server's configuration properties, define the  property in the IceBox server'sIceBox.InheritProperties
configuration:

IceBox.InheritProperties=1

The properties of the  are also affected by this setting.shared communicator

Load Order for IceBox Services

By default, the server loads the configured services in an undefined order, meaning services in the same IceBox server should not depend
on one another. If services must be loaded in a particular order, the  property can be used:IceBox.LoadOrder

IceBox.LoadOrder=Service1,Service2

In this example,  is loaded first, followed by . Any remaining services are loaded after , in an undefinedService1 Service2 Service2
order. Each service mentioned in  must have a matching  property.IceBox.LoadOrder IceBox.Service

During shutdown, services are stopped in the reverse of the order in which they were loaded.

See Also

IceBox Properties
Developing IceBox Services
IceStorm
Location Transparency
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Starting the IceBox Server

Incorporating everything we discussed previously, we can now configure and start IceBox servers.

On this page:

Starting the C++ IceBox Server
Starting the Java IceBox Server
Starting the C# IceBox Server
IceBox Server Failures

Starting the C++ IceBox Server

The configuration file for our example C++ service is shown below:

IceBox.Service.Hello=HelloService:create
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the  service.Hello

Assuming these properties reside in a configuration file named , we can start the C++ IceBox server as follows:config

$ icebox --Ice.Config=config

Additional command line options are supported, including those that allow the server to run as a .Windows service or Unix daemon

Starting the Java IceBox Server

Our Java configuration is nearly identical to the C++ version, except for the entry point specification:

IceBox.Service.Hello=HelloServiceI
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the  service.Hello

Assuming these properties reside in a configuration file named , we can start the Java IceBox server as follows:config

$ java IceBox.Server --Ice.Config=config

Starting the C# IceBox Server

The configuration file for our example C# service is shown below:

IceBox.Service.Hello=helloservice.dll:HelloService
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the  service.Hello

Assuming these properties reside in a configuration file named , we can start the C# IceBox server as follows:config

$ iceboxnet --Ice.Config=config
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IceBox Server Failures

At startup, an IceBox server inspects its configuration for all properties having the prefix  and initializes each service. IfIceBox.Service
initialization fails for a service, the IceBox server invokes the  operation on any initialized services, reports an error, and terminates.stop

See Also

The Server-Side main Function in C++
IceBox Properties
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IceBox Administration

An IceBox server internally creates an object called the service manager that is responsible for loading and initializing the configured
services. You can optionally expose this object to remote clients, such as the IceBox and IceGrid administrative utilities, so that they can
execute certain administrative tasks.

On this page:

IceBox Administrative Slice Interfaces
The IceBox  InterfaceServiceManager
The IceBox  InterfaceServiceObserver

Enabling the Service Manager
IceBox Object Identities

 Object AdapterIceBox.ServiceManager
Ice Administrative Facility

IceBox Administrative Client Configuration
Using the  Object AdapterIceBox.ServiceManager
Using the Ice Administrative Facility

IceBox Administrative Utility

IceBox Administrative Slice Interfaces

The Slice definitions shown below comprise the IceBox administrative interface:

Slice

module IceBox {
exception AlreadyStartedException {};
exception AlreadyStoppedException {};
exception NoSuchServiceException {};

interface ServiceObserver {
    void servicesStarted(Ice::StringSeq services);
    void servicesStopped(Ice::StringSeq services);
};

interface ServiceManager {
    idempotent Ice::SliceChecksumDict getSliceChecksums();
    void startService(string service)
        throws AlreadyStartedException, NoSuchServiceException;
    void stopService(string service)
        throws AlreadyStoppedException, NoSuchServiceException;
    void addObserver(ServiceObserver* observer)
    void shutdown();
};
};

The IceBox  InterfaceServiceManager

The  interface provides access to the service manager object of an IceBox server. It defines the following operations:ServiceManager

getSliceChecksums
Returns a dictionary of  that allows a client to verify that it is using the same Slice definitions as the server.checksums

startService
Starts a pre-configured service that is currently inactive. This operation cannot be used to add new services at run time, nor will it
cause an inactive service's implementation to be reloaded. If no matching service is found, the operation raises 

. If the service is already active, the operation raises .NoSuchServiceException AlreadyStartedException

stopService
Stops an active service but does not unload its implementation. The operation raises  if no matchingNoSuchServiceException
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1.  
2.  

service is found, and  if the service is stopped at the time  is invoked.AlreadyStoppedException stopService

addObserver
Adds an observer that is called when IceBox services are started or stopped. The service manager ignores operations that supply a
null proxy, or a proxy that has already been registered.

shutdown
Terminates the services and shuts down the IceBox server.

The IceBox  InterfaceServiceObserver

An administrative client that is interested in receiving callbacks when IceBox services are started or stopped must implement the 
 interface and register the callback object's proxy with the service manager using its  operation. The ServiceObserver addObserver
 interface defines two operations:ServiceObserver

servicesStarted
Invoked immediately upon registration to supply the current list of active services, and thereafter each time a service is started.

servicesStopped
Invoked whenever a service is stopped, and when the IceBox server is shutting down.

The IceBox server unregisters an observer if the invocation of either operation causes an exception.

Our discussion of  includes an example that demonstrates how to register a  callback with an IceBox serverIceGrid ServiceObserver
deployed with IceGrid.

Enabling the Service Manager

IceBox's administrative functionality is disabled by default. You can enable it in two ways:

Define endpoints for the  object adapter.IceBox.ServiceManager
Satisfy the prerequisites for enabling the Ice .administrative facility

For example, the following configuration property enables the  object adapter:IceBox.ServiceManager

IceBox.ServiceManager.Endpoints=tcp -h 127.0.0.1 -p 10000

Similarly, the Ice administrative facility requires that endpoints be defined for the  object adapter with the property Ice.Admin
. Note that the  object adapter is enabled automatically in an IceBox server that is .Ice.Admin.Endpoints Ice.Admin deployed by IceGrid

Regardless of which object adapter(s) you choose to enable, exposing the service manager makes an IceBox server vulnerable to
denial-of-service attacks from malicious clients. Consequently, you should .choose the endpoints and transports carefully

IceBox Object Identities

Although an IceBox server has only one service manager object, the object is accessible via two different identities depending on how the
administrative functionality was enabled.

IceBox.ServiceManager Object Adapter

When this object adapter is enabled, the service manager object has the default identity . If an applicationIceBox/ServiceManager
requires the use of multiple IceBox servers, it is a good idea to assign unique identities to their service manager objects by configuring the
servers with different values for the  property, as shown in the following example:IceBox.InstanceName

IceBox.InstanceName=IceBox1

This property changes the category of the object's identity, which becomes . A corresponding change must beIceBox1/ServiceManager
made in the configuration of administrative clients.

Ice Administrative Facility

When this facility is enabled, the service manager is added as a facet of the server's  object. As a result, the identity of the serviceadmin
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manager is the same as that of the  object, and the name of its facet is . The identity of the  objectadmin IceBox.ServiceManager admin
uses either a UUID or a statically-configured value for its category, and the value  for its name. For example, consider the followingadmin
property definitions:

Ice.Admin.Endpoints=tcp -h 127.0.0.1 -p 10001
Ice.Admin.InstanceName=IceBox

In this case, the identity of the  object is .admin IceBox/admin

IceBox also registers a  facet for each of its services so that the configuration properties of a service can be inspectedProperties
remotely. The facet name is constructed as follows:

IceBox.Service.name.Properties

The value  represents the service name.name

IceBox Administrative Client Configuration

A client requiring administrative access to the service manager can create a proxy using the endpoints configured for the .service manager

Using the  Object AdapterIceBox.ServiceManager

To access the service manager via the  object adapter, the proxy should use the default identity IceBox.ServiceManager
 unless the server has  using the  property.IceBox/ServiceManager changed the category IceBox.InstanceName

Using the Ice Administrative Facility

To access the service manager via the administrative facility, the client must first obtain (or be able to construct) a proxy for the admin
object. The default identity of the  object uses a UUID for its category, which means the client cannot predict the identity and thereforeadmin
will be unable to construct the proxy itself. If the IceBox server is deployed with IceGrid, the client can use the technique described in our
discussion of  to access its  object.IceGrid admin

In the absence of IceGrid, the IceBox server should set the  property if remote administration is required. In soIce.Admin.InstanceName
doing, the identity of the  object becomes well-known, and a client can construct the proxy on its own. For example, let us assume thatadmin
the IceBox server defines the following property:

Ice.Admin.InstanceName=IceBox

A client can define the proxy for the  object in a configuration property as follows:admin

ServiceManager.Proxy=IceBox/admin -f IceBox.ServiceManager -h 127.0.0.1 -p 10001

The   specifies the name of the service manager's administrative facet.proxy option -f IceBox.ServiceManager

IceBox Administrative Utility

IceBox includes C++ and Java implementations of an administrative utility. The utilities have the same usage:

Usage: iceboxadmin [options] [command...]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.

Commands:
start SERVICE        Start a service.
stop SERVICE         Stop a service.
shutdown             Shutdown the server.
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The C++ utility is named , while the Java utility is represented by the class .iceboxadmin IceBox.Admin

The  command is equivalent to invoking  on the service manager interface. Its purpose is to start a pre-configuredstart startService
service; it cannot be used to add new services at run time. Note that this command does not cause the service's implementation to be
reloaded.

Similarly, the  command stops the requested service but does not cause the IceBox server to unload the service's implementation.stop

The  command stops all active services and shuts down the IceBox server.shutdown

The C++ and Java utilities obtain the service manager's proxy from the property , therefore thisIceBoxAdmin.ServiceManager.Proxy
proxy must be defined in the program's configuration file or on the command line, and the proxy's contents of depend on the server's
configuration. If the IceBox server is deployed with IceGrid, we recommend using the IceGrid  instead, which provideadministrative utilities
equivalent commands for administering an IceBox server. Otherwise, the proxy should have the  and  configured for theendpoints identity
server.

See Also

Slice Checksums
Administrative Facility
The admin Object
The Properties Facet
IceGrid Administrative Utilities
IceGrid and the Administrative Facility
IceBox Properties
IceBoxAdmin Properties
Ice Administrative Properties
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IceStorm
IceStorm is an efficient publish/subscribe service for Ice applications. Applications often need to disseminate information to multiple
recipients. For example, suppose we are developing a weather monitoring application in which we collect measurements such as wind speed
and temperature from a meteorological tower and periodically distribute them to weather monitoring stations. We initially consider using the
architecture shown below:

Initial design for a weather monitoring application.

However, the primary disadvantage of this architecture is that it tightly couples the collector to its monitors, needlessly complicating the
collector implementation by requiring it to manage the details of monitor registration, measurement delivery, and error recovery. We can rid
ourselves of these mundane duties by incorporating IceStorm into our architecture, as shown below:

A weather monitoring application using IceStorm.

IceStorm simplifies the collector implementation significantly by decoupling it from the monitors. As a publish/subscribe service, IceStorm
acts as a mediator between the collector (the publisher) and the monitors (the subscribers), and offers several advantages:

When the collector is ready to distribute a new set of measurements, it makes a single request to the IceStorm server. The IceStorm
server takes responsibility for delivering the request to the monitors, including handling any exceptions caused by ill-behaved or
missing subscribers. The collector no longer needs to be aware of its monitors, or whether it even has any monitors at that moment.
Similarly, monitors interact with the IceStorm server to perform tasks such as subscribing and unsubscribing, thereby allowing the
collector to focus on its application-specific responsibilities and not on administrative trivia.
The collector and monitor applications require very few changes to incorporate IceStorm.

Topics

IceStorm Concepts
IceStorm Interfaces
Using IceStorm
Highly Available IceStorm
IceStorm Administration
Topic Federation
IceStorm Quality of Service
IceStorm Delivery Modes
Configuring IceStorm
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IceStorm Concepts

This section discusses several concepts that are important for understanding IceStorm's capabilities.

Message
An IceStorm  is strongly typed and is represented by an invocation of a Slice operation: the operation name identifies themessage
type of the message, and the operation parameters define the message contents. A message is published by invoking the operation
on an IceStorm proxy in the normal fashion. Similarly, subscribers receive the message as a regular servant upcall. As a result,
IceStorm uses the "push" model for message delivery; polling is not supported.

IceStorm Topics
An application indicates its interest in receiving messages by subscribing to a . An IceStorm server supports any number oftopic
topics, which are created dynamically and distinguished by unique names. Each topic can have multiple publishers and subscribers. 

A topic is essentially equivalent to an application-defined Slice interface: the operations of the interface define the types of
messages supported by the topic. A publisher uses a proxy for the topic interface to send its messages, and a subscriber
implements the topic interface (or an interface derived from the topic interface) in order to receive the messages. This is no different
than if the publisher and subscriber were communicating directly in the traditional client-server style; the interface represents the
contract between the client (the publisher) and the server (the subscriber), except IceStorm transparently forwards each message to
multiple recipients. 

IceStorm does not verify that publishers and subscribers are using compatible interfaces, therefore applications must ensure that
topics are used correctly.

Unidirectional Messages
IceStorm messages are , that is, they must have  return type, cannot have out-parameters, and cannot raise userunidirectional void
exceptions. It follows that a publisher cannot receive replies from its subscribers. Any of the Ice transports (TCP, SSL, and UDP)
can be used to publish and receive messages.

Federation
IceStorm supports the formation of topic graphs, also known as . A topic graph is formed by creating links between topics,federation
where a  is a unidirectional association from one topic to another. Each link has a  that may restrict message delivery on thatlink cost
link. A message published on a topic is also published on all of the topic's links for which the message cost does not exceed the link
cost. 

Once a message has been published on a link, the receiving topic publishes the message to its subscribers, but does not publish it
on any of its links. In other words, IceStorm messages propagate at most one hop from the originating topic in a federation. 

The following figure presents an example of topic federation. Topic T  has links to T  and T , as indicated by the arrows. The1 2 3
subscribers S  and S  receive all messages published on T , as well as those published on T . Subscriber S  receives messages1 2 2 1 3
only from T , and S  receives messages from both T  and T . 1 4 3 1

 Topic federation.

IceStorm makes no attempt to prevent a subscriber from receiving duplicate messages. For example, if a subscriber is subscribed to
both T  and T , then it would receive two requests for each message published on T .2 3 1
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Quality of Service
IceStorm allows each subscriber to specify its own  (QoS) parameters that affect the delivery of its messages.quality of service
Quality of service parameters are represented as a dictionary of name-value pairs.

Replication
IceStorm supports  to provide higher availability for publishers and subscribers.replication

Persistent Mode
IceStorm's default behavior maintains information about topics, links, and subscribers in a database. However, a message sent via
IceStorm is not stored persistently, but rather is discarded as soon as it is delivered to the topic's current set of subscribers. If an
error occurs during delivery to a subscriber, IceStorm does not queue messages for that subscriber. 

By default, IceStorm stores its persistent state in a  database. However, you can also Freeze configure IceStorm to use a different
, such as PostgreSQL.database

Transient Mode
IceStorm can optionally run in a fully transient mode in which no database is required. Replication is not supported in this mode.

Subscriber Errors
If IceStorm encounters a failure while attempting to deliver a message to a subscriber, the subscriber is immediately unsubscribed
from the topic on which the message was published. This is important if you make changes to a Slice data type or operation
signature: if you do, you must ensure that both publishers and subscribers use the same Slice definitions; if you do not, IceStorm is
likely to encounter marshaling errors when forwarding an event to a subscriber with a mismatched Slice definition and remove the
subscription.

See Also

Oneway Invocations
Topic Federation
IceStorm Quality of Service
Configuring IceStorm
Freeze
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IceStorm Interfaces

This page provides a brief introduction to the Slice interfaces comprising the IceStorm service. See the online  forSlice API Reference XREF
the Slice documentation.

On this page:

The  InterfaceTopicManager
The  InterfaceTopic

The  InterfaceTopicManager

The  is a singleton object that acts as a factory and repository of  objects. Its interface and related types are shownTopicManager Topic
below:

Slice

module IceStorm {
dictionary<string, Topic*> TopicDict;

exception TopicExists {
    string name;
};

exception NoSuchTopic {
    string name;
};

interface TopicManager {
    Topic* create(string name) throws TopicExists;
    idempotent Topic* retrieve(string name) throws NoSuchTopic;
    idempotent TopicDict retrieveAll();
    idempotent Ice::SliceChecksumDict getSliceChecksums();
};
};

The  operation is used to create a new topic, which must have a unique name. The  operation allows a client to obtain acreate retrieve
proxy for an existing topic, and  supplies a dictionary of all existing topics. The  operation returns retrieveAll getSliceChecksums Slice

 for the IceStorm definitions.checksums

The  InterfaceTopic

The  interface represents a topic and provides several administrative operations for configuring links and managing subscribers.Topic

http://www.zeroc.com/doc/Ice-3.4.1/reference


Ice 3.4.2 Documentation

1528 Copyright © 2011, ZeroC, Inc.

Slice

module IceStorm {
struct LinkInfo {
    Topic* theTopic;
    string name;
    int cost;
};
sequence<LinkInfo> LinkInfoSeq;

dictionary<string, string> QoS;

exception LinkExists {
    string name;
};

exception NoSuchLink {
    string name;
};

exception AlreadySubscribed {};

exception BadQoS {
    string reason;
};

interface Topic {
    idempotent string getName();
    idempotent Object* getPublisher();
    idempotent Object* getNonReplicatedPublisher();
    Object* subscribeAndGetPublisher(QoS theQoS, Object* subscriber)
        throws AlreadySubscribed, BadQoS;
    idempotent void unsubscribe(Object* subscriber);
    idempotent void link(Topic* linkTo, int cost)
        throws LinkExists;
    idempotent void unlink(Topic* linkTo) throws NoSuchLink;
    idempotent LinkInfoSeq getLinkInfoSeq();
    void destroy();
};
};

The  operation returns the name assigned to the topic, while the  and  operationsgetName getPublisher getNonReplicatedPublisher
return proxies for the topic's .publisher object

The  operation adds a subscriber's proxy to the topic; if another subscriber proxy already exists with thesubscribeAndGetPublisher
same object identity, the operation throws . The operation returns a proxy for a .AlreadySubscribed subscriber-specific publisher object

The  operation removes the subscriber from the topic.unsubscribe

A  to another topic is created using the  operation; if a link already exists to the given topic, the  exception is raised.link link LinkExists
Links are destroyed using the  operation.unlink

Finally, the  operation permanently destroys the topic.destroy

See Also

Slice Checksums
Using an IceStorm Publisher Object
Publishing to a Specific Subscriber
Topic Federation
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Using IceStorm

Now we'll expand on the earlier , demonstrating how to create, subscribe to and publish messages on a topic.weather monitoring example
We use the following Slice definitions in our example:

Slice

struct Measurement {
    string tower; // tower id
    float windSpeed; // knots
    short windDirection; // degrees
    float temperature; // degrees Celsius
};

interface Monitor {
    void report(Measurement m);
};

Monitor is our topic interface. For the sake of simplicity, it defines just one operation, , taking a  struct as its onlyreport Measurement
parameter.

Topics

Implementing an IceStorm Publisher
Using an IceStorm Publisher Object
Implementing an IceStorm Subscriber
Publishing to a Specific Subscriber

See Also

IceStorm
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1.  
2.  
3.  

4.  

Implementing an IceStorm Publisher

The implementation of our weather measurement collector application can be summarized easily:

Obtain a proxy for the . This is the primary IceStorm object, used by both publishers and subscribers.TopicManager
Obtain a proxy for the  topic, either by creating the topic if it does not exist, or retrieving the proxy for the existing topic.Weather
Obtain a proxy for the  topic's "publisher object." This proxy is provided for the purpose of publishing messages, andWeather
therefore is narrowed to the topic interface ( ).Monitor
Collect and report measurements.

We present collector implementations in C++ and Java below.

On this page:

Publisher Example in C++
Publisher Example in Java

Publisher Example in C++

As usual, our C++ example begins by including the necessary header files. The interesting ones are , which isIceStorm/IceStorm.h
generated from the IceStorm Slice definitions, and , containing the generated code for our monitor definitions shown above.Monitor.h

C++

#include <Ice/Ice.h>
#include <IceStorm/IceStorm.h>
#include <Monitor.h>

int main(int argc, char* argv[])
{
    ...
    Ice::ObjectPrx obj = communicator->stringToProxy("IceStorm/TopicManager:tcp -p 9999");
    IceStorm::TopicManagerPrx topicManager = IceStorm::TopicManagerPrx::checkedCast(obj);
    IceStorm::TopicPrx topic;
    while (!topic) {
        try {
            topic = topicManager->retrieve("Weather");
        } catch (const IceStorm::NoSuchTopic&) {
            try {
                topic = topicManager->create("Weather");
            } catch (const IceStorm::TopicExists&) {
                // Another client created the topic.
            }
        }
    }

    Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);
    while (true) {
        Measurement m = getMeasurement();
        monitor->report(m);
    }
    ...
}

Note that this example assumes that IceStorm uses the  . The actual instance name may differ, and you need toinstance name IceStorm
use it as the category when calling .stringToProxy

After obtaining a proxy for the topic manager, the collector attempts to retrieve the topic. If the topic does not exist yet, the collector receives
a  exception and then creates the topic:NoSuchTopic
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C++

    IceStorm::TopicPrx topic;
    while(!topic) {
        try {
            topic = topicManager->retrieve("Weather");
        } catch (const IceStorm::NoSuchTopic&) {
            try {
                topic = topicManager->create("Weather");
            } catch (const IceStorm::TopicExists&) {
                // Another client created the topic.
            }
        }
    }

The next step is obtaining a proxy for the publisher object, which the collector narrows to the  interface. (We create a oneway proxyMonitor
for the publisher purely for efficiency reasons.)

C++

    Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);

Finally, the collector enters its main loop, collecting measurements and publishing them via the IceStorm publisher object:

C++

    while (true) {
        Measurement m = getMeasurement();
        monitor->report(m);
    }

Publisher Example in Java

The equivalent Java version is shown below:
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Java

public static void main(String[] args)
{
    ...
    Ice.ObjectPrx obj = communicator.stringToProxy("IceStorm/TopicManager:tcp -p 9999");
    IceStorm.TopicManagerPrx topicManager = IceStorm.TopicManagerPrxHelper.checkedCast(obj);
    IceStorm.TopicPrx topic = null;
    while (topic == null) {
        try {
            topic = topicManager.retrieve("Weather");
        } catch (IceStorm.NoSuchTopic ex) {
            try {
                topic = topicManager.create("Weather");
            } catch (IceStorm.TopicExists ex) {
                // Another client created the topic.
            }
        }
    }

    Ice.ObjectPrx pub = topic.getPublisher().ice_oneway();
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub);
    while (true) {
        Measurement m = getMeasurement();
        monitor.report(m);
    }
    ...
}

Note that this example assumes that IceStorm uses the  . The actual instance name may differ, and you need toinstance name IceStorm
use it as the category when calling .stringToProxy

After obtaining a proxy for the topic manager, the collector attempts to retrieve the topic. If the topic does not exist yet, the collector receives
a  exception and then creates the topic:NoSuchTopic

Java

    IceStorm.TopicPrx topic = null;
    while (topic == null) {
        try {
            topic = topicManager.retrieve("Weather");
        } catch (IceStorm.NoSuchTopic ex) {
            try {
                topic = topicManager.create("Weather");
            } catch (IceStorm.TopicExists ex) {
                // Another client created the topic.
            }
        }
    }

The next step is obtaining a proxy for the publisher object, which the collector narrows to the  interface:Monitor

Java

    Ice.ObjectPrx pub = topic.getPublisher().ice_oneway();
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub);

Finally, the collector enters its main loop, collecting measurements and publishing them via the IceStorm publisher object:
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Java

    while (true) {
        Measurement m = getMeasurement();
        monitor.report(m);
    }

See Also

Configuring IceStorm
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Using an IceStorm Publisher Object

Each topic creates a publisher object for the express purpose of publishing messages. It is a special object in that it implements an Ice
interface that allows the object to receive and forward requests (i.e., IceStorm messages) without requiring knowledge of the operation types.

On this page:

Type Safety Considerations for the Publisher Object
Publish using Oneway or Twoway Invocations?
Selecting a Transport for the Publisher Object
Using Request Contexts with the Publisher Object

Type Safety Considerations for the Publisher Object

From the publisher's perspective, the publisher object appears to be an application-specific type. In reality, the publisher object can forward
requests for any type, and that introduces a degree of risk: a misbehaving publisher can use  to narrow the publisher objectuncheckedCast
to any type and invoke any operation; the publisher object unknowingly forwards those requests to the subscribers.

If a publisher sends a request using an incorrect type, the Ice run time in a subscriber typically responds by raising 
. However, since the subscriber receives its messages as oneway invocations, no response can be sentOperationNotExistException

to the publisher object to indicate this failure, and therefore neither the publisher nor the subscriber is aware of the type-mismatch problem.
In short, IceStorm places the burden on the developer to ensure that publishers and subscribers are using it correctly.

Publish using Oneway or Twoway Invocations?

IceStorm messages are unidirectional, but publishers may use either oneway or twoway invocations when sending messages to the
publisher object. Each invocation style has advantages and disadvantages that you should consider when deciding which one to use. The
differences between the invocation styles affect a publisher in four ways:

Efficiency
Oneway invocations have the advantage in efficiency because the Ice run time in the publisher does not await a reply to each
message (and, of course, no reply is sent by IceStorm on the wire).

Ordering
The use of oneway invocations by a publisher may affect the order in which subscribers receive messages. If ordering is important,
use twoway invocations with a  of , or use a single thread in the subscriber.reliability QoS ordered

Reliability
 under certain circumstances, even when they are sent over a reliable transport such as TCP. If theOneway invocations can be lost

loss of messages is unacceptable, or you are unable to address the potential causes of lost oneway messages, then twoway
invocations are recommended.

Delays
A publisher may experience network-related delays when sending messages to IceStorm if subscribers are slow in processing
messages. Twoway invocations are more susceptible to these delays than oneway invocations.

Selecting a Transport for the Publisher Object

Each publisher can select its own transport for message delivery, therefore the transport used by a publisher to communicate with IceStorm
has no effect on how IceStorm delivers messages to its subscribers.

For example, a publisher can use a UDP transport if the possibility of lost messages is acceptable (and if IceStorm provides a UDP endpoint
to publishers). However, the TCP or SSL transports are generally recommended for IceStorm's publisher endpoint in order to ensure that
published messages are delivered reliably to IceStorm, even if they may not be delivered reliably to some subscribers.

Using Request Contexts with the Publisher Object

A  is an optional argument of all remote invocations. If a publisher supplies a request context when publishing a message,request context
IceStorm will forward it intact to subscribers.

Services such as  employ request contexts to provide applications with more control over the service's behavior. For example, if aGlacier2
publisher knows that IceStorm is delivering messages to subscribers via a Glacier2 router, the publisher can influence Glacier2's behavior by
including a request context, as shown in the following C++ example:
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C++

    Ice::ObjectPrx pub = topic->getPublisher();
    Ice::Context ctx;
    ctx["_fwd"] = "Oz";
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub->ice_context(ctx));

The  context key, when encountered by Glacier2, causes the router to forward the request using compressed  messages._fwd batch oneway
The   is used to obtain a proxy that includes the Glacier2 request context in every invocation, eliminating theice_context proxy method
need for the publisher to specify it explicitly.

See Also

IceStorm Quality of Service
Oneway Invocations
Request Contexts
How Glacier2 uses Request Contexts
Batched Invocations
Proxy Methods
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1.  
2.  
3.  
4.  
5.  
6.  

Implementing an IceStorm Subscriber

Our weather measurement subscriber implementation takes the following steps:

Obtain a proxy for the . This is the primary IceStorm object, used by both publishers and subscribers.TopicManager
Create an object adapter to host our  servant.Monitor
Instantiate the  servant and activate it with the object adapter.Monitor
Subscribe to the  topic.Weather
Process  messages until shutdown.report
Unsubscribe from the  topic.Weather

We present monitor implementations in C++ and Java below.

On this page:

Subscriber Example in C++
Subscriber Example in Java

Subscriber Example in C++

Our C++ monitor implementation begins by including the necessary header files. The interesting ones are , whichIceStorm/IceStorm.h
is generated from the IceStorm Slice definitions, and , containing the generated code for our :Monitor.h monitor definitions
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C++

#include <Ice/Ice.h>
#include <IceStorm/IceStorm.h>
#include <Monitor.h>

using namespace std;

class MonitorI : virtual public Monitor {
public:
    virtual void report(const Measurement& m, const Ice::Current&) {
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << endl;
    }
};

int main(int argc, char* argv[])
{
    ...
    Ice::ObjectPrx obj = communicator->stringToProxy("IceStorm/TopicManager:tcp -p 9999");
    IceStorm::TopicManagerPrx topicManager = IceStorm::TopicManagerPrx::checkedCast(obj);

    Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("MonitorAdapter");

    MonitorPtr monitor = new MonitorI;
    Ice::ObjectPrx proxy = adapter->addWithUUID(monitor)->ice_oneway();

    IceStorm::TopicPrx topic;
    try {
        topic = topicManager->retrieve("Weather");
        IceStorm::QoS qos;
        topic->subscribeAndGetPublisher(qos, proxy);
    }
    catch (const IceStorm::NoSuchTopic&) {
        // Error! No topic found!
        ...
    }

    adapter->activate();
    communicator->waitForShutdown();

    topic->unsubscribe(proxy);
    ...
}

Our implementation of the  servant is currently quite simple. A real implementation might update a graphical display, or incorporateMonitor
the measurements into an ongoing calculation.
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C++

class MonitorI : virtual public Monitor {
public:
    virtual void report(const Measurement& m, const Ice::Current&) {
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << endl;
    }
};

After obtaining a proxy for the topic manager, the program creates an object adapter, instantiates the  servant and activates it:Monitor

C++

    Ice::ObjectAdapterPtr adapter = communicator->createObjectAdapter("MonitorAdapter");

    MonitorPtr monitor = new MonitorI;
    Ice::ObjectPrx proxy = adapter->addWithUUID(monitor)->ice_oneway();

Note that the code creates a oneway proxy for the  servant. This is for efficiency reasons: by subscribing with a oneway proxy,Monitor
IceStorm will deliver events to the subscriber via , instead of via twoway messages.oneway messages

Next, the monitor subscribes to the topic:

C++

    IceStorm::TopicPrx topic;
    try {
        topic = topicManager->retrieve("Weather");
        IceStorm::QoS qos;
        topic->subscribeAndGetPublisher(qos, proxy);
    }
    catch (const IceStorm::NoSuchTopic&) {
        // Error! No topic found!
        ...
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After  returns, the monitor cleans up bywaitForShutdown
unsubscribing from the topic:

C++

    adapter->activate();
    communicator->waitForShutdown();

    topic->unsubscribe(proxy);

Subscriber Example in Java

The Java implementation of the monitor is shown below:
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Java

class MonitorI extends _MonitorDisp {
    public void report(Measurement m, Ice.Current curr) {
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature + "\n");
    }
}

public static void main(String[] args)
{
    ...
    Ice.ObjectPrx obj = communicator.stringToProxy("IceStorm/TopicManager:tcp -p 9999");
    IceStorm.TopicManagerPrx topicManager = IceStorm.TopicManagerPrxHelper.checkedCast(obj);

    Ice.ObjectAdapterPtr adapter = communicator.createObjectAdapter("MonitorAdapter");

    Monitor monitor = new MonitorI();
    Ice.ObjectPrx proxy = adapter.addWithUUID(monitor).ice_oneway();

    IceStorm.TopicPrx topic = null;
    try {
        topic = topicManager.retrieve("Weather");
        java.util.Map qos = null;
        topic.subscribeAndGetPublisher(qos, proxy);
    }
    catch (IceStorm.NoSuchTopic ex) {
        // Error! No topic found!
        ...
    }

    adapter.activate();
    communicator.waitForShutdown();

    topic.unsubscribe(proxy);
    ...
}

Our implementation of the  servant is currently quite simple. A real implementation might update a graphical display, or incorporateMonitor
the measurements into an ongoing calculation.

Java

class MonitorI extends _MonitorDisp {
    public void report(Measurement m, Ice.Current curr) {
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature + "\n");
    }
}

After obtaining a proxy for the topic manager, the program creates an object adapter, instantiates the  servant and activates it:Monitor
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Java

    Monitor monitor = new MonitorI();
    Ice.ObjectPrx proxy = adapter.addWithUUID(monitor).ice_oneway();

Note that the code creates a oneway proxy for the  servant. This is for efficiency reasons: by subscribing with a oneway proxy,Monitor
IceStorm will deliver events to the subscriber via , instead of via twoway messages.oneway messages

Next, the monitor subscribes to the topic:

Java

    IceStorm.TopicPrx topic = null;
    try {
        topic = topicManager.retrieve("Weather");
        java.util.Map qos = null;
        topic.subscribeAndGetPublisher(qos, proxy);
    }
    catch (IceStorm.NoSuchTopic ex) {
        // Error! No topic found!
        ...
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After  returns, the monitor cleans up bywaitForShutdown
unsubscribing from the topic:

Java

    adapter.activate();
    communicator.waitForShutdown();

    topic.unsubscribe(proxy);

See Also

Using IceStorm
Oneway Invocations
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Publishing to a Specific Subscriber

If you send events to the publisher object you obtain by calling , the event is forwarded to all subscribers for thatTopic::getPublisher
topic:

C++

IceStorm::TopicPrx topic = ...;
Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();

MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);
Measurement m = ...;

monitor->report(m); // Sent to all subscribers

You can also publish an event to a single specific subscriber, by using the return value of . For example:subscribeAndGetPublisher

C++

MonitorPtr monitor = new MonitorI;
Ice::ObjectPrx proxy = adapter->addWithUUID(monitor)->ice_oneway();

IceStorm::topicPrx topic = ...;

Icestorm::QoS qos;
Ice::ObjectPrx pub = topic->subscribeAndGetPublisher(qos, proxy);
MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);

Measurement m = ...;
monitor->report(m); // Sent only to this subscriber

Note that, here, we save the return value of . The return value is a proxy that connects specifically to the subscribeAndGetPublisher
 instance denoted by . However, when the code calls  on that proxy, instead of directly invoking on the MonitorI proxy report MonitorI

instance, the request is forwarded via IceStorm.

As it stands, this code is not very interesting. After all, the call to  is just a round-about way for the subscriber to publish amonitor->report
message to itself. However, the subscriber can pass this subscriber-specific publisher proxy to another process. When that process
publishes an event via the proxy, the event is sent only to the specific subscriber, instead of to all subscribers for the topic. In turn, this is
useful if you are using the observer pattern, with all observers attached to an IceStorm topic.

As an example, we might have a list whose state is to be monitored by a number of observers. Updates to the list are published to an
IceStorm topic, say, . The observers of the list subscribe with an interface such as:ListUpdates

Slice

interface ListObserver {
    void init(/* The entire state of the list */);
    void itemChange(/* The added or deleted item */);
};

The idea is that, when an observer first starts observing the list, the  operation is called on the observer and passed the entire list. Thisinit
initializes the observer with the current state of the list. Thereafter, whenever the list changes, it calls  on the observer to informitemChange
it of the addition or deletion of an item. (The details of how this happens are secondary; the important point is that the observer is informed of
the current state of the list initially and, thereafter, receives incremental updates about modifications to the list, rather than the entire list
whenever it changes.)

The list itself might look something like this:
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Slice

interface List {
    void add(Item i);
    void remove(Item i);

    void addObserver(ListObserver* lo);
    void removeObserver(ListObserver* lo);
};

The list provides operations to add and remove an item, as well as operations to add and remove an observer. Every time  or add remove
are called on the list, the list publishes an  event to the  topic; this informs all the subscribed observers of theitemChange ListUpdates
change to the list. However, when an observer is first added, the observer's  operation must be called. Moreover, we want to call thatinit
method only once for each observer, so we cannot just publish the initial state of the list on a topic that all observers subscribe to.

The subscriber-specific proxy that is returned by  solves this nicely: the implementation of subscribeAndGetPublisher addObserver
calls , and then invokes  on the observer. This both subscribes the observer to the topic, and IceStormsubscribeAndGetPublisher init
forwards the call to  to the observer. This is preferable to the list invoking  on the observer directly: if the observer is misbehavedinit init
(for example, if its  implementation blocks for some time), the list is unaffected because IceStorm shields the list from such behavior.init

See Also

Using IceStorm
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Highly Available IceStorm

IceStorm offers a highly available (HA) mode that employs master-slave replication with automatic failover in case the master fails.

On this page:

IceStorm Replication Algorithm
IceStorm Replica States
Client Considerations for IceStorm Replication
Subscriber Considerations for IceStorm Replication
Publisher Considerations for IceStorm Replication

IceStorm Replication Algorithm

HA IceStorm uses the Garcia-Molina "Invitation Election Algorithm"  in which each replica has a priority and belongs to a replica group.[1]
The replica with the highest priority in the group becomes the coordinator, and the remaining replicas are slaves of the coordinator.

All replicas are statically configured with information about all other replicas, including their priority. The group combining works as follows:

When recovering from an error, or during startup, replicas form a single self-coordinated group.
Coordinators periodically attempt to combine their groups with other groups in order to form larger groups.

At regular intervals, slave replicas contact their coordinator to ensure that the coordinator is still the master of the slave's group. If a failure
occurs, the replica considers itself in error and performs error recovery as described above.

Replication commences once a group contains a majority of replicas. A majority is necessary to avoid the possibility of network partitioning,
in which two groups of replicas form that cannot communicate and whose database contents diverge. With respect to IceStorm, a
consequence of requiring a majority is that a minimum of three replicas are necessary.

An exception to the majority rule is made during full system startup (i.e., when no replica is currently running). In this situation, replication can
only commence with the participation of every replica in the group. This requirement guarantees that the databases of all replicas are
synchronized, and avoids the risk that the database of an offline replica might contain more recent information.

Once a majority group has been formed, all database states are compared. The most recent database state (as determined by comparing a
time stamp recorded upon each database change) is transferred to all replicas and replication commences. IceStorm is now available for
use.

IceStorm Replica States

IceStorm replicas can have one of four states:

Inactive:
The node is inactive and awaiting an election.
Election:
The node is electing a coordinator.
Reorganization:
The replica group is reorganizing.
Normal:
The replica group is active and replicating.

For debugging purposes, you can obtain the state of the replicas using the  command of the  utility, as shownreplica icestormadin
below:
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$ icestormadmin --Ice.Config=config
>>> replica
replica count: 3
1: id:         1
1: coord:      3
1: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
1: state:      normal
1: group:
1: max:        3
2: id:         2
2: coord:      3
2: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
2: state:      normal
2: group:
2: max:        3
3: id:         3
3: coord:      3
3: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
3: state:      normal
3: group:      1,2
3: max:        3

Each line begins with the identifier of the replica. The command displays the following information:

id
The identifier of the replica.

coord
The identifier of the group's coordinator.

group name
The name of the group to which this replica belongs.

state
The replica's current state.

group
The identifiers of the other replicas in the group. Note that only the coordinator knows, or cares about, this information.

max
The maximum number of replicas seen by this replica. This value is used during startup to determine whether full participation is
necessary. If the value is less than the total number of replicas, full participation is required.

Client Considerations for IceStorm Replication

As previously noted, an individual IceStorm replica can be in one of several states. However, IceStorm clients have a different perspective in
which the replication group as a whole is in one of the states shown below:

Down
All requests to IceStorm fail.

Inactive
All requests to IceStorm block until the replica is either down (in which case the request fails), or becomes Active.

Active
Requests are processed.

It is also possible, but highly unlikely, for a request to result in an . This can happen, for example, if a replicaIce::UnknownException
loses the majority and thus progresses to the inactive state during request processing. In this case, the result of the request is indeterminate
(the request may or may not have succeeded) and therefore the IceStorm client can draw no conclusion. The client should retry the request
and be prepared for the request to fail. Consider this example:
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C++

TopicPrx topic = ...;
Ice::ObjectPrx sub = ...;
IceStorm::QoS qos;
topic->subscribeAndGetPublisher(qos, sub);

The call to  may fail in very rare cases with an , indicating that the subscription may orsubscribeAndGetPublisher UnknownException
may not have succeeded. Here is the proper way to deal with the possibility of an :UnknownException

C++

TopicPrx topic = ...;
Ice::ObjectPrx sub = ...;
IceStorm::QoS qos;
while(true) {
    try {
        topic->subscriberAndGetPublisher(qos, sub);
    } catch(const Ice::UnknownException&) {
        continue;
    } catch(const IceStorm::AlreadySubscribed&) {
        // Expected.
    }
    break;
}

Subscriber Considerations for IceStorm Replication

Subscribers can receive events from any replica. The subscriber will stop receiving events under two circumstances:

The subscriber is unsubscribed by calling .Topic::unsubscribe
The subscriber is removed as a result of a failure to deliver events. Subscribers can optionally configure a quality of service
parameter that causes IceStorm to make additional delivery attempts.

Publisher Considerations for IceStorm Replication

A publisher for HA IceStorm typically receives a proxy containing multiple endpoints. With this proxy, the publisher normally binds to a single
replica and continues using that replica unless there is a failure, or until  (ACM) closes the connection.active connection management

As with non-HA IceStorm,  can be guaranteed if the subscriber and publisher are suitably configured and theevent delivery ordering
publisher continues to use the same replica when publishing events.

Ordering guarantees are lost as soon as a publisher changes to a different replica. Furthermore, a publisher may receive no notification that
a change has occurred, which is possible under two circumstances:

ACM has closed the connection.
Publishing to a replica fails and the Ice invocation can be , in which case the Ice run time in the publisher automatically andretried
transparently attempts to send the request to another replica. The publisher receives an exception if the invocation cannot be
retried.

A publisher has two ways of ensuring that it is notified about a change in replicas:

The simplest method is to use the  operation. The proxy returned by this operation pointsTopic::getNonReplicatedPublisher
directly at the current replica and no transparent failover to a different can occur.
If you never want transparent failover to occur during publishing, you can  so that it contains only oneconfigure your publisher proxy
endpoint. In this configuration, the  operation behaves exactly like .Topic::getPublisher getNonReplicatedPublisher

Of the two strategies, using  is preferable for two reasons:getNonReplicatedPublisher

It does not involve changes to IceStorm's configuration.
It is still possible to obtain a replicated publisher proxy by calling , whereas if you had used the second strategy yougetPublisher
would have eliminated that possibility.
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1.  

The second strategy may be necessary in certain circumstances, such as when an existing IceStorm application is deployed and cannot be
changed.

Regardless of the strategy you choose, a publisher can recover from the failure of a replica by requesting another proxy from the replicated
topic using  or .getPublisher getNonReplicatedPublisher

See Also

IceStorm Administration
IceStorm Quality of Service
Active Connection Management
IceStorm Delivery Modes
Automatic Retries
Configuring IceStorm
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IceStorm Administration

The IceStorm administration tool is a command-line program that provides administrative control of an IceStorm server. The tool requires
that the  property be defined, as in the .IceStormAdmin.TopicManager.Default IceStorm server configuration

The following command-line options are supported:

$ icestormadmin -h
Usage: icestormadmin [options] [file...]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
-e COMMANDS          Execute COMMANDS.
-d, --debug          Print debug messages.

If one or more  options are specified, the tool executes the given commands and exits, otherwise the tool enters an interactive session.-e
The  command displays the following usage information:help

help
Print this message.

exit, quit
Exit this program.

create TOPICS
Add .TOPICS

destroy TOPICS
Remove .TOPICS

link  FROM TO [ ]COST
Link  to  with the optional .FROM TO COST

unlink FROM TO
Unlink  from .TO FROM

links [ ]INSTANCE-NAME
Without an argument,  displays the links of all topics in the current topic manager. You can specify a different topic managerlinks
by providing its instance name.

topics [ ]INSTANCE-NAME
Without an argument,  displays the names of all topics in the current topic manager. You can specify a different topictopics
manager by providing its instance name.

current [ ]INSTANCE-NAME
Set the current topic manager to the topic manager with instance name . The proxy of the corresponding topicINSTANCE-NAME
manager must be specified by setting an  property. Without an argument, the commandIceStormAdmin.TopicManager.name
shows the current topic manager.

replica [ ]INSTANCE-NAME
Display  for the given .replication information INSTANCE-NAME

Some of the commands accept one or more topic names ( ) as arguments. Topic names containing white space or matching aTOPICS
command keyword must be enclosed in single or double quotes.

By default,  uses the topic manager specified by the setting of the  property,icestormadmin IceStormAdmin.TopicManager.Default
which specifies the proxy for the topic manager. For example, without additional arguments, the  command operates on that topiccreate
manager.

If you are using multiple topic managers, you can specify the proxies by setting the property  forIceStormAdmin.TopicManager.name
each topic manager. For example:
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IceStormAdmin.TopicManager.A=A/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.B=Foo/TopicManager:tcp -h x -p 9996
IceStormAdmin.TopicManager.C=Bar/TopicManager:tcp -h z -p 9995

This sets the proxies for three topic managers. Note that  need not match the instance name of the corresponding topic manager — name
 simply serves as a tag. With these property settings, the  commands that accept a topic can now specify a topicname icestormadmin

manager other than the default topic manager that is configured with . For example:IceStormAdmin.TopicManager.Default

current Foo
create myTopic
create Bar/myOtherTopic

This sets the current topic manager to the one with instance name ; the first  command then creates the topic within that topicFoo create
manager, whereas the second  command uses the topic manager with instance name .create Bar

See Also

Configuring IceStorm
Highly Available IceStorm
IceStorm Properties
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Topic Federation

The ability to link topics together into a federation provides IceStorm applications with a lot of flexibility, while the notion of a "cost"
associated with links allows applications to restrict the flow of messages in creative ways. IceStorm applications have complete control of
topic federation using the  interface described in the online , allowing links to be created andTopicManager XREF Slice API Reference
removed dynamically as necessary. For many applications, however, the topic graph is static and therefore can be configured using the 

.administrative tool 

On this page:

IceStorm Message Propagation
Using Cost to Limit Message Propagation

Request Context for Cost
Publishing a Message with a Cost
Receiving a Message with a Cost

Automating IceStorm Federation
Administration Tool Script

Proxy Considerations for IceStorm Federation

IceStorm Message Propagation

IceStorm messages are never propagated over more than one link. For example, consider the topic graph shown below:

Message propagation.

In this case, messages published on  are propagated to , but  does not propagate 's messages to . Therefore, subscriber S  receivesA B B A C B
messages published on topics  and B, but subscriber S  only receives messages published on topics  and . If the application needsA C B C

messages to propagate from  to , then a link must be established directly between  and .A C A C

Using Cost to Limit Message Propagation

As described above, IceStorm messages are only propagated on the originating topic's immediate links. In addition, applications can use the
notion of cost to further restrict message propagation.

A cost is associated with messages and links. When a message is published on a topic, the topic compares the cost associated with each of
its links against the message cost, and only propagates the message on those links whose cost equals or exceeds the message cost. A cost
value of zero ( ) has the following implications:0

messages with a cost value of zero ( ) are published on all of the topic's links regardless of the link cost;0
links with a cost value of zero ( ) accept all messages regardless of the message cost.0

For example, consider the following topic graph:

http://www.zeroc.com/doc/Ice-3.4.1/reference/index.html
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Cost semantics.

Publisher P  publishes a message on topic  with a cost of . This message is propagated on the link to topic  because the link has a cost1 A 1 B

of  and therefore accepts all messages. The message is also propagated on the link to topic , because the message cost does not exceed0 C
the link cost ( ). On the other hand, the message published by P  with a cost of  is only propagated on the link to .1 2 2 B

Request Context for Cost

The cost of a message is specified in an Ice . Each Ice proxy operation has an implicit argument of type request context Ice::Context
representing the request context. This argument is rarely used, but it is the ideal location for specifying the cost of an IceStorm message
because an application only needs to supply a request context if it actually uses IceStorm's cost feature. If the request context does not
contain a cost value, the message is assigned the default cost value of zero (0).

Publishing a Message with a Cost

The code examples below demonstrate how a collector can publish a measurement with a cost value of . First, the C++ version:5

C++

    Measurement m = getMeasurement();
    Ice::Context ctx;
    ctx["cost"] = "5";
    monitor->report(m, ctx);

And here is the equivalent version in Java:

Java

    Measurement m = getMeasurement();
    java.util.HashMap ctx = new java.util.HashMap();
    ctx.put("cost", "5");
    monitor.report(m, ctx);

Receiving a Message with a Cost

A subscriber can discover the cost of a message by examining the request context supplied in the  argument. For example,Ice::Current
here is a C++ implementation of  that displays the cost value if it is present:Monitor::report
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C++

    virtual void report(const Measurement& m, const Ice::Current& curr) {
        Ice::Context::const_iterator p = curr.ctx.find("cost");
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << "   Temp: " << m.temperature << endl;
        if (p != curr.ctx.end())
            cout << "   Cost: " << p->second << endl;
        cout << endl;
    }

And here is the equivalent Java implementation:

Java

    public void report(Measurement m, Ice.Current curr) {
        String cost = null;
        if (curr.ctx != null)
            cost = curr.ctx.get("cost");
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature);
        if (cost != null)
            System.out.println("   Cost: " + cost);
        System.out.println();
    }

For the sake of efficiency, the Ice for Java run time may supply a null value for the request context in , therefore an applicationIce.Current
is required to check for null before using the request context.

Automating IceStorm Federation

Given the restrictions on message propagation described in the previous sections, creating a complex topic graph can be a tedious
endeavor. Of course, creating a topic graph is not typically a common occurrence, since IceStorm keeps a persistent record of the graph.
However, there are situations where an automated procedure for creating a topic graph can be valuable, such as during development when
the graph might change significantly and often, or when graphs need to be recomputed based on changing costs.

Administration Tool Script

A simple way to automate the creation of a topic graph is to create a text file containing commands to be executed by the IceStorm
administration tool. For example, the commands to create the topic graph shown  are shown below:earlier

create A B C
link A B 0
link A C 1

If we store these commands in the file , we can execute them using the following command:graph.txt

$ icestormadmin --Ice.Config=config graph.txt

We assume that the configuration file  contains the definition for the property .config IceStormAdmin.TopicManager.Default



Ice 3.4.2 Documentation

1552 Copyright © 2011, ZeroC, Inc.

Proxy Considerations for IceStorm Federation

Note that, if you federate IceStorm servers, you must ensure that the proxies for the linked topics always use the same host and port (or,
alternatively, can be indirectly bound via ), otherwise the federation cannot be re-established if one of the servers in the federationIceGrid
shuts down and is restarted later.

See Also

IceStorm Administration
Request Contexts
The Current Object
IceStorm Properties
IceGrid
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IceStorm Quality of Service

An IceStorm subscriber specifies Quality of Service (QoS) parameters at the time of subscription. The supported QoS parameters are
described in the sections below

On this page:

Reliability QoS for IceStorm
Retry Count QoS for IceStorm
IceStorm QoS Example

Reliability QoS for IceStorm

The QoS parameter  affects message delivery. The only legal values at this point are  and the empty string. If notreliability ordered
specified, the default value is the empty string (meaning not ordered).

If you specify  as the reliability QoS, IceStorm forwards events to subscribers in the order in which they are received. Without thisordered
setting, events are forwarded immediately, as soon as they are received; because events can arrive from different publishers publishing to
the same topic, this means that they can be forwarded to subscribers in an order that differs from the order in which IceStorm received them.

Whether the subscriber receives events in the same order in which they are sent by IceStorm also depends on the subscriber's threading
.model

Retry Count QoS for IceStorm

IceStorm automatically removes a subscriber if  or  is raised while attempting toObjectNotExistException NotRegisteredException
deliver an event. IceStorm considers these exceptions as indicators of a hard failure, after which it is unnecessary to continue event delivery.

For other kinds of failures, IceStorm uses the QoS parameter  to determine when to remove a subscriber. A value of  meansretryCount -1
IceStorm retries forever and never automatically removes a subscriber unless a hard failure occurs. A value of zero means IceStorm never
retries and immediately removes the subscriber. For positive values, IceStorm decrements the subscriber's retry count for each failure and
removes the subscriber once it reaches zero. Linked topics always have a configured retry count of . The default value of the -1

 parameter is zero.retryCount

A retry count of  adds some resiliency to your IceStorm application by ignoring intermittent network failures such as -1
. However, there is also some risk inherent in using a retry count of  because an improperly configuredConnectionRefusedException -1

subscriber may never be removed. For example, consider what happens when a subscriber registers using a transient endpoint: if that
subscriber happens to terminate and resubscribe with a different endpoint, IceStorm will continue trying to deliver events to the subscriber at
its old endpoint. IceStorm can only remove the subscriber if it receives a hard error, and that is only possible when the subscriber is
reachable.

To use a retry count of  successfully, the subscriber should either register with a fixed endpoint, or use  to take advantage of-1 IceGrid
indirect proxies and automatic activation. Furthermore, if the subscriber is expected to function correctly after a restart of its process, the
subscriber must use the same . The application can rely on the  operation to raise identity subscribeAndGetPublisher

 when the subscriber is already subscribed.AlreadySubscribed

IceStorm QoS Example

The Slice type  is defined as a  whose key and value types are both , therefore the QoS parameterIceStorm::QoS dictionary string
name and value are both represented as strings. The code we presented in our earlier  used an empty dictionary for thesubscriber example
QoS argument, meaning default values are used. The C++ and Java examples shown below illustrate how to set the reliability
parameter to .ordered

Here is the C++ example:

C++

IceStorm::QoS qos;
qos["reliability"] = "ordered";
topic->subscribeAndGetPublisher(qos, proxy->ice_twoway());
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Here is the Java example:

Java

java.util.Map qos = new java.util.HashMap();
qos.put("reliability", "ordered");
topic.subscribeAndGetPublisher(qos, proxy.ice_twoway());

See Also

IceGrid
Implementing an IceStorm Subscriber
IceStorm Delivery Modes
Object Identity
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IceStorm Delivery Modes

The delivery mode for events sent to subscribers is controlled by the proxy that the subscriber passes to IceStorm. For example, if the
subscriber subscribes with a oneway proxy, events will be forwarded by IceStorm as oneway messages.

On this page:

Subscribing with a Twoway Proxy
Subscribing with a Oneway Proxy
Subscribing with a Batch Oneway Proxy
Subscribing with a Datagram Proxy
Subscribing with a Batch Datagram Proxy

Subscribing with a Twoway Proxy

In this mode each event is sent to the subscriber as a separate twoway message. This allows the subscriber to enable server-side active
 (ACM) without risking lost messages, because IceStorm will re-send an event if the subscriber happens to close itsconnection management

connection at the wrong moment.

If you combine a twoway proxy with a  QoS of , messages will be forwarded to the subscriber in the order in whichreliability ordered
they are received. This is guaranteed because IceStorm will wait for a reply from the subscriber for each event before sending the next
event.

Without ordered delivery, events may be delivered out-of-order to the subscriber because IceStorm will send an event as soon as possible
(without waiting for a reply for the preceding event). If the subscriber uses a thread pool with more than one thread, this can result in
out-of-order dispatch of messages in the subscriber.

For single-threaded subscribers and subscribers using a , twoway delivery always produces in-order dispatch of eventsserialized thread pool
in the subscriber.

With twoway delivery, IceStorm is informed of any failure to deliver an event by the Ice run time. For example, IceStorm may not be able to
establish a connection to a subscriber, or may receive an  when it forwards an event. Any failure to deliver anObjectNotExistException
event to a subscriber (possibly after a transparent retry by the Ice run time) results in the cancellation of the corresponding subscription.

Subscribing with a Oneway Proxy

In this mode each event is sent to the subscriber as a . If more than one event is ready to be delivered, the events are sentoneway message
in a single batch. This delivery mode is more efficient than using twoway delivery. However, the subscriber cannot use active connection
management without the risk of events being lost. In addition, if something goes wrong with the subscriber, such as the subscriber having
destroyed its callback object without unsubscribing, or having subscribed an object with the wrong interface, IceStorm does not notice the
failure and will continue to send events to the non-existent subscriber object for as long as it can maintain a connection to the subscriber's
endpoint.

For multi-threaded subscribers, oneway delivery can result in out-of-order delivery of events. For single-threaded subscribers and
subscribers using a serialized thread pool, events are delivered in order.

Subscribing with a Batch Oneway Proxy

With this delivery mode, IceStorm buffers events from publishers and sends them in  to the subscriber. This reduces networkbatches
overhead and is more efficient than oneway delivery. However, as for oneway delivery, the subscriber cannot use active connection
management without the risk of losing events. In addition, events can be delivered out of order if the subscriber is multi-threaded. Batch
oneway delivery, while providing better throughput, increases latency because events arrive in "bursts". You can control the interval at which
batched events are flushed by setting the  property.IceStorm.Flush.Timeout

Subscribing with a Datagram Proxy

With this delivery mode, events are forwarded as UDP messages, optionally with multicast semantics. This means that events can be
delivered out of order, can be lost, and can even be duplicated. In addition, IceStorm cannot detect anything about the delivery status of
events. This means that if a subscriber disappears without unsubscribing, IceStorm will attempt to forward events to the subscriber
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indefinitely. If you use datagram delivery, you need to be careful that subscribers unsubscribe before they disappear; otherwise, stale
subscriptions can accumulate in IceStorm over time, bogging down the service as it delivers more and more events to subscribers that no
longer exist.

Subscribing with a Batch Datagram Proxy

With this delivery mode, events are forwarded as batches within a datagram. The same considerations as for datagram delivery and oneway
batched delivery apply here. In addition, keep in mind that, due to the size limit for datagrams, batched datagram delivery makes sense only
if events are small. (You should also consider enabling compression with this delivery mode.)

See Also

Active Connection Management
Oneway Invocations
The Ice Threading Model
Batched Invocations
IceStorm Properties
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Configuring IceStorm

IceStorm is a relatively lightweight service in that it requires very little configuration and is implemented as an  service. TheIceBox
configuration properties supported by IceStorm are described in ; some of them control diagnostic output and are notIceStorm Properties
discussed here.

On this page:

IceStorm Property Prefix
IceStorm Server Configuration
Deploying IceStorm Replicas

IceGrid Deployment
Manual Deployment

IceStorm Client Configuration
IceStorm Object Identities
IceStorm Database Configuration

IceStorm Property Prefix

As you will see in , IceStorm uses its IceBox service name as the prefix for all of its properties. For example, the propertyIceStorm Properties
 becomes  when IceStorm is configured as the.TopicManager.Endpointsservice DemoIceStorm.TopicManager.Endpoints

IceBox service .DemoIceStorm

IceStorm Server Configuration

The first step is configuring IceBox to run the IceStorm service:

IceBox.Service.DemoIceStorm=IceStormService,34:createIceStorm --Ice.Config=config.service

In this example, the IceStorm service itself is configured by the properties in the  file, which might look as follows for aconfig.service
non-replicated service:

Freeze.DbEnv.DemoIceStorm.DbHome=db
DemoIceStorm.TopicManager.Endpoints=tcp -p 9999
DemoIceStorm.Publish.Endpoints=tcp -p 10000

In this example, IceStorm uses  to manage the service's persistent state, therefore the first property specifies the pathname of theFreeze
Freeze database environment directory for the service. Here the directory  is used, which must already exist in the current workingdb
directory. This property can be omitted when the service is running in .transient mode

The final two properties specify the endpoints used by the IceStorm object adapters; notice that their property names begin with 
, matching the service name. The  property specifies the endpoints on which the  and DemoIceStorm TopicManager TopicManager

 objects reside; these endpoints must use a connection-oriented protocol such as TCP or SSL. The  property specifies theTopic Publish
endpoints used by topic ; using datagram endpoints in this property is possible but carries additional risk.publisher objects

IceStorm's default  configuration is sufficient when the service is running on a single CPU machine. On a host with multiple CPUs,thread pool
you may be able to improve IceStorm's performance by increasing the size of its client-side thread pool using the 

 properties, but the optimal number of threads can only be determined with careful benchmarking.Ice.ThreadPool.Client.*

Deploying IceStorm Replicas

There are two ways of deploying IceStorm in its  (replicated) mode. In both cases, adding another replica requires that allhighly available
active replicas be stopped while their configurations are updated; it is not possible to add a replica while replication is running.

To remove a replica, stop all replicas and alter the configuration as necessary. You must be careful not to remove a replica if it has the latest
database state. This situation will never occur during normal operation since the database state of all replicas is identical. However, in the
event of a crash it is possible for a coordinator to have later database state than all replicas. The safest approach is to verify that all replicas
are active prior to stopping them. You can do this using the  utility by checking that all replicas are in the  state.icestormadmin Normal

IceGrid Deployment
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IceGrid is a convenient way of deploying IceStorm replicas. The term  is also used in the context of IceGrid, specifically when referringreplica
to groups of object adapters that participate in . It is important to be aware of the distinction between IceStorm replication andreplication
object adapter replication; IceStorm replication  object adapter replication when deployed with IceGrid, but IceStorm does not uses require
object adapter replication as you will see below.

An IceGrid  typically uses two adapter replica groups: one for the publisher proxies, and another for the topics, as shown below:deployment

XML

<replica-group id="DemoIceStorm-PublishReplicaGroup">
</replica-group>

<replica-group id="DemoIceStorm-TopicManagerReplicaGroup">
    <object identity="DemoIceStorm/TopicManager" type="::IceStorm::TopicManager"/>
</replica-group>

The object adapters are then configured to use these replica groups:

XML

<adapter name="${service}.Publish"
    endpoints="tcp"
    replica-group="${instance-name}-PublishReplicaGroup"/>

<adapter name="${service}.TopicManager"
    endpoints="tcp"
    replica-group="${instance-name}-TopicManagerReplicaGroup"/>

An application may not want  to contain multiple endpoints. In this case you should remove  frompublisher proxies PublishReplicaGroup
the above deployment.

The next step is defining the endpoints for the adapter , which is used internally for communication with other IceStorm replicas and isNode
not part of an adapter replica group:

XML

<adapter name="${service}.Node" endpoints="tcp"/>

Finally, you must define the node ID for each IceStorm replica using the  property. The node ID must be a non-negative integer:NodeId

XML

<property name="${service}.NodeId" value="${index}"/>

Example
You can find a complete C++ example of an IceGrid deployment in the directory .demo/IceStorm/replicated

Manual Deployment

You can also deploy IceStorm replicas without IceGrid, although it requires more manual configuration; an IceGrid deployment is simpler to
maintain.

The first step is defining the set of node proxies using properties of the form . These proxies allow replicas to contact each other;Nodes.id
their object identities are composed using .instance-name/nodeid

For example, assuming we are using the IceBox service name  and have three replicas with the identifiers 0, 1, 2 and an instanceIceStorm
name of , we can configure the proxies as shown below:DemoIceStorm
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IceStorm.InstanceName=DemoIceStorm
IceStorm.Nodes.0=DemoIceStorm/node0:tcp -p 13000
IceStorm.Nodes.1=DemoIceStorm/node1:tcp -p 13010
IceStorm.Nodes.2=DemoIceStorm/node2:tcp -p 13020

These properties must be defined in each replica. Additionally, each replica must define its node ID, as well as the node's endpoints. For
example, we can configure node 0 as follows:

IceStorm.NodeId=0
IceStorm.Node.Endpoints=tcp -p 13000

The endpoints for each replica and ID must match the proxies configured in the  properties.Nodes.id

Two additional properties allow you to configure replicated endpoints:

.ReplicatedTopicManagerEndpointsservice-name
Defines the endpoints contained in proxies returned by the topic manager.

.ReplicatedPublishEndpointsservice-name
Defines the endpoints contained in the publisher proxy returned by the topic.

For example, suppose we configure three replicas:

IceStorm.NodeId=0
IceStorm.TopicManager.Endpoints=tcp -p 10000
IceStorm.Publish.Endpoints=tcp -p 10001:udp -p 10001

IceStorm.NodeId=1
IceStorm.TopicManager.Endpoints=tcp -p 10010
IceStorm.Publish.Endpoints=tcp -p 10011:udp -p 10011

IceStorm.NodeId=2
IceStorm.TopicManager.Endpoints=tcp -p 10020
IceStorm.Publish.Endpoints=tcp -p 10021:udp -p 10021

Each replica should also define these properties:

IceStorm.ReplicatedPublishEndpoints=\
    tcp -p 10001:tcp -p 10011:tcp -p 10021:udp -p 10001:udp -p 10011:udp -p 10021
IceStorm.ReplicatedTopicManagerEndpoints=tcp -p 10000:tcp -p 10010:tcp -p 10020

An application may not want  to contain multiple endpoints. In this case you should remove the definition of the publisher proxies
 property from the above deployment.ReplicatedPublishEndpoints

Example
You can find a complete C++ example of a manual deployment in the directory .demo/IceStorm/replicated2

IceStorm Client Configuration

Clients of the service can define a proxy for the  object as follows:TopicManager

TopicManager.Proxy=IceStorm/TopicManager:tcp -p 9999

The name of the property is not relevant, but the endpoint must match that of the  property, and the.TopicManager.Endpointsservice
object identity must use the IceStorm  as the category and  as the name.instance name TopicManager
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IceStorm Object Identities

IceStorm hosts one , which implements the  interface. The default identity of this object is well-known object IceStorm::TopicManager
, as seen in the stringified proxy example above. If an application requires the use of multiple IceStorm services,IceStorm/TopicManager

it is a good idea to assign unique identities to the well-known objects by configuring the services with different values for the service
 property, as shown in the following example:.InstanceName

DemoIceStorm.InstanceName=Measurement

This property changes the category of the object's identity, which becomes . The client's configuration mustMeasurement/TopicManager
also be changed to reflect the new identity:

TopicManager.Proxy=Measurement/TopicManager:tcp -p 9999

IceStorm Database Configuration

By default, IceStorm uses a  database to store its persistent state. You can configure IceStorm to use an SQL database instead byFreeze
setting several properties.

When using an SQL database, IceStorm stores its persistent state in two tables:

[_ ]<service-name> <node-id> _SubscriberMap
[_ ]<service-name> <node-id> _LLU

A number of properties control how IceStorm accesses an SQL database:

Ice.Plugin.DB
To use IceStorm with an SQL database, you must set this property to the value .IceStormSqlDB:createSqlDB

Ice.Plugin.SQLThreadHook
This property is necessary to ensure that SQL resources are cleaned up properly and must be set to 

.IceStormService:createThreadHook

.SQL.DatabaseTypeservice

.SQL.DatabaseNameservice

.SQL.HostNameservice

.SQL.Portservice

.SQL.UserNameservice

.SQL.Passwordservice

These properties are described in detail in .IceStorm Properties

See Also

IceStorm Properties
IceBox
Freeze
IceGrid
The Ice Threading Model
Object Adapter Replication
IceStorm Administration
Using an IceStorm Publisher Object
Highly Available IceStorm
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IcePatch2
IcePatch2 is the Ice solution for secure replication of a directory tree.

IcePatch2 supersedes IcePatch, which was a previous version of this service.

IcePatch2 is an efficient file patching service that is easy to configure and use. It includes the following components:

the IcePatch server ( )icepatch2server
a text-based IcePatch client ( )icepatch2client
a text-based tool to compress files and calculate checksums ( )icepatch2calc
a Slice API and C++ convenience library for developing custom IcePatch2 clients

As with all Ice services, IcePatch2 can be configured to use Ice facilities such as  for firewall support and  for secureGlacier2 IceSSL
communication.

IcePatch2 is conceptually quite simple. The server is given responsibility for a file system directory (the ) containing the filesdata directory
and subdirectories that are to be distributed to IcePatch2 clients. You use  to compress these files and to generate anicepatch2calc
index containing a checksum for each file. The server transmits the compressed files to the client, which recreates the data directory and its
contents on the client side, patching any files that have changed since the previous run.

IcePatch2 is efficient: transfer rates for files are comparable to what you would get using .ftp

IcePatch2 addresses a requirement common to both development and deployment scenarios: the safe, secure, and efficient replication of a
directory tree. The IcePatch2 server is easy to configure and efficient. For simple uses, IcePatch2 provides a client that can be used to patch
directory hierarchies from the command line. With the C++ utility library, you can also create custom patch clients if you require better
integration of the client with your application.

Topics

Using icepatch2calc
Running the IcePatch2 Server
Running the IcePatch2 Client
IcePatch2 Object Identities
IcePatch2 Client Utility Library



Ice 3.4.2 Documentation

1562 Copyright © 2011, ZeroC, Inc.

Using icepatch2calc

This page describes how to prepare a file set using .icepatch2calc

On this page:

Preparing a File Set using icepatch2calc
 Command Line Optionsicepatch2calc

Preparing a File Set using icepatch2calc

Suppose we have the directories and files shown below:

An example data directory.

Assume that the file named  is empty (contains zero bytes) and that the remaining files contain data.emptyFile

To prepare this directory for the transmission by the server, you must first run . (The command shown assumes that theicepatch2calc
data directory is the current directory.)

$ icepatch2calc .

After running this command, the contents of the data directory look as follows:

Contents of the data directory after running .icepatch2calc

Note that  compresses the files in the data directory (except for , which is not compressed). Also note that icepatch2calc emptyFile
 creates an additional file,  in the data directory. The contents of this file are as follows:icepatch2calc IcePatch2.sum
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. 3a52ce780950d4d969792a2559cd519d7ee8c727 -1

./bin bd362140a3074eb3edb5e4657561e029092c3d91 -1

./bin/hello 77b11db586a1f20aab8553284241bb3cd532b3d5 70

./emptyFile 082c37fc2641db68d195df83844168f8a464eada 0

./nonEmptyFile aec7301c408e6ce184ae5a34e0ea46e0f0563746 72

Each line in the checksum file contains the name of the  file or directory (relative to the data directory), the checksum of the uncompressed
 file, and a byte count. For directories, the count is  ; for uncompressed files, the count is  ; for compressed files, the countuncompressed -1 0

is the number of bytes in the  file. The lines in the file are sorted alphabetically by their pathname.compressed

If you add files or delete files from the data directory or make changes to existing files, you must stop the server, run  againicepatch2calc
to update the  checksum file, and restart the server.IcePatch2.sum

icepatch2calc Command Line Options

icepatch2calc has the following syntax:

icepatch2calc [options] data_dir [file...]

Normally, you will run  by simply specifying a data directory, in which case the program traverses the data directory,icepatch2calc
compresses all files, and creates an entry in the checksum file for each file and directory.

You can also nominate specific files or directories on the command line. In this case,  only compresses and calculatesicepatch2calc
checksums for the specified files and directories. This is useful if you have a very large file tree and want to refresh the checksum entries for
only a few selected files or directories that you have updated. (In this case, the program does not traverse the entire data directory and,
therefore, will also not detect any updated, added, or deleted files, except in any of the specified directories.) Any file or directory names you
specify on the command line must either be pathnames relative to the data directory or, if you use absolute pathnames, those pathnames
must have the data directory as a prefix.

The command supports the following options:

-h, --help
Displays a help message.

-v, --version
Displays the version number.

-z, --compress
Normally,  scans the data directory and compresses a file only if no compressed version exists, or if theicepatch2calc
compressed version of a file has a modification time that predates that of the uncompressed version. If you specify , the tool-z
re-scans and recompresses the entire data directory, regardless of the time stamps on files. This option is useful if you suspect that
time stamps in the data directory may be incorrect.

-Z, --no-compress
This option allows you to create a client-side checksum file. Do not use this option when creating the checksum file for the server —
the option is for creating a client-side  file for .IcePatch2.sum updates of software on distribution media

-i, --case-insensitive
This option disallows file names that differ only in case. (An error message will be printed if  encounters any filesicepatch2calc
that differ in case only.) This is particularly useful for Unix servers with Windows clients, since Windows folds the case of file names,
and therefore such files would override each other on the Windows client.

-V, --verbose
This option prints a progress message for each file that is compressed and for each checksum that is computed.

See Also

Running the IcePatch2 Client
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Running the IcePatch2 Server

This page describes how to run the IcePatch2 server.

On this page:

Starting icepatch2server
 Command Line Optionsicepatch2server

Starting icepatch2server

Once you have run  on the data directory, you can start the :icepatch2calc icepatch2server

$ icepatch2server .

The server expects the data directory as its single command-line argument. If you omit to specify the data directory, the server uses the
setting of the  property to determine the data directory.IcePatch2.Directory

The server has two different sets of endpoints, one for regular operations, and one for administration:

IcePatch2.Endpoints
This property determines the endpoint at which the server listens for client requests. This property must be specified.

IcePatch2.Admin.Endpoints
If this property is not set, the only way to shut down the server is to kill it somehow, such as by interrupting the server from the
command line. If this property is set, the server offers an additional  interface: IcePatch2::Admin

Slice

interface Admin {
    void shutdown();
};

By default, the identity of this object is . You can change the category of this identity by setting the property IcePatch2/admin
. IcePatch2.InstanceName

Calling the  operation shuts down the server. Note that any client with access to the  interface's port can stop theshutdown Admin
server. Typically, you would set this property to a port that is not accessible to potentially hostile clients.

icepatch2server Command Line Options

Regardless of whether you run the server under Windows or a Unix-like operating system, it provides the following options:

-h, --help
Displays a help message.

-v, --version
Displays a version number.

Additional command line options are supported, including those that allow the server to run as a .Windows service or Unix daemon

See Also

The Server-Side main Function in C++
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1.  
2.  

Running the IcePatch2 Client

This page describes how to un the IcePatch2 client.

On this page:

Patching with icepatch2client
Using  for Partial Updatesicepatch2client
Preventing Deletion of Local Files
Patching Software Installed from Media
Setting Transfer Size for icepatch2client

 Command Line Optionsicepatch2client

Patching with icepatch2client

Once the  is running, you can use  to get a copy of the data directory that is maintained by theicepatch2server icepatch2client
server. For example:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com -p 10000" .

The client expects the data directory as its single command-line argument. As for the server, you must specify the IcePatch2.Endpoints
property so the client knows where to find the server.

If you have not run the client previously, it asks you whether you want to do a thorough patch. You must reply "yes" at this point (or run the
client with the  option to perform a ). The client then executes the following steps:-t thorough update

It traverses the local data directory and creates a local  checksum file.IcePatch2.sum
It obtains the relevant list of checksums from the server and compares it to the list of checksums it has built locally:

The client deletes each file that appears in the local checksum file but not in the server's file.
The client retrieves every file that appears in the server's checksum file, but not in the local checksum file.
The client patches every file that, locally, has a checksum that differs from the corresponding checksum on the server side.

When the client finishes, the contents of the data directory on the client side exactly match the contents of the data directory on the server
side. However, only the uncompressed files are created on the client side — the server stores the compressed version of the files simply to
avoid redundantly compressing a file every time it is retrieved by a client.

On the initial patch, any files that exist in the client's data directory are deleted or, if they have the same name as a file on
the server, will be overwritten with the corresponding file as it exists on the server.

Using  for Partial Updatesicepatch2client

Once you have run the client, the client-side data directory contains an  file that reflects the contents of the data directory. IfIcePatch2.sum
you run  a second time, the program uses the contents of the local checksum file: for each entry in the local checksumicepatch2client
file, the client compares the local checksum with the server-side checksum for the same file; if the checksums differ, the client updates the
corresponding file. In addition, the client deletes any files that appear in the client's checksum file but not in the server's checksum file, and it
fetches any files that appear in the server's checksum file but are missing from the client's checksum file.

If you edit a client-side file and change its contents,  does  realize that this has happened and therefore will not patchicepatch2client not
the file to be in sync with the version on the server again. This is because the client does not automatically recompute the checksum for a file
to see whether the stored checksum in  still agrees with the actual checksum for the current file contents.IcePatch2.sum

Similarly, if you create an arbitrary file on the client side, but that file is not mentioned in either the client's or the server's checksum file, that
file will simply be left alone. In other words, a normal patch operates on the differences between the client's and server's checksum files, not
on any differences that could be detected by examining the contents of the file system.

If you have locally created files that have nothing to do with the distribution or if you have locally modified some files and want to make sure
that those modified files are updated to reflect the contents of the same files on the server side, you must run a thorough patch with the -t
 option. This forces the client to traverse the local data directory and recompute the checksum for each file, and then compare these
checksums against the server-side ones. As a result, if you edit a file locally so it differs from the server-side version,  forces that file to be-t
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updated. Similarly, if you have added a file of your own on the client side that does not have a counterpart on the server side, that file will be
deleted by a thorough patch.

Preventing Deletion of Local Files

By default, a normal patch deletes any files that appear in the client's checksum file but that are absent in the server's checksum file.
Similarly, by default, a thorough patch deletes all files in the local data directory that do not appear in the server's checksum file. If you do not
want this behavior, you can set the  property to 0 (the default value is 1). This prevents deletion of files and directoriesIcePatch2.Remove
that exist only on the client side, whether the patch is a normal patch or a thorough patch.

Patching Software Installed from Media

Suppose you distribute your application on a DVD that clients use to install the software. The DVD might be out of date so, after installation,
the install script needs to perform a patch to update the application to the latest version. The script can perform a thorough patch to do this
but, for large file sets, this is expensive because the client has to recompute the checksum for every file in the distribution.

To avoid this cost, you can place all the files for the distribution into a directory on the server and run  on that directory.icepatch2calc -Z
With the  option,  creates a checksum file with the correct checksums, but with a file size of 0 for each file, that is, the -Z icepatch2calc -Z
 option omits compressing the files (and the considerable cost associated with that). Once you have created the new  file inIcePatch2.sum
this way, you can include it on the DVD and install it on the client along with all the other files.

This guarantees that the checksum file on the client is in agreement with the actual files that were just installed and, therefore, it is sufficient
for the install script to do a normal patch to update the distribution and so avoid the cost of recomputing the checksum for every file.

Setting Transfer Size for icepatch2client

You can set the  property to control the number of bytes that the client fetches per request. The default value isIcePatch2.ChunkSize
100 kilobytes.

icepatch2client Command Line Options

The client supports the following options:

-h, --help
Displays a help message.

-v, --version
Displays a version number.

-t, --thorough
Do a thorough patch, recomputing all checksums.

See Also

Running the IcePatch2 Server
IcePatch2 Properties
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IcePatch2 Object Identities

An IcePatch2 service hosts two well-known objects, which implement the  and  interfacesIcePatch2::FileServer IcePatch2::Admin
and have the default identity  and , respectively. If an application requires the use of multipleIcePatch2/server IcePatch2/admin
IcePatch2 services, it is a good idea to assign unique identities to the well-known objects by configuring the servers with different values for
the  property, as shown in the following example:IcePatch2.InstanceName

$ icepatch2server --IcePatch2.InstanceName=PublicFiles ...

This property changes the category of the objects' identities, which become  and ,PublicFiles/server PublicFiles/admin
respectively. The client's configuration must also be changed to reflect the new identity:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com \
> -p 10000" --IcePatch2.InstanceName=PublicFiles .

See Also

Object Identity
IcePatch2 Properties
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IcePatch2 Client Utility Library

IcePatch2 includes a pair of C++ classes that simplify the task of writing your own patch client, along with a Microsoft Foundation Classes
(MFC) example that shows how to use these classes. You can find the MFC example in the subdirectory  of your Icedemo/IcePatch2/MFC
distribution.

The remainder of this section discusses the classes. To incorporate them into a custom patch client, your program must include the header
file  and link with the  library.IcePatch2/ClientUtil.h IcePatch2

On this page:

Performing a Patch
Constructing a Patcher
Executing the Patch

Monitoring Patch Progress

Performing a Patch

The  class encapsulates all of the patching logic required by a client:Patcher

C++

namespace IcePatch2 {
class Patcher : ... {
public:

    Patcher(const Ice::CommunicatorPtr& communicator,
            const PatcherFeedbackPtr& feedback);

    Patcher(const FileServerPrx& server,
            const PatcherFeedbackPtr& feedback,
            const std::string& dataDir, bool thorough,
            Ice::Int chunkSize, Ice::Int remove);

    bool prepare();

    bool patch(const std::string& dir);

    void finish();
};
typedef IceUtil::Handle<Patcher> PatcherPtr;
}

Constructing a Patcher

The constructors provide two ways of configuring a  instance. The first form obtains the following Patcher IcePatch2 configuration properties
from the supplied communicator:

IcePatch2.InstanceName
IcePatch2.Endpoints
IcePatch2.Directory
IcePatch2.Thorough
IcePatch2.ChunkSize
IcePatch2.Remove

The second constructor accepts arguments that correspond to each of these properties.

Both constructors also accept a  object, which allows the client to  of the patch.PatcherFeedback monitor the progress

Executing the Patch

Patcher provides three methods that reflect the three stages of a patch:
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bool prepare()
The first stage of a patch includes reading the contents of the checksum file (if present), retrieving the file information from the
server, and examining the local data directory to compose the list of files that require updates. The  object isPatcherFeedback
notified incrementally about each local task and has the option of aborting the patch at any time. This method returns true if patch
preparation completed successfully, or false if the  object aborted the patch. If an error occurs,  raisesPatcherFeedback prepare
an exception in the form of a  containing a description of the problem.std::string

bool patch(const std::string& dir)
The second stage of a patch updates the files in the local data directory. If the  argument is an empty string or , dir "." patch
updates the entire data directory. Otherwise,  updates only those files whose path names begin with the path in . Forpatch dir
each file requiring an update,  downloads its compressed data from the server and writes it to the local data directory. The Patcher

 object is notified about the progress of each file and, as in the preparation stage, may abort the patch ifPatcherFeedback
necessary. This method returns true if patching completed successfully, or false if the  object aborted the patch.PatcherFeedback
If an error occurs,  raises an exception in the form of a  containing a description of the problem.patch std::string

void finish()
The final stage of a patch writes a new checksum file to the local data directory. If an error occurs,  raises an exception infinish
the form of a  containing a description of the problem.std::string

The code below demonstrates a simple patch client:

C++

#include <IcePatch2/ClientUtil.h>
...
Ice::CommunicatorPtr communicator = ...;
IcePatch2::PatcherFeedbackPtr feedback = new MyPatcherFeedbackI;
IcePatch2::PatcherPtr patcher =
    new IcePatch2::Patcher(communicator, feedback);

try {
    bool aborted = !patcher->prepare();
    if(!aborted)
        aborted = !patcher->patch("");
    if(!aborted)
        patcher->finish();
    if(aborted)
        cerr << "Patch aborted" << endl;
} catch(const string& reason) {
    cerr << "Patch error: " << reason << endl;
}

For a more sophisticated example, see  in your Ice distribution.demo/IcePatch2/MFC

Monitoring Patch Progress

The class  is an abstract base class that allows you to monitor the progress of a  object. The class declarationPatcherFeedback Patcher
is shown below:
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C++

namespace IcePatch2 {
class PatcherFeedback : ... {
public:

    virtual bool noFileSummary(const std::string& reason) = 0;

    virtual bool checksumStart() = 0;
    virtual bool checksumProgress(const std::string& path) = 0;
    virtual bool checksumEnd() = 0;

    virtual bool fileListStart() = 0;
    virtual bool fileListProgress(Ice::Int percent) = 0;
    virtual bool fileListEnd() = 0;

    virtual bool patchStart(
        const std::string& path, Ice::Long size,
        Ice::Long updated, Ice::Long total) = 0;
    virtual bool patchProgress(
        Ice::Long pos, Ice::Long size,
        Ice::Long updated, Ice::Long total) = 0;
    virtual bool patchEnd() = 0;
};
typedef IceUtil::Handle<PatcherFeedback> PatcherFeedbackPtr;
}

Each of these methods returns a boolean value:

true allows  to continuePatcher
false directs  to abort the patch.Patcher

The methods are described below.

bool noFileSummary(const std::string& reason)
Invoked when the local checksum file cannot be found. Returning true initiates a thorough patch, while returning false causes 

 to return false.Patcher::prepare

bool checksumStart()
bool checksumProgress(const std::string& path)
bool checksumEnd()
Invoked by  during a thorough patch. The  method is invoked as each file's checksum isPatcher::prepare checksumProgress
being computed.

bool fileListStart()
bool fileListProgress(Ice::Int percent)
bool fileListEnd()
Invoked by  when collecting the list of files to be updated. The  argument to Patcher::prepare percent fileListProgress
indicates how much of the collection process has completed so far.

bool patchStart(const std::string& path, Ice::Long size, Ice::Long updated, Ice::Long total)
bool patchProgress(Ice::Long pos, Ice::Long size, Ice::Long updated, Ice::Long total)
bool patchEnd()
For each file that requires updating,  invokes  to indicate the beginning of the patch, Patcher::patch patchStart

 one or more times as chunks of the file are downloaded and written, and finally  to signal thepatchProgress patchEnd
completion of the file's patch. The  argument supplies the path name of the file, and  provides the file's compressed size.path size
The  argument denotes the number of bytes written so far, while  and  represent the cumulative number of bytespos updated total
updated so far and the total number of bytes to be updated, respectively, of the entire patch operation.

See Also

IcePatch2 Properties
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Property Reference
This section provides a reference for all properties used by the Ice run time and its services.

Unless stated otherwise in the description of an individual property, its default value is the empty string. If a property takes a numeric value,
the empty string is interpreted as zero.

Note that Ice reads properties that control the run time and its services only once on start-up, when you create a communicator. This means
that you must set Ice-related properties to their correct values before you create a communicator. If you change the value of an Ice-related
property after that point, it is likely that the new setting will simply be ignored.

Topics

Ice Configuration Property
Ice Trace Properties
Ice Warning Properties
Ice Object Adapter Properties
Ice Administrative Properties
Ice Plug-In Properties
Ice Thread Pool Properties
Ice Default and Override Properties
Ice Proxy Properties
Ice Transport Properties
Ice Miscellaneous Properties
IceSSL Properties
IceBox Properties
IceBoxAdmin Properties
IceGrid Properties
IceGrid Administrative Client Properties
IceStorm Properties
Glacier2 Properties
Freeze Properties
IcePatch2 Properties
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Ice Configuration Property

Ice.Config

Synopsis

--Ice.Config
--Ice.Config=1
--Ice.Config=config_file[,config_file,...]

Description

This property must be set from the command line with one of the options , , or --Ice.Config --Ice.Config=1 --Ice.Config=
.config_file

If the  property is empty or set to 1, the Ice run time examines the contents of the  environment variable to retrieveIce.Config ICE_CONFIG
the path names of one or more configuration files. Otherwise,  must be set to the path names of one or more configuration files,Ice.Config
separated by commas. (Path names can be relative or absolute.) Further property values are read from the configuration files thus specified.

In Java, Ice first attempts to open a configuration file as a . If that attempt fails, Ice opens the configuration file in theclass loader resource
local file system.

Configuration files use a simple  consisting of =  pairs with support for comments and escaping.syntax name value

See Also

Using Configuration Files
Configuration File Syntax
Alternate Property Stores
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Ice Trace Properties

On this page:

Ice.Trace.GC
Ice.Trace.Locator
Ice.Trace.Network
Ice.Trace.Protocol
Ice.Trace.Retry
Ice.Trace.Slicing
Ice.Trace.ThreadPool

Ice.Trace.GC

Synopsis

Ice.Trace.GC=num

Description

Ice for C++ includes a  for Slice objects. This property controls the trace level for the garbage collector:garbage collector

0 No garbage collector trace (default).

1 Show the total number of instances collected, the total number of instances examined, the time spent in the collector in milliseconds,
and the total number of runs of the collector.

2 Like 1, but also produces a trace message for each run of the collector.

Ice.Trace.Locator

Synopsis

Ice.Trace.Locator=num

Description

The Ice run time makes  requests to resolve the endpoints of object adapters and well-known objects. Requests on the locator registrylocator
are used to update object adapter endpoints and set the server process proxy. This property controls the trace level for the Ice run time's
interactions with the locator:

0 No locator trace (default).

1 Trace Ice locator and locator registry requests.

2 Like 1, but also trace the removal of endpoints from the cache.

Ice.Trace.Network

Synopsis

Ice.Trace.Network=num

Description

Controls the trace level for low-level network activities such as connection establishment and read/write operations:

0 No network trace (default).
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1 Trace successful connection establishment and closure.

2 Like 1, but also trace attempts to bind, connect, and disconnect sockets.

3 Like 2, but also trace data transfer, the  for an object adapter, and the current list of local addresses for anpublished endpoints
endpoint that uses the wildcard address.

Ice.Trace.Protocol

Synopsis

Ice.Trace.Protocol=num

Description

Controls the trace level for Ice  mesages:protocol

0 No protocol trace (default).

1 Trace Ice protocol messages.

Ice.Trace.Retry

Synopsis

Ice.Trace.Retry=num

Description

Ice supports  in case of a request failure. This property controls the trace level for retry attempts:automatic retries

0 No request retry trace (default).

1 Trace Ice operation call retries.

2 Also trace Ice endpoint usage.

Ice.Trace.Slicing

Synopsis

Ice.Trace.Slicing=num

Description

The Ice data encoding for  and  enables a receiver to slice an unknown exception or class type to a known type. Thisexceptions classes
property controls the trace level for slicing activities:

0 No trace of slicing activity (default).

1 Trace all exception and class types that are unknown to the receiver and therefore sliced.

Ice.Trace.ThreadPool

Synopsis

Ice.Trace.ThreadPool=num



Ice 3.4.2 Documentation

1575 Copyright © 2011, ZeroC, Inc.

Description

Controls the trace level for the Ice :thread pool

0 No trace of thread pool activity (default).

1 Trace the creation, growing, and shrinking of thread pools.
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Ice Warning Properties

On this page:

Ice.Warn.AMICallback
Ice.Warn.Connections
Ice.Warn.Datagrams
Ice.Warn.Dispatch
Ice.Warn.Endpoints
Ice.Warn.UnknownProperties
Ice.Warn.UnusedProperties

Ice.Warn.AMICallback

Synopsis

Ice.Warn.AMICallback=num

Description

If  is set to a value larger than zero, warnings are printed if an AMI callback raises an exception. The default value is 1.num

Ice.Warn.Connections

Synopsis

Ice.Warn.Connections=num

Description

If  is set to a value larger than zero, Ice applications print warning messages for certain exceptional conditions in connections. Thenum
default value is 0.

Ice.Warn.Datagrams

Synopsis

Ice.Warn.Datagrams=num

Description

If  is set to a value larger than zero, a server prints a warning message if it receives a datagram that exceeds the server's receive buffernum
size. (Note that this condition is not detected by all UDP implementations — some implementations silently drop received datagrams that are
too large.) The default value is 0.

Ice.Warn.Dispatch

Synopsis

Ice.Warn.Dispatch=num

Description

If  is set to a value larger than zero, Ice applications print warning messages for certain exceptions that are raised while an incomingnum
request is dispatched.

Warning levels:
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0 No warnings.

1 Print warnings for unexpected , , C++ exceptions, and Java run-time exceptionsIce::LocalException Ice::UserException
(default).

2 Like 1, but also issue warnings for , , and Ice::ObjectNotExistException Ice::FacetNotExistException
.Ice::OperationNotExistException

Ice.Warn.Endpoints

Synopsis

Ice.Warn.Endpoints=num

Description

If  is set to a value larger than zero, a warning is printed if a stringified proxy contains an endpoint that cannot be parsed. (For example,num
stringified proxies containing SSL endpoints cause this warning in versions of Ice that do not support SSL.) The default value is 1.

Ice.Warn.UnknownProperties

Synopsis

Ice.Warn.UnknownProperties=num

Description

If  is set to a value larger than zero, the Ice run time prints a warning about unknown properties for  and . Thenum object adapters proxies
default value is 1.

Ice.Warn.UnusedProperties

Synopsis

Ice.Warn.UnusedProperties=num

Description

If  is set to a value larger than zero, the Ice run time prints a warning during communicator destruction about properties that were set butnum
not read. This warning is useful for detecting mis-spelled properties, such as . The default value is 0.Filesystem.MaxFilSize
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Ice Object Adapter Properties

On this page:

.ACMadapter

.AdapterIdadapter

.Endpointsadapter

.Locatoradapter

.ProxyOptionsadapter

.PublishedEndpointsadapter

.ReplicaGroupIdadapter

.Routeradapter

.ThreadPool.Serializeadapter

.ThreadPool.Sizeadapter

.ThreadPool.SizeMaxadapter

.ThreadPool.SizeWarnadapter

.ThreadPool.StackSizeadapter

.ThreadPool.ThreadIdleTimeadapter

.ThreadPool.ThreadPriorityadapter

adapter.ACM

Synopsis

.ACM=adapter num

Description

If  is set to a value larger than zero,  (ACM) is enabled for the adapter, causing it to automatically closenum Active Connection Management
incoming connections after they have been idle for  seconds. The default value is the setting of .num Ice.ACM.Server

Note that ACM can cause incoming oneway requests to be silently discarded.

adapter.AdapterId

Synopsis

.AdapterId=adapter id

Description

Specifies an identifier for the object adapter with the name  This identifier must be unique among all object adapters using theadapter.
same  instance. If a locator proxy is defined using  or , this object adapter sets itslocator .Locatoradapter Ice.Default.Locator
endpoints with the locator registry upon activation.

adapter.Endpoints

Synopsis

.Endpoints=adapter endpoints

Description

Sets the  for the object adapter  to . These endpoints specify the network interfaces on which the objectendpoints adapter endpoints
adapter receives requests. Proxies created by the object adapter contain these endpoints, unless the .PublishedEndpointsadapter
property is also specified.
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adapter.Locator

Synopsis

.Locator=adapter locator

Description

Specifies a  for the object adapter with the name . The value is a stringified proxy to the Ice locator interface.locator adapter

As a proxy property, you can configure additional  using properties.aspects of the proxy

adapter.ProxyOptions

Synopsis

.ProxyOptions=adapter options

Description

Specifies the  for proxies created by the object adapter. The value is a string representing the proxy options as they would beproxy options
specified in a stringified proxy. The default value is , that is, proxies created by the object adapter are configured to use twoway"-t"
invocations by default.

adapter.PublishedEndpoints

Synopsis

.PublishedEndpoints=adapter endpoints

Description

When creating a proxy, the object adapter  normally includes the endpoints defined by . If adapter .Endpointsadapter adapter
 is defined, the object adapter  instead. This is useful in many situations, such as when a.PublishedEndpoints publishes these endpoints

server resides behind a port-forwarding firewall, in which case the object adapter's public endpoints must specify the address and port of the
firewall. The  property also influences the proxies created by an object adapter..ProxyOptionsadapter

adapter.ReplicaGroupId

Synopsis

.ReplicaGroupId=adapter id

Description

Identifies the group of  to which this adapter belongs. The replica group is treated as a virtual object adapter, soreplicated object adapters
that an indirect proxy of the form  refers to the object adapters in the group. During binding, a client will attempt to establish aidentity@id
connection to an endpoint of one of the participating object adapters, and automatically try others until a connection is successfully
established or all attempts have failed. Similarly, an outstanding request will, when permitted, automatically fail over to another object
adapter of the replica group upon connection failure. The set of endpoints actually used by the client during binding is determined by the
locator's configuration policies.

Defining a value for this property has no effect unless  is also defined. Furthermore, the locator registry may require.AdapterIdadapter
replica groups to be defined in advance (see ), otherwise IceGrid.Registry.DynamicRegistration

 is raised upon adapter activation. Regardless of whether an object adapter is replicated, it can always beIce.NotRegisteredException
addressed individually in an indirect proxy if it defines a value for ..AdapterIdadapter
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adapter.Router

Synopsis

.Router=adapter router

Description

Specifies a  for the object adapter with the name . The value is a stringified proxy to the Ice router control interface. Defining arouter adapter
router allows the object adapter to receive callbacks from the router over a , thereby avoiding the need for the routerbidirectional connection
to establish a connection back to the object adapter.

A router can only be assigned to one object adapter. Specifying the same router for more than one object adapter results in undefined
behavior. The default value is no router.

As a proxy property, you can configure additional  using properties.aspects of the proxy

adapter.ThreadPool.Serialize

Synopsis

.ThreadPool.Serialize=adapter num

Description

If  is a value greater than zero, the adapter's thread pool serializes all messages from each connection. It is not necessary to enable thisnum
feature in a thread pool whose maximum size is one thread. In a , enabling serialization allows requests from differentmulti-threaded pool
connections to be dispatched concurrently while preserving the order of messages on each connection. Note that serialization has a
signficant impact on latency and throughput. If not defined, the default value is zero.

adapter.ThreadPool.Size

Synopsis

.ThreadPool.Size=adapter num

Description

A communicator creates a default server thread pool that dispatches requests to its object adapters. An object adapter can also be
configured with its own . This is useful in avoiding deadlocks due to thread starvation by ensuring that a minimum number ofthread pool
threads is available for dispatching requests to certain Ice objects.

num is the initial number of threads in the thread pool. The default value is zero, meaning that an object adapter by default uses the
communicator's server thread pool. See  for more information.Ice.ThreadPool. .Sizename

adapter.ThreadPool.SizeMax

Synopsis

.ThreadPool.SizeMax=adapter num

Description

num is the maximum number of threads for the . See  for more information.thread pool Ice.ThreadPool. .SizeMaxname

The default value is the value of , meaning the thread pool can never grow larger than its initial size..ThreadPool.Sizeadapter
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adapter.ThreadPool.SizeWarn

Synopsis

.ThreadPool.SizeWarn=adapter num

Description

Whenever  threads are active in a , a "low on threads" warning is printed. The default value is zero, which disables thenum thread pool
warning.

adapter.ThreadPool.StackSize

Synopsis

.ThreadPool.StackSize=adapter num

Description

num is the stack size (in bytes) of threads in the . The default value is zero, meaning the operating system's default is used.thread pool

adapter.ThreadPool.ThreadIdleTime

Synopsis

.ThreadPool.ThreadIdleTime=adapter num

Description

In a dynamically-sized , Ice reaps a thread after it is idle for  seconds. Setting this property to zero disables idle threadthread pool num
reaping. If not specified, the default value is 60 seconds. See  for more information.Ice.ThreadPool. .ThreadIdleTimename

adapter.ThreadPool.ThreadPriority

Synopsis

.ThreadPool.ThreadPriority=adapter num

Description

num specifes a thread priority for the object adapter's . The object adapter creates its threads with the specified priority. Leavingthread pool
this property unset causes the adapter to create threads with the priority specified by  or, ifIce.ThreadPool.Server.ThreadPriority
that property is unset, the priority specified by .Ice.ThreadPriority
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Ice Administrative Properties

On this page:

Ice.Admin. AdapterProperty
Ice.Admin.DelayCreation
Ice.Admin.Facets
Ice.Admin.InstanceName
Ice.Admin.ServerId

Ice.Admin.AdapterProperty

Synopsis

Ice.Admin. =AdapterProperty value

Description

The Ice run time creates an  named  if  is defined and one of the followingadministrative object adapter Ice.Admin Ice.Admin.Endpoints
are true:

Ice.Admin.InstanceName is defined
Ice.Admin.ServerId and  are definedIce.Default.Locator

The purpose of this object adapter is to host an Ice object whose facets provide  to remote clients. administrative capabilities Adapter
 can be used to configure the  object adapter.properties Ice.Admin

Note that enabling the  object adapter is a security risk because a hostile client could use the administrative object to shut downIce.Admin
the process. As a result, the  for this object adapter should be carefully defined so that only trusted clients are allowed to use it.endpoints

Ice.Admin.DelayCreation

Synopsis

Ice.Admin.DelayCreation=num

Description

If  is a value greater than zero, the Ice run time delays the creation of the  until  is invoked on thenum administrative object adapter getAdmin
communicator. If not specified, the default value is zero, meaning the object adapter is created immediately after all plug-ins are initialized.

Ice.Admin.Facets

Synopsis

Ice.Admin.Facets=  [  ...]name name

Description

Specifies the facets enabled by the , allowing you to  the facets that the administrative object enables by default.administrative object filter
Facet names are delimited by commas or white space. A facet name that contains white space must be enclosed in single or double quotes.
If not specified, all facets are enabled.

Ice.Admin.InstanceName

Synopsis

Ice.Admin.InstanceName=name
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Description

Specifies an identity category for the . If defined, the identity of the object becomes . If not specified, theadministrative object /adminname
default identity category is a UUID.

Ice.Admin.ServerId

Synopsis

Ice.Admin.ServerId=id

Description

Specifies an identifier that uniquely identifies the process when the  object adapter .Ice.Admin registers itself with the locator registry
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Ice Plug-In Properties

On this page:

Ice.InitPlugins
Ice.Plugin. .cppname
Ice.Plugin. .javaname
Ice.Plugin. .clrname
Ice.Plugin. name
Ice.PluginLoadOrder

Ice.InitPlugins

Synopsis

Ice.InitPlugins=num

Description

If  is a value greater than zero, the Ice run time automatically initializes the plug-ins it has loaded. The order in which plug-ins are loadednum
and initialized is determined by . An application may need to set this property to zero in order to Ice.PluginLoadOrder interact directly

 after it has been loaded but before it is initialized. In this case, the application must invoke  on thewith a plug-in initializePlugins
plug-in manager to complete the initialization process. If not defined, the default value is 1.

Ice.Plugin. .cppname

Synopsis

Ice.Plugin. .cpp= [, ]:  [ ]name basename version function args

Description

Defines a C++  to be installed during communicator initialization. The  and optional  components are used toplug-in basename version
construct the name of a DLL or shared library. If no version is supplied, the Ice version is used. The  component is the name of afunction
function with C linkage. For example, the entry point MyPlugin,34:create would imply a shared library name of  onlibMyPlugin.so.34
Unix and  on Windows. Furthermore, if Ice is built on Windows with debugging, a  is automatically appended to theMyPlugin34.dll d
version (for example, ).MyPlugin34d.dll

The function must be declared with external linkage and have the following signature:

C++

<Plugin>* function(const Ice::CommunicatorPtr& communicator,
                   const std::string& name,
                   const Ice::StringSeq& args);

Note that the function must return a pointer and not a smart pointer. The Ice run time deallocates the object when it unloads the library.

Any arguments that follow the entry point are passed to the  method. For example:create

Ice.Plugin.MyPlugin=MyFactory,34:create arg1 arg2

Ice.Plugin. .javaname

Synopsis
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Ice.Plugin. .java=  [ ]name class args

Description

Defines a Java  to be installed during communicator initialization. The specified class must implement the plug-in Ice.PluginFactory
interface. Any arguments that follow the class name are passed to the  method. For example:create

Ice.Plugin.MyPlugin=MyFactory arg1 arg2

Ice.Plugin. .clrname

Synopsis

Ice.Plugin. .clr= :  [ ]name assembly class args

Description

Defines a .NET  to be installed during communicator initialization. The assembly can be a partially or fully qualified assembly name,plug-in
such as , or an assembly DLL name such as .myplugin,Version=0.0.0.0,Culture=neutral myplugin.dll

You  use a fully qualified assembly name to load a plug-in from an assembly in the Global Assembly Cache.must

The specified class must implement the  interface. Any arguments that follow the class name are passed to the Ice.PluginFactory
 method. For example:create

Ice.Plugin.MyPlugin=MyFactory,Version=1.2.3.4,Culture=neutral:MyFactory arg1 arg2

Ice.Plugin.name

Synopsis

Ice.Plugin. =  [ ]name entry_point args

Description

Defines a  to be installed during communicator initialization. The format of  varies by Ice implementation language,plug-in entry_point
therefore this property cannot be defined in a configuration file that is shared by programs in different languages. Ice provides an alternate
syntax that facilitates such sharing:

Ice.Plugin. .cppname  for C++
Ice.Plugin. .javaname  for Java
Ice.Plugin. .clrname  for the .NET Common Language Runtime

Refer to the relevant property for your language mapping for details on the entry point syntax.

Ice.PluginLoadOrder

Synopsis

Ice.PluginLoadOrder=names

Description

Determines the order in which  are loaded. The Ice run time loads the plug-ins in the order they appear in , where each plug-inplug-ins names
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name is separated by a comma or white space. Any plug-ins not mentioned in  are loaded afterward, in an undefined order.names
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Ice Thread Pool Properties

A communicator creates two : the client thread pool dispatches AMI callbacks and incoming requests on thread pools bidirectional
, and the server thread pool dispatches requests to .connections object adapters

This page describes configuration properties for the client and server thread pools. These thread pools are named  and ,Client Server
respectively. In the property descriptions below, replace  with  or .name Client Server

On this page:

Ice.ThreadPool. .Serializename
Ice.ThreadPool. .Sizename
Ice.ThreadPool. .SizeMaxname
Ice.ThreadPool. .SizeWarnname
Ice.ThreadPool. .StackSizename
Ice.ThreadPool. .ThreadIdleTimename
Ice.ThreadPool. .ThreadPriorityname
Ice.ThreadPriority

Ice.ThreadPool. .Serializename

Synopsis

Ice.ThreadPool. .Serialize=name num

Description

If  is a value greater than zero, the  or   serializes all messages from each connection. It is not necessary tonum Client Server thread pool
enable this feature in a thread pool whose maximum size is one thread. In a multi-threaded pool, enabling serialization allows requests from
different connections to be dispatched concurrently while preserving the order of messages on each connection. Note that serialization has a
signficant impact on latency and throughput. If not defined, the default value is zero.

Ice.ThreadPool. .Sizename

Synopsis

Ice.ThreadPool. .Size=name num

Description

Thread pools in Ice can grow and shrink dynamically, based on an average load factor. A thread pool always has at least one thread and
may grow as load increases up to the maximum size specified by . If  is not specified, Ice usesIce.ThreadPool. .SizeMaxname SizeMax
the value of  as the pool's maximum size. The  or  thread pool is initialized with  active threads, but the pool maynum Client Server num
shrink to only one thread during idle periods as determined by .Ice.ThreadPool. .ThreadIdleTimename

If not specified, the default value is one for both properties.

An object adapter can also be configured with its .own thread pool

Note that multiple threads for the client thread pool are only required for , or to allow multiple AMI callbacks to benested AMI invocations
dispatched concurrently.

To monitor the thread pool activities of the Ice run time, enable the  property.Ice.Trace.ThreadPool

Ice.ThreadPool. .SizeMaxname

Synopsis
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Ice.ThreadPool. .SizeMax=name num

Description

num is the maximum number of threads for the  or  . Refer to the  property forClient Server thread pool Ice.ThreadPool. .Sizename
more information on configuring the size of a thread pool.

The default value for  is the value of , meaning the thread pool can never grow larger than its initial size.SizeMax Size

To monitor the thread pool activities of the Ice run time, enable the  property.Ice.Trace.ThreadPool

Ice.ThreadPool. .SizeWarnname

Synopsis

Ice.ThreadPool. .SizeWarn=name num

Description

Whenever  threads are active in the  or  , a "low on threads" warning is printed. The default value is zero,num Client Server thread pool
which disables the warning.

To monitor the thread pool activities of the Ice run time, enable the  property.Ice.Trace.ThreadPool

Ice.ThreadPool. .StackSizename

Synopsis

Ice.ThreadPool. .StackSize=name num

Description

num is the stack size (in bytes) of threads in the  or  . The default value is zero, meaning the operating system'sClient Server thread pool
default is used.

Ice.ThreadPool. .ThreadIdleTimename

Synopsis

Ice.ThreadPool. .ThreadIdleTime=name num

Description

Ice can automatically reap idle threads in the  or   to conserve resources. This property specifies the number ofClient Server thread pool
seconds a thread must be idle before it is reaped. If not specified, the default value is 60 seconds.

To disable the reaping of idle threads, set  to zero. In this situation, the thread pool is initialized with ThreadIdleTime Ice.ThreadPool.
 active threads and may grow to contain  active threads, but the size of the pool never.Sizename Ice.ThreadPool. .SizeMaxname

decreases.

To monitor the thread pool activities of the Ice run time, enable the  property.Ice.Trace.ThreadPool

Ice.ThreadPool. .ThreadPriorityname

Synopsis

Ice.ThreadPool. .ThreadPriority=name num
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Description

num specifies a thread priority for the threads in the  or  . Leaving this property unset causes the run time toClient Server thread pool
create threads with the default priority specified by .Ice.ThreadPriority

This property is unset by default.

You can also override the default priority for a specific object adapter using ..ThreadPool.ThreadPriorityadapter

Ice.ThreadPriority

Synopsis

Ice.ThreadPriority=num

Description

num specifies a thread priority. Threads created by the Ice run time are created with the specified priority by default. Leaving this property
unset causes the run time to create threads with the system default priority. This property is unset by default.

You can separately override the default priorities for the client and server thread pools using Ice.ThreadPool. .ThreadPriorityname
as well as for a specific object adapter using ..ThreadPool.ThreadPriorityadapter
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Ice Default and Override Properties

On this page:

Ice.Default.CollocationOptimized
Ice.Default.EndpointSelection
Ice.Default.Host
Ice.Default.Locator
Ice.Default.LocatorCacheTimeout
Ice.Default.Package
Ice.Default.PreferSecure
Ice.Default.Protocol
Ice.Default.Router
Ice.Override.Compress
Ice.Override.CloseTimeout
Ice.Override.ConnectTimeout
Ice.Override.Secure
Ice.Override.Timeout

Ice.Default.CollocationOptimized

Synopsis

Ice.Default.CollocationOptimized=num

Description

Specifies whether proxy invocations use  by default. When enabled, proxy invocations on a collocated servant (i.e., acollocation optimization
servant whose object adapter was created by the same communicator as the proxy) are made as a direct method call if possible. Collocated
invocations are more efficient because they avoid the overhead of marshaling parameters and sending requests over the network.

Collocation optimization is not supported for asynchronous or Dynamic Ice invocations, nor is it supported in Ice for Python.

If not specified, the default value is 1. Set the property to 0 to disable collocation optimization by default.

Ice.Default.EndpointSelection

Synopsis

Ice.Default.EndpointSelection=policy

Description

This property controls the default  policy for proxies with multiple endpoints. Permissible values are  and .endpoint selection Ordered Random
The default value of this property is .Random

Ice.Default.Host

Synopsis

Ice.Default.Host=host

Description

If an endpoint does not specify a host name (i.e., without a  option), the  value from this property is used instead. The property-h host host
has no default value.

Ice.Default.Locator
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Synopsis

Ice.Default.Locator=locator

Description

Specifies a default  for all proxies and object adapters. The value is a stringified proxy for the  locator object. The defaultlocator IceGrid
locator can be overridden on a proxy using the  . The default value is no locator.ice_locator proxy method

The default identity of the IceGrid locator object is , but this identity is influenced by the IceGrid/Locator IceGrid.InstanceName
property. The locator object is available on the IceGrid client endpoints. For example, suppose IceGrid.Registry.Client.Endpoints
is set as follows:

IceGrid.Registry.Client.Endpoints=tcp -p 12000 -h localhost

In this case, the stringified proxy for the IceGrid locator is:

Ice.Default.Locator=IceGrid/Locator:tcp -p 12000 -h localhost

As a proxy property, you can configure additional  using properties.aspects of the proxy

Ice.Default.LocatorCacheTimeout

Synopsis

Ice.Default.LocatorCacheTimeout=num

Description

Specifies the default  timeout for indirect proxies. If  is set to a value larger than zero, locator cache entries older than locator cache num num
seconds are ignored. If set to 0, the locator cache is not used. If set to , locator cache entries do not expire.-1

Once a cache entry has expired, the Ice run time performs a new locate request to refresh the cache before sending the next invocation;
therefore, the invocation is delayed until the run time has refreshed the entry. If you set  to aIce.BackgroundLocatorCacheUpdates
non-zero value, the lookup to refresh the cache is still performed but happens in the background; this avoids the delay for the first invocation
that follows expiry of a cache entry.

Ice.Default.Package

Synopsis

Ice.Default.Package=package

Description

Ice for Java allows you to  the packaging of generated code. If you use this feature, the Ice run time requires additionalcustomize
configuration in order to successfully unmarshal exceptions and concrete class types. This property specifies a default package to use if
other attempts by the Ice run time to dynamically load a generated class have failed. Also see .Ice.Package.module

Ice.Default.PreferSecure

Synopsis

Ice.Default.PreferSecure=num

Description

Specifies whether secure endpoints are given  in proxies by default. The default value of  is zero, meaning that insecureprecedence num
endpoints are given preference.
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Setting this property to a non-zero value is the equivalent of invoking the   on proxies created byproxy method ice_preferSecure(true)
the Ice run time, such as those returned by  or received as the result of an invocation. Proxies created by methods such as stringToProxy

 inherit the setting of the original proxy. If you want to force all proxies to use only secure endpoints, use ice_oneway
 instead.Ice.Override.Secure

See  for a discussion of secure proxies.Configuring Secure Proxies

Ice.Default.Protocol

Synopsis

Ice.Default.Protocol=protocol

Description

Sets the  that is being used if an endpoint uses default as the protocol specification. The default value is .protocol tcp

Ice.Default.Router

Synopsis

Ice.Default.Router=router

Description

Specifies the default  for all proxies. The value is a stringified proxy for the Glacier2 router control interface. The default router can berouter
overridden on a proxy using the  . The default value is no router.ice_router proxy method

As a proxy property, you can configure additional  using properties.aspects of the proxy

Ice.Override.Compress

Synopsis

Ice.Override.Compress=num

Description

If set, this property overrides  settings in all proxies. If  is set to a value larger than zero, compression is enabled. If zero,compression num
compression is disabled.

The setting of this property is ignored in the server role.

Note that, if a client sets  and sends a compressed request to a server that does not support compression,Ice.Override.Compress=1
the server will close the connection and the client will receive .ConnectionLostException

If a client does not support compression and , the setting is ignored and a warning message is printed on Ice.Override.Compress=1
.stderr

Regardless of the setting of this property, requests smaller than 100 bytes are never compressed.

Ice.Override.CloseTimeout

Synopsis

Ice.Override.CloseTimeout=num

Description

This property overrides timeout settings used to .  is the timeout value in milliseconds, or  for no timeout. If thisclose connections num -1
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property is not defined, then  is used. If  is not defined, the endpoint timeout is used.Ice.Override.Timeout Ice.Override.Timeout

Ice.Override.ConnectTimeout

Synopsis

Ice.Override.ConnectTimeout=num

Description

This property overrides timeout settings used to .  is the timeout value in milliseconds, or  for no timeout. If thisestablish connections num -1
property is not defined, then  is used. If  is not defined, the endpoint timeout is used.Ice.Override.Timeout Ice.Override.Timeout

Ice.Override.Secure

Synopsis

Ice.Override.Secure=num

Description

If set to a value larger than zero, this property overrides security settings in all proxies by allowing only secure endpoints. Defining this
property is equivalent to invoking the   on every proxy. If you wish to give priority to secure endpointsice_secure(true) proxy method
without precluding the use of non-secure endpoints, use . Refer to  for moreIce.Default.PreferSecure Configuring Secure Proxies
information on secure proxies.

Ice.Override.Timeout

Synopsis

Ice.Override.Timeout=num

Description

If set, this property overrides timeout settings in all endpoints.  is the timeout value in milliseconds, or  for no timeout.num -1
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Ice Proxy Properties

The communicator operation  creates a proxy from a group of configuration properties. The argument to propertyToProxy
 is a string representing the base name of the property group (shown as  in the property descriptions below). ThispropertyToProxy name

name must correspond to a property that supplies the stringified form of the proxy. Subordinate properties can be defined to customize the
proxy's local configuration.

The communicator operation  performs the inverse operation, that is, returns the property group for a proxy.proxyToProperty

On this page:

name
.CollocationOptimizedname
.ConnectionCachedname
.EndpointSelectionname
.Locatorname
.LocatorCacheTimeoutname
.PreferSecurename
.Routername

name

Synopsis

=name proxy

Description

The base property of the group with an application-specific  supplying the stringified representation of a proxy. Use the communicatorname
operation  to retrieve the property and convert it into a proxy.propertyToProxy

name.CollocationOptimized

Synopsis

.CollocationOptimized=name num

Description

If  is a value greater than zero, the proxy is configured to use  when possible. Defining this property is equivalent tonum collocated invocations
invoking the  .ice_collocationOptimized proxy method

name.ConnectionCached

Synopsis

.ConnectionCached=name num

Description

If  is a value greater than zero, the proxy  its chosen connection for use in subsequent requests. Defining this property isnum caches
equivalent to invoking the  .ice_connectionCached proxy method

name.EndpointSelection
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Synopsis

.EndpointSelection=name type

Description

Specifies the proxy's  type. Legal values are  and . Defining this property is equivalent to invoking the endpoint selection Random Ordered
 .ice_endpointSelection proxy method

name.Locator

Synopsis

.Locator=name proxy

Description

Specifies the proxy of the  to be used by this proxy. Defining this property is equivalent to invoking the  .locator ice_locator proxy method

This is a proxy property, so you can configure additional local aspects of the proxy with subordinate properties. For example:

MyProxy.Locator=...
MyProxy.Locator.EndpointSelection=Ordered

name.LocatorCacheTimeout

Synopsis

.LocatorCacheTimeout=name num

Description

Specifies the  timeout to be used by this proxy. Defining this property is equivalent to invoking the locator cache
 .ice_locatorCacheTimeout proxy method

name.PreferSecure

Synopsis

.PreferSecure=name num

Description

If  is a value greater than zero, the proxy gives  to secure endpoints. If not defined, the proxy uses the value of num precedence
.Ice.Default.PreferSecure

Defining this property is equivalent to invoking the  .ice_preferSecure proxy method

name.Router

Synopsis

.Router=name proxy
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Description

Specifies the proxy of the  to be used by this proxy. Defining this property is equivalent to invoking the  .router ice_router proxy method

This is a proxy property, so you can configure additional local aspects of the proxy with subordinate properties. For example:

MyProxy.Router=...
MyProxy.Router.PreferSecure=1
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Ice Transport Properties

On this page:

Ice.IPv4
Ice.IPv6
Ice.TCP.Backlog
Ice.TCP.RcvSize
Ice.TCP.SndSize
Ice.UDP.RcvSize
Ice.UDP.SndSize

Ice.IPv4

Synopsis

Ice.IPv4=num

Description

Specifies whether Ice uses IPv4. If  is a value greater than zero, IPv4 is enabled. If not specified, the default value is 1.num

Ice.IPv6

Synopsis

Ice.IPv6=num

Description

Specifies whether Ice uses IPv6. If  is a value greater than zero, IPv6 is enabled. If not specified, the default value is zero.num

Ice.TCP.Backlog

Synopsis

Ice.TCP.Backlog=num

Description

Specifies the size of the listen queue for each TCP or SSL server endpoint. If not defined, the default value for C++ programs uses the value
of  if present, or  otherwise. In Java and .NET, the default value is 511.SOMAXCONN 511

Ice.TCP.RcvSize

Synopsis

Ice.TCP.RcvSize=num

Description

This property sets the TCP receive buffer size to the specified value in bytes. The default value depends on the configuration of the local
TCP stack. (A common default values is 65535 bytes.)

The OS may impose lower and upper limits on the receive buffer size or otherwise adjust the buffer size. If a limit is requested that is lower
than the OS-imposed minimum, the value is silently adjusted to the OS-imposed minimum. If a limit is requested that is larger than the
OS-imposed maximum, the value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning showing the requested size and
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the adjusted size.

Ice.TCP.SndSize

Synopsis

Ice.TCP.SndSize=num

Description

This property sets the TCP send buffer size to the specified value in bytes. The default value depends on the configuration of the local TCP
stack. (A common default values is 65535 bytes.)

The OS may impose lower and upper limits on the send buffer size or otherwise adjust the buffer size. If a limit is requested that is lower
than the OS-imposed minimum, the value is silently adjusted to the OS-imposed minimum. If a limit is requested that is larger than the
OS-imposed maximum, the value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning showing the requested size and
the adjusted size.

Ice.UDP.RcvSize

Synopsis

Ice.UDP.RcvSize=num

Description

This property sets the UDP receive buffer size to the specified value in bytes. Ice messages larger than  bytes cause a  - 28num
. The default value depends on the configuration of the local UDP stack. (Common default values are 65535DatagramLimitException

and 8192 bytes.)

The OS may impose lower and upper limits on the receive buffer size or otherwise adjust the buffer size. If a limit is requested that is lower
than the OS-imposed minimum, the value is silently adjusted to the OS-imposed minimum. If a limit is requested that is larger than the
OS-imposed maximum, the value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning showing the requested size and
the adjusted size.

Values less than 28 are ignored.

Note that, on many operating systems, it is possible to set a buffer size greater than 65535. Such settings do not change the hard limit of
65507 bytes for the payload of a UDP packet, but merely affect how much data can be buffered by the kernel.

Settings less than 65535 limit the size of Ice datagrams as well as adjust the kernel buffer sizes.

Ice.UDP.SndSize

Synopsis

Ice.UDP.SndSize=num

Description

This property sets the UDP send buffer size to the specified value in bytes. Ice messages larger than  bytes cause a  - 28num
. The default value depends on the configuration of the local UDP stack. (Common default values are 65535DatagramLimitException

and 8192 bytes.)

The OS may impose lower and upper limits on the send buffer size or otherwise adjust the buffer size. If a limit is requested that is lower
than the OS-imposed minimum, the value is silently adjusted to the OS-imposed minimum. If a limit is requested that is larger than the
OS-imposed maximum, the value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning showing the requested size and
the adjusted size.

Values less than 28 are ignored.
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Note that, on many operating systems, it is possible to set a buffer size greater than 65535. Such settings do not change the hard limit of
65507 bytes for the payload of a UDP packet, but merely affect how much data can be buffered by the kernel.

Settings less than 65535 limit the size of Ice datagrams as well as adjust the kernel buffer sizes.
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Ice Miscellaneous Properties

On this page:

Ice.ACM.Client
Ice.ACM.Server
Ice.BackgroundLocatorCacheUpdates
Ice.BatchAutoFlush
Ice.CacheMessageBuffers
Ice.ChangeUser
Ice.Compression.Level
Ice.ConsoleListener
Ice.EventLog.Source
Ice.FactoryAssemblies
Ice.GC.Interval
Ice.ImplicitContext
Ice.LogFile
Ice.MessageSizeMax
Ice.MonitorConnections
Ice.Nohup
Ice.NullHandleAbort
Ice.Package. module
Ice.PrintAdapterReady
Ice.PrintProcessId
Ice.PrintStackTraces
Ice.ProgramName
Ice.RetryIntervals
Ice.ServerIdleTime
Ice.StdErr
Ice.StdOut
Ice.SyslogFacility
Ice.UseSyslog

Ice.ACM.Client

Synopsis

Ice.ACM.Client=num

Description

If  is set to a value larger than zero, client-side  (ACM) is enabled. This means that connections arenum Active Connection Management
automatically closed by the client after they have been idle for  seconds. This is transparent to applications because connections closednum
by ACM are automatically reestablished if they are needed again. The default value is , meaning that idle connections are automatically60
closed after one minute.

Applications may need to disable client-side ACM in certain situations, such as when using . You can disable ACMbidirectional connections
by setting this property to zero.

Ice.ACM.Server

Synopsis

Ice.ACM.Server=num

Description

This property is the server-side equivalent of . If  is set to a value larger than zero, server-side Ice.ACM.Client num Active Connection
 (ACM) is enabled, in which the server automatically closes an incoming connection after it has been idle for  seconds. TheManagement num

default value is , meaning that server-side ACM is disabled by default.0

Server-side ACM can cause incoming oneway requests to be silently discarded.
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Ice.BackgroundLocatorCacheUpdates

Synopsis

Ice.BackgroundLocatorCacheUpdates=num

Description

If  is set to zero (the default), an invocation on an indirect proxy whose endpoints are older than the configured  timeoutnum locator cache
triggers a locator cache update; the run time delays the invocation until the new endpoints are returned by the locator.

If  is set to a value larger than zero, an invocation on an indirect proxy with expired endpoints still triggers a locator cache update, but thenum
update is performed in the background, and the run time uses the expired endpoints for the invocation. This avoids delaying the first
invocation that follows expiry of a cache entry.

Ice.BatchAutoFlush

Synopsis

Ice.BatchAutoFlush=num

Description

This property controls how the Ice run time deals with flushing of . If  is set to a non-zero value (the default), the run timebatch messages num
automatically forces a flush of the current batch when a new message is added to a batch and that message would cause the batch to
exceed . If  is set to zero, batches must be flushed explicitly by the application; in this case, if the applicationIce.MessageSizeMax num
adds more messages to a batch than permitted by , the application receives a  when itIce.MessageSizeMax MemoryLimitException
flushes the batch.

Ice.CacheMessageBuffers

Synopsis

Ice.CacheMessageBuffers=num (Java, .NET)

Description

If  is a value greater than zero, the Ice run time caches message buffers for future reuse. This can improve performance and reduce thenum
amount of garbage produced by Ice internals that the garbage collector would eventually spend time to reclaim. However, for applications
that exchange very large messages, this cache may consume excessive amounts of memory and therefore should be disabled by setting
this property to zero.

Platform Notes

Java
Ice allocates non-direct message buffers when this property is set to 1 and direct message buffers when set to 2. Use of direct
message buffers minimizes copying and typically results in improved throughput. If not defined, the default value is 2.

.NET
If not defined, the default value is 1.

Ice.ChangeUser

Synopsis

Ice.ChangeUser=user (C++ & Unix only)

Description

If set, Ice changes the user and group id to the respective ids of  in . This only works if the Ice application is executed byuser /etc/passwd
the super-user.
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Ice.Compression.Level

Synopsis

Ice.Compression.Level=num

Description

Specifies the bzip2 compression level to use when . Legal values for  are  to , where  represents thecompressing protocol messages num 1 9 1
fastest compression and  represents the best compression. Note that higher levels cause the bzip2 algorithm to devote more resources to9
the compression effort, and may not result in a significant improvement over lower levels. If not specified, the default value is  .1

Ice.ConsoleListener

Synopsis

Ice.ConsoleListener=num (.NET)

Description

If  is non-zero, the Ice run time installs a  that writes its messages to . If  is zero, logging isnum ConsoleTraceListener stderr num
disabled. Note that the setting of  overrides this property: if  is set, messages are written to the log fileIce.LogFile Ice.LogFile
regardless of the setting of .Ice.ConsoleListener

Ice.EventLog.Source

Synopsis

Ice.EventLog.Source=name (C++ & Windows only)

Description

Specifies the name of an event log source to be used by a Windows service that subclasses . The value of  representsIce::Service name
a subkey of the  registry key. An application (or administrator) typically prepares the registry key when the service is installed. IfEventlog
no matching registry key is found, Windows logs events in the  log. Any backslashes in  are silently converted to forwardApplication name
slashes. If not defined,  uses the service name as specified by the  option.Ice::Service --service

Ice.FactoryAssemblies

Synopsis

Ice.FactoryAssemblies=  [  ...]assembly assembly  (.NET CF)

Description

The  version of Ice for .NET is unable to automatically discover all dependent assemblies during program startup. ToCompact Framework
assist the Ice run time in locating user exceptions and concrete Slice classes, you must explicitly list the assemblies that contain
Slice-generated code. The value of this property is a whitespace-separated list of assembly names, which may be simple names (such as 

) or fully-qualified names (such as ). Do not use spacesclient client,Version=1.0.0.0,Culture=neutral,PublicKeyToken=...
in a fully-qualified assembly name.

When searching for a class, Ice for .NET CF first checks in the assemblies specified by this property. If the type is not found, Ice
automatically looks in the standard Ice assemblies ( , , , , , and ). This means it is notIce Glacier2 IceBox IceGrid IcePatch2 IceStorm
necessary for you to explicitly include the standard Ice assemblies in this property.

Note that the program itself is also considered an assembly. If you compiled the main program directly with Slice-generated code, your 
 property must include the program itself if the generated code includes user exceptions or concrete classes. ForIce.FactoryAssemblies

simple build scenarios in which all generated code is compiled directly into the executable, the following configuration setting is sufficient:
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Ice.FactoryAssemblies=client

This example assumes the executable is named . On the other hand, if Slice-generated code is also compiled into a dependentclient.exe
assembly, your configuration might look like this instead:

Ice.FactoryAssemblies=client MyOtherAssembly

Failing to define  can cause the Ice run time in the receiver to raise  or Ice.FactoryAssemblies NoObjectFactoryException
. If you are experiencing either of these exceptions, verify that your assemblies are configuredUnmarshalOutOfBoundsException

correctly.

Ice.GC.Interval

Synopsis

Ice.GC.Interval=num (C++)

Description

Ice for C++ includes a  for Slice objects. This property determines the frequency with which the garbage collector runs. Ifgarbage collector
the interval is set to zero (the default), no collector thread is created. Otherwise, the collector thread runs every  seconds. You can tracenum
the garbage collector's activities by setting the  property.Ice.Trace.GC

Ice.ImplicitContext

Synopsis

Ice.ImplicitContext=type

Description

Specifies whether a communicator has an  and, if so, at what scope the context applies. Legal values for this propertyimplicit request context
are  (equivalent to the empty string), , and . If not specified, the default value is .None PerThread Shared None

Ice.LogFile

Synopsis

Ice.LogFile=file

Description

Replaces the communicator's  with a simple file-based logger implementation. This property does not affect the default logger per-process
. The logger creates the specified file if necessary, otherwise it appends to the file. If the logger is unable to open the file, thelogger

application receives an  during . If a logger object is supplied in the InitializationException communicator initialization
 argument during communicator initialization, it takes precedence over this property.InitializationData

The logger does not provide any built-in support for log file maintenance (such as log rotation), but it can coexist with system tools such as 
.logrotate

Ice.MessageSizeMax

Synopsis

Ice.MessageSizeMax=num
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Description

This property controls the maximum size (in kilobytes) of an uncompressed protocol message that is accepted or sent by the Ice run time.
The size includes the size of the Ice protocol header. The default size is  (  Megabyte). Settings with a value less than  are ignored.1024 1 1

If a client sends a message that exceeds the client's , or the server returns a reply that exceeds the client's Ice.MessageSizeMax
, the client receives a .Ice.MessageSizeMax MemoryLimitException

If a client sends a message that exceeds the server's , the server immediately closes its connection, so the clientIce.MessageSizeMax
receives a  in that case. In addition, the server logs a  if ConnectionLostException MemoryLimitException

 is set.Ice.Warn.Connections

If the server returns a reply that exceeds the server's , the server logs a  (if Ice.MessageSizeMax MemoryLimitException
 is set) but does not close its connection to the client. The client receives an  in thisIce.Warn.Connections UnknownLocalException

case.

Ice.MonitorConnections

Synopsis

Ice.MonitorConnections=num

Description

If  (ACM) is enabled, the Ice run time scans for idle connections to be closed once every  seconds. If youActive Connection Management num
do not set this property or set  to zero or a negative value, the run time applies a heuristic to determine how often to scan for idlenum
connections: the default scanning interval is the 10% of smallest configured ACM timeout, with a minimum of 5 seconds, and a maximum of
5 minutes.

Ice.Nohup

Synopsis

Ice.Nohup=num

Description

If  is set to a value larger than zero, the  convenience class (as well as the  class in C++) ignore num Application Ice::Service SIGHUP
on Unix and  on Windows. As a result, an application that sets  continues to run if the user that startedCTRL_LOGOFF_EVENT Ice.Nohup
the application logs off. The default value for  is  , and the default value for  is  .Application 0 Ice::Service 1

Ice.NullHandleAbort

Synopsis

Ice.NullHandleAbort=num

Description

If  is set to a value larger than zero, invoking an operation using a null  causes the program to abort immediately instead ofnum smart pointer
raising .IceUtil::NullHandleException

Ice.Package.module

Synopsis

Ice.Package. =module package (Java)

Description
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Ice for Java allows you to  the packaging of generated code. If you use this feature, the Ice run time requires additionalcustomize
configuration in order to successfully unmarshal exceptions and concrete class types. This property associates a top-level Slice  withmodule
a Java . If all top-level modules are generated into the same user-defined package, it is easier to use package Ice.Default.Package
instead.

Ice.PrintAdapterReady

Synopsis

Ice.PrintAdapterReady=num

Description

If  is set to a value larger than zero, an object adapter prints "  ready" on standard output after activation is complete. Thisnum adapter_name
is useful for scripts that need to wait until an object adapter is ready to be used.

Ice.PrintProcessId

Synopsis

Ice.PrintProcessId=num

Description

If  is set to a value larger than zero, the process ID is printed on standard output upon startup.num

Ice.PrintStackTraces

Synopsis

Ice.PrintStackTraces=num

Description

If  is set to a value larger than zero, inserting an exception that derives from  into a  (such as num IceUtil::Exception logger helper class
) also displays the exception's stack trace. If not defined, the default value depends on how the Ice run time is compiled: 0Ice::Warning

for an optimized build and 1 for a debug build. Stack traces are only available when Ice is compiled with GCC; this property has no effect for
other compilers.

Ice.ProgramName

Synopsis

Ice.ProgramName=name

Description

name is the program name, which is  from  (C++) and from set automatically argv[0] AppDomain.CurrentDomain.FriendlyName
(.NET) during initialization. For Java,  is initialized to the empty string. The default name can be overridden by settingIce.ProgramName
this property.

Ice.RetryIntervals

Synopsis

Ice.RetryIntervals=  [  ...]num num

Description
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This property defines the number of times an operation is  and the delay between each retry. For example, if theautomatically retried
property is set to , the operation is retried 3 times: immediately after the first failure, again after waiting 100ms after the second0 100 500
failure, and again after waiting 500ms after the third failure. The default value ( ) means Ice retries once immediately. If set to , no retry0 -1
occurs.

Ice.ServerIdleTime

Synopsis

Ice.ServerIdleTime=num

Description

If  is set to a value larger than zero, Ice automatically calls  once the communicator has been idle for num Communicator::shutdown num
seconds. This shuts down the communicator's server side and causes all threads waiting in  to return.Communicator::waitForShutdown
After that, a server will typically do some clean-up work before exiting. The default value is zero, meaning that the server will not shut down
automatically. This property is often used for servers that are automatically .activated by IceGrid

Ice.StdErr

Synopsis

Ice.StdErr=filename

Description

If  is not empty, the standard error stream of this process is redirected to this file, in append mode. This property is checked onlyfilename
for the first communicator that is created in a process.

Ice.StdOut

Synopsis

Ice.StdOut=filename

Description

If  is not empty, the standard output stream of this process is redirected to this file, in append mode. This property is checked onlyfilename
for the first communicator created in a process.

Ice.SyslogFacility

Synopsis

Ice.SyslogFacility=string (Unix only)

Description

This property sets the syslog facility to . This property has no effect if  is not set.string Ice.UseSyslog

string can be any of syslog facilities: LOG_AUTH, LOG_AUTHPRIV, LOG_CRON, LOG_DAEMON, LOG_FTP, LOG_KERN,
LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5, LOG_LOCAL6, LOG_LOCAL7,

.LOG_LPR, LOG_MAIL, LOG_NEWS, LOG_SYSLOG, LOG_USER, LOG_UUCP

The default value is .LOG_USER

Ice.UseSyslog
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Synopsis

Ice.UseSyslog=num (Unix only)

Description

If  is set to a value larger than zero, a special  is installed that logs to the  service instead of standard error. The identifiernum logger syslog
for  is the value of . Use  to select a  facility.syslog Ice.ProgramName Ice.SyslogFacility syslog
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IceSSL Properties

On this page:

IceSSL.Alias
IceSSL.CertAuthDir
IceSSL.CertAuthFile
IceSSL.CertFile
IceSSL.CertVerifier
IceSSL.CheckCertName
IceSSL.CheckCRL
IceSSL.Ciphers
IceSSL.DefaultDir
IceSSL.DH. bits
IceSSL.EntropyDaemon
IceSSL.FindCert. . location name
IceSSL.ImportCert. . location name
IceSSL.Keychain
IceSSL.KeychainPassword
IceSSL.KeyFile
IceSSL.Keystore
IceSSL.KeystorePassword
IceSSL.KeystoreType
IceSSL.Password
IceSSL.PasswordCallback
IceSSL.PasswordRetryMax
IceSSL.Protocols
IceSSL.Random
IceSSL.Trace.Security
IceSSL.TrustOnly
IceSSL.TrustOnly.Client
IceSSL.TrustOnly.Server
IceSSL.TrustOnly.Server. AdapterName
IceSSL.Truststore
IceSSL.TruststorePassword
IceSSL.TruststoreType
IceSSL.VerifyDepthMax
IceSSL.VerifyPeer

IceSSL.Alias

Synopsis

IceSSL.Alias=alias (Java)

Description

Selects a particular certificate from the key store specified by . The certificate identified by  is presented to theIceSSL.Keystore alias
peer request during authentication.

IceSSL.CertAuthDir

Synopsis

IceSSL.CertAuthDir=path (C++)

Description

Specifies the  containing the certificates of trusted certificate authorities. The directory must be prepared in advance using thedirectory
OpenSSL utility . The path name may be specified relative to the default directory defined by .c_rehash IceSSL.DefaultDir

IceSSL.CertAuthFile
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Synopsis

IceSSL.CertAuthFile=file (C++, Ice Touch)

Description

Specifies a file containing the certificate of a trusted certificate authority. The file name may be specified relative to the default directory
defined by .IceSSL.DefaultDir

Platform Notes

C++

The certificate must be encoded using the PEM format.

Ice Touch

The certificate must be encoded using the DER format.

If  is also defined, IceSSL attempts to open the specified CA certificate file as  in theIceSSL.DefaultDir Resources/ /DefaultDir file
application's resource bundle and as  in the file system./DefaultDir file

If  is not defined, IceSSL attempts to open the specified CA certificate file as  in the application'sIceSSL.DefaultDir Resources/file
resource bundle and as  in the file system.file

If this property is not defined, IceSSL looks for suitable CA certificates in the user's keychains and in the system keychain.

IceSSL.CertFile

Synopsis

IceSSL.CertFile=file (.NET, Ice Touch)
 (C++ & Unix only)IceSSL.CertFile= [: ]file file
 (C++ & Windows only)IceSSL.CertFile= [; ]file file

Description

Specifies a file that contains the program's certificate, and may also contain the corresponding private key. The file name may be specified
relative to the default directory defined by .IceSSL.DefaultDir

Platform Notes

C++

The private key is optional; if not present, the file containing the private key must be identified by . If a password isIceSSL.KeyFile
required, OpenSSL will prompt the user at the terminal unless the application has installed a  or supplied the passwordpassword handler
using . The certificate must be encoded using the PEM format.IceSSL.Password

OpenSSL allows you to specify certificates for both RSA and DSA. To specify both certificates, separate the filenames using the platform's
path separator character.

.NET

The file must use the PFX (PKCS#12) format and contain the certificate and its private key. The password for the file must be supplied using 
.IceSSL.Password

Ice Touch

The file must use the PFX (PKCS#12) format and contain the certificate and its private key. The password for the file must be supplied using 
. The certificate is imported into the keychain identified by the  property.IceSSL.Password IceSSL.Keychain

If  is also defined, IceSSL attempts to open the specified certificate file as  in theIceSSL.DefaultDir Resources/ /DefaultDir file
application's resource bundle and as  in the file system./DefaultDir file
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If  is not defined, IceSSL attempts to open the specified certificate file as  in the application'sIceSSL.DefaultDir Resources/file
resource bundle and as  in the file system.file

IceSSL.CertVerifier

Synopsis

IceSSL.CertVerifier=classname (Java, .NET)

Description

Specifies the name of a Java or .NET class that implements the  interface for performingIceSSL.CertificateVerifier
application-defined .certificate verification

IceSSL.CheckCertName

Synopsis

IceSSL.CheckCertName=num

Description

If  is a value greater than zero, IceSSL attempts to match the server's host name as specified in the proxy endpoint against the commonnum
name component of the server certificate's subject name. If no match is found, IceSSL attempts to match the host name against the DNS
and IP address fields of the server certificate's subject alternative name. The search does not issue any DNS queries but simply performs a
case-insensitive string match. The server's certificate is accepted if its common name or any of its DNS or IP addresses matches the host
name in the proxy endpoint. IceSSL skips this validation step if the server does not supply a certificate, or if the proxy endpoint does not
include a host name and  is not defined. This property has no affect on a server's validation of a client's certificate. If noIce.Default.Host
match is found, IceSSL aborts the connection attempt and raises an exception. If not defined, the default value is zero.

IceSSL.CheckCRL

Synopsis

IceSSL.CheckCRL=num (.NET)

Description

If  is a value greater than zero, IceSSL checks the certificate revocation list to determine if the peer's certificate has been revoked. If so,num
IceSSL aborts the connection and raises an exception.

IceSSL.Ciphers

Synopsis

IceSSL.Ciphers=ciphers (C++, Java)

Description

Specifies the cipher suites that IceSSL is allowed to negotiate. A cipher suite is a set of algorithms that satisfies the four requirements for
establishing a secure connection: signing and authentication, key exchange, secure hashing, and encryption. Some algorithms satisfy more
than one requirement, and there are many possible combinations.

Platform Notes

C++

The value of this attribute is given directly to the OpenSSL library and is dependent on how OpenSSL was compiled. You can obtain a
complete list of the supported cipher suites using the command  . This command will likely generate a long list. To simplifyopenssl ciphers
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the selection process, OpenSSL supports several classes of ciphers. Classes and ciphers can be excluded by prefixing them with an
exclamation point. The special keyword  sorts the cipher list in order of their strength, so that SSL gives preference to the more@STRENGTH
secure ciphers when negotiating a cipher suite. The  keyword must be the last element in the list. The classes are:@STRENGTH

ALL Enables all supported cipher suites. This class should be used with caution, as it may enable low-security cipher suites.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.

Here is an example of a reasonable setting:

ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

This value excludes the ciphers with low bit-strength and known problems, and orders the remaining ciphers according to their strength. Note
that no warning is given if an unrecognized cipher is specified.

Java

The property value is interpreted as a list of tokens delimited by white space. The plug-in executes the tokens in the order of appearance in
order to assemble the list of enabled cipher suites. The table below describes the tokens:

NONE Disables all cipher suites. If specified, it must be the first token in the list.

ALL Enables all supported cipher suites. If specified, it must be the first token in the list. This token should be used with caution, as it
may enable low-security cipher suites.

NAME Enables the cipher suite matching the given name.

!
NAME

Disables the cipher suite matching the given name.

(EXP) Enables cipher suites whose names contain the regular expression . For example, the value   selectsEXP NONE (.*DH_anon.*)
only cipher suites that use anonymous Diffie-Hellman authentication.

!(
)EXP

Disables cipher suites whose names contain the regular expression . For example, the value EXP ALL !(.*DH_anon.*)
enables all cipher suites except those that use anonymous Diffie-Hellman authentication.

If not specified, the plug-in uses the security provider's default cipher suites. Enable  to determine which cipherIceSSL.Trace.Security
suites are enabled by default, or to verify your cipher suite configuration.

IceSSL.DefaultDir

Synopsis

IceSSL.DefaultDir=path

Description

Specifies the default directory in which to look for certificate, key, and key store files. See the descriptions of the relevant properties for more
information.

IceSSL.DH.bits

Synopsis

IceSSL.DH. =bits file (C++)

Description
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Specifies a  containing Diffie Hellman parameters whose key length is , as shown in the following example:file bits

IceSSL.DH.1024=dhparams1024.pem

IceSSL supplies default parameters for key lengths of 512, 1024, 2048, and 4096 bits, which are used if no user-defined parameters of the
desired key length are specified. The file name may be specified relative to the default directory defined by . TheIceSSL.DefaultDir
parameters must be encoded using the PEM format.

IceSSL.EntropyDaemon

Synopsis

IceSSL.EntropyDaemon=file (C++)

Description

Specifies a Unix domain socket for the entropy gathering daemon, from which OpenSSL gathers entropy data to initialize its random number
generator.

IceSSL.FindCert. .location name

Synopsis

IceSSL.FindCert. . =location name criteria (.NET)

Description

Queries the certificate repository for matching certificates and adds them to the application's collection of certificates that are used for
authentication. The value for  must be  or .location LocalMachine CurrentUser

The  corresponds to the .NET enumeration  and may be one of the following values: , , name StoreName AddressBook AuthRoot
, , , , , . It is also possible to use an arbitrary valueCertificateAuthority Disallowed My Root TrustedPeople TrustedPublisher

for .name

The value for  may be , in which case all of the certificates in the store are selected. Otherwise,  must be one or more criteria * criteria
 pairs separated by white space. The valid field names are described below::field value

Issuer Matches a substring of the issuer's name.

IssuerDN Matches the issuer's entire distinguished name.

Serial Matches the certificate's serial number.

Subject Matches a substring of the subject's name.

SubjectDN Matches the subject's entire distinguished name.

SubjectKeyId Matches the certificate's subject key identifier.

Thumbprint Matches the certificate's thumbprint.

The field names are case-insensitive. If multiple criteria are specified, only certificates that match all criteria are selected. Values must be
enclosed in single or double quotes to preserve white space.

Multiple occurrences of the property are allowed, but only one query is possible for each location/name combination. The certificates from all
queries are combined to form the certificate collection, including a certificate loaded using . Here are some sampleIceSSL.CertFile
queries:

IceSSL.FindCert.LocalMachine.My=issuer:verisign serial:219336
IceSSL.FindCert.CurrentUser.Root=subject:"Joe's Certificate"
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A server requires a certificate for authentication purposes, therefore IceSSL selects the first certificate in the accumulated collection. This is
normally the certificate loaded via , if that property was defined. Otherwise, one of the certificates from IceSSL.CertFile

 is selected. Since IceSSL does not guarantee the order in which it evaluates IceSSL.FindCert. .location name IceSSL.FindCert.
 properties, it is recommended that the criteria select only one certificate..location name

IceSSL.ImportCert. .location name

IceSSL.ImportCert. . = [; ]location name file password  (.NET)

Description

Imports the certificate in  into the specified certificate store. The value for  must be  or . The file location LocalMachine CurrentUser
 corresponds to the .NET enumeration  and may be one of the following values: , , name StoreName AddressBook AuthRoot

, , , , , . It is also possible to use an arbitrary valueCertificateAuthority Disallowed My Root TrustedPeople TrustedPublisher
for , which adds a new store to the repository. If you are importing a trusted CA certificate, it must be added to  or .name AuthRoot Root

The  is optional; it is only necessary if the certificate file also contains a private key or uses a secure storage format such as PFX.password

The file name and password may be enclosed in single or double quotes if necessary. The file name may be specified relative to the default
directory defined by .IceSSL.DefaultDir

Importing a certificate into  requires administrator privileges, while importing into  may cause the platform toLocalMachine CurrentUser
prompt the user for confirmation.

IceSSL.Keychain

Synopsis

IceSSL.Keychain=name (Ice Touch)

Description

Specifies the name of keychain in which to import the certificate identified by . If not defined, the keychain named IceSSL.CertFile login
is used by default. Note that this property is only relevant for the iPhone simulator and Mac OS X targets.

IceSSL.KeychainPassword

Synopsis

IceSSL.KeychainPassword=password (Ice Touch)

Description

Specifies the password for the keychain identified by . If not defined, IceSSL attempts to open the keychain without aIceSSL.Keychain
password. Note that this property is only relevant for the iPhone simulator and Mac OS X targets.

IceSSL.KeyFile

Synopsis

IceSSL.KeyFile=file (C++)

Description

Specifies a file containing the private key associated with the certificate identified by . The file name may be specifiedIceSSL.CertFile
relative to the default directory defined by . The key must be encoded using the PEM format.IceSSL.DefaultDir

IceSSL.Keystore



Ice 3.4.2 Documentation

1614 Copyright © 2011, ZeroC, Inc.

Synopsis

IceSSL.Keystore=file (Java)

Description

Specifies a key store file containing certificates and their private keys. If the key store contains multiple certificates, you should specify a
particular one to use for authentication using . IceSSL first attempts to open the file as a class loader resource and then as aIceSSL.Alias
regular file. If the file cannot be found in the file system, IceSSL attempts to open the file relative to the directory specified by 

. The format of the file is determined by .IceSSL.DefaultDir IceSSL.KeystoreType

If this property is not defined, the application will not be able to supply a certificate during SSL handshaking. As a result, the application may
not be able to negotiate a secure connection, or might be required to use an anonymous cipher suite.

IceSSL.KeystorePassword

Synopsis

IceSSL.KeystorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the key store defined by . The integrity check is skipped if thisIceSSL.Keystore
property is not defined.

It is a security risk to use a plain-text password in a configuration file.

IceSSL.KeystoreType

Synopsis

IceSSL.KeystoreType=type (Java)

Description

Specifies the format of the key store file defined by . Legal values are  and . If not defined, the JVM's defaultIceSSL.Keystore JKS PKCS12
value is used (normally ).JKS

IceSSL.Password

Synopsis

IceSSL.Password=password

Description

Specifies the password necessary to decrypt the private key. It is a security risk to use a plain-text password in a configuration file.

Platform Notes

C++

This property supplies the password that was used to secure the private key contained in the file defined by  or IceSSL.CertFile
. If this property is not defined and you have not installed a  object, OpenSSL will prompt the user for aIceSSL.KeyFile password callback

password if one is necessary.

Java

This property supplies the password that was used to secure the private key contained in the key store defined by . All ofIceSSL.Keystore
the keys in the key store must use the same password.
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.NET

This property supplies the password that was used to secure the file defined by .IceSSL.CertFile

Ice Touch

This property supplies the password that was used to secure the file defined by .IceSSL.CertFile

IceSSL.PasswordCallback

Synopsis

IceSSL.PasswordCallback=classname (Java, .NET)

Description

Specifies the name of a Java or .NET class that implements the  interface. Using a  is aIceSSL.PasswordCallback password callback
more secure alternative to specifying a password in a plain-text configuration file.

IceSSL.PasswordRetryMax

Synopsis

IceSSL.PasswordRetryMax=num (C++)

Description

Specifies the number of attempts IceSSL should allow the user to make when entering a password. If not defined, the default value is .3

IceSSL.Protocols

Synopsis

IceSSL.Protocols=list (C++, Java, .NET)

Description

Specifies the protocols to allow during SSL handshaking. Legal values are  and . You may also specify both values, separate bySSL3 TLS1
commas or white space. If this property is not defined, the platform's default is used.

IceSSL.Random

Synopsis

IceSSL.Random=filelist (C++, Java)

Description

Specifies one or more files containing data to use when seeding the random number generator. The file names should be separated using
the platform's path separator (a colon on Unix and a semicolon on Windows). The file names may be specified relative to the default
directory defined by .IceSSL.DefaultDir

In Java, IceSSL first attempts to open the files as class loader resources and then as regular files.

IceSSL.Trace.Security

Synopsis
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1.  
2.  

3.  

IceSSL.Trace.Security=num (C++, Java, .NET)

Description

The SSL plug-in trace level:

0 No security tracing (default).

1 Display diagnostic information about SSL connections.

IceSSL.TrustOnly

Synopsis

IceSSL.TrustOnly= [; ;...]ENTRY ENTRY  (C++, Java, .NET)

Description

Identifies  peers. This family of properties provides an additional level of authentication by using the peer certificate'strusted and untrusted
distinguished name (DN) to decide whether to accept or reject a connection.

Each  in the property value consists of relative distinguished name (RDN) components, formatted according to the rules in .ENTRY RFC 2253
Specifically, the components must be separated by commas, and any component that contains a comma must be escaped or enclosed in
quotes. For example, the following two property definitions are equivalent:

IceSSL.TrustOnly=O="Acme, Inc.",OU=Sales
IceSSL.TrustOnly=O=Acme\, Inc.,OU="Sales"

Use a semicolon to separate multiple entries in a property:

IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales;O=Acme\, Inc.,OU=Marketing

By default, each entry represents an acceptance entry. A  character appearing at the beginning of an entry signifies a rejection entry. The!
order of the entries in a property is not important.

After the SSL engine has successfully completed its authentication process, IceSSL evaluates the relevant  propertiesIceSSL.TrustOnly
in an attempt to find an entry that matches the peer certificate's DN. For a match to be successful, the peer DN must contain an exact match
for all of the RDN components in an entry. An entry may contain as many RDN components as you wish, depending on how narrowly you
need to restrict access. The order of the RDN components in an entry is not important.

The connection semantics are described below:

IceSSL aborts the connection if any rejection or acceptance entries are defined and the peer does not supply a certificate.
IceSSL aborts the connection if the peer DN matches any rejection entry. (This is true even if the peer DN also matches an
acceptance entry.)
IceSSL accepts the connection if the peer DN matches any acceptance entry, or if no acceptance entries are defined.

Our original example limits access to people in the sales and marketing departments:

IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales;O=Acme\, Inc.,OU=Marketing

If it later becomes necessary to deny access to certain individuals in these departments, you can add a rejection entry and restart the
program:

IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales; O=Acme\, Inc.,OU=Marketing; !O=Acme\, Inc.,CN=John Smith

While testing your trust configuration, you may find it helpful to set the  property to a non-zero value, whichIceSSL.Trace.Security
causes IceSSL to display the DN of each peer during connection establishment.

This property affects incoming and outgoing connections. IceSSL also supports similar properties that affect only incoming connections or

http://www.ietf.org/rfc/rfc2253.txt
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only outgoing connections.

IceSSL.TrustOnly.Client

Synopsis

IceSSL.TrustOnly.Client= [; ;...]ENTRY ENTRY  (C++, Java, .NET)
 (Ice Touch)IceSSL.TrustOnly.Client=ID

Description

Identifies trusted and untrusted peers for outgoing (client) connections. The entries defined in this property are combined with those of 
.IceSSL.TrustOnly

Platform Notes

Ice Touch

For an outgoing connection to succeed, the peer certificate's subject key identifier must match the property value exactly. The property value
is formatted as a series of hexadecimal values separated by colons or spaces, as shown in the example below:

C2:E8:D3:33:D7:83:99:6E:08:F7:C2:34:31:F7:1E:8E:44:87:38:57

Since this value is specific to a single certificate authority, this property is valid only when used in conjunction with .IceSSL.CertAuthFile

IceSSL.TrustOnly.Server

Synopsis

IceSSL.TrustOnly.Server= [; ;...]ENTRY ENTRY  (C++, Java, .NET)

Description

Identifies trusted and untrusted peers for incoming ("server") connections. The entries defined in this property are combined with those of 
. To configure trusted and untrusted peers for a particular object adapter, use IceSSL.TrustOnly

.IceSSL.TrustOnly.Server.AdapterName

IceSSL.TrustOnly.Server.AdapterName

Synopsis

IceSSL.TrustOnly.Server. = [; ;...]AdapterName ENTRY ENTRY  (C++, Java, .NET)

Description

Identifies trusted and untrusted peers for incoming (server) connections to the object adapter . The entries defined in thisAdapterName
property are combined with those of  and .IceSSL.TrustOnly IceSSL.TrustOnly.Server

IceSSL.Truststore

Synopsis

IceSSL.Truststore=file (Java)

Description

Specifies a key store file containing the certificates of trusted certificate authorities. IceSSL first attempts to open the file as a class loader



Ice 3.4.2 Documentation

1618 Copyright © 2011, ZeroC, Inc.

resource and then as a regular file. If the file cannot be found in the file system, IceSSL attempts to open the file relative to the directory
specified by . The format of the file is determined by .IceSSL.DefaultDir IceSSL.TruststoreType

If this property is not defined, IceSSL uses the value of  by default. If no truststore is specified and the keystore does notIceSSL.Keystore
contain a valid certificate chain, the application will not be able to authenticate the peer's certificate during SSL handshaking. As a result, the
application may not be able to negotiate a secure connection, or might be required to use an anonymous cipher suite.

IceSSL.TruststorePassword

Synopsis

IceSSL.TruststorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the key store defined by . The integrity check is skipped if thisIceSSL.Truststore
property is not defined.

It is a security risk to use a plain-text password in a configuration file.

IceSSL.TruststoreType

Synopsis

IceSSL.TruststoreType=type (Java)

Description

Specifies the format of the key store file defined by . Legal values are  and . If not defined, the defaultIceSSL.Truststore JKS PKCS12
value is .JKS

IceSSL.VerifyDepthMax

Synopsis

IceSSL.VerifyDepthMax=num (C++, Java, .NET)

Description

Specifies the  of a trusted peer's certificate chain, including the peer's certificate. A value of zero accepts chains of anymaximum depth
length. If not defined, the default value is .2

IceSSL.VerifyPeer

Synopsis

IceSSL.VerifyPeer=num (C++, Java, .NET)

Description

Specifies the verification requirements to use during SSL handshaking. The legal values are shown in the table below. If this property is not
defined, the default value is .2

0 For an outgoing connection, the client verifies the server's certificate (if an anonymous cipher is not used) but does not abort the
connection if verification fails. For an incoming connection, the server does not request a certificate from the client.

1 For an outgoing connection, the client verifies the server's certificate and aborts the connection if verification fails. For an incoming
connection, the server requests a certificate from the client and verifies it if one is provided, aborting the connection if verification fails.
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2 For an outgoing connection, the semantics are the same as for the value . For an incoming connection, the server requires a1
certificate from the client and aborts the connection if verification fails.

Platform Notes

.NET

This property has no effect on outgoing connections, since .NET always uses the semantics of value . For an incoming connection, the2
value  has the same semantics as the value .0 1
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IceBox Properties

On this page:

IceBox.InheritProperties
IceBox.InstanceName
IceBox.LoadOrder
IceBox.PrintServicesReady
IceBox.Service. name
IceBox.ServiceManager. AdapterProperty
IceBox.UseSharedCommunicator. name

IceBox.InheritProperties

Synopsis

IceBox.InheritProperties=num

Description

If  is set to a value larger than zero, each service  of the IceBox server's communicator. If not defined,num inherits the configuration properties
the default value is zero.

IceBox.InstanceName

Synopsis

IceBox.InstanceName=name

Description

Specifies an  for the IceBox service manager object. If defined, the identity of the object becomes alternate identity category name
. If not specified, the default identity category is ./ServiceManager IceBox

IceBox.LoadOrder

Synopsis

IceBox.LoadOrder=names

Description

Determines the  in which services are loaded. The service manager loads the services in the order they appear in , where eachorder names
service name is separated by a comma or white space. Any services not mentioned in  are loaded afterward, in an undefined order.names

IceBox.PrintServicesReady

Synopsis

IceBox.PrintServicesReady=token

Description

If this property is set to a value greater than zero, the service manager prints "  ready" on standard output once initialization of all thetoken
services is complete. This is useful for scripts that need to wait until all services are ready to be used.
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IceBox.Service.name

Synopsis

IceBox.Service. = [, ] [ ]name entry_point version args

Description

Defines a  to be loaded during IceBox initialization. Any arguments that follow the entry point are examined; those matching the service --
 pattern are interpreted as property definitions and appear in the property set of the communicator that is passed to the.*=name value

service  method, and all remaining arguments are passed to the  method in the  parameter.start start args

Platform Notes

C++

The value of  has the following form:entry_point

[, ]:basename version function

The  and optional  components are used to construct the name of a DLL or shared library. If no version is supplied, thebasename version
version is the empty string. The  component is the name of a function with extern C linkage. For example, the entry point function

 implies a shared library name of  on Unix and IceStormService,34:createIceStorm libIceStormService.so.34
 on Windows. Furthermore, if IceBox is built on Windows with debugging, a  is automatically appended to theIceStormService34.dll d

version (e.g., ).IceStormService34d.dll

The function must be declared with extern C linkage and have the following signature:

C++

IceBox::Service* function(Ice::CommunicatorPtr c);

Note that the function must return a pointer and not a smart pointer. The Ice core deallocates the object when it unloads the library. The
communicator instance passed to this function is the server's communicator, which is not the same as the communicator passed to the
service's  method.start

Java

The value of  is the name of a class that must implement the  interface. The class must provide at leastentry_point IceBox.Service
one of the constructors shown in the example below:

Java

public class MyService implements IceBox.Service
{
    public MyService(Ice.Communicator serverCommunicator);
    public MyService();

    // ...
}

The constructor taking an  argument is invoked if present, otherwise the default constructor is invoked.Ice.Communicator

.NET

The value of  has the form . The  can be a partially or fully qualified assembly name, such as entry_point :assembly class assembly
, or an assembly DLL name such as .myplugin,Version=0.0.0.0,Culture=neutral myplugin.dll

You  use a fully qualified assembly name to load a service from an assembly in the Global Assembly Cache.must

The specified class must implement the  interface and provide at least one of the constructors shown in the exampleIceBox.Service
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below:

C#

public class MyService : IceBox.Service
{
    public MyService(Ice.Communicator serverCommunicator);
    public MyService();

    // ...
}

The constructor taking an  argument is invoked if present, otherwise the default constructor is invoked.Ice.Communicator

IceBox.ServiceManager.AdapterProperty

Synopsis

IceBox.ServiceManager. =AdapterProperty value

Description

IceBox uses the adapter name  for its object adapter. Therefore,  can be used to configure theIceBox.ServiceManager adapter properties
IceBox object adapter.

IceBox.UseSharedCommunicator.name

Synopsis

IceBox.UseSharedCommunicator. =name num

Description

If  is set to a value larger than zero, the service manager supplies the service with the given  a communicator that might be sharednum name
by other services. If the  property is also defined, the shared communicator inherits the properties of theIceBox.InheritProperties
IceBox server. If not defined, the default value is zero.
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IceBoxAdmin Properties

IceBoxAdmin.ServiceManager.Proxy

Synopsis

IceBoxAdmin.ServiceManager.Proxy=proxy

Description

This property configures the proxy that is used by the  utility to locate the service manager.iceboxadmin
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IceGrid Properties

On this page:

Ice.Plugin.DB
IceGrid.InstanceName
IceGrid.Node.AllowEndpointsOverride
IceGrid.Node.AllowRunningServersAsRoot
IceGrid.Node. AdapterProperty
IceGrid.Node.CollocateRegistry
IceGrid.Node.Data
IceGrid.Node.DisableOnFailure
IceGrid.Node.Name
IceGrid.Node.Output
IceGrid.Node.PrintServersReady
IceGrid.Node.ProcessorSocketCount
IceGrid.Node.PropertiesOverride
IceGrid.Node.RedirectErrToOut
IceGrid.Node.Trace.Activator
IceGrid.Node.Trace.Adapter
IceGrid.Node.Trace.Patch
IceGrid.Node.Trace.Replica
IceGrid.Node.Trace.Server
IceGrid.Node.UserAccountMapper
IceGrid.Node.UserAccounts
IceGrid.Node.WaitTime
IceGrid.Registry.AdminCryptPasswords
IceGrid.Registry.AdminPermissionsVerifier
IceGrid.Registry.AdminSessionFilters
IceGrid.Registry.AdminSessionManager. AdapterProperty
IceGrid.Registry.AdminSSLPermissionsVerifier
IceGrid.Registry.Client. AdapterProperty
IceGrid.Registry.CryptPasswords
IceGrid.Registry.Data
IceGrid.Registry.DefaultTemplates
IceGrid.Registry.DynamicRegistration
IceGrid.Registry.Internal. AdapterProperty
IceGrid.Registry.NodeSessionTimeout
IceGrid.Registry.PermissionsVerifier
IceGrid.Registry.ReplicaName
IceGrid.Registry.ReplicaSessionTimeout
IceGrid.Registry.Server. AdapterProperty
IceGrid.Registry.SessionFilters
IceGrid.Registry.SessionManager. AdapterProperty
IceGrid.Registry.SessionTimeout
IceGrid.Registry.SSLPermissionsVerifier
IceGrid.Registry.Trace.Adapter
IceGrid.Registry.Trace.Application
IceGrid.Registry.Trace.Locator
IceGrid.Registry.Trace.Node
IceGrid.Registry.Trace.Object
IceGrid.Registry.Trace.Patch
IceGrid.Registry.Trace.Replica
IceGrid.Registry.Trace.Server
IceGrid.Registry.Trace.Session
IceGrid.Registry.UserAccounts
IceGrid.SQL.DatabaseType
IceGrid.SQL.DatabaseName
IceGrid.SQL.HostName
IceGrid.SQL.Port
IceGrid.SQL.UserName
IceGrid.SQL.Password

Ice.Plugin.DB

Synopsis
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Ice.Plugin.DB=IceGridSqlDB:createSqlDB

Description

The  used by the IceGrid registry is abstracted in such a way that an alternate mechanism can be selecteddatabase storage mechanism
using the standard Ice . If this property is not defined, the registry uses  as its default storage mechanism. Alternatively,plug-in facility Freeze
you can define the  property as shown above to use a SQL database instead, in which case additional properties may alsoIce.Plugin.DB
be necessary (see the  properties below).IceGrid.SQL

IceGrid.InstanceName

Synopsis

IceGrid.InstanceName=name

Description

Specifies an alternate identity category for the . If defined, the identities of the IceGrid objects become:well-known IceGrid objects

/AdminSessionManagername
/AdminSessionManager-replicaname
/AdminSSLSessionManagername
/AdminSSLSessionManager-replicaname
/NullPermissionsVerifiername
/NullSSLPermissionsVerifiername
/Locatorname
/Queryname
/Registryname
/Registry-replicaname
/RegistryUserAccountMappername
/RegistryUserAccountMapper-replicaname
/SessionManagername
/SSLSessionManagername

If not specified, the default identity category is .IceGrid

IceGrid.Node.AllowEndpointsOverride

Synopsis

IceGrid.Node.AllowEndpointsOverride=num

If  is set to a non-zero value, an IceGrid node permits servers to override previously set endpoints even if the server is active. Setting thisnum
property to a non-zero value is necessary if the servers managed by the node use the object adapter operation 

. The default value of  is zero.refreshPublishedEndpoints num

IceGrid.Node.AllowRunningServersAsRoot

Synopsis

IceGrid.Node.AllowRunningServersAsRoot=num

If  is set to a non-zero value, an IceGrid node will permit servers started by the node to run with super-user privileges. Note that younum
should not set this property unless the node uses a secure endpoint; otherwise, clients can start arbitrary processes with super-user
privileges on the node's machine.

The default value of  is zero.num

IceGrid.Node.AdapterProperty
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Synopsis

IceGrid.Node. =AdapterProperty value

Description

An IceGrid node uses the adapter name  for the object adapter that the registry contacts to communicate with the node.IceGrid.Node
Therefore,  can be used to configure this adapter.adapter properties

IceGrid.Node.CollocateRegistry

Synopsis

IceGrid.Node.CollocateRegistry=num

Description

If  is set to a value larger than zero, the  collocates the IceGrid registry.num node

The collocated registry is configured with the same properties as the standalone IceGrid registry.

IceGrid.Node.Data

Synopsis

IceGrid.Node.Data=path

Description

Defines the path of the IceGrid node . The node creates , , and  subdirectories in this directory if they dodata directory distrib servers tmp
not already exist. The  directory contains  files downloaded by the node from an IcePatch2 server. The distrib distribution servers
directory contains configuration data for each . The  directory holds temporary files.deployed server tmp

IceGrid.Node.DisableOnFailure

Synopsis

IceGrid.Node.DisableOnFailure=num

Description

The node considers a server to have terminated improperly if it has a non-zero exit code or if it exits due to one of the signals , SIGABRT
, , , or . The node marks such a server as disabled if  is a non-zero value; a disabled server cannot beSIGBUS SIGILL SIGFPE SIGSEGV num

activated on demand. For values of  greater than zero, the server is disabled for  seconds. If  is a negative value, the server isnum num num
disabled indefinitely, or until it is explicitly enabled or started via an administrative action. The default value is zero, meaning the node does
not disable servers in this situation.

IceGrid.Node.Name

Synopsis

IceGrid.Node.Name=name

Description

Defines the  of the IceGrid node. All nodes using the same registry must have unique names; a node refuses to start if there is a nodename
with the same name running already. This property must be defined for each node.

IceGrid.Node.Output
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Synopsis

IceGrid.Node.Output=path

Description

Defines the path of the IceGrid node output directory. If set, the node redirects the  and  output of the started servers to filesstdout stderr
named  and  in this directory. Otherwise, the started servers share the  and  of the node'sserver.out server.err stdout stderr
process.

IceGrid.Node.PrintServersReady

Synopsis

IceGrid.Node.PrintServersReady=token

Description

The IceGrid node prints "  ready" on standard output after all the servers managed by the node are ready. This is useful for scripts thattoken
wish to wait until all servers have been started and are ready for use.

IceGrid.Node.ProcessorSocketCount

Synopsis

IceGrid.Node.ProcessorSocketCount=num

Description

This property sets the number of processor sockets. This value is reported by the   command. Onicegridadmin node processors
Windows Vista (or later), Windows Server 2008 (or later), and Linux systems, the number of processors is set automatically by the Ice run
time. On other systems, the run time cannot obtain the socket count from the operating system; you can use this property to set the number
of processor sockets manually on such systems.

IceGrid.Node.PropertiesOverride

Synopsis

IceGrid.Node.PropertiesOverride=overrides

Description

Defines a list of properties that override the properties defined in server deployment descriptors. For example, in some cases it is desirable
to set the property  for servers, but not in server deployment descriptors. The property definitions must be separated byIce.Default.Host
white space.

IceGrid.Node.RedirectErrToOut

Synopsis

IceGrid.Node.RedirectErrToOut=num

Description

If  is set to a value larger than zero, the  of each started server is redirected to the server's .num stderr stdout

IceGrid.Node.Trace.Activator
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Synopsis

IceGrid.Node.Trace.Activator=num

Description

The activator trace level:

0 No activator trace (default).

1 Trace process activation, termination.

2 Like 1, but more verbose, including process signaling and more diagnostic messages on process activation.

3 Like 2, but more verbose, including more diagnostic messages on process activation (e.g., path, working directory, and arguments of
the activated process).

IceGrid.Node.Trace.Adapter

Synopsis

IceGrid.Node.Trace.Adapter=num

Description

The object adapter trace level:

0 No object adapter trace (default).

1 Trace object adapter addition, removal.

2 Like 1, but more verbose, including object adapter activation and deactivation and more diagnostic messages.

3 Like 2, but more verbose, including object adapter transitional state change (for example, "waiting for activation").

IceGrid.Node.Trace.Patch

Synopsis

IceGrid.Node.Trace.Patch=num

Description

The patch trace level:

0 No patching trace (default).

1 Show summary of patch progress.

2 Like 1, but more verbose, including download statistics.

3 Like 2, but more verbose, including checksum information.

IceGrid.Node.Trace.Replica

Synopsis

IceGrid.Node.Trace.Replica=num

Description
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The replica trace level:

0 No replica trace (default).

1 Trace session lifecycle between nodes and replicas.

2 Like 1, but more verbose, including session establishment attempts and failures.

3 Like 2, but more verbose, including keep alive messages sent to the replica.

IceGrid.Node.Trace.Server

Synopsis

IceGrid.Node.Trace.Server=num

Description

The server trace level:

0 No server trace (default).

1 Trace server addition, removal.

2 Like 1, but more verbose, including server activation and deactivation and more diagnostic messages.

3 Like 2, but more verbose, including server transitional state change (activating and deactivating).

IceGrid.Node.UserAccountMapper

Synopsis

IceGrid.Node.UserAccountMapper=proxy

Description

Specifies the proxy of an object that implements the  interface for  the user accounts underIceGrid::UserAccountMapper customizing
which servers are activated. The IceGrid node invokes this proxy to map session identifiers (the user ID for sessions created with a user ID
and password, or the distinguished name for sessions created from a secure connection) to user accounts.

As a proxy property, you can configure additional  using properties.aspects of the proxy

IceGrid.Node.UserAccounts

Synopsis

IceGrid.Node.UserAccounts=file

Description

Specifies the file name of an IceGrid node user account map file. Each line of the file must contain an identifier and a user account,
separated by white space. The identifier will be matched against the client session identifier (the user ID for sessions created with a user ID
and password, or the distinguished name for sessions created from a secure connection). This user account map file is used by the node to 

. This property is ignored if  is defined.map session identifiers to user accounts IceGrid.Node.UserAccountMapper

IceGrid.Node.WaitTime

Synopsis

IceGrid.Node.WaitTime=num
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Description

Defines the interval in seconds that IceGrid waits for .server activation and deactivation

If a server is automatically activated and does not register its object adapter endpoints within this time interval, the node assumes there is a
problem with the server and returns an empty set of endpoints to the client.

If a server is being gracefully deactivated and IceGrid does not detect the server deactivation during this time interval, IceGrid kills the
server.

The default value is 60 seconds.

IceGrid.Registry.AdminCryptPasswords

Synopsis

IceGrid.Registry.AdminCryptPasswords=file

Description

Specifies the file name of an IceGrid registry . Each line of the file must contain a user name andaccess control list for administrative clients
a password, separated by white space. The password must be a 13-character crypt-encoded string. If this property is not defined, the default
value is . This property is ignored if  is defined.admin-passwords IceGrid.Registry.AdminPermissionsVerifier

IceGrid.Registry.AdminPermissionsVerifier

Synopsis

IceGrid.Registry.AdminPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the  interface for Glacier2::PermissionsVerifier controlling access to IceGrid
. The IceGrid registry invokes this proxy to validate each new administrative session created by a client with the sessions

 interface.IceGrid::Registry

As a proxy property, you can configure additional  using properties.aspects of the proxy

IceGrid.Registry.AdminSessionFilters

Synopsis

IceGrid.Registry.AdminSessionFilters=num

Description

This property controls whether IceGrid establishes filters for sessions created with the . If  is set to a valueIceGrid session manager num
larger than zero, IceGrid establishes these filters, so  limits access to the  object and the Glacier2 IceGrid::AdminSession

 object that is returned by the  operation. If  is set to zero, IceGrid does not establish filters, so access toIceGrid::Admin getAdmin num
these objects is controlled solely by Glacier2's configuration.

The default value is 1.

IceGrid.Registry.AdminSessionManager.AdapterProperty

Synopsis

IceGrid.Registry.AdminSessionManager. =AdapterProperty value
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Description

The IceGrid registry uses the adapter name  for the object adapter that processes incomingIceGrid.Registry.AdminSessionManager
requests from . Therefore,  can be used to configure this adapter. (Note any setting of IceGrid administrative sessions adapter properties

 is ignored because the registry always provides a direct adapter.)IceGrid.Registry.AdminSessionManager.AdapterId

For security reasons, defining endpoints for this object adapter is optional. If you do define endpoints, they should only be accessible to
Glacier2 routers used to create IceGrid administrative sessions.

IceGrid.Registry.AdminSSLPermissionsVerifier

Synopsis

IceGrid.Registry.AdminSSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the  interface for Glacier2::SSLPermissionsVerifier controlling access to IceGrid
. The IceGrid registry invokes this proxy to validate each new administrative session created by a client from a secure connectionsessions

with the  interface.IceGrid::Registry

As a proxy property, you can configure additional  using the properties.aspects of the proxy

IceGrid.Registry.Client.AdapterProperty

Synopsis

IceGrid.Registry.Client. =AdapterProperty value

Description

IceGrid uses the adapter name  for the object adapter that processes incoming requests from clients.IceGrid.Registry.Client
Therefore,  can be used to configure this adapter. (Note any setting of  isadapter properties IceGrid.Registry.Client.AdapterId
ignored because the registry always provides a direct adapter.)

Note that  controls the client endpoint for the registry. The port numbers 4061 (for TCP) andIceGrid.Registry.Client.Endpoints
4062 (for SSL) are reserved for the registry by the  (IANA).Internet Assigned Numbers Authority

IceGrid.Registry.CryptPasswords

Synopsis

IceGrid.Registry.CryptPasswords=file

Description

Specifies the file name of an IceGrid registry . Each line of the file must contain a user name and a password, separated byaccess control list
white space. The password must be a 13-character crypt-encoded string. If this property is not defined, the default value is . Thispasswords
property is ignored if  is defined.IceGrid.Registry.PermissionsVerifier

IceGrid.Registry.Data

Synopsis

IceGrid.Registry.Data=path

Description

Defines the path of the IceGrid registry . The directory specified in  must already exist. This property must be defined onlydata directory path

http://www.iana.org/assignments/port-numbers
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when the registry uses  or SQLite for its database storage.Freeze

IceGrid.Registry.DefaultTemplates

Synopsis

IceGrid.Registry.DefaultTemplates=path

Description

Defines the path name of an XML file containing default . A sample file named  that containstemplate descriptors config/templates.xml
convenient server templates for Ice services is provided in the Ice distribution.

IceGrid.Registry.DynamicRegistration

Synopsis

IceGrid.Registry.DynamicRegistration=num

Description

If  is set to a value larger than zero, the locator registry does not require Ice servers to preregister object adapters and replica groups,num
but rather creates them automatically if they do not exist. If this property is not defined, or  is set to zero, an attempt to register annum
unknown object adapter or replica group causes adapter activation to fail with . An object adapterIce.NotRegisteredException
registers itself when the  property is defined. The  property identifies the replica group..AdapterIdadapter .ReplicaGroupIdadapter

IceGrid.Registry.Internal.AdapterProperty

Synopsis

IceGrid.Registry.Internal. =AdapterProperty value

Description

The IceGrid registry uses the adapter name  for the object adapter that processes incoming requests fromIceGrid.Registry.Internal
nodes and slave replicas. Therefore,  can be used to configure this adapter. (Note any setting of adapter properties

 is ignored because the registry always provides a direct adapter.)IceGrid.Registry.Internal.AdapterId

IceGrid.Registry.NodeSessionTimeout

Synopsis

IceGrid.Registry.NodeSessionTimeout=num

Description

Each IceGrid node establishes a session with the registry that must be refreshed periodically. If a node does not refresh its session within 
 seconds, the node's session is destroyed and the servers deployed on that node become unavailable to new clients. If not specified, thenum

default value is 30 seconds.

IceGrid.Registry.PermissionsVerifier

Synopsis

IceGrid.Registry.PermissionsVerifier=proxy

Description
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Specifies the proxy of an object that implements the  interface for Glacier2::PermissionsVerifier controlling access to IceGrid
. The IceGrid registry invokes this proxy to validate each new client session created by a client with the sessions IceGrid::Registry

interface.

As a proxy property, you can configure additional  using properties.aspects of the proxy

IceGrid.Registry.ReplicaName

Synopsis

IceGrid.Registry.ReplicaName=name

Description

Specifies the name of a . If not defined, the default value is , which is the name reserved for the master replica. Eachregistry replica Master
registry replica must have a unique name.

IceGrid.Registry.ReplicaSessionTimeout

Synopsis

IceGrid.Registry.ReplicaSessionTimeout=num

Description

Each IceGrid  establishes a session with the master registry that must be refreshed periodically. If a replica does not refreshregistry replica
its session within  seconds, the replica's session is destroyed and the replica no longer receives replication information from the masternum
registry. If not specified, the default value is 30 seconds.

IceGrid.Registry.Server.AdapterProperty

Synopsis

IceGrid.Registry.Server. =AdapterProperty value

Description

The IceGrid registry uses the adapter name  for the object adapter that processes incoming requests fromIceGrid.Registry.Server
servers. Therefore,  can be used to configure this adapter. (Note any setting of adapter properties

 is ignored because the registry always provides a direct adapter.)IceGrid.Registry.Server.AdapterId

IceGrid.Registry.SessionFilters

Synopsis

IceGrid.Registry.SessionFilters=num

Description

This property controls whether IceGrid establishes filters for sessions created with the . If  is set to a valueIceGrid session manager num
larger than zero, IceGrid establishes these filters, so Glacier2 limits access to the  and  objects, andIceGrid::Query IceGrid::Session
to objects and adapters allocated by the session. If  is set to zero, IceGrid does not establish filters, so access to objects is controllednum
solely by Glacier2's configuration.

The default value is 0.

IceGrid.Registry.SessionManager.AdapterProperty
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Synopsis

IceGrid.Registry.SessionManager. =AdapterProperty value

Description

The IceGrid registry uses the adapter name  for the object adapter that processes incomingIceGrid.Registry.SessionManager
requests from . Therefore,  can be used to configure this adapter. (Note any setting of client sessions adapter properties

 is ignored because the registry always provides a direct adapter.)IceGrid.Registry.SessionManager.AdapterId

For security reasons, defining endpoints for this object adapter is optional. If you do define endpoints, they should only be accessible to
Glacier2 routers used to create IceGrid client sessions.

IceGrid.Registry.SessionTimeout

Synopsis

IceGrid.Registry.SessionTimeout=num

Description

IceGrid  or  might establish a session with the registry. This session must be refreshed periodically. If the clientclients administrative clients
does not refresh its session within  seconds, the session is destroyed. If not specified, the default value is 30 seconds.num

IceGrid.Registry.SSLPermissionsVerifier

Synopsis

IceGrid.Registry.SSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the  interface for Glacier2::SSLPermissionsVerifier controlling access to IceGrid
. The IceGrid registry invokes this proxy to validate each new client session created by a client from a secure connection with the sessions

 interface.IceGrid::Registry

As a proxy property, you can configure additional  using properties.aspects of the proxy

IceGrid.Registry.Trace.Adapter

Synopsis

IceGrid.Registry.Trace.Adapter=num

Description

The object adapter trace level:

0 No object adapter trace (default).

1 Trace object adapter registration, removal, and replication.

IceGrid.Registry.Trace.Application

Synopsis

IceGrid.Registry.Trace.Adapter=num
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Description

The application trace level:

0 No application trace (default).

1 Trace application addition, update, and removal.

IceGrid.Registry.Trace.Locator

Synopsis

IceGrid.Registry.Trace.Locator=num

Description

The locator and locator registry trace level:

0 No locator trace (default).

1 Trace failures to locate an adapter or object, and failures to register adapter endpoints.

2 Like 1, but more verbose, including registration of adapter endpoints.

IceGrid.Registry.Trace.Node

Synopsis

IceGrid.Registry.Trace.Node=num

Description

The node trace level:

0 No node trace (default).

1 Trace node registration, removal.

2 Like 1, but more verbose, including load statistics.

IceGrid.Registry.Trace.Object

Synopsis

IceGrid.Registry.Trace.Object=num

Description

The object trace level:

0 No object trace (default).

1 Trace object registration, removal.

IceGrid.Registry.Trace.Patch

Synopsis
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IceGrid.Registry.Trace.Patch=num

Description

The patch trace level:

0 No patching trace (default).

1 Show summary of patch progress.

IceGrid.Registry.Trace.Replica

Synopsis

IceGrid.Registry.Trace.Replica=num

Description

The server trace level:

0 No server trace (default).

1 Trace session lifecycle between master replica and slaves.

IceGrid.Registry.Trace.Server

Synopsis

IceGrid.Registry.Trace.Server=num

Description

The server trace level:

0 No server trace (default).

1 Trace server registration, removal.

IceGrid.Registry.Trace.Session

Synopsis

IceGrid.Registry.Trace.Session=num

Description

The session trace level:

0 No client or admin session trace (default).

1 Trace client or admin session registration, removal.

2 Like 1, but more verbose, includes keep alive messages.

IceGrid.Registry.UserAccounts

Synopsis
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IceGrid.Registry.UserAccounts=file

Description

Specifies the file name of an IceGrid registry user account map file. Each line of the file must contain an identifier and a user account,
separated by white space. The identifier will be matched against the client session identifier (the user ID for sessions created with a user ID
and password, or the distinguished name for sessions created from a secure connection). This user account map file is used by IceGrid
nodes to map session identifiers to user accounts if the nodes'  property is set to the proxy IceGrid.Node.UserAccountMapper

.IceGrid/RegistryUserAccountMapper

IceGrid.SQL.DatabaseType

Synopsis

IceGrid.SQL.DatabaseType=type

Description

This property determines the type of the database for . Permissible values of  are , ,QSqlDatabase::addDatabase type QSQLITE QMYSQL
, and .QPSQL QODBC

IceGrid.SQL.DatabaseName

Synopsis

IceGrid.SQL.Database=name

Description

This property determines the name of the database for . For SQLite,  is the file name for theQSqlDatabase::setDatabaseName name
database. For MySQL and PostgreSQL,  is the database name. For SQL Server,  is the DSN name.name name

For MySQL, the specified database must already exist.

IceGrid.SQL.HostName

Synopsis

IceGrid.SQL.HostName=name

Description

This property determines the host name for . For PostgreSQL and MySQL,  is the database hostQSqlDatabase::setHostName name
name. For SQL Server,  is the host name and server name separated by a blackslash, such as . For SQLite,name localhost\SQLExpress
this property has no effect and need not be set.

IceGrid.SQL.Port

Synopsis

IceGrid.SQL.Port=num

Description

This property determines the port number for .QSqlDatabase::setPort

IceGrid.SQL.UserName
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Synopsis

IceGrid.SQL.UserName=name

Description

This property determines the user name for . For SQLite, this property has no effect and need not be set.QSqlDatabase::setUserName

IceGrid.SQL.Password

Synopsis

IceGrid.SQL.Password=password

Description

This property determines the password for . For SQLite, this property has no effect and need not be set.QSqlDatabase::setPassword
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IceGrid Administrative Client Properties

On this page:

IceGridAdmin.AuthenticateUsingSSL
IceGridAdmin.Password
IceGridAdmin.Replica
IceGridAdmin.Trace.Observers
IceGridAdmin.Trace.SaveToRegistry
IceGridAdmin.Username

IceGridAdmin.AuthenticateUsingSSL

Synopsis

IceGridAdmin.AuthenticateUsingSSL=num

Description

If  is a value greater than zero,  uses SSL authentication when establishing its session with the IceGrid registry. If notnum icegridadmin
defined or the value is zero,  uses user name and password authentication.icegridadmin

IceGridAdmin.Password

Synopsis

IceGridAdmin.Password=password

Description

Specifies the password that  should use when authenticating its session with the IceGrid registry. For security reasons youicegridadmin
may prefer not to define a password in a plain-text configuration property, in which case you should omit this property and allow 

 to prompt you for it interactively. This property is ignored when SSL authentication is enabled via icegridadmin
.IceGridAdmin.AuthenticateUsingSSL

IceGridAdmin.Replica

Synopsis

IceGridAdmin.Replica=name

Description

Specifies the name of the  that  should contact. If not defined, the default value is .registry replica icegridadmin Master

IceGridAdmin.Trace.Observers

Synopsis

IceGridAdmin.Trace.Observers=num

Description

If  is a value greater than zero, the IceGrid graphical administrative client displays trace information about the observer callbacks itnum
receives from the registry. If not defined, the default value is zero.

IceGridAdmin.Trace.SaveToRegistry
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Synopsis

IceGridAdmin.Trace.SaveToRegistry=num

Description

If  is a value greater than zero, the IceGrid graphical administrative client displays trace information about the modifications it commits tonum
the registry. If not defined, the default value is zero.

IceGridAdmin.Username

Synopsis

IceGridAdmin.Username=name

Description

Specifies the username that  should use when authenticating its session with the IceGrid registry. This property is ignoredicegridadmin
when SSL authentication is enabled via .IceGridAdmin.AuthenticateUsingSSL
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IceStorm Properties

IceStorm is an IceBox service that you can install using any name you like. For example:

IceBox.Service.DataFeed=IceStormService,...

The service name you choose is also used as the prefix for IceStorm's configuration properties. In the example above, the IceStorm
configuration properties would use the  prefix, as in .DataFeed DataFeed.Discard.Interval=10

In the property descriptions below, replace  with the service name from your IceStorm configuration.service

On this page:

Ice.Plugin.DB
Ice.Plugin.SQLThreadHook

.Discard.Intervalservice

.Election.ElectionTimeoutservice

.Election.MasterTimeoutservice

.Election.ResponseTimeoutservice

.Flush.Timeoutservice

.InstanceNameservice

.Node. service AdapterProperty

.NodeIdservice

.Nodes. service id

.Publish. service AdapterProperty

.ReplicatedPublishEndpointsservice

.ReplicatedTopicManagerEndpointsservice

.Send.Timeoutservice

.SQL.DatabaseTypeservice

.SQL.DatabaseNameservice

.SQL.HostNameservice

.SQL.Portservice

.SQL.UserNameservice

.SQL.Passwordservice

.TopicManager. service AdapterProperty

.Trace.Electionservice

.Trace.Replicationservice

.Trace.Subscriberservice

.Trace.Topicservice

.Trace.TopicManagerservice

.Transientservice
IceStormAdmin.TopicManager.Default
IceStormAdmin.TopicManager. name

Ice.Plugin.DB

Synopsis

Ice.Plugin.DB=IceStormSqlDB:createSqlDB

Description

The database storage mechanism used by IceStorm is abstracted in such a way that an alternate mechanism can be selected using the
standard Ice plug-in facility. If this property is not defined, IceStorm uses  as its default storage mechanism. Alternatively, you canFreeze
define the  property as shown above to use a SQL database instead, in which case additional properties may also beIce.Plugin.DB
necessary (see the  properties below)..SQLservice

Ice.Plugin.SQLThreadHook

Synopsis

Ice.Plugin.SQLThreadHook=IceStormService:createThreadHook
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Description

This property is required when configuring IceStorm to use a SQL database for its persistent data. This plug-in ensures that SQL resources
are cleaned up properly.

service.Discard.Interval

Synopsis

.Discard.Interval=service num

Description

An IceStorm server detects when a subscriber to which it forwards events becomes non-functional and, at that point, stops delivery attempts
to that subscriber for  seconds before trying to forward events to that subscriber again. The default value of this property is 60 seconds.num

service.Election.ElectionTimeout

Synopsis

.Election.ElectionTimeout=service num

Description

This property is used by a . It specifies the interval in seconds at which a coordinator attempts to form largerreplicated IceStorm deployment
groups of replicas. If not defined, the default value is 10.

service.Election.MasterTimeout

Synopsis

.Election.MasterTimeout=service num

Description

This property is used by a . It specifies the interval in seconds at which a slave checks the status of thereplicated IceStorm deployment
coordinator. If not defined, the default value is 10.

service.Election.ResponseTimeout

Synopsis

.Election.ResponseTimeout=service num

Description

This property is used by a . It specifies the interval in seconds that a replica waits for replies to an invitationreplicated IceStorm deployment
to form a larger group. Lower priority replicas wait for intervals inversely proportional to the maximum priority:

ResponseTimeout + ResponseTimeout * (max - pri)

If not defined, the default value is 10.
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service.Flush.Timeout

Synopsis

.Flush.Timeout=service num

Description

Defines the interval in milliseconds with which events are sent to . The default is 1000ms.batch subscribers

service.InstanceName

Synopsis

.InstanceName=service name

Description

Specifies an alternate identity category for all  hosted by the IceStorm object adapters. If not specified, the default identity category is objects
.IceStorm

service.Node.AdapterProperty

Synopsis

.Node. =service AdapterProperty value

Description

In a , IceStorm uses the adapter name  for the replica node's object adapter. Therefore, replicated deployment .Nodeservice adapter
 can be used to configure this adapter.properties

service.NodeId

Synopsis

.NodeId=service value

Description

Specifies the node ID of an IceStorm , where  is a non-negative integer. The node ID is also used as the replica's priority, suchreplica value
that a larger value assigns higher priority to the replica. The replica with the highest priority becomes the coordinator of its group. This
property must be defined for each replica.

service.Nodes.id

Synopsis

.Nodes. =service id value

Description

This property is used for a manual deployment of , in which each of the replicas must be explicitly configured withhighly available IceStorm
the proxies of all other replicas. The value is a proxy for the replica with the given node . A replica's object identity has the form id

, such as ./nodeinstance-name id DemoIceStorm/node2
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service.Publish.AdapterProperty

Synopsis

.Publish. =service AdapterProperty value

Description

IceStorm uses the adapter name  for the object adapter that processes incoming requests from publishers. Therefore, .Publishservice
 can be used to configure this adapter.adapter properties

service.ReplicatedPublishEndpoints

Synopsis

.ReplicatedPublishEndpoints=service value

Description

This property is used for a manual deployment of . It specifies the set of endpoints returned for the publisher proxyhighly available IceStorm
returned from .IceStorm::Topic::getPublisher

If this property is not defined, the publisher proxy returned by a topic instance points directly at that replica and, should the replica become
unavailable, publishers will not transparently failover to other replicas.

service.ReplicatedTopicManagerEndpoints

Synopsis

.ReplicatedTopicManagerEndpoints=service value

Description

This property is used for a manual deployment of . It specifies the set of endpoints used in proxies that refer to ahighly available IceStorm
replicated topic. This set of endpoints should contain the endpoints of each IceStorm replica.

For example, the operation  returns a proxy that contains this set of endpoints.IceStorm::TopicManager::create

service.Send.Timeout

Synopsis

.Send.Timeout=service num

Description

IceStorm applies a send timeout when it forwards events to subscribers. The value of this property determines how long IceStorm will wait
for forwarding of an event to complete. If an event cannot be forwarded within  milliseconds, the subscriber is considered dead and itsnum
subscription is cancelled. The default value is 60 seconds. Setting this property to a negative value disables timeouts.

service.SQL.DatabaseType

Synopsis
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.SQL.DatabaseType=service type

Description

This property determines the type of the database for . Permissible values of  are , ,QSqlDatabase::addDatabase type QSQLITE QMYSQL
, and .QPSQL QODBC

service.SQL.DatabaseName

Synopsis

.SQL.Database=service name

Description

This property determines the name of the database for . For SQLite,  is the file name for theQSqlDatabase::setDatabaseName name
database. For MySQL and PostgreSQL,  is the database name. For SQL Server,  is the DSN name.name name

For MySQL, the specified database must already exist.

service.SQL.HostName

Synopsis

.SQL.HostName=service name

Description

This property determines the host name for . For PostgreSQL and MySQL,  is the database hostQSqlDatabase::setHostName name
name. For SQL Server,  is the host name and server name separated by a blackslash, such as . For SQLite,name localhost\SQLExpress
this property has no effect and need not be set.

service.SQL.Port

Synopsis

.SQL.Port=service num

Description

This property determines the port number for .QSqlDatabase::setPort

service.SQL.UserName

Synopsis

.SQL.UserName=service name

Description

This property determines the user name for . For SQLite, this property has no effect and need not be set.QSqlDatabase::setUserName

service.SQL.Password
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Synopsis

.SQL.Password=service password

Description

This property determines the password for . For SQLite, this property has no effect and need not be set.QSqlDatabase::setPassword

service.TopicManager.AdapterProperty

Synopsis

.TopicManager. =service AdapterProperty value

Description

IceStorm uses the adapter name  for the topic manager's object adapter. Therefore,  can be.TopicManagerservice adapter properties
used to configure this adapter.

service.Trace.Election

Synopsis

.Trace.Election=service num

Description

Trace activity related to elections:

0 No election trace (default).

1 Trace election activity.

service.Trace.Replication

Synopsis

.Trace.Replication=service num

Description

Trace activity related to replication:

0 No replication trace (default).

1 Trace replication activity.

service.Trace.Subscriber

Synopsis

.Trace.Subscriber=service num

Description
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The subscriber trace level:

0 No subscriber trace (default).

1 Trace topic diagnostic information on subscription and unsubscription.

2 Like 1, but more verbose, including state transitions for a subscriber (such as going offline after a temporary network failure, and going
online again after a successful retry, etc.).

service.Trace.Topic

Synopsis

.Trace.Topic=service num

Description

The topic trace level:

0 No topic trace (default).

1 Trace topic links, subscription, and unsubscription.

2 Like 1, but more verbose, including QoS information, and other diagnostic information.

service.Trace.TopicManager

Synopsis

.Trace.TopicManager=service num

Description

The topic manager trace level:

0 No topic manager trace (default).

1 Trace topic creation.

service.Transient

Synopsis

.Transient=service num

Description

If  is a value greater than zero, IceStorm runs in a fully transient mode in which no database is required. Replication is not supported innum
this mode. If not defined, the default value is zero.

IceStormAdmin.TopicManager.Default

Synopsis

IceStormAdmin.TopicManager.Default=proxy
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Description

Defines the proxy for the default IceStorm topic manager. This property is used by . IceStorm applications may choose toicegridadmin
use this property for their configuration as well.

IceStormAdmin.TopicManager.name

Synopsis

IceStormAdmin.TopicManager. =name proxy

Description

Defines a proxy for an IceStorm topic manager for . Properties with this pattern are used by  if multipleicegridadmin icestormadmin
topic managers are in use, for example:

IceStormAdmin.TopicManager.A=A/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.B=Foo/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.C=Bar/TopicManager:tcp -h x -p 9987

This sets the proxies for three topic managers. Note that  need not match the instance name of the corresponding topic manager — name
 simply serves as a tag. With these property settings, the  commands that accept a topic can now specify a topicname icestormadmin

manager other than the default topic manager that is configured with . For example:IceStormAdmin.TopicManager.Default

current Foo
create myTopic
create Bar/myOtherTopic

This sets the current topic manager to the one with instance name ; the first  command then creates the topic within that topicFoo create
manager, whereas the second  command uses the topic manager with instance name .create Bar
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Glacier2 Properties

On this page:

Glacier2.AddConnectionContext
Glacier2.AddSSLContext
Glacier2.AddUserToAllowCategories
Glacier2.Admin. AdapterProperty
Glacier2.AllowCategories
Glacier2.Client.AlwaysBatch
Glacier2.Client.Buffered
Glacier2.Client. AdapterProperty
Glacier2.Client.ForwardContext
Glacier2.Client.SleepTime
Glacier2.Client.Trace.Override
Glacier2.Client.Trace.Reject
Glacier2.Client.Trace.Request
Glacier2.CryptPasswords
Glacier2.Filter.AdapterId.Accept
Glacier2.Filter.Address.Accept
Glacier2.Filter.Address.Reject
Glacier2.Filter.Category.Accept
Glacier2.Filter.Category.AcceptUser
Glacier2.Filter.Identity.Accept
Glacier2.Filter.ProxySizeMax
Glacier2.InstanceName
Glacier2.PermissionsVerifier
Glacier2.ReturnClientProxy
Glacier2.RoutingTable.MaxSize
Glacier2.Server. AdapterProperty
Glacier2.Server.AlwaysBatch
Glacier2.Server.Buffered
Glacier2.Server.ForwardContext
Glacier2.Server.SleepTime
Glacier2.Server.Trace.Override
Glacier2.Server.Trace.Request
Glacier2.SessionManager
Glacier2.SessionTimeout
Glacier2.SSLPermissionsVerifier
Glacier2.SSLSessionManager
Glacier2.Trace.RoutingTable
Glacier2.Trace.Session

Glacier2.AddConnectionContext

Synopsis

Glacier2.AddConnectionContext=num

Description

If  is set to 1 or 2, Glacier2 adds a number of key-value pairs to the  that it sends with each request. If  is set to 1,num request context num
these entries are adde to the context for all forwarded requests. If  is set to 2, the contexts are added only to calls to num

 and  on permission verifiers, and to calls to  on session managers.checkPermissions authorize create

If num is non-zero, Glacier2 adds the following context entries:

_con.type The type of the connection as returned by .Connection::type

_con.localAddress The local address (TCP and SSL only).

_con.localPort The local port (TCP and SSL only).

_con.remoteAddress The remote address (TCP and SSL only).
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_con.remotePort The remote port (TCP and SSL only).

_con.cipher The cipher (SSL only).

_con.peerCert The first certificate of the client certificate chain (SSL only).

The default value is zero, meaning that no contexts are added.

Glacier2.AddSSLContext

Synopsis

Glacier2.AddSSLContext=num

Description

For sessions created with , this property, when set to a value greater than zero, instructscreateSessionFromSecureConnection
Glacier2 to provide additional information in the context of each request:

SSL.Active If the client established an SSL connection to the router, this entry is present and has the value . This entry is not1
present if SSL was not used.

SSL.Cipher A description of the ciphersuite negotiated for the SSL connection.

SSL.Remote.Host The client's originating host name or address.

SSL.Remote.Port The client's originating port number.

SSL.Local.Host The router's local host name or address.

SSL.Local.Port The router's local port number.

SSL.PeerCert If the client supplied a certificate, this entry is present and contains the encoded certificate in PEM format.

Note that these SSL context entries are forwarded regardless of the setting of .Glacier2.Client.ForwardContext

If this property is not defined, its default value is zero.

This property is deprecated and supported only for backward-compatibility. New applications should use 
.Glacier2.AddConnectionContext

Glacier2.AddUserToAllowCategories

Synopsis

Glacier2.AddUserToAllowCategories=num

Description

Specifies whether to add an authenticated user ID to the  property when creating a new session. The legalGlacier2.AllowCategories
values are shown below:

0 Do not add the user ID (default).

1 Add the user ID.

2 Add the user ID with a leading underscore.

This property is deprecated and supported only for backward-compatibility. New applications should use 
.Glacier2.Filter.Category.AcceptUser

Glacier2.Admin.AdapterProperty
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Synopsis

Glacier2.Admin. =AdapterProperty value

Description

Glacier2 uses the adapter name  for its  object adapter. Therefore,  can be used toGlacier2.Admin administrative adapter properties
configure this adapter.

The  property must be defined to enable the administrative object adapter.Glacier2.Admin.Endpoints

Glacier2's administrative interface allows a remote client to shut down the router; we generally recommend the use of endpoints that are
accessible only from behind a firewall.

Glacier2.AllowCategories

Synopsis

Glacier2.AllowCategories=list

Description

Specifies a white space-separated list of identity categories. If this property is defined, then the Glacier2 router only allows requests to Ice
objects with an identity that matches one of the categories from this list. If  is defined with aGlacier2.AddUserToAllowCategories
non-zero value, the router automatically adds the user ID of each session to this list.

This property is deprecated and supported only for backward-compatibility. New applications should use 
.Glacier2.Filter.Category.Accept

Glacier2.Client.AlwaysBatch

Synopsis

Glacier2.Client.AlwaysBatch=num

Description

If  is set to a value larger than zero, the Glacier2 router always batches queued oneway requests from clients to servers regardless ofnum
the value of their  contexts. This property is only relevant when  is enabled. The default value is ._fwd Glacier2.Client.Buffered 0

Glacier2.Client.Buffered

Synopsis

Glacier2.Client.Buffered=num

Description

If  is set to a value larger than zero, the Glacier2 router operates in , in which incoming requests from clients are queuednum buffered mode
and processed in a separate thread. If  is set to zero, the router operates in unbuffered mode in which a request is forwarded in the samenum
thread that received it. The default value is .1

Glacier2.Client.AdapterProperty

Synopsis

Glacier2.Client. =AdapterProperty value
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Description

Glacier2 uses the adapter name  for the object adapter that it provides to clients. Therefore,  can beGlacier2.Client adapter properties
used to configure this adapter.

This adapter must be accessible to clients of Glacier2. Use of a secure transport for this adapter is highly recommended.

Note that  controls the client endpoint for Glacier2. The port numbers 4063 (for TCP) and 4064Glacier2.Registry.Client.Endpoints
(for SSL) are reserved for Glacier2 by the  (IANA).Internet Assigned Numbers Authority

Glacier2.Client.ForwardContext

Synopsis

Glacier2.Client.ForwardContext=num

Description

If  is set to a value larger than zero, the Glacier2 router includes the  when forwarding requests from clients to servers.num request context
The default value is .0

Glacier2.Client.SleepTime

Synopsis

Glacier2.Client.SleepTime=num

Description

If  is set to a value larger than zero, the Glacier2 router sleeps for the specified number of milliseconds after forwarding all queuednum
requests from a client. This delay is useful for  because it makes it more likely for events to accumulate in a single batch.batched delivery
Similarly, if  are used, the delay makes it more likely for overrides to actually take effect. This property is only relevant when overrides

 is enabled. The default value is .Glacier2.Client.Buffered 0

Glacier2.Client.Trace.Override

Synopsis

Glacier2.Client.Trace.Override=num

Description

If  is set to a value larger than zero, the Glacier2 router logs a trace message whenever a request was . The default value is .num overridden 0

Glacier2.Client.Trace.Reject

Synopsis

Glacier2.Client.Trace.Reject=num

Description

If  is set to a value larger than zero, the Glacier2 router logs a trace message whenever the router's configured  reject a client'snum filters
request. The default value is .0

Glacier2.Client.Trace.Request

Synopsis

http://www.iana.org/assignments/port-numbers
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Glacier2.Client.Trace.Request=num

Description

If  is set to a value larger than zero, the Glacier2 router logs a trace message for each request that is forwarded from a client. The defaultnum
value is .0

Glacier2.CryptPasswords

Synopsis

Glacier2.CryptPasswords=file

Description

Specifies the file name of a Glacier2 . Each line of the file must contain a user name and a password, separated by whiteaccess control list
space. The password must be a 13-character crypt-encoded string. This property is ignored if  isGlacier2.PermissionsVerifier
defined.

Glacier2.Filter.AdapterId.Accept

Synopsis

Glacier2.Filter.AdapterId.Accept=list

Description

Specifies a space-separated list of adapter identifiers. If defined, the Glacier2 router  so that it only allows requests to Icefilters requests
objects with an adapter identifier that matches one of the entries in this list.

Identifiers that contain spaces must be enclosed in single or double quotes. Single or double quotes that appear within an identifier must be
escaped with a leading backslash.

Glacier2.Filter.Address.Accept

Synopsis

Glacier2.Filter.Address.Accept=list

Description

Specifies a space-separated list of address-port pairs. When defined, the Glacier2 router  so that it only allows requests to Icefilters requests
objects through proxies that contain network endpoint information that matches an address-port pair listed in this property. If not defined, the
default value is , which indicates that any network address is permitted. Requests accepted by this property may be rejected by the *

 property.Glacier2.Filter.Address.Reject

Each pair is of the form . The  or  number portion can include wildcards (' ') or value ranges or groups.:address port address port *
Ranges and groups have the form  and/or . Wildcards, ranges, and groups may[ , , , ...]value1 value2 value3 [ - ]value1 value2
appear anywhere in the address-port pair string.

Glacier2.Filter.Address.Reject

Synopsis

Glacier2.Filter.Address.Reject=list

Description

Specifies a space-separated list of address-port pairs. When defined, the Glacier2 router rejects requests to Ice objects through proxies that
contain network endpoint information that matches an address-port pair listed in this property. If not set, the Glacier2 router allows requests
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to any network address unless the  property is set, in which case requests will be accepted orGlacier2.Filter.Address.Accept
rejected based on the  property. If both the  and Glacier2.Filter.Address.Accept Glacier2.Filter.Address.Accept

 properties are defined, the  property takes precedence.Glacier2.Filter.Address.Reject Glacier2.Filter.Address.Reject

Each pair is of the form . The  or  number portion can include wildcards (' ') or value ranges or groups.:address port address port *
Ranges and groups have the form  and/or . Wildcards, ranges, and groups may[ , , , ...]value1 value2 value3 [ - ]value1 value2
appear anywhere in the address-port pair string.

Glacier2.Filter.Category.Accept

Synopsis

Glacier2.Filter.Category.Accept=list

Description

Specifies a space-separated list of identity categories. If defined, the Glacier2 router  so that it only allows requests to Icefilters requests
objects with an identity that matches one of the categories in this list. If  is defined with aGlacier2.Filter.Category.AcceptUser
non-zero value, the router automatically adds the user name of each session to this list.

Categories that contain spaces must be enclosed in single or double quotes. Single or double quotes that appear within a category must be
escaped with a leading backslash.

Glacier2.Filter.Category.AcceptUser

Synopsis

Glacier2.Filter.Category.AcceptUser=num

Description

Specifies whether to add an authenticated user ID to the  property when creating a new session.Glacier2.Filter.Category.Accept
The legal values are shown below:

0 Do not add the user ID (default).

1 Add the user ID.

2 Add the user ID with a leading underscore.

Glacier2.Filter.Identity.Accept

Synopsis

Glacier2.Filter.Identity.Accept=list

Description

Specifies a space-separated list of identities. If defined, the Glacier2 router  so that it only allows requests to Ice objects withfilters requests
an identity that matches one of the entries in this list.

Identities that contain spaces must be enclosed in single or double quotes. Single or double quotes that appear within an identity must be
escaped with a leading backslash.

Glacier2.Filter.ProxySizeMax

Synopsis

Glacier2.Filter.ProxySizeMax=num
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Description

If set, the Glacier2 router  whose stringified proxies are longer than . This helps secure the system against attack. If notrejects requests num
set, Glacier2 will accept requests using proxies of any length.

Glacier2.InstanceName

Synopsis

Glacier2.InstanceName=name

Description

Specifies a default identity category for the . If defined, the identity of the Glacier2 administrative interface becomes Glacier2 objects name
 and the identity of the Glacier2 router interface becomes ./admin /routername

If not defined, the default value is .Glacier2

Glacier2.PermissionsVerifier

Synopsis

Glacier2.PermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the  interface for Glacier2::PermissionsVerifier controlling access to Glacier2
. The router invokes this proxy to validate the user name and password of each new session. Sessions created from a securesessions

connection are verified by the object specified in . For simple configurations, you can specify theGlacier2.SSLPermissionsVerifier
name of a password file using .Glacier2.CryptPasswords

Glacier2 supplies a "null" permissions verifier object that accepts any username and password combination for situations in which no
authentication is necessary. To enable this verifier, set the property value to , where  is/NullPermissionsVerifierinstance instance
the value of .Glacier2.InstanceName

As a proxy property, you can configure additional  using properties.aspects of the proxy

Glacier2.ReturnClientProxy

Synopsis

Glacier2.ReturnClientProxy=num

Description

If  is a value greater than zero, Glacier2 maintains backward compatibility with clients using Ice versions prior to 3.2.0. In this case younum
should also define  to specify the endpoints that clients should use to contact the router. ForGlacier2.Client.PublishedEndpoints
example, if the Glacier2 router resides behind a network firewall, the  property should specifyGlacier2.Client.PublishedEndpoints
the firewall's external endpoints.

If not defined, the default value is zero.

Glacier2.RoutingTable.MaxSize

Synopsis

Glacier2.RoutingTable.MaxSize=num

Description
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This property sets the size of the router's  to  entries. If more proxies are added to the table than this value, proxies arerouting table num
evicted from the table on a least-recently used basis.

Clients based on Ice version 3.1 and later automatically retry operation calls on evicted proxies and transparently re-add such proxies to the
table. Clients based on Ice versions earlier than 3.1 receive an  for invocations on evicted proxies. For suchObjectNotExistException
older clients,  must be set to a sufficiently large value to prevent these clients from failing.num

The default size of the routing table is 1000.

Glacier2.Server.AdapterProperty

Synopsis

Glacier2.Server. =AdapterProperty value

Description

Glacier2 uses the adapter name  for the object adapter that it provides to servers. Therefore,  can beGlacier2.Server adapter properties
used to configure this adapter.

This adapter provides access to the  interface and must be accessible to servers that call back to router clients.SessionControl

Glacier2.Server.AlwaysBatch

Synopsis

Glacier2.Server.AlwaysBatch=num

Description

If  is set to a value larger than zero, the Glacier2 router always batches queued oneway requests from servers to clients regardless ofnum
the value of their  contexts. This property is only relevant when  is enabled. The default value is ._fwd Glacier2.Server.Buffered 0

Glacier2.Server.Buffered

Synopsis

Glacier2.Server.Buffered=num

Description

If  is set to a value larger than zero, the Glacier2 router operates in , in which incoming requests from servers are queuednum buffered mode
and processed in a separate thread. If  is set to zero, the router operates in unbuffered mode in which a request is forwarded in the samenum
thread that received it. The default value is .1

Glacier2.Server.ForwardContext

Synopsis

Glacier2.Server.ForwardContext=num

Description

If  is set to a value larger than zero, the Glacier2 router includes the  when forwarding requests from servers to clients.num request context
The default value is .0

Glacier2.Server.SleepTime
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Synopsis

Glacier2.Server.SleepTime=num

Description

If  is set to a value larger than zero, the Glacier2 router sleeps for the specified number of milliseconds after forwarding all queuednum
requests from a server. This delay is useful for  because it makes it more likely for events to accumulate in a single batch.batched delivery
Similarly, if overrides are used, the delay makes it more likely for overrides to actually take effect. This property is only relevant when 

 is enabled. The default value is .Glacier2.Server.Buffered 0

Glacier2.Server.Trace.Override

Synopsis

Glacier2.Server.Trace.Override=num

Description

If  is set to a value larger than zero, the Glacier2 router logs a trace message whenever a request is . The default value is .num overridden 0

Glacier2.Server.Trace.Request

Synopsis

Glacier2.Server.Trace.Request=num

Description

If  is set to a value larger than zero, the Glacier2 router logs a trace message for each request that is forwarded from a server. Thenum
default value is .0

Glacier2.SessionManager

Synopsis

Glacier2.SessionManager=proxy

Description

Specifies the proxy of an object that implements the  interface. The router invokes this proxy to create a newGlacier2::SessionManager
session for a client, but only after the router validates the client's user name and password.

As a proxy property, you can configure additional  using properties.aspects of the proxy

Glacier2.SessionTimeout

Synopsis

Glacier2.SessionTimeout=num

Description

If  is set to a value larger than zero, a client's session with the Glacier2 router  after the specified  seconds of inactivity. Thenum expires num
default value is , meaning sessions do not expire due to inactivity.0

It is important to choose  such that client sessions do not expire prematurely.num

Setting the session timeout enables  (ACM) for client connections (by setting ). ByActive Connection Management Glacier2.Client.ACM
default, the ACM timeout is set to twice the session timeout. If no session timeout is defined, ACM is disabled.
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Glacier2.SSLPermissionsVerifier

Synopsis

Glacier2.SSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the  interface for Glacier2::SSLPermissionsVerifier controlling access to Glacier2
. The router invokes this proxy to verify the credentials of clients that attempt to create a session from a secure connection.sessions

Sessions created with a user name and password are verified by the object specified in .Glacier2.PermissionsVerifier

Glacier2 supplies a "null" permissions verifier object that accepts the credentials of any client for situations in which no authentication is
necessary. To enable this verifier, set the property value to , where  is the value of/NullSSLPermissionsVerifierinstance instance

.Glacier2.InstanceName

As a proxy property, you can configure additional  using properties.aspects of the proxy

Glacier2.SSLSessionManager

Synopsis

Glacier2.SSLSessionManager=proxy

Description

Specifies the proxy of an object that implements the  interface for . The routerGlacier2::SSLSessionManager managing sessions
invokes this proxy to create a new session for a client that has called .createSessionFromSecureConnection

As a proxy property, you can configure additional  using properties.aspects of the proxy

Glacier2.Trace.RoutingTable

Synopsis

Glacier2.Trace.RoutingTable=num

Description

The routing table trace level:

0 No routing table trace (default).

1 Logs a message for each proxy that is added to the routing table.

2 Logs a message for each proxy that is evicted from the routing table (see ).Glacier2.RoutingTable.MaxSize

3 Combines the output for trace levels 1 and 2.

Glacier2.Trace.Session

Synopsis

Glacier2.Trace.Session=num

Description

If  is set to a value larger than zero, the Glacier2 router logs trace messages about session-related activities. The default value is .num 0
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Freeze Properties

On this page:

Freeze.DbEnv. .CheckpointPeriodenv-name
Freeze.DbEnv. .DbHomeenv-name
Freeze.DbEnv. .DbPrivateenv-name
Freeze.DbEnv. .DbRecoverFatalenv-name
Freeze.DbEnv. .LockFileenv-name
Freeze.DbEnv. .OldLogsAutoDeleteenv-name
Freeze.DbEnv. .PeriodicCheckpointMinSizeenv-name
Freeze.Evictor. .BtreeMinKeyenv-name.filename.name
Freeze.Evictor. .Checksumenv-name.filename.name
Freeze.Evictor. .MaxTxSizeenv-name.filename
Freeze.Evictor. .PageSizeenv-name.filename
Freeze.Evictor. .PopulateEmptyIndicesenv-name.filename
Freeze.Evictor. .RollbackOnUserExceptionenv-name.filename
Freeze.Evictor. .SavePeriodenv-name.filename
Freeze.Evictor. .SaveSizeTriggerenv-name.filename
Freeze.Evictor. .StreamTimeoutenv-name.filename
Freeze.Map. .BtreeMinKeyname
Freeze.Map. .Checksumname
Freeze.Map. .PageSizename
Freeze.Trace.DbEnv
Freeze.Trace.Evictor
Freeze.Trace.Map
Freeze.Trace.Transaction
Freeze.Warn.Deadlocks
Freeze.Warn.Rollback

Freeze.DbEnv. .CheckpointPeriodenv-name

Synopsis

Freeze.DbEnv. .CheckpointPeriod=env-name num

Description

Every Berkeley DB environment created by Freeze has an associated thread that checkpoints this environment every  seconds. If  isnum num
less than , no checkpointing is performed. The default is 120 seconds.0

Freeze.DbEnv. .DbHomeenv-name

Synopsis

Freeze.DbEnv. .DbHome=env-name db-home

Description

Defines the home directory of this Freeze database environment. The default directory is .env-name

Freeze.DbEnv. .DbPrivateenv-name

Synopsis

Freeze.DbEnv. .DbPrivate=env-name num

Description
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If  is set to a value larger than zero, Freeze instructs Berkeley DB to use process-private memory instead of shared memory. The defaultnum
value is . Set this property to  in order to run a  utility, or a Berkeley DB utility such as , on a running1 0 FreezeScript db_archive
environment.

Freeze.DbEnv. .DbRecoverFatalenv-name

Synopsis

Freeze.DbEnv. .DbRecoverFatal=env-name num

Description

If  is set to a value larger than zero, fatal recovery is performed when the environment is opened. The default value is .num 0

Freeze.DbEnv. .LockFileenv-name

Synopsis

Freeze.DbEnv. .LockFile=env-name num

Description

If  is set to a value larger than zero, Freeze creates a lock file in the database environment to prevent other processes from opening thenum
environment. The default value is .1

Note that applications should not normally disable the lock file because simultaneous access to the same environment by multiple processes
can lead to data corruption.

FreezeScript utilities automatically disable the lock file when  is set to zero.Freeze.DbEnv. .DbPrivateenv-name

Freeze.DbEnv. .OldLogsAutoDeleteenv-name

Freeze.DbEnv. .OldLogsAutoDelete=env-name num

If  is set to a value larger than zero, old transactional logs no longer in use are deleted after each periodic checkpoint (see num
). The default value is .Freeze.DbEnv. .CheckpointPeriodenv-name 1

Freeze.DbEnv. .PeriodicCheckpointMinSizeenv-name

Synopsis

Freeze.DbEnv. .PeriodicCheckpointMinSize=env-name num

Description

num is the minimum size in kilobytes for the periodic checkpoint (see ). This value isFreeze.DbEnv. .CheckpointPeriodenv-name
passed to Berkeley DB's  function. The default is  (which means no minimum).checkpoint 0

Freeze.Evictor. .BtreeMinKeyenv-name.filename.name

Synopsis

Freeze.Evictor. . . .BtreeMinKey=env-name filename name num
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Description

name represents a database name or an index name. This property sets the B-tree minkey of the corresponding Berkeley DB database. num
is ignored if it is less than 2. Please refer to the  for details.Berkeley DB documentation

Freeze.Evictor. .Checksumenv-name.filename.name

Synopsis

{{Freeze.Evictor. . .Checksum=env-name filename num

Description

If  is greater than 0, checksums on the corresponding Berkeley DB database(s) are enabled. Please refer to the num Berkeley DB
 for details.documentation

Freeze.Evictor. .MaxTxSizeenv-name.filename

Synopsis

Freeze.Evictor. . .MaxTxSize=env-name filename num

Description

Freeze can use a  to save updates to the database. Transactions are used to save many facets together.  defines thebackground thread num
maximum number of facets saved per transaction. The default is  (see 10 * SaveSizeTrigger Freeze.Evictor. .env-name

); if this value is negative, the actual value is set to ..SaveSizeTriggerfilename 100

Freeze.Evictor. .PageSizeenv-name.filename

Synopsis

Freeze.Evictor. . .PageSize=env-name filename num

Description

If  is greater than 0, it sets the page size of the corresponding Berkeley DB database(s). Please refer to the num Berkeley DB documentation
for details.

Freeze.Evictor. .PopulateEmptyIndicesenv-name.filename

Synopsis

Freeze.Evictor. . .PopulateEmptyIndices=env-name filename num

Description

When  is not  and you create an evictor with one or more empty indexes, the  or num 0 createBackgroundSaveEvictor
 call will populate these indexes by iterating over all the corresponding facets. This is particularly usefulcreateTransactionalEvictor

after transforming a Freeze evictor with , since FreezeScript does not transform indexes; however this can significantly slowFreezeScript
down the creation of the evictor if you have an empty index because none of the facets currently in the database match the type of this
index. The default value for this property is .0

Freeze.Evictor. .RollbackOnUserExceptionenv-name.filename

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)
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Synopsis

Freeze.Evictor. . .RollbackOnUserException=env-name filename num

Description

If  is non-zero, a transactional evictor rolls back its transaction if the outcome of the dispatch is a user exception. If  is 0 (the default),num num
the transactional evictor commits the transaction.

Freeze.Evictor. .SavePeriodenv-name.filename

Synopsis

Freeze.Evictor. . .SavePeriod=env-name filename num

Description

Freeze can use a  to save updates to the database. After  milliseconds without saving, if any facet is created,background thread num
modified, or destroyed, this background thread wakes up to save these facets. When num is , there is no periodic saving. The default is 0

.60000

Freeze.Evictor. .SaveSizeTriggerenv-name.filename

Synopsis

Freeze.Evictor. . .SaveSizeTrigger=env-name filename num

Description

Freeze can use a  to save updates to the database. When  is  or positive, as soon as  or more facets have beenbackground thread num 0 num
created, modified, or destroyed, this background thread wakes up to save them. When  is negative, there is no size trigger. The default isnum

.10

Freeze.Evictor. .StreamTimeoutenv-name.filename

Synopsis

Freeze.Evictor. . .StreamTimeout=env-name filename num

Description

When the saving thread saves an object, it needs to lock this object in order to get a consistent copy of the object's state. If the lock cannot
be acquired within  seconds, a fatal error is generated. If a fatal error callback was registered by the application, this callback is called;num
otherwise the program is terminated immediately. When  is  or negative, there is no timeout. The default value is .num 0 0

Freeze.Map. .BtreeMinKeyname

Synopsis

Freeze.Map. .BtreeMinKey=name num

Description

name may represent a database name or an index name. This property sets the B-tree minkey of the corresponding Berkeley DB database. 
 is ignored if it is less than 2. Please refer to the  for details.num Berkeley DB documentation

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)
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Freeze.Map. .Checksumname

Synopsis

Freeze.Map. .Checksum=name num

Description

name may represent a database name or an index name. If  is greater than 0, checksums for the corresponding Berkeley DB databasenum
are enabled. Please refer to the  for details.Berkeley DB documentation

Freeze.Map. .PageSizename

Synopsis

Freeze.Map. .PageSize=name num

Description

name may represent a database name or an index name. If  is greater than 0, it sets the page size of the corresponding Berkeley DBnum
database. Please refer to the  for details.Berkeley DB documentation

Freeze.Trace.DbEnv

Synopsis

Freeze.Trace.DbEnv=num

Description

The Freeze database environment activity trace level:

0 No database environment activity trace (default).

1 Trace database open and close.

2 Also trace checkpoints and the removal of old log files.

Freeze.Trace.Evictor

Synopsis

Freeze.Trace.Evictor=num

Description

The Freeze evictor activity trace level:

0 No evictor activity trace (default).

1 Trace Ice object and facet creation and destruction, facet streaming time, facet saving time, object eviction (every 50 objects) and
evictor deactivation.

2 Also trace object lookups, and all object evictions.

3 Also trace object retrieval from the database.

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)
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Freeze.Trace.Map

Synopsis

Freeze.Trace.Map=num

Description

The Freeze map activity trace level:

0 No map activity trace (default).

1 Trace database open and close.

2 Also trace iterator and transaction operations, and reference counting of the underlying database.

Freeze.Trace.Transaction

Synopsis

Freeze.Trace.Transaction=num

Description

The Freeze transaction activity trace level:

0 No transaction activity trace (default).

1 Trace transaction IDs and commit and rollback activity.

Freeze.Warn.Deadlocks

Synopsis

Freeze.Warn.Deadlocks=num

Description

If  is set to a value larger than zero, Freeze logs a warning message when a deadlock occur. The default value is .num 0

Freeze.Warn.Rollback

Synopsis

Freeze.Warn.Deadlocks=num

Description

If  is set to a value larger than zero, Freeze logs a warning message when it rolls back a transaction that goes out of scope together withnum
its associated connection. The default value is . (C++ only)1
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IcePatch2 Properties

On this page:

IcePatch2. AdapterProperty
IcePatch2.Admin. AdapterProperty
IcePatch2.ChunkSize
IcePatch2.Directory
IcePatch2.InstanceName
IcePatch2.Remove
IcePatch2.Thorough

IcePatch2.AdapterProperty

Synopsis

IcePatch2. =AdapterProperty value

Description

IcePatch2 uses the adapter name  for the server. Therefore,  can be used to configure this adapter.IcePatch2 adapter properties

Note that the property  must be set for IcePatch2 clients, so they can locate the IcePatch2 server.IcePatch2.Endpoints

IcePatch2.Admin.AdapterProperty

Synopsis

IcePatch2.Admin. =AdapterProperty value

Description

IcePatch2 uses the adapter name  for the server's administrative object. Therefore,  can be used toIcePatch2.Admin adapter properties
configure this adapter.

Note that the administrative object is only enabled when the property  is defined.IcePatch2.Admin.Endpoints

IcePatch2.ChunkSize

Synopsis

IcePatch2.ChunkSize=kilobytes

Description

The IcePatch2 client uses this property to determine how many kilobytes are retrieved with each call to .getFileCompressed

The default value is .100

IcePatch2.Directory

Synopsis

IcePatch2.Directory=dir

Description
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The IcePatch2 server uses this property to determine the data directory if no data directory is specified on the command line.

This property is also used by IcePatch2 clients to determine the local data directory.

IcePatch2.InstanceName

Synopsis

IcePatch2.InstanceName=name

Description

Specifies the identity category for well-known IcePatch2 . If defined, the identity of the  interface becomes objects IcePatch2::Admin name
 and the identity of the  interface becomes ./admin IcePatch2::FileServer /servername

If not defined, the default value is .IcePatch2

IcePatch2.Remove

Synopsis

IcePatch2.Remove=num

Description

This property determines whether IcePatch2 clients delete files that exist locally, but not on the server. A negative or zero value prevents
removal of files. A value of  enables removal and causes the client to halt with an error if removal of a file fails. A value of  or greater also1 2
enables removal, but causes the client to silently ignore errors during removal.

The default value is .1

IcePatch2.Thorough

Synopsis

IcePatch2.Thorough=num

Description

This property determines whether IcePatch2 clients recompute checksums. Any value greater than zero is interpreted as true. The default
value is  (false).0
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Windows Services
A Windows service is a program that runs in the background and typically does not require user intervention. Similar to a daemon on Unix
platforms, a Windows service is usually launched automatically when the operating system starts and runs until the system shuts down.

Ice includes the  class that simplifies the task of writing an Ice-based Windows service in C++. Writing the service is only the firstService
step, however, as it is also critically important that the service be installed and configured correctly for successful operation. Service
installation and configuration is outside the scope of the  class because these tasks are generally not performed by the serviceService
itself but rather as part of a larger administrative effort to deploy an application. Furthermore, there are security implications to consider when
a service is able to install itself: such a service typically needs administrative rights to perform the installation, but does not necessarily need
those rights while it is running. A better strategy is to grant administrative rights to a separate installer program and not to the service itself.

Topics

Installing a Windows Service
Using the Ice Service Installer
Manually Installing a Service
Troubleshooting Windows Services
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Installing a Windows Service

The installation of a Windows service varies in complexity with the needs of the application, but usually involves the following activities:

Selecting the user account in which the service will run.
Registering the service and establishing its activation mode and dependencies.
Creating one or more file system directories to contain executables, libraries, and supporting files or databases.
Configuring those directories with appropriate permissions so that they are accessible to the user account selected for the service.
Creating keys in the Windows registry.
Configuring the Windows Event Log so that the service can report status and error messages.

There are many ways to perform these tasks. For example, an administrator can . Another option is to write a scriptexecute them manually
or program tailored to the needs of your application. Finally, you can build an installer using a developer tool such as InstallShield.

Selecting a User Account for the Service

Before installing a service, you should give careful consideration to the user account that will run the service. Unless your service has special
requirements, we recommend that you use the built-in account that Windows provides specifically for this purpose. On Windows XP and
Windows Server 2003, the fully-qualified name for this account is ; in an English locale, its name isNT Authority\LocalService
displayed as . On Windows Vista (or later), the account name is simply .Local Service Local Service

See Also

Manually Installing a Service
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Using the Ice Service Installer

Ice provides the command-line tool  to assist you in installing and uninstalling the following Windows services:iceserviceinstall

IceGrid registry
IceGrid node
Glacier2 router

Ice includes other programs that can also be run as Windows services, such as the  and  servers. Typically it is notIceBox IcePatch2
necessary to install these programs as Windows services because they can be launched by an IceGrid node service. However, if you wish to
run an IceBox or IcePatch2 server as a Windows service without the use of IceGrid, you must  the service.manually install

Here we describe how to use the Ice service installer and discuss its actions and prerequisites.

On this page:

 Command Line Optionsiceserviceinstall
Security Considerations for Ice Services

 Configuration Fileiceserviceinstall
Sample Configuration Files

 Propertiesiceserviceinstall
Service Installation Process
Uninstalling a Service

iceserviceinstall Command Line Options

iceserviceinstall supports the following options and arguments:

iceserviceinstall [options] service config-file [property ...]

Options:
-h, --help           Show this message.
-n, --nopause        Do not call pause after displaying a message.
-v, --version        Display the Ice version.
-u, --uninstall      Uninstall the Windows service.

The  and  arguments are required during installation and uninstallation.service config-file

The  argument selects the type of service you are installing; use one of the following values:service

icegridregistry
icegridnode
glacier2router

Note that the Ice service installer currently does not support the installation of an IceGrid node with a collocated registry, therefore you must
install the registry and node separately.

The  argument specifies the name of an .config-file Ice configuration file

When installing a service, properties can be defined on the command line using the -- =  syntax, or they can be defined in thename value
configuration file. The supported properties are described .below

Security Considerations for Ice Services

None of the Ice services require privileges beyond a normal user account. In the case of the IceGrid node service in particular, we do not
recommend running it in a  with elevated privileges because the service is responsible for launching server executables, anduser account
those servers would inherit the node's access rights.

iceserviceinstall Configuration File
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The Ice service installer requires that you specify the path name of the Ice configuration file for the service being installed or uninstalled. The
tool needs this path name for several reasons:

During installation, it verifies that the configuration file has sufficient access rights.
It configures a newly-installed service to load the configuration file using its absolute path name, therefore you must decide in
advance where the file will be located.
It reads the configuration file and examines certain service-specific properties. For example, prior to installing an IceGrid registry
service, the tool verifies that the directory specified by the property  has sufficient access rights.IceGrid.Registry.Data
The tool supports its own configuration parameters that may also be defined as  in this file.properties

You may still modify a service's configuration file after installation, but you should uninstall and reinstall the service if you change any of the
properties that influence the service installer's actions. The table below describes the service properties that affect the installer:

Property Service Description

IceGrid.InstanceName IceGrid Registry Value appears in the service name; also included in the default display name if
one is not defined.

IceGrid.Node.Data IceGrid Node Directory is created if necessary; access rights are verified.

IceGrid.Node.Name IceGrid Node Value appears in the service name; also included in the default display name if
one is not defined.

IceGrid.Registry.Data IceGrid Registry Directory is created if necessary; access rights are verified.

Ice.Default.Locator IceGrid Node, Glacier2
Router

The IceGrid instance name is derived from the identity in this proxy.

Ice.EventLog.Source All Specifies the name of an event log source for the service.

The steps performed by the tool during an installation are described in detail in .process

Sample Configuration Files

Ice includes sample configuration files for the IceGrid and Glacier2 services in the  subdirectory of your Ice installation. Weconfig
recommend that you review the comments and settings in these files to familiarize yourself with a typical configuration of each service.

You can modify a configuration file to suit your needs or copy one to use as a starting point for your own configuration.

iceserviceinstall Properties

The Ice service installer uses a set of optional properties that customize the installation process. These properties can be defined in the
service's configuration file as discussed above, or they can be defined on the command line using the familiar -- =  syntax:name value

iceserviceinstall --DependOnRegistry=1 ...

The installer's properties are listed below:

AutoStart=num
If num is a value greater than zero, the service is configured to start automatically at system start up. Set this property to zero to
configure the service to start on demand instead. If not specified, the default value is .1

DependOnRegistry=num
If num is a value greater than zero, the service is configured to depend on the IceGrid registry, meaning Windows will start the
registry prior to starting this service. Enabling this feature also requires that the property  be defined in Ice.Default.Locator

. If not specified, the default value is zero.config-file

Description=value
A brief description of the service. If not specified, a general description is used.

DisplayName=name
The friendly name that identifies the service to the user. If not specified,  composes a default display name.iceserviceinstall

EventLog=name
The name of the event log used by the service. If not specified, the default value is .Application
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ImagePath=path
The path name of the service executable. If not specified,  assumes the service executable resides in theiceserviceinstall
same directory as itself and fails if the executable is not found.

ObjectName=name
Specifies the account used to run the service. If not specified, the default value is .NT Authority\LocalService

Password=value
The password required by the account specified in .ObjectName

Service Installation Process

The Ice service installer performs a number of steps to install a service. As discussed , you must specify the path name of theearlier
service's configuration file because the service installer uses certain properties during the installation process. The actions taken by the
service installer are described below:

Obtain the service's  from the configuration file. The instance name is specified by the property instance name
 or . If an instance name is not specified, the default value is  or IceGrid.InstanceName Glacier2.InstanceName IceGrid

, respectively. If the service being installed depends on the IceGrid registry, the IceGrid instance name is derived from theGlacier2
value of the  property.Ice.Default.Locator
For an IceGrid node, obtain the node's name from the property . This property must be defined whenIceGrid.Node.Name
installing a node.
Compose the service name from the service type, instance name, and node name (for an IceGrid node). For example, the default
service name for an IceGrid registry is . Note that the service name is not the same as the displayicegridregistry.IceGrid
name.
Resolve the user account specified by .ObjectName
For an IceGrid registry, create the data directory specified by the property  and ensure that the userIceGrid.Registry.Data
account specified by  has read/write access to the directory.ObjectName
For an IceGrid node, create the data directory specified by the property  and ensure that the user accountIceGrid.Node.Data
specified by  has read/write access to the directory.ObjectName
For an IceGrid node, ensure that the user account specified by  has read access to the following registry key:ObjectName
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib
This key allows the node to access .CPU utilization statistics
Ensure that the user account specified by  has read/write access to the configuration file.ObjectName
Create a new Windows event log by adding the registry key specified by .EventLog
Add an event log source under  for the source name specified by . If this property is not defined,EventLog Ice.EventLog.Source
the service name is used as the source name.
Install the service, including command line arguments that specify the service name (  ) and the absolute path--service name
name of the configuration file ( ).--Ice.Config=config-file

The Ice service installer currently does  perform these tasks:not

Modify access rights for the service's executable or its DLL dependencies
Verify that the user account specified by  has the right to "Log on as a service"ObjectName

Uninstalling a Service

When uninstalling an existing service, the Ice service installer first ensures that the service is stopped, then proceeds to remove the service.
The service's event log source is removed and, if the service is not using the  log, the event log registry key is also removed.Application

See Also

icegridregistry
icegridnode
Getting Started with Glacier2
IceBox
IcePatch2
Installing a Windows Service
Manually Installing a Service
Troubleshooting Windows Services
IceGrid Properties
Glacier2 Properties
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Manually Installing a Service

This page describes how to manually install and configure an Ice service using the  service as a case study. For the purposes ofIcePatch2
this discussion, we assume that Ice is installed in the directory . We also assume that you have administrative access to yourC:\Ice
system, which is required by many of the installation steps discussed below.

On this page:

Selecting a User Account for the IcePatch2 Service
Preparing a Directory for the IcePatch2 Service

Selecting a Directory for the IcePatch2 Service
Creating the Directory for the IcePatch2 Service
Populating the Directory for the IcePatch2 Service

Configuration File for the IcePatch2 Service
Creating the IcePatch2 Service
Creating the Event Log for the IcePatch2 Service

Using the Application Log for the IcePatch2 Service
Using a Custom Log for the IcePatch2 Service
Registry Caching for the IcePatch2 Service

Starting the IcePatch2 Service
Testing the IcePatch2 Service

Selecting a User Account for the IcePatch2 Service

The IcePatch2 service can run in a regular user account, therefore we will follow  and use the Local Serviceour own recommendation
account.

Preparing a Directory for the IcePatch2 Service

The service needs a directory in which to store the files that it distributes to clients. A common mistake is assuming that a service will be able
to access a file or directory that you created using your current account, which is likely to cause the service to fail in a way that is difficult to
diagnose. To prevent such failures, we will ensure that the directory has the necessary permissions for the service to access it while running
in the  account.Local Service

Selecting a Directory for the IcePatch2 Service

The directory tree for our IcePatch2 service is shown below:

C:\Documents and Settings\
  LocalService\
    Local Settings\
      Application Data\
        ZeroC\
          icepatch2\
            data\

Note that this tree applies to Windows XP and Windows Server 2003, and is locale dependent. On Windows Vista (or later), we would use
the following tree instead:

C:\Windows\
  ServiceProfiles\
    LocalService\
      AppData\
        Local\
          ZeroC\
            icepatch2\
              data\

For this example, we will use the Windows XP directory tree.



Ice 3.4.2 Documentation

1673 Copyright © 2011, ZeroC, Inc.

Creating the Directory for the IcePatch2 Service

Since  is a built-in account, its user directory should already exist and have the proper access rights.Local Service

If you open  in Windows Explorer, the  directory may not be visible untilC:\Documents and Settings LocalService
you modify your folder options to show protected files and folders.

If the directory does not exist, we can create it in a command window with the following steps:

> cd \Documents and Settings
> mkdir LocalService

At this point we could create the rest of the directory hierarchy. However, a newly-created directory inherits the privileges of its enclosing
directory, and we have not yet modified the privileges of the  directory to grant access to the  account. AtLocalService Local Service
present, the privileges of the  directory are inherited from  and require modification. In general,LocalService Documents and Settings
it is better to establish the necessary access rights on the parent directory prior to creating any subdirectories, so we will modify the 

 directory first.LocalService

On all Windows systems, we can use the command-line utility . The following command does what we need:cacls

> cacls LocalService /G "Local Service":F Administrators:F

By omitting the  option to , we have replaced all of the prior access rights on the directory with the rights given in this command. As/E cacls
a result, the  account and anyone in the Administrators group are granted full access to the directory, while all others areLocal Service
forbidden. (We grant full access to the Administrators group because presumably someone other than the   account willLocal Service
need to manage the subdirectory, create the configuration file, an so on). You can verify the directory's current privilege settings by running 

 without options:cacls

> cacls LocalService

Now we can create the remaining subdirectories, and they will automatically inherit the access rights established for the LocalService
directory:

> cd LocalService
> mkdir "Local Settings\Application Data\ZeroC\icepatch2\data"

If you want to further restrict access to files or subdirectories, you can modify them as necessary using the  utility. Note however thatcacls
certain actions may cause a file to revert back to the access rights of its enclosing directory. For example, modifying a file using a text editor
is often the equivalent of erasing the file and recreating it, which discards any access rights you may have previously set for the file.

On some versions of Windows XP, and on Windows Server 2003 and Windows Vista (or later), you can manage privilege settings
interactively using Windows Explorer. For example, right click on the  directory, select Properties, and select the SecurityLocalService
tab. Next select Advanced and Edit, uncheck "Include inheritable permissions from this object's parent," and select Copy. Remove all
permission entries, then add entries for Local Service and the Administrators group and grant Full Control to each.

Populating the Directory for the IcePatch2 Service

Now you can copy the files that will be distributed to clients into the  subdirectory. The new files should inherit the access rights of theirdata
enclosing directory. For the sake of discussion, let's copy some Slice files from the Ice distribution into the data directory:

> cd "Local Settings\Application Data\ZeroC\icepatch2\data"
> copy \Ice\slice\Ice\*.ice

Next we need to run  to prepare the directory for use by the IcePatch2 service:icepatch2calc

> icepatch2calc .
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Configuration File for the IcePatch2 Service

IcePatch2 requires a minimal set of configuration properties. We could specify them on the service's command line, but if we later want to
modify those properties we would have to reinstall the service. Defining the properties in a file simplifies the task of modifying the service's
configuration.

Our IcePatch2 configuration is quite simple:

IcePatch2.Directory=C:\Documents and Settings\LocalService\
Local Settings\Application Data\ZeroC\icepatch2\data
IcePatch2.Endpoints=tcp -p 10000

The  property specifies the location of the server's data directory, which we created in the previous section.IcePatch2.Directory

We will save our configuration properties into the following file:

C:\Ice\config\icepatch2.cfg

We must also ensure that the service has permission to access its configuration file. The Ice run time never modifies a configuration file,
therefore read access is sufficient. The configuration file likely already has the necessary access rights, which we can verify using the cacls
utility that we described earlier:

> cacls C:\Ice\config\icepatch2.cfg

Creating the IcePatch2 Service

We will use Microsoft's Service Control ( ) utility in a command window to create the service.sc

See  for more information about the  utility.http://support.microsoft.com/kb/251192 SC

Our first  command does the majority of the work (the command is formatted for readability but must be typed on a single line):sc

> sc create icepatch2 binPath= "C:\Ice\bin\icepatch2server.exe
  --Ice.Config=C:\Ice\config\icepatch2.cfg --service icepatch2"
  DisplayName= "IcePatch2 Server" start= auto
  obj= "NT Authority\LocalService" password= ""

There are several important aspects of this command:

The service name is . You can use whatever name you like, as long as it does not conflict with an existing service. Noteicepatch2
however that this name is used in other contexts, such as in the  option discussed below, therefore you must use it--service
consistently.
Following the service are several options. Note that all of the option names end with an equals sign and are separated from their
arguments with at least one space.
The  option is required. We supply the full path name of the IcePatch2 server executable, as well as command-linebinPath=
arguments that define the location of the configuration file and the name of the service, all enclosed in quotes.
The  option sets a friendly name for the service.DisplayName=
The  option configures the start up behavior for the service. We used the argument  to indicate the service should bestart= auto
started automatically when Windows boots.
The  option selects the user account in which this service runs. As we , the  account is appropriateobj= explained Local Service
for most services.
The  option supplies the password associated with the user account indicated by . The  accountpassword= obj= Local Service
has an empty password.

The  utility should report success if it was able to create the service as specified. You can verify that the new service was created with thissc
command:

http://support.microsoft.com/kb/251192
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> sc qc icepatch2

Alternatively, you can start the Services administrative control panel and inspect the properties of the IcePatch2 service.

If you start the control panel, you will notice that the entry for IcePatch2 does not have a description. To add a description for the service, use
the following command:

> sc description icepatch2 "IcePatch2 file server"

After refreshing the list of services, you should see the new description.

Creating the Event Log for the IcePatch2 Service

By default, programs such as the IcePatch2 service that utilize the ) class log messages to the  event log. Below weService Application
describe how to prepare the Windows registry for the service's default behavior, and we also show how to use a custom event log instead.
We make use of Microsoft's Registry ( ) utility to modify the registry, although you could also use the interactive  tool. As always,reg regedit
caution is recommended whenever you modify the registry.

Using the Application Log for the IcePatch2 Service

We must configure an event log source for events to display properly. The first step is to create a registry key with the name of the source.
Since the  class uses the service name as the source name by default, we add the key  as shown below:Service icepatch2

> reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\icepatch2

Inside this key we must add a value specifies the location of the Ice run time DLL:

> reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\icepatch2
/v EventMessageFile /t REG_EXPAND_SZ /d C:\Ice\bin\ice34.dll

We will also add a value indicating the types of events that the source supports:

> reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\icepatch2
/v TypesSupported /t REG_DWORD /d 7

The value  corresponds to the combination of the following event types:7

EVENTLOG_ERROR_TYPE
EVENTLOG_WARNING_TYPE
EVENTLOG_INFORMATION_TYPE

You can verify that the registry values have been defined correctly using the following command:

> reg query HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\icepatch2

Our configuration of the event log is now complete.

Changing the Source Name for the IcePatch2 Service

Using the configuration described in the previous section, events logged by the IcePatch2 service are recorded in the event log using the
source name . If you prefer to use a source name that differs from the service name, you can replace  in the registryicepatch2 icepatch2
commands with the name of your choosing, but you must also add a matching definition for the property  to theIce.EventLog.Source
service's configuration file.

For example, to use the source name , you would add the registry key as shown below:Ice File Patching Service
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> reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\Application\Ice File Patching Service"

The commands to add the  and  values must be modified in a similar fashion. Finally, add theEventMessageFile TypesSupported
following configuration property to :icepatch2.cfg

Ice.EventLog.Source=Ice File Patching Service

Using a Custom Log for the IcePatch2 Service

You may decide that you want your services to record messages into an application-specific log instead of the  log that isApplication
shared by other unrelated services. As an example, let us create a log named :MyApp

> reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\MyApp"

Next we add a subkey for the IcePatch2 service. As described in the previous section, we will use a friendlier source name:

> reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\MyApp\Ice File Patching Service"

Now we can define values for  and :EventMessageFile TypesSupported

> reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\MyApp\Ice File Patching Service"
/v EventMessageFile /t REG_EXPAND_SZ /d C:\Ice\bin\ice34.dll

> reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\MyApp\Ice File Patching Service"
/v TypesSupported /t REG_DWORD /d 7

Finally, we define  in the IcePatch2 service's configuration file:Ice.EventLog.Source

Ice.EventLog.Source=Ice File Patching Service

Note that you must restart the Event Viewer control panel after adding the  registry key in order to see the new log.MyApp

Registry Caching for the IcePatch2 Service

The first time a service logs an event, Windows' Event Log service caches the registry entries associated with the service's source. If you
wish to modify a service's event log configuration, such as changing the service to use a custom log instead of the  log, youApplication
should perform the following steps:

Stop the service.
Remove the unwanted event log registry key.
Add the new event log registry key(s).
Restart the system (or at least the Event Log service).
Start the service and verify that the log entries appear in the intended log.

After following these steps, open a log entry and ensure that it displays properly. If it does not, for example if the event properties indicate
that the description of an event cannot be found, the problem is likely due to a misconfigured event source. Verify that the value of 

 refers to the correct location of the Ice run time DLL, and that the service is defining  in itsEventMessageFile Ice.EventLog.Source
configuration file (if necessary).

Starting the IcePatch2 Service

We are at last ready to start the service. In a command window, you can use the  utility:sc

> sc start icepatch2
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The program usually responds with status information indicating that the start request is pending. You can query the service's status to verify
that it started successfully:

> sc query icepatch2

The service should now be in the running state. If it is not in this state, open the Event Viewer control panel and inspect the relevant log for
more information that should help you to locate the problem. Even if the service started successfully, you may still want to use the Event
Viewer to confirm that the service is using the log you expected.

Testing the IcePatch2 Service

Ice includes a graphical IcePatch2 client in the  directory of the Ice distribution. Once you have built the client, youdemo/IcePatch2/MFC
can use it to test that the service is working properly.

See Also

IcePatch2
 ClassIce::Service

Installing a Windows Service
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Troubleshooting Windows Services

This page describes how to troubleshoot Windows Services.

On this page:

Missing Libraries for a Windows Service
Windows Firewall Interference
IceGrid Node Performance Monitoring Issues

Missing Libraries for a Windows Service

One failure that commonly occurs when starting a Windows service is caused by missing DLLs, which usually results in an error window
stating a particular DLL cannot be found. Fixing this problem can often be a trial-and-error process because the DLL mentioned in the error
may depend on other DLLs that are also missing. It is important to understand that a Windows service is launched by the operating system
and can be configured to execute as a different user, which means the service's environment (most importantly its ) may not matchPATH
yours and therefore extra steps are necessary to ensure that the service can locate its required DLLs.

The command-line utility  can be used to discover the dependencies of an executable or DLL.dumpbin

The simplest approach is to copy all of the necessary DLLs to the directory containing the service executable. If this solution is undesirable,
another option is to modify the system  to include the directory or directories containing the required DLLs. (Note that modifying thePATH
system  requires restarting the system.) Finally, you can copy the necessary DLLs to , although we do notPATH \WINDOWS\system32
recommend this approach.

Copying DLLs to  often results in subtle problems later when trying to develop using newer versions\WINDOWS\system32
of the DLLs. Inevitably you will forget about the DLLs in  and struggle to determine why your\WINDOWS\system32
application is misbehaving or failing to start.

Assuming that DLL issues are resolved, a Windows service can fail to start for a number of other reasons, including

invalid command-line arguments or configuration properties
inability to access necessary resources such as file systems and databases, because either the resources do not exist or the service
does not have sufficient access rights to them
networking issues, such as attempting to open a port that is already in use, or DNS lookup failures

Failures encountered by the Ice run time prior to initialization of the communicator are reported to the Windows event log if no other logger
implementation is defined, so that should be the first place you look. Typically you will find an entry in the  event log resembling theSystem
following message:

The IcePatch2 service terminated with service-specific error 1.

Error code  corresponds to , the value used by the  class to indicate a failure during startup. Additional diagnostic1 EXIT_FAILURE Service
messages may be available in the  event log. See  for more information onApplication  Logging ConsiderationsIce::Service
configuring a logger for a Windows service.

As we mentioned earlier, insufficient access rights can also prevent a Windows service from starting successfully. By default, a Windows
service is configured to run under a local system account, in which case the service may not be able to access resources owned by other
users. It may be necessary for you to configure a service to run under a , which you can do using the Services control panel.different account
You should also review the  of files and directories required by the service.access rights

Windows Firewall Interference

Your choice of user account determines whether you receive any notification when the Windows Firewall blocks the ports that are used by
your service. For example, if you use  as we , you will not see any Windows Security Alert dialog (see this Local Service recommended

 for details).Microsoft article

If you are not prompted to unblock your service, you will need to manually add an exception in Windows Firewall. For example, follow the
steps below to unblock the ports of a Glacier2 router service:

http://support.microsoft.com/kb/875357
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Open the Windows Firewall Settings panel and navigate to the Exceptions panel.
Select "Add program..."
Select "Browse," navigate to the Glacier2 router executable, and click "OK."

Note that adding an exception for a program unblocks all ports on which the program listens. Review the endpoint configurations of your
services carefully to ensure that no unnecessary ports are opened.

For services listening on one or a few fixed ports, you could also create port exceptions in your Windows Firewall. Refer to the Windows
Firewall documentation for details.

IceGrid Node Performance Monitoring Issues

The IceGrid node uses Windows'  facility to obtain statistics about the CPU utilization of its host for  purposes. OnPerflib load balancing
Vista-derived operating systems, the IceGrid node may log the following warning message:

warning: Unable to lookup the performance counter name

This message is an indication that the node does not have sufficient privileges to access a key in the Windows registry:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

As part of its installation procedure, the  utility modifies the permissions of this registry key to grant read access to theiceserviceinstall
node's designated user account. If you are trying to change the node's user account, we recommend using the  utilityiceserviceinstall
to uninstall and reinstall the node. If you wish to modify the permissions of this registry key manually, follow these steps:

Start  and navigate to the  key.regedit Perflib
Right click on  and select .Perflib Permissions
If the desired user account is not already present, click  to add the user account. Enter  if you wish to run theAdd LOCAL SERVICE
node in the Local Service account, otherwise enter the name of the user account. Press .OK
Check the  box in the  column to grant read access to the registry key and press  to apply the changes.Read Allow OK

Another way to grant the node's user account with the necessary access rights is to add it to the  group.Performance Monitor Users

See Also

Load Balancing
Installing a Windows Service
Manually Installing a Service
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Binary Distributions
ZeroC supplies binary distributions for the combinations of platforms and compilers that Ice supports. The packaging of each distribution
varies with the platform:

a Microsoft Installer (MSI) for Windows
a collection of RPMs for Red Hat Enterprise Linux and SuSE Linux Enterprise Server
a compressed TAR file ( ) for other Unix platformstarball

In general, the binary distributions are intended for the developer, and not for the end users of the developer's application. In other words,
ZeroC expects you, as an Ice developer, to bundle the necessary Ice run time components into your own installation package. This chapter
discusses ZeroC's binary distributions and provides guidelines for distributing your applications.

Topics

Ice Developer Kits
Guidelines for Distributing Ice Applications
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Ice Developer Kits

The Windows installer and the Unix tarballs are developer kits that provide everything necessary for you to develop applications with Ice,
including header files, pre-compiled shared libraries, Slice compilers, and executables for services such as IceGrid. The Windows installer
also includes the source code for sample programs as well as debug versions of the Ice run time libraries.

Sample programs for Unix platforms are provided as a separate source tarball.

The RPM distributions are different than the monolithic distributions of other platforms. Packaged using standard RPM conventions, these
distributions include separate run time and developer kit RPMs for each language mapping. For example, the  RPM contains theice-java
Ice for Java run time ( ), while the  RPM contains development tools such as the Slice-to-Java compiler.Ice.jar ice-java-devel
Additional RPMs are provided for third-party dependencies that are not included in the Red Hat distribution, or whose versions are out of
date, such as Berkeley DB.

Regardless of the platform, we do not recommend using Ice developer kits as a way of installing the Ice run time components required by
your application because the majority of what is installed by a developer kit is irrelevant to end user applications. The RPM distribution,
however, is packaged in such a way that you may find it convenient to simply redistribute select Ice run time RPMs along with your
application.
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Guidelines for Distributing Ice Applications

This page provides some guidance for developers that are planning to distribute an Ice-based application. We can start by listing items that
typically should not be included in your binary distribution:

Slice compilers
Slice files (unless you are using a scripting language, as discussed below)
Executables and libraries for Ice services and tools that your application does not use
For C++ programs on Windows:

DLLs built in debug mode (such as )ice34d.dll
Program database ( ) filesPDB
Header files
Import library ( ) filesLIB

Each of the language mappings is discussed in its own subsection below. In the following discussion, we use the term  to refer to alibrary
shared library or DLL as appropriate for the platform.

On this page:

C++ Distribution
Discovering Dependencies
Qt Libraries

.NET Distribution
Java Distribution
Python and Ruby Distributions
PHP Distribution

C++ Distribution

The  library contains the implementation of the core Ice run time. Supplemental libraries provide the stubs and skeletons for the IceIce
services, as well as utility functions used by Ice, its services, and Ice applications:

Glacier2
IceBox
IceGrid
IcePatch2
IceSSL
IceStorm

The  library is a dependency of the  library and therefore must be distributed with any Ice application. The  library isIceUtil Ice IceXML
required by certain Ice services.

Your distribution needs to include only those libraries that your application uses. If your application implements an IceBox service, you must
also distribute the IceBox server executable ( ).icebox

Discovering Dependencies

On Windows, you can use the  utility in a command window to display the dependencies of a DLL or executable. For example, heredumpbin
is the output for the  executable:glacier2router

> dumpbin /dependents glacier2router.exe
ice34.dll
iceutil34.dll
LIBEAY32.dll
glacier234.dll
icessl34.dll
MSVCP90.dll
MSVCR90.dll
KERNEL32.dll

We can deduce from the names of the Microsoft Visual C++ run time DLLs that this Ice installation was compiled with Visual Studio 2008.
Note that each of these DLLs has its own dependencies, which can be inspected using additional  commands. However, trackingdumpbin
down the dependencies recursively through each DLL can quickly become tedious, therefore you should consider using the Dependency

 graphical utility instead.Walker

http://www.dependencywalker.com
http://www.dependencywalker.com
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On Unix, the  utility displays the dependencies of shared libraries and executables.ldd

Qt Libraries

The IceGrid and IceStorm services use a pluggable architecture for their persistent storage needs. These services use Freeze as their
default persistent store, but it is also possible to use SQL databases instead. To implement the SQL persistence solution, Ice uses libraries
from the . Ice has no other dependency on the Qt libraries, therefore you only need to include the Qt libraries in your ownQt framework
distribution if you use  or  with a SQL database. In this case, you would need to bundle the following libraries:IceGrid IceStorm

IceGridSqlDB (for IceGrid)
IceStormSqlDB (for IceStorm)
QtCore and QtSql

.NET Distribution

The  assembly contains the implementation of the core Ice run time. Supplemental assemblies provide the stubs and skeletons for theIce
Ice services:

Glacier2
IceBox
IceGrid
IcePatch2
IceSSL
IceStorm

Your distribution needs to include only those assemblies that your application uses. If your application implements an IceBox service, you
must also distribute the IceBox server executable ( ).iceboxnet.exe

On Mono, the file  provides a mapping for the Bzip2 DLL. If your application does not use Ice's protocol compressionIce.dll.config
feature, you do not need to distribute this file. Otherwise, you should include the file and verify that its mapping is appropriate for your target
platform.

Java Distribution

The Ice for Java run time ( ) contains the following components:Ice.jar

implementations of Ice, IceSSL, and the IceBox server
stubs and skeletons for all of the Ice services

If your application uses Freeze, you must also distribute  along with the Berkeley DB run time libraries and JAR file.Freeze.jar

For assistance with packaging your Java application, consider using a utility such as .ProGuard

Python and Ruby Distributions

The Ice run time for a Python or Ruby application consists of the following components:

the library for the scripting language extension:  or IcePy IceRuby
the libraries required by the extension: , , and Ice IceUtil Slice
the source code generated from the Slice files in the Ice distribution

In addition, your distribution should include the source code generated for your own Slice files, or the Slice files themselves if your
application loads them dynamically.

PHP Distribution

The Ice run time for a PHP application consists of the following components:

the library for the scripting language extension:  or IcePHP php_ice
the libraries required by the extension: , , and Ice IceUtil Slice
the source code generated from the Slice files in the Ice distribution

In addition, your distribution should include the source code generated for your own Slice files.

http://qt.nokia.com
http://proguard.sourceforge.net
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See Also

IceGrid Persistent Data
Configuring IceStorm
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Deprecated AMI Mapping
This section describes the deprecated API for Asynchronous Method Invocation (AMI).

As of version 3.4, Ice provides a new API for asynchronous method invocation (refer to the relevant language mappings for
details). The mapping described here is the old AMI mapping, which is deprecated and will be removed in a future version
of Ice.

Topics

Overview of Deprecated AMI Mapping
Deprecated AMI Language Mappings
Advanced Topics for Deprecated AMI Mapping
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Overview of Deprecated AMI Mapping

On this page:

Motivation for AMI
Simulating AMI using Oneway Invocations

AMI Semantics
Controlling AMI Code Generation using Metadata
AMI Interfaces

Proxy Method for AMI Interfaces
Callback Object for AMI Interfaces

Motivation for AMI

Modern middleware technologies attempt to ease the programmer's transition to distributed application development by making remote
invocations as easy to use as traditional method calls: a method is invoked on an object and, when the method completes, the results are
returned or an exception is raised. Of course, in a distributed system the object's implementation may reside on another host, and
consequently there are some semantic differences that the programmer must be aware of, such as the overhead of remote invocations and
the possibility of network-related errors. Despite those issues, the programmer's experience with object-oriented programming is still
relevant, and this  programming model, in which the calling thread is blocked until the operation returns, is familiar and easilysynchronous
understood.

Ice is inherently an asynchronous middleware platform that simulates synchronous behavior for the benefit of applications (and their
programmers). When an Ice application makes a synchronous twoway invocation on a proxy for a remote object, the operation's in
parameters are marshaled into a message that is written to a transport, and the calling thread is blocked in order to simulate a synchronous
method call. Meanwhile, the Ice run time operates in the background, processing messages until the desired reply is received and the calling
thread can be unblocked to unmarshal the results.

There are many cases, however, in which the blocking nature of synchronous programming is too restrictive. For example, the application
may have useful work it can do while it awaits the response to a remote invocation; using a synchronous invocation in this case forces the
application to either postpone the work until the response is received, or perform this work in a separate thread. When neither of these
alternatives are acceptable, the asynchronous facilities provided with Ice are an effective solution for improving performance and scalability,
or simplifying complex application tasks.

Simulating AMI using Oneway Invocations

Before we get into the details of the AMI facilities that Ice provides, let's explore the idea of using  to achieve similaroneway invocations
results. As an example, consider an application with a graphical user interface. This application typically must avoid blocking the window
system's event dispatch thread because blocking makes the application unresponsive to user commands. In this situation, making a
synchronous remote invocation is asking for trouble.

The application could attempt to avoid this situation using oneway invocations, which by definition cannot return a value or have any out
parameters. Since the Ice run time does not expect a reply, the invocation blocks only as long as it takes to establish a connection (if
necessary), marshal the request, and copy the message into the local transport buffer. However, these network activities may still block.
Furthermore, the use of oneway invocations may require unacceptable changes to the interface definitions. For example, a twoway
invocation that returns results or raises user exceptions must be converted into at least two operations: one for the client to invoke with
oneway semantics that contains only in parameters, and one (or more) for the server to invoke to notify the client of the results.

To illustrate these changes, suppose that we have the following Slice definition:

Slice

interface I {
  int op(string s, out long l);
};

In its current form, the operation  is not suitable for a oneway invocation because it has an  parameter and a non-  return type. Inop out void
order to accommodate a oneway invocation of , we can change the Slice definitions as shown below:op
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Slice

interface ICallback {
  void opResults(int result, long l);
};

interface I {
  void op(ICallback* cb, string s);
};

We made several modifications to the original definition:

We added the interface , containing an operation  whose arguments represent the results of the originalICallback opResults
twoway operation. The server invokes this operation to notify the client of the completion of the operation.
We modified  to be compliant with oneway semantics: it now has a  return type, and takes only in parameters.I::op void
We added a parameter to  that allows the client to supply a proxy for its callback object.I::op

As you can see, we have made significant changes to our interface definitions to accommodate the implementation requirements of the
client. One ramification of these changes is that the client must now also be a server, because it must create an instance of  andICallback
register it with an object adapter in order to receive notifications of completed operations.

A more severe ramification, however, is the impact these changes have on the type system, and therefore on the server. Whether a client
invokes an operation synchronously or asynchronously should be irrelevant to the server; this is an artifact of behavior that should have no
impact on the type system. By changing the type system as shown above, we have tightly coupled the server to the client, and eliminated the
ability for  to be invoked synchronously.op

To make matters even worse, consider what would happen if  could raise . In this case,  would have to beop user exceptions ICallback
expanded with additional operations that allow the server to notify the client of the occurrence of each exception. Since exceptions cannot be
used as parameter or member types in Slice, this quickly becomes a difficult endeavor, and the results are likely to be equally difficult to use.

At this point, you will hopefully agree that this technique is flawed in many ways, so why do we bother describing it in such detail? The
reason is that the Ice implementation of AMI uses a strategy similar to the one described above, with several important differences:

No changes to the type system are required in order to use AMI. The on-the-wire representation of the data is identical, therefore
synchronous and asynchronous clients and servers can coexist in the same system, using the same operations.
The AMI solution accommodates exceptions in a reasonable way.
Using AMI does not require the client to also be a server.
Ice guarantees that AMI requests never block the calling thread.

AMI Semantics

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and, in the case of a twoway invocation, is notified when the reply
eventually arrives. Notification occurs via a callback to an application-supplied programming-language object.

Polling for a response is not supported in the deprecated AMI mapping, but polling is supported in the new API.

The use of an asynchronous model does not affect what is sent "on the wire." Specifically, the invocation model used by a client is
transparent to the server, and the dispatch model used by a server is transparent to the client. Therefore, a server has no way to distinguish
a client's synchronous invocation from an asynchronous invocation, and a client has no way to distinguish a server's synchronous reply from
an asynchronous reply.

Controlling AMI Code Generation using Metadata

A programmer indicates a desire to use an asynchronous model (AMI, AMD, or both) by annotating Slice definitions with . Themetadata
programmer can specify this metadata at two levels: for an interface or class, or for an individual operation. If specified for an interface or
class, then asynchronous support is generated for all of its operations. Alternatively, if asynchronous support is needed only for certain
operations, then the generated code can be minimized by specifying the metadata only for those operations that require it.

Synchronous invocation methods are always generated in a proxy; specifying AMI metadata merely adds asynchronous invocation methods.
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In contrast, specifying AMD metadata causes the synchronous dispatch methods to be  with their asynchronous counterparts. Thisreplaced
semantic difference between AMI and AMD is ultimately practical: it is beneficial to provide a client with synchronous and asynchronous
versions of an invocation method, but doing the equivalent in a server would require the programmer to implement both versions of the
dispatch method, which has no tangible benefits and several potential pitfalls.

Consider the following Slice definitions:

Slice

["ami"] interface I {
    bool isValid();
    float computeRate();
};

interface J {
  ["amd"]        void startProcess();
  ["ami", "amd"] int endProcess();
};

In this example, all proxy methods of interface  are generated with support for synchronous and asynchronous invocations. In interface ,I J
the  operation uses asynchronous dispatch, and the  operation supports asynchronous invocation andstartProcess endProcess
dispatch.

Specifying metadata at the operation level, rather than at the interface or class level, not only minimizes the amount of generated code, but
more importantly, it minimizes complexity. Although the asynchronous model is more flexible, it is also more complicated to use. It is
therefore in your best interest to limit the use of the asynchronous model to those operations for which it provides a particular advantage,
while using the simpler synchronous model for the rest.

AMI Interfaces

AMI operations have the same semantics in all of the language mappings that support asynchronous invocations. This section provides a
language-independent introduction to the AMI model.

Proxy Method for AMI Interfaces

Annotating a Slice operation with the AMI metadata tag does not prevent an application from invoking that operation using the traditional
synchronous model. Rather, the presence of the metadata extends the proxy with an asynchronous version of the operation, so that
invocations can be made using either model.

The asynchronous operation never blocks the calling thread. If the message cannot be accepted into the local transport buffer without
blocking, the Ice run time queues the request and immediately returns control to the calling thread.

The parameters of the asynchronous operation are modified similar to our : the first argument is a callback object (describedearlier example
below), followed by any  parameters in the order of declaration. The operation's return value and  parameters, if any, are passed toin out
the callback object when the response is received.

The asynchronous operation only raises  directly; all other exceptions are CommunicatorDestroyedException reported to the callback
.object

Finally, the return value of the asynchronous operation is a boolean that indicates whether the Ice run time was able to send the request
synchronously; that is, whether the entire message was immediately accepted by the local transport buffer. An application can use this value
to implement .flow control

Callback Object for AMI Interfaces

The asynchronous operation requires the application to supply a callback object as the first argument. This object is an instance of an
application-defined class; in strongly-typed languages this class must inherit from a superclass generated by the Slice compiler. In contrast
to the , the callback object is a purely local object that is invoked by the Ice run time in the client, and not by the remoteoneway example
server.

The Ice run time always invokes methods of the callback object from a thread in an Ice thread pool, and never from the thread that is
invoking the asynchronous operation. Exceptions raised by a callback object are ignored but may cause the Ice run time to log a warning
message depending on the value of the  property.Ice.Warn.AMICallback

The callback class must define the methods  and :ice_response ice_exception
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ice_response
Invoked by the Ice run time to supply the results of a successful twoway invocation; this method is not invoked for oneway
invocations. The arguments to  consist of the return value (if the operation returns a non-  type) followed by anyice_response void

 parameters in the order of declaration.out

ice_exception
 that occur during the invocation. The only exception that can be raised to the thread invoking the asynchronousHandles errors

operation is ; all other errors, including user exceptions, are passed to the callback objectCommunicatorDestroyedException
via its  method. In the case of a oneway invocation,  is only invoked if an error occurs before theice_exception ice_exception
request is sent.

For an asynchronous invocation, the Ice run time calls  or , but not both. It is possible for one of theseice_response ice_exception
methods to be called before control returns to the thread that is invoking the operation.

A callback object may optionally define a third method, :ice_sent

ice_sent
Invoked when the entire message has been passed to the local transport buffer to provide  functionality. The Ice run timeflow control
does not invoke  if the asynchronous operation returned true to indicate that the message was sent synchronously. Anice_sent
application must make no assumptions about the order of invocations on a callback object;  can be called before, after, orice_sent
concurrently with  or .ice_response ice_exception

See Also

Metadata
Oneway Invocations
Advanced Topics for Deprecated AMI Mapping
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Deprecated AMI Language Mappings

The deprecated AMI language mappings are described in separate subsections below.

On this page:

Deprecated AMI Mapping for C++
Deprecated AMI Mapping for Java
Deprecated AMI Mapping for C#
Deprecated AMI Mapping for Python
Examples using Deprecated AMI Mapping

C++ Client Example
Java Client Example
C# Client Example
Python Client Example

Deprecated AMI Mapping for C++

The C++ mapping emits the following code for each AMI operation:

An abstract callback class whose name is formed using the pattern . For example, an operation named  definedAMI_ _class op foo
in interface  results in a class named . The class is generated in the same scope as the interface or class containingI AMI_I_foo
the operation. Two methods must be defined by the subclass:

C++

void ice_response(<params>);
void ice_exception(const Ice::Exception &);

An additional proxy method, having the mapped name of the operation with the suffix . This method returns a boolean_async
indicating whether the request was . The first parameter is a smart pointer to an instance of the callback classsent synchronously
described above. The remaining parameters comprise the  parameters of the operation, in the order of declaration.in

For example, suppose we have defined the following operation:

Slice

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation  is shown below:foo

C++

class AMI_I_foo : public ... {
public:
    virtual void ice_response(Ice::Int, Ice::Long) = 0;
    virtual void ice_exception(const Ice::Exception&) = 0;
};
typedef IceUtil::Handle<AMI_I_foo> AMI_I_fooPtr;

The proxy method for asynchronous invocation of operation  is generated as follows:foo

C++

bool foo_async(const AMI_I_fooPtr&, Ice::Short);

The  describes the proxy methods and callback objects in greater detail.overview
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1.  

2.  

1.  

2.  

Deprecated AMI Mapping for Java

The Java mapping emits the following code for each AMI operation:

An abstract callback class whose name is formed using the pattern . For example, an operation named  definedAMI_ _class op foo
in interface  results in a class named . The class is generated in the same scope as the interface or class containingI AMI_I_foo
the operation. Three methods must be defined by the subclass:

Java

public void ice_response(<params>);
public void ice_exception(Ice.LocalException ex);
public void ice_exception(Ice.UserException ex);

An additional proxy method, having the mapped name of the operation with the suffix . This method returns a boolean_async
indicating whether the request was . The first parameter is a reference to an instance of the callback classsent synchronously
described above. The remaining parameters comprise the  parameters of the operation, in the order of declaration.in

For example, suppose we have defined the following operation:

Slice

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation  is shown below:foo

Java

public abstract class AMI_I_foo extends ... {
    public abstract void ice_response(int __ret, long l);
    public abstract void ice_exception(Ice.LocalException ex);
    public abstract void ice_exception(Ice.UserException ex);
}

The proxy methods for asynchronous invocation of operation  are generated as follows:foo

Java

public boolean foo_async(AMI_I_foo __cb, short s);
public boolean foo_async(AMI_I_foo __cb, short s, java.util.Map<String, String> __ctx);

As usual, the version of the operation without a context parameter forwards an empty context to the version with a context parameter.

The  describes the proxy methods and callback objects in greater detail.overview

Deprecated AMI Mapping for C#

The C# mapping emits the following code for each AMI operation:

An abstract callback class whose name is formed using the pattern . For example, an operation named  definedAMI_ _class op foo
in interface  results in a class named . The class is generated in the same scope as the interface or class containingI AMI_I_foo
the operation. Two methods must be defined by the subclass:

C#

public abstract void ice_response(<params>);
public abstract void ice_exception(Ice.Exception ex);

An additional proxy method, having the mapped name of the operation with the suffix . This method returns a boolean_async



Ice 3.4.2 Documentation

1692 Copyright © 2011, ZeroC, Inc.

2.  
indicating whether the request was . The first parameter is a reference to an instance of the callback classsent synchronously
described above. The remaining parameters comprise the in parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

Slice

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation  is shown below:foo

C#

public abstract class AMI_I_foo : ...
{
    public abstract void ice_response(int __ret, long l);
    public abstract void ice_exception(Ice.Exception ex);
}

The proxy method for asynchronous invocation of operation  is generated as follows:foo

C#

bool foo_async(AMI_I_foo __cb, short s);
bool foo_async(AMI_I_foo __cb, short s, Dictionary<string, string> __ctx);

As usual, the version of the operation without a context parameter forwards an empty context to the version with a context parameter.

The  describes the proxy methods and callback objects in greater detail.overview

Deprecated AMI Mapping for Python

For each AMI operation, the Python mapping emits an additional proxy method having the mapped name of the operation with the suffix 
. This method returns a boolean indicating whether the request was . The first parameter is a reference to a_async sent synchronously

callback object; the remaining parameters comprise the  parameters of the operation, in the order of declaration.in

Unlike the mappings for strongly-typed languages, the Python mapping does not generate a callback class for asynchronous operations. In
fact, the callback object's type is irrelevant; the Ice run time simply requires that it define the  and ice_response ice_exception
methods:

Python

def ice_response(self, <params>)
def ice_exception(self, ex)

For example, suppose we have defined the following operation:

Slice

interface I {
  ["ami"] int foo(short s, out long l);
};

The method signatures required for the callback object of operation  are shown below:foo
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Python

class ...
    #
    # Operation signatures:
    #
    # def ice_response(self, _result, l)
    # def ice_exception(self, ex)

The proxy method for asynchronous invocation of operation  is generated as follows:foo

Python

def foo_async(self, __cb, s)

The  describes the proxy methods and callback objects in greater detail.overview

Examples using Deprecated AMI Mapping

To demonstrate the use of AMI in Ice, let's define the Slice interface for a simple computational engine:

Slice

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["ami"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the  operation returns a new grid of the same size with theinterpolate
values interpolated in some interesting (but unspecified) way. In the sections below, we present C++, Java, and C# clients that invoke 

 using AMI.interpolate

C++ Client Example

We must first define our callback implementation class, which derives from the generated class :AMI_Model_interpolate
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C++

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate
{
public:
    virtual void ice_response(const Demo::Grid& result)
    {
        cout << "received the grid" << endl;
        // ... postprocessing ...
    }

    virtual void ice_exception(const Ice::Exception& ex)
    {
        try {
            ex.ice_throw();
        } catch (const Demo::RangeError& e) {
            cerr << "interpolate failed: range error" << endl;
        } catch (const Ice::LocalException& e) {
            cerr << "interpolate failed: " << e << endl;
        }
    }
};

The implementation of  reports a successful result, and  displays a diagnostic if an exception occurs.ice_response ice_exception

The code to invoke  is equally straightforward:interpolate

C++

Demo::ModelPrx model = ...;
AMI_Model_interpolatePtr cb = new AMI_Model_interpolateI;
Demo::Grid grid;
initializeGrid(grid);
model->interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a  object, the client instantiates a callback object, initializes a grid and invokes the asynchronous version of Model
. When the Ice run time receives the response to this request, it invokes the callback object supplied by the client.interpolate

Java Client Example

We must first define our callback implementation class, which derives from the generated class :AMI_Model_interpolate

Java

class AMI_Model_interpolateI extends Demo.AMI_Model_interpolate {
    public void ice_response(float[][] result)
    {
        System.out.println("received the grid");
        // ... postprocessing ...
    }

    public void ice_exception(Ice.UserException ex)
    {
        assert(ex instanceof Demo.RangeError);
        System.err.println("interpolate failed: range error");
    }

    public void ice_exception(Ice.LocalException ex)
    {
        System.err.println("interpolate failed: " + ex);
    }
}
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The implementation of  reports a successful result, and the  methods display a diagnostic if an exceptionice_response ice_exception
occurs.

The code to invoke  is equally straightforward:interpolate

Java

Demo.ModelPrx model = ...;
AMI_Model_interpolate cb = new AMI_Model_interpolateI();
float[][] grid = ...;
initializeGrid(grid);
model.interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a  object, the client instantiates a callback object, initializes a grid and invokes the asynchronous version of Model
. When the Ice run time receives the response to this request, it invokes the callback object supplied by the client.interpolate

C# Client Example

We must first define our callback implementation class, which derives from the generated class :AMI_Model_interpolate

C#

using System;

class AMI_Model_interpolateI : Demo.AMI_Model_interpolate {
    public override void ice_response(float[][] result)
    {
        Console.WriteLine("received the grid");
        // ... postprocessing ...
    }

    public override void ice_exception(Ice.Exception ex)
    {
        Console.Error.WriteLine("interpolate failed: " + ex);
    }
}

The implementation of  reports a successful result, and the  method displays a diagnostic if an exceptionice_response ice_exception
occurs.

The code to invoke  is equally straightforward:interpolate

C#

Demo.ModelPrx model = ...;
AMI_Model_interpolate cb = new AMI_Model_interpolateI();
float[][] grid = ...;
initializeGrid(grid);
model.interpolate_async(cb, grid, 0.5);

Python Client Example

We must first define our callback implementation class:
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Python

class AMI_Model_interpolateI(object):
    def ice_response(self, result):
        print "received the grid"
        # ... postprocessing ...

  def ice_exception(self, ex):
      try:
          raise ex
      except Demo.RangeError, e:
          print "interpolate failed: range error"
      except Ice.LocalException, e:
          print "interpolate failed: " + str(e)

The implementation of  reports a successful result, and the  method displays a diagnostic if an exceptionice_response ice_exception
occurs.

The code to invoke  is equally straightforward:interpolate

Python

model = ...
cb = AMI_Model_interpolateI()
grid = ...
initializeGrid(grid)
model.interpolate_async(cb, grid, 0.5)

See Also

Overview of Deprecated AMI Mapping
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Advanced Topics for Deprecated AMI Mapping

On this page:

AMI Concurrency Issues
Flow Control using Deprecated AMI Mapping

Implementing  in C++ice_sent
Implementing  in Javaice_sent
Implementing  in C#ice_sent
Implementing  in Pythonice_sent

Flushing Batch Requests using Deprecated AMI Mapping
C++ Mapping
Java Mapping
C# Mapping
Python Mapping

Handling Timeouts with Deprecated AMI Mapping
Handling Errors with Deprecated AMI Mapping
AMI Limitations

AMI Concurrency Issues

Support for asynchronous invocations in Ice is enabled by the client , whose threads are primarily responsible for processingthread pool
reply messages. It is important to understand the concurrency issues associated with asynchronous invocations:

A callback object must not be used for multiple simultaneous invocations. An application that needs to aggregate information from
multiple replies can create a separate object to which the callback objects delegate.
Calls to the callback object are always made by threads from an Ice thread pool, therefore synchronization may be necessary if the
application might interact with the callback object at the same time as the reply arrives. Furthermore, since the Ice run time never
invokes callback methods from the client's calling thread, the client can safely make AMI invocations while holding a lock without risk
of a deadlock.
The number of threads in the client thread pool determines the maximum number of simultaneous callbacks possible for
asynchronous invocations. The default size of the client thread pool is one, meaning invocations on callback objects are serialized. If
the size of the thread pool is increased, the application may require synchronization, and replies can be dispatched out of order. The
client thread pool can also be configured to  received over a connection so that AMI replies from a connectionserialize messages
are dispatched in the order they are received.
A  of AMI is the lack of support for collocation optimization. As a result, AMI invocations are always sent "over the wire" andlimitation
thus are dispatched by the server thread pool.

Flow Control using Deprecated AMI Mapping

The Ice run time queues asynchronous requests when necessary to avoid blocking the calling thread, but places no upper limit on the
number of queued requests or the amount of memory they can consume. To prevent unbounded memory utilization, Ice provides the
infrastructure necessary for an application to implement its own flow-control logic by combining the following API components:

The return value of the asynchronous proxy method
The  method in the AMI callback objectice_sent

The return value of the proxy method determines whether the request was queued. If the proxy method returns true, no flow control is
necessary because the request was accepted by the local transport buffer and therefore the Ice run time did not need to queue it. In this
situation, the Ice run time does not invoke the  method on the callback object; the return value of the proxy method is sufficientice_sent
notification that the request was sent.

If the proxy method returns false, the Ice run time has queued the request. Now the application must decide how to proceed with subsequent
invocations:

The application can be structured so that at most one request is queued. For example, the next invocation can be initiated when the 
 method is called for the previous invocation.ice_sent

A more sophisticated solution is to establish a maximum allowable number of queued requests and maintain a counter (with
appropriate synchronization) to regulate the flow of invocations.

Naturally, the requirements of the application must dictate an implementation strategy.

Implementing  in C++ice_sent
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To indicate its interest in receiving  invocations, an AMI callback object must also derive from the C++ class ice_sent
:Ice::AMISentCallback

C++

namespace Ice {
    class AMISentCallback {
    public:
        virtual ~AMISentCallback();
        virtual void ice_sent() = 0;
    };
}

We can modify our  to include an  callback as shown below:sample client ice_sent

C++

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate,
                               public Ice::AMISentCallback
{
public:
    // ...

    virtual void ice_sent()
    {
        cout << "request sent successfully" << endl;
    }
};

Implementing  in Javaice_sent

To indicate its interest in receiving  invocations, an AMI callback object must also implement the Java interface ice_sent
:Ice.AMISentCallback

Java

package Ice;

public interface AMISentCallback {
    void ice_sent();
}

We can modify our  to include an  callback as shown below:sample client ice_sent

Java

class AMI_Model_interpolateI extends Demo.AMI_Model_interpolate
                             implements Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        System.out.println("request sent successfully");
    }
}

Implementing  in C#ice_sent

To indicate its interest in receiving  invocations, an AMI callback object must also implement the C# interface ice_sent
:Ice.AMISentCallback
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C#

namespace Ice {
    public interface AMISentCallback
    {
        void ice_sent();
    }
}

We can modify our  to include an  callback as shown below:sample client ice_sent

C#

class AMI_Model_interpolateI : Demo.AMI_Model_interpolate,
                               Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        Console.Out.WriteLine("request sent successfully");
    }
}

Implementing  in Pythonice_sent

To indicate its interest in receiving  invocations, an AMI callback object need only define the  method.ice_sent ice_sent

We can modify our  to include an  callback as shown below:sample client ice_sent

Python

class AMI_Model_interpolateI(object):
    # ...

  def ice_sent(self):
      print "request sent successfully"

Flushing Batch Requests using Deprecated AMI Mapping

Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests
 performs an immediate flush using the synchronous invocation model and may block the calling thread untilice_flushBatchRequests

the entire message can be sent. Ice also provides an asynchronous version of this method for applications that wish to flush batch requests
without the risk of blocking.

The proxy method  initiates an asynchronous flush. Its only argument is a callback object; this objectice_flushBatchRequests_async
must define an  method for receiving a notification if an error occurs before the message is sent.ice_exception

If the application is interested in , the return value of  is a boolean indicating whether theflow control ice_flushBatchRequests_async
message was sent synchronously. Furthermore, the callback object can define an  method that is invoked when an asynchronousice_sent
flush completes.

C++ Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx
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C++

namespace Ice {
    class ObjectPrx : ... {
    public:
        // ...
        bool ice_flushBatchRequests_async(
            const Ice::AMI_Object_ice_flushBatchRequestsPtr& cb)
    };
}

The argument is a smart pointer for an object that implements the following class:

C++

namespace Ice {
    class AMI_Object_ice_flushBatchRequests : ... {
    public:
        virtual void ice_exception(const Ice::Exception& ex) = 0;
    };
}

As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush
completes:

C++

class MyFlushCallbackI : public Ice::AMI_Object_ice_flushBatchRequests,
                         public Ice::AMISentCallback
{
public:
    virtual void ice_exception(const Ice::Exception& ex);
    virtual void ice_sent();
};

Java Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx

Java

package Ice;

public class ObjectPrx ... {
    // ...
    boolean ice_flushBatchRequests_async(AMI_Object_ice_flushBatchRequests cb);
}

The argument is a reference for an object that implements the following class:

Java

package Ice;

public abstract class AMI_Object_ice_flushBatchRequests ...
{
    public abstract void ice_exception(LocalException ex);
}
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As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush
completes:

Java

class MyFlushCallbackI extends Ice.AMI_Object_ice_flushBatchRequests
                       implements Ice.AMISentCallback
{
    public void ice_exception(Ice.LocalException ex) { ... }
    public void ice_sent() { ... }
}

C# Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx

C#

namespace Ice {
    public class ObjectPrx : ... {
        // ...
        bool ice_flushBatchRequests_async(AMI_Object_ice_flushBatchRequests cb);
    }
}

The argument is a reference for an object that implements the following class:

C#

namespace Ice {
    public abstract class AMI_Object_ice_flushBatchRequests ... {
        public abstract void ice_exception(Ice.Exception ex);
    }
}

As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush
completes:

C#

class MyFlushCallbackI : Ice.AMI_Object_ice_flushBatchRequests,
                         Ice.AMISentCallback
{
    public override void
    ice_exception(Ice.LocalException ex) { ... }

    public void ice_sent() { ... }
}

Python Mapping

The base proxy class defines the asynchronous flush operation as shown below:

Python

def ice_flushBatchRequests_async(self, cb)

The  argument represents a callback object that must implement an  method. As an example, the class belowcb ice_exception
demonstrates how to define a callback class that also receives a notification when the asynchronous flush completes:
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Python

class MyFlushCallbackI(object):
    def ice_exception(self, ex):
        # handle an exception

    def ice_sent(self):
        # flush has completed

Handling Timeouts with Deprecated AMI Mapping

Timeouts for asynchronous invocations behave like those for synchronous invocations: an  is raised if theIce::TimeoutException
response is not received within the given time period. In the case of an asynchronous invocation, however, the exception is reported to the 

 method of the invocation's callback object. For example, we can handle this exception in C++ as shown below:ice_exception

C++

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate
{
public:
    // ...

    virtual void ice_exception(const Ice::Exception& ex)
    {
        try {
            ex.ice_throw();
        } catch (const Demo::RangeError& e) {
            cerr << "interpolate failed: range error" << endl;
        } catch (const Ice::TimeoutException&) {
            cerr << "interpolate failed: timeout" << endl;
        } catch (const Ice::LocalException& e) {
            cerr << "interpolate failed: " << e << endl;
        }
    }
};

Handling Errors with Deprecated AMI Mapping

It is important to remember that all errors encountered by an AMI invocation (except ) are reportedCommunicatorDestroyedException
back via the  callback, even if the error condition is encountered "on the way out", when the operation is invoked. Theice_exception
reason for this is consistency: if an invocation, such as  could throw exceptions, you would have to handle exceptions in twofoo_async
places in your code: at the point of call for exceptions that are encountered "on the way out", and in  for error conditionsice_exception
that are detected after the call is initiated.

Where this matters is if you want to send off a number of AMI calls, each of which depends on the preceding call to have succeeded. For
example:

C++

p1->foo_async(cb1);
p2->bar_async(cb2);

If  depends for its correct working on the successful completion of , this code will not work because the  invocation will be sentbar foo bar
regardless of whether  failed or not.foo

In such cases, where you need to be sure that one call is dispatched only if a preceding call succeeds, you must instead invoke  frombar
within 's  implementation, instead of from the main-line code.foo ice_response
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AMI Limitations

AMI invocations cannot be sent using . If you attempt to invoke an AMI operation using a proxy that is configured tocollocated optimization
use collocation optimization, the Ice run time will raise  if the servant happens to be collocated;CollocationOptimizationException
the request is sent normally if the servant is not collocated. This optimization is enabled by default (as specified by the 

 property) but can be disabled on individual proxies using a .Ice.Default.CollocationOptimized proxy method

See Also

Location Transparency
The Ice Threading Model
Thread Pool Design Considerations
Deprecated AMI Language Mappings
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IDE Integration
ZeroC provides plug-ins for several popular integrated development environments to simplify the task of building applications with Ice.

Topics

Visual Studio Add-in
Eclipse Plug-in
Xcode Plug-in
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Visual Studio Add-in

The Ice Visual Studio Add-in manages all aspects of code generation for C++ and .NET projects, including automatically recompiling Slice
files that have changed, removing obsolete generated files, and tracking dependencies.

On this page:

Activating the Add-in for a Visual Studio Project
Configuring Project Settings for Visual Studio
Using Environment Variables in Visual Studio Settings
Adding Slice Files to a Visual Studio Project
Generating Code for a Visual Studio Project
How the Add-in Locates your Ice Installation

 Macro$(IceHome)
.NET DEVPATH support
Command-line Builds using Visual Studio

Activating the Add-in for a Visual Studio Project

Right-click on the project in the Solution Explorer and choose  or select  in the  menu. This opensIce Configuration... Ice Configuration... Tools
a dialog that allows you to configure the project settings for Ice.

Note that, after adding new configurations or platforms to your project, it may be necessary to disable and then re-enable
the add-in for the new configuration or platform to get the correct Ice settings.

Configuring Project Settings for Visual Studio

The following settings are available:

Enable Ice Builder
This box must be checked to enable the Ice Builder in your project.

Trace Level
You can change the verbosity of messages printed to the  panel by selecting a different trace level, where  is lessOutput Errors Only
verbose and  is more verbose.Debug

Output directory for generated files
Set the base directory where generated files will be placed.

Slice compiler options
Tick the corresponding check boxes to pass  (.NET only), , , or  options to the Slice compiler.--tie --ice --checksum --stream

Additional Slice compiler options
Enter extra Slice compiler options not supported by . These options are entered the same as they would beSlice compiler options
on the command line. For example, you can define preprocessor macros by entering .-DFoo -DBAR

Macro for exporting symbols from DLL (C++ only)
The macro for annotating generated code to mark symbols that should be exported from a shared library or DLL, equivalent to the
compiler option .--dll-export

Slice include directories
The list of directories to search for included Slice files (  option). The checkbox for each path controls whether the path is passed-I
to the  option as an absolute path or as a path relative to the project directory.-I

The add-in automatically adds the main  directory of your Ice installation to this list.slice

Link project with these additional libraries (C++ only)
Every Ice project is linked with the  and  libraries. You can link with additional Ice libraries by checking the appropriateIce IceUtil
boxes.

Add references to the following assemblies (.NET only)
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Every Ice project references the  assembly. You can reference additional Ice assemblies by checking the appropriate boxes.Ice

Using Environment Variables in Visual Studio Settings

You can include references to environment variables in the settings for , Output directory for generated files Additional Slice compiler
, and . To do this, the environment variable must be entered using the format . For example, for options Slice include directories $(VAR)

 you could use .Slice include directories $(MY_PATH)

You cannot use environment variables in the  and  options in .--header-ext --source-ext Additional Slice compiler options

Adding Slice Files to a Visual Studio Project

Use  ->  and select  as the template to create and add a Slice file to a project. To add an existing Slice file to aAdd New Item... Slice File (.ice)
project, use  -> Add Existing Item...

Generating Code for a Visual Studio Project

The add-in compiles a Slice file whenever you save the file. The add-in tracks dependencies among Slice files in the project and, after a
change, recompiles only the affected files.

Generated files are automatically added to the project. For example, for , the add-in for C++ adds  and  to theDemo.ice Demo.cpp Demo.h
project, whereas the add-in for .NET adds  to the project.Demo.cs

Slice compilation errors are displayed in the Visual Studio  and  panels.Output Error List

How the Add-in Locates your Ice Installation

The add-in derives the location of your Ice installation from the location of its own DLL. For example, if the add-in's DLL is installed in 
 then the add-in uses  as the top-level Ice installation directory. The add-in uses this top-level directory toC:\Ice\vsaddin C:\Ice

compose the path names of other subdirectories, such as  as the location of the Slice files included in your Ice distribution, C:\Ice\slice
 as the location of the Slice compilers, and so on.C:\Ice\bin

$(IceHome) Macro

The add-in makes extensive use of the  macro in C++ projects.  provides the full path to the home directory of the$(IceHome) $(IceHome)
Ice installation on the local computer. This macro may be used in user settings, for example to locate  (as slice2freeze.exe

) or the Ice Slice directory (as ).$(IceHome)\bin\slice2freeze.exe $(IceHome)\slice

This macro is set through a Visual Studio C++ property sheet installed as part of the Ice installation on Windows, 
 for Visual Studio 2008 and  for Visual Studio%AllUsersProfile%\ZeroC\ice.vsprops %AllUsersProfile%\ZeroC\ice.props

2010.

.NET DEVPATH support

The add-in detects if a .NET project is configured for development mode by inspecting the  file. If a.exe.config<application-name>
project is in development mode, the Ice  directory is automatically added to the  environment variable when the demo is run.bin DEVPATH
References to Ice components are also set with  to false to avoid copying Ice assemblies to the project's output directory. NoteCopy Local
that the  setting is not changed for references that are already added to the project.Copy Local

Command-line Builds using Visual Studio

The add-in supports command-line builds using . For example:devenv

devenv MyProject.sln /build

Note that for this to work, command-line builds must be enabled for the add-in in the IDE; see  ->  and check Tools Add-in Manager Command
 for Ice.Line

See Also

slice2cpp Command-Line Options



Ice 3.4.2 Documentation

1707 Copyright © 2011, ZeroC, Inc.

slice2cs Command-Line Options
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Eclipse Plug-in

The Slice2Java Eclipse plug-in manages all aspects of code generation, including automatically recompiling Slice files that have changed,
removing obsolete generated classes, and tracking dependencies.

On this page:

Configuring the Slice2Java Eclipse Plug-in
Activating the Slice2Java Plug-in for a Project
Configuring Slice2Java Project Settings

Settings in the Source Tab
Settings in the Options Tab
Settings in the Libraries Tab

Configuration Notes for Android Projects

Configuring the Slice2Java Eclipse Plug-in

Choose  -> , select , and review the default setting for the location of your Ice installation. The property paneWindow Preferences Slice2Java
will display an error message if the plug-in considers the specified location to be invalid. If necessary, click  to pick the top-levelBrowse...
directory of your Ice installation and apply your changes.

The Slice2Java plug-in automatically configures a workspace classpath variable named  that refers to the Ice installation directoryICE_HOME
you specified in the  dialog. This variable is primarily intended for use in .Preferences Android projects

Activating the Slice2Java Plug-in for a Project

You can activate the Slice2Java plug-in for your project by right-clicking on the project, choosing  and clicking Slice2Java Add Slice2Java
. The plug-in immediately makes several additions to your project:builder

Creates a  subdirectory to contain your Slice files. The plug-in automatically compiles any Slice file that you add to thisslice
directory.
Creates a  subdirectory to hold the Java source files that the slice2java translator generates from your Slice files.generated
Adds a library reference to the Ice run time JAR file ( ) for non-Android projects. The plug-in assumes that the JAR fileIce.jar
resides in the  subdirectory of your Ice installation.lib

Configuring Slice2Java Project Settings

To configure the project-specific Slice2Java settings, select  from the  menu or right-click on the name of your project andProperties Project
choose . Click on  to view the plug-in's configuration settings, which are presented in three tabs: Source,Properties Slice2Java Properties
Options, and Libraries.

Settings in the Source Tab

This tab configures the directories of your Slice files and generated code. The plug-in includes the  subdirectory by default, but youslice
can remove this directory and add other directories if necessary. The plug-in only compiles Slice files that are located in the configured
subdirectories.

For the generated code, the plug-in uses the default name  for the subdirectory. If you want to store your generated code in agenerated
different directory, you must first create the directory and then click  to select it. Be aware that the plug-in requires exclusive use ofBrowse
the subdirectory you designate, therefore you must not place other project resources in it.

Settings in the Options Tab

This tab is where you configure additional plug-in settings. You can enter a list of include directories corresponding to the compiler's -I
option. You can also specify preprocessor macros and metadata definitions in the fields provided. Finally, checkboxes offer additional control
over certain features of the plug-in and the Slice compiler. When enabled, the checkboxes have the following semantics:

Enable stream generates code to support the dynamic streaming API
Enable tie generates TIE classes
Enable ice instructs the compiler to accept Slice symbols that use the  prefixice
Include Ice Slice Files adds an implicit include ( ) option that refers to the  subdirectory of your Ice installation-I slice
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1.  
2.  
3.  
4.  
5.  
6.  

Enable console causes the plug-in to emit diagnostic information about its activities to Eclipse's console
Enable underscore determines whether underscores are permitted in Slice identifiers (this feature is only supported in Ice 3.4.1 or
later)

Settings in the Libraries Tab

This tab allows you to configure the Ice JAR files with which your application is built. The check box labeled Add JAR file references to
 determines whether the plug-in adds an Ice Library entry to your project's build path. This check box is enabled by default, but youproject

may want to disable it if the Ice JAR files are already present in your build path.

During a build, the Ice Library entry is substituted with the JAR files that you have added to the list.

Note that  cannot use the  indirect reference, therefore the  tab is disabled.Android projects Ice Library Libraries

Configuration Notes for Android Projects

You must manually add  to the build path of Android projects. Follow the instructions below to configure your project:Ice.jar

Select  in the project's propertiesJava Build Path
Click on the  tabLibraries
Click Add Variable...
Select  and click ICE_HOME Extend...
Open the  subdirectory and select lib Ice.jar
Click  to save your changesOK

ICE_HOME is a workspace classpath variable that is defined by the Slice2Java plug-in and always refers to the Ice
installation directory that you specified .earlier

The plug-in always rebuilds a project after its properties have been changed, but it may be necessary to refresh the project after changing a
project's build path. To refresh a project, select it and press F5, or right-click on the project and choose .Refresh

See Also

Using the Slice Compiler for Java
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Xcode Plug-in

The Xcode plug-in for Ice manages all aspects of code generation, including automatically recompiling Slice files that have changed,
removing obsolete generated classes, and tracking dependencies.

On this page:

Adding Slice Files to an Xcode Project
Configuring Xcode Project Settings
Xcode Project Settings for Cocoa and iPhone Applications
Configuring Non-SDK Builds
Generating Code using Xcode

Adding Slice Files to an Xcode Project

To add an existing Slice file, select a folder in the project, select , and choose  -> Info Add Existing Files...

To create a new Slice file, select a folder in the project, select , and choose  ->  Select the  category and choose Info Add New Files... Other
 as the file type. Save the file with a  extension.Empty File .ice

Configuring Xcode Project Settings

The Xcode plug-in is configured using the per-target info build settings, just as you would configure the compiler settings. Select a target,
press  (or ), select the build tab, and enter  in the  field.Info Command+i Slice Search in Build Settings

Header Search Paths
The list of directories to search for included Slice files (  option). Note that the Ice Slice files are automatically in the header search-I
path.

Ice Home
If you are building with the Ice Touch Xcode SDK, this should be left unset; otherwise, if using the command-line toolkit or regular
Ice, set this to the location of the installation (  or )./opt/Ice-3.4.2 /opt/IceTouch-1.1.0

Permit `Ice' prefix
Pass  to the Slice compiler.--ice

Streaming support
Pass  to the Slice compiler (C++ only).--stream

Checksum support
Pass  to the Slice compiler (C++ only).--checksum

Preprocessor Macros
Set the list of preprocessor macros to define (  option).-D

Translate C++ code
If set,  is used to translate Slice files; if unset,  is used.slice2cpp slice2objc

You can set specific Slice compiler flags for individual Slice files by right-clicking the Slice file and selecting . Additional command-lineInfo
options can be entered under the  tab in .Build Additional Compiler Flags for Target

Xcode Project Settings for Cocoa and iPhone Applications

For Cocoa and iPhone applications, which use the Xcode SDK, you must add the following to Additional SDKs:

/Developer/SDKs/IceTouch-1.1/$(PLATFORM_NAME).sdk

In addition, for iPhone applications, when creating a new iPhone Xcode project, you must set the Code Signing Resource Rules Path to:

$(SDKROOT)/ResourceRules.plist

You must also add the following to the  folder:Frameworks

CFNetwork.framework
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Security.framework
Foundation.framework

For iPhone Simulator applications, the dynamically linked Ice libraries must be copied into the application directory. For the iPhone demos
included with Ice Touch, this is done in the Xcode project with a post-build script as follows:

if [ $PLATFORM_NAME = iphonesimulator ]; then
cp $ADDITIONAL_SDKS/usr/local/lib/*.dylib $BUILT_PRODUCTS_DIR/$CONTENTS_FOLDER_PATH
fi

Configuring Non-SDK Builds

For non-SDK builds, you must add the location of the Ice installation to the header path (  for Ice 3.4.2, or /opt/Ice-3.4.2/include
 for Ice Touch)./opt/IceTouch-1.1.0/include

In addition, for non-SDK builds, you must correctly configure :Other Linker Flags

For Ice 3.4.2: -L/opt/Ice-3.4.2/lib -lIce -lIceUtil
For Ice Touch 1.1: -L/opt/IceTouch-1.1.0/lib -lIceObjC

To be able to run the project from Xcode, you must set  correctly. Select  and press DYLD_LIBRARY_PATH Executables/<Target>
. Select the  tab and add the following to the  section:Command+i Arguments Variables to be set in the environment

Name=DYLD_LIBRARY_PATH
Value=  (for Ice 3.4.2)/opt/Ice-3.4.2/lib
Value=  (for Ice Touch 1.1)/opt/IceTouch-1.1.0/lib

Generating Code using Xcode

The plug-in compiles a Slice file whenever you build the project. The extension tracks dependencies among Slice files in the project and
recompiles only those files that require it after a change.

See Also

slice2objc Command-Line Options
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Release Notes
The release notes provide information about an Ice release, including descriptions of significant new features and changes, instructions for
upgrading from an earlier release, and important platform-specific details.

Topics

New Features in Ice 3.4
Upgrading your Application from Ice 3.4.x
Upgrading your Application from Ice 3.3
Upgrading your Application from Ice 3.2 or Earlier Releases
Platform Notes for Ice 3.4.2
Known Problems in Ice 3.4.2
Using the Windows Binary Distribution
Using the Linux RPMs
Using the Mac OS X Binary Distribution
Using the Solaris Binary Distributions
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New Features in Ice 3.4
This page describes significant changes and improvements in Ice 3.4 that may affect the operation of your applications or have an impact on
your source code. For a detailed list of the changes in this release, please refer to the  file included in your Ice distribution.CHANGES

On this page:

Changes and fixes in Ice 3.4.2
Supported platforms
Ice Visual Studio Add-in
.NET Compact Framework support
Android support

Changes and fixes in Ice 3.4.1
Underscores allowed in Slice

Interoperability
Name collisions
Freeze

Freeze locking
Miscellaneous changes

Features added with Ice 3.4.0
New API for Asynchronous Method Invocation (AMI)
Better scalability
New  facilityDispatcher
Glacier2 utility classes
Default servants
Alternate storage for IceGrid and IceStorm
Connection and endpoint information
New Slice compiler and API for PHP
Slice comments
New Slice syntax for default values
Properties in the Windows registry
New sample programs

Changes and fixes in Ice 3.4.2

Supported platforms

We are adding Red Hat Enterprise Linux 6 (i386 and x86_64) and Amazon Linux 2011.2 (i386 and x86_64) to our list of supported platforms
for Ice 3.4.2. Binary RPMs for RHEL 6 are available for ; these RPMs can also be used on Amazon Linux.download

Ice Visual Studio Add-in

We have made many more improvements to our . This release adds support for .NET Compact Framework projects andVisual Studio Add-in
includes several bug fixes and minor enhancements to improve the user experience. Refer to the  file included in your IceCHANGES
distribution for more details.

.NET Compact Framework support

Ice for .NET now includes support for the .NET Compact Framework (.NET CF). There are several API differences between .NET and .NET
CF that impact the Ice run time, therefore Ice for .NET must be re-compiled to target .NET CF. The Ice binary distribution for Windows
includes the .NET CF version of the Ice run time in , and the Ice Visual Studio Add-in automatically usesinstall-dir\bin\cf\Ice.dll
this DLL for Smart Device projects. To build Ice for .NET CF in a source distribution, enable  in COMPACT

.cs\config\Make.rules.mak.cs

Due to API limitations, the following features are  supported in Ice for .NET CF:not

Protocol compression
Signal processing in the  classIce.Application
IceSSL
ICE_CONFIG environment variable
Dynamic loading of Slice checksums
Ice.TCP.SndSize and Ice.TCP.RcvSize

http://www.zeroc.com/download.html
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Automatic discovery of dependent assemblies containing Slice-generated classes and exceptions

Refer to the  for more details.manual

Android support

Support for using Ice in Android applications was previously provided as a ZeroC Labs project. This project consisted of source code patches
to the Ice for Java run time that corrected compatibility issues, along with several sample applications that demonstrated the use of Ice in
Android.

The source code patches have been incorporated into the Ice mainline for the 3.4.2 release, meaning you can now use the same Ice.jar
file to build both Java and Android applications. The Android sample projects have also been added to the Ice distribution.

Ice requires Android 2.1 or later, and Android 2.2 or later is required to use IceSSL.

Changes and fixes in Ice 3.4.1

Underscores allowed in Slice

Prior versions of Ice did not permit underscores to be used in Slice identifiers. We have eliminated that restriction in Ice 3.4.1 with a new
translator option ( ).--underscore

Please note that there are several important issues to consider if you plan to incorporate underscores into your Slice definitions:

Interoperability

Renaming an existing Slice definition always raises the possibility of interoperability problems with existing applications. Changing the name
of any Slice definition whose type ID is sent "over the wire" can easily break interoperability unless all applications are rebuilt and
redeployed. Adding underscores to your Slice definitions presents an additional difficulty because the Slice compilers for older versions of
Ice will not even be able to compile your new definitions.

Name collisions

With some effort, it is possible to write legal Slice definitions using underscores that generate name collisions in a language mapping. For
example:

Slice

module A
{
    interface B_C { };
};

module A_B
{
    interface C { };
};

The Slice compiler for PHP ( ) uses underscores to separate name scopes in the flattened mapping, therefore both of theseslice2php
interfaces generate the same PHP type named .A_B_C

Here is another example:
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Slice

module A
{
    interface B
    {
        void op();
        void begin_op();
    };

    struct Callback_B_op
    {
        string s;
    };
};

These Slice definitions cause collisions with generated code that supports asynchronous invocations.

Although these are contrived examples written intentionally to cause errors, they highlight the importance of selecting your Slice identifiers
with careful consideration of your target language mappings.

Freeze

As discussed , renaming Slice types poses a range of compatibility issues. If you use  to store instances of Slice typesabove Freeze
persistently, be aware that renaming Slice types usually requires that you also  your Freeze databases because Slice type names aremigrate
embedded in your records (if you store instances of Slice classes) and also appear in the Freeze catalog.

Freeze locking

Ice 3.4.0 added a locking mechanism to Freeze to prevent multiple processes from opening the same database environment simultaneously,
which can lead to data corruption. Freeze uses a lock file named , which can be found in the database environment__Freeze/lock
directory.

In Ice 3.4.1 we added the property . This property determines whether Freeze attempts to create theFreeze.DbEnv. .LockFileenv-name
lock file for the named database environment. The default value of this property is 1, meaning the lock file is created. Applications should not
normally need to disable the lock file, but it is useful for utility programs such as the  tools dumpdb and transformdb. ByFreezeScript
disabling the lock file, these tools are able to inspect a database environment that is currently open in another process, regardless of whether
that process created a lock file.

If you intend to use a FreezeScript tool on a database environment that is currently open, please be aware that the property 
 must be defined for both the FreezeScript tool as well as the other process that has opened theFreeze.DbEnv. .DbPrivate=0env-name

environment, otherwise the database can be corrupted.

Miscellaneous changes

Ice 3.4.1 requires Berkeley DB 4.8.30. This version of Berkeley DB includes a fix for a minor memory leak that was present in earlier
versions.

The shrinking behavior of Ice thread pools changed in Ice 3.4.0 but was not documented. Users of both 3.4.0 and 3.4.1 should
review  for more information.Thread pool changes in Ice 3.4

Features added with Ice 3.4.0

New API for Asynchronous Method Invocation (AMI)

This release features a completely new AMI facility for C++, C#, Java, and Python that allows you to structure your code with much greater
flexibility. To get a better understanding of the motivations for this enhancement and how it can improve your own applications, we
encourage you to read our  on AMI.white papers

Better scalability

http://www.zeroc.com/articles/index.html
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The Ice run time underwent significant retooling to make use of Windows completion ports and overlapped I/O for its networking operations.
As a result, server applications that handle many connections should see a significant improvement in scalability.

Additional enhancements were made to improve scalability on all platforms. For example, Ice now establishes an outgoing connection and
accepts an incoming connection in constant time, regardless of the number of connections that have already been established. Furthermore,
the Ice thread pool now supports receiving and sending data using multiple threads, which improves CPU usage on machines with multiple
cores.

Our  has been updated for Ice 3.4 and shows that the scalability of Ice for C++ on Windows is now on par with theperformance white paper
scalability on Linux.

New  facilityDispatcher

In previous releases, the developer of a graphical Ice application would need to take precautions to make sure that updates to the user
interface were performed in the proper thread. For example, graphical applications typically use AMI because it does not block the calling
thread, but AMI callbacks are invoked from an Ice run time thread. Since the callback cannot update the user interface directly from such a
thread, it is forced to schedule an update instead. Consequently, the application code grew more complex and was prone to error if the
developer neglected the threading rules.

Ice 3.4 introduces the  facility that lets you control the thread in which servant methods and AMI callbacks are invoked. It isDispatcher
especially useful for a graphical application, in which you can easily install a custom dispatcher to guarantee that all of your servant and
callback invocations are made in a thread that can safely update the user interface.

This technique is demonstrated in a sample application for each of the language mappings: refer to the  demo in C++, the  demoMFC swing
in Java, and the  demo in C#.wpf

Glacier2 utility classes

Some effort is required to write an application that correctly manages a  session. To simplify this task, we have added Glacier2 utility classes
in C++, C#, Java, and Python that manage the session for you.

For all of these language mappings, Ice includes a new subclass of  named  that isIce::Application Glacier2::Application
intended to be used by command-line applications that require a Glacier2 session. The class takes care of establishing the session, keeping
it alive, and recovering from session failures.

In Java and C#, Ice also includes the  class for use in graphical applications. This class performs many of theGlacier2.SessionHelper
same tasks as .Glacier2.Application

Default servants

The traditional way of implementing a default servant was to install a  that returned the same servant for every request.servant locator
However, since default servants are one of the most common use cases for servant locators, we have made them easier to use by adding
new operations to the  interface. If you make use of default servants, you can simplify your code by migrating yourObjectAdapter
application to this .new API

Alternate storage for IceGrid and IceStorm

IceStorm and the  now have the ability to use a SQL database instead of Freeze for their persistent storage requirements.IceGrid registry
This release supports SQLite on all platforms and PostgreSQL on Unix platforms. If you would like to see support added for other SQL
servers, please contact .info@zeroc.com

Connection and endpoint information

Ice developers frequently want to obtain information about connections and endpoints, as evidenced by the numerous inquiries on the user
forum about this issue. For example, the developer may want to be able to discover the IP address of a remote client. This information was
available in prior releases, but not in a form that was easy to manipulate.

Now it is possible to obtain  about connections and endpoints with the addition of the  and more details ConnectionInfo EndpointInfo
class hierarchies. Using these classes, you can discover addresses, ports, and other attributes of a connection or endpoint.

Note that it is inadvisable to use such addressing information for authentication purposes, as IP addresses can easily be forged.

New Slice compiler and API for PHP

http://www.zeroc.com/articles/index.html
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Significant changes have been made to the PHP mapping and API. For example, Ice for PHP now uses static translation via the new 
 compiler, and the language mapping is now more consistent with that of Python and Ruby. For more information on migratingslice2php

your PHP application, please refer to .PHP changes in Ice 3.4

Slice comments

This release offers several improvements that will be appreciated by developers, especially those who use integrated development
environments (IDEs):

The Slice compilers for Java, C#, and Python now preserve Slice comments in the generated code.

Doc comments have been added to the native Ice APIs.

The JAR files for Ice and Freeze include source code to allow IDEs such as Eclipse to browse the Ice source code and to display
javadoc comments.

For C# users that compile generated Slice code into an assembly, it is now useful to instruct Visual C# to emit documentation
comments into an XML file for the assembly containing your compiled Slice definitions. This enables the IDE to display tooltips for
your Slice APIs. Ice generates these XML files for its own assemblies so that you can view tooltips for the Ice APIs as well.

New Slice syntax for default values

It is now possible to specify in Slice the default values for data members of , , and . The semantics are the sameclasses structures exceptions
as for Slice  in that you can only specify default values for a data member whose type is a primitive or enumeration. For example:constants

Slice

enum Color { red, green, blue };

struct Point
{
    int x = -1;
    int y = -1;
    Color c = blue;
};

Properties in the Windows registry

Ice configuration properties can now be loaded from the  by specifying a registry key as the value of the Windows registry Ice.Config
property. Ice programs that run as Windows services are likely to make use of this feature because it avoids the need to hard-code
properties in the application, eliminates the dependency on a configuration file, and allows the program's configuration settings to be edited
using familiar registry tools.

New sample programs

This release adds the following sample programs:

map_filesystem (C++, Java)
Shows how to implement the  using a .file system application Freeze map

interleaved (C++)
Uses interleaved asynchronous invocations to achieve maximum throughput.

plugin (C++, Java, C#)
Demonstrates how to write an Ice .plug-in

chat (Java, C#)
A graphical chat client that uses  to communicate with a C++ server.Glacier2

swing (Java) and  (C#)wpf
Graphical versions of the  client.hello

hello (PHP)
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A Glacier2 client that demonstrates the use of .registered communicators

See Also
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Upgrading your Application from Ice 3.4.x

Ice 3.4.2 maintains binary compatibility with Ice 3.4.0 and 3.4.1, therefore it is not necessary for you to recompile your Slice
files or your program code, nor is it necessary to relink your application. The database formats used by Ice services such
as IceGrid and IceStorm have not changed, therefore no database migration is required. Finally, this release has not
removed any APIs. Generally speaking, you are free to use any combination of Ice 3.4.0, Ice 3.4.1, or Ice 3.4.2
applications and Ice services.

The subsections below provide additional information about upgrading to Ice 3.4.2, including administrative procedures for the supported
platforms.

On this page:

Upgrading from Ice 3.4.x on Linux (RPMs)
Upgrading from Ice 3.4.x on Windows
Upgrading from Ice 3.4.x with Binary Archives (Mac OS X, Solaris)
Upgrading from Ice 3.4.x with a Source Distribution (Linux, Mac OS X, Solaris)
Deprecated APIs in Ice 3.4.2
Deprecated APIs in Ice 3.4.1

Upgrading from Ice 3.4.x on Linux (RPMs)

For RPM installations, you can use the Ice 3.4.2 RPMs to upgrade an existing installation of Ice 3.4.0 or 3.4.1.

For a Java application, no additional steps are necessary if your  refers to , which is a symbolicCLASSPATH /usr/share/java/Ice.jar
link that points to the actual version-specific JAR file.

For a Mono application, the  RPM for Ice 3.4.2 installs the updated Ice run time assemblies into the Global Assembly Cacheice-mono
(GAC) along with policy assemblies that enable backward compatibility with Ice 3.4.0 and 3.4.1.

Upgrading from Ice 3.4.x on Windows

The file names of the Ice for C++ run time DLLs do not contain the patch number of a release. For example, the core Ice DLL uses the same
name ( ) for Ice 3.4.0, 3.4.1, and 3.4.2. As a result, you can simply substitute the 3.4.2 DLLs for the 3.4.0 or 3.4.1 DLLs. If youice34.dll
install the 3.4.2 DLLs in a different directory, you will typically need to adjust the  setting of a C++ application so that it can locate thePATH
new libraries. This also applies to Python, Ruby, and PHP applications because they use the Ice for C++ DLLs.

For a Java application, you can replace the existing  file with the one from Ice 3.4.2, or you can adjust the  setting toIce.jar CLASSPATH
point to the new JAR file.

For a .NET application, Ice for .NET includes policy assemblies that supply the .NET run time with the required compatibility information.
Policy assemblies have names of the form . For example, the policy assembly for IceBox is policy.3.4.package.dll

. One way to upgrade an existing .NET application to a new patch release while maintaining binary compatibilitypolicy.3.4.IceBox.dll
is to install the policy assemblies into the Global Assembly Cache (GAC) using one of the following methods:

Open Windows Explorer and navigate to the directory . Next, drag and drop (or copy and paste) theC:\WINDOWS\assembly
assemblies into the right-hand pane to install them in the GAC.

Use  from the command line:gacutil

> gacutil -i <policy.dll>

Another option is to modify the  file of your application to add  directives, as explained in the links below:.config bindingRedirect

http://msdn.microsoft.com/en-us/library/7wd6ex19.aspx
http://msdn.microsoft.com/en-us/library/yx7xezcf.aspx

For example, in the  file of an application you can modify the configuration of the Ice and IceBox assemblies as follows:.config

http://msdn.microsoft.com/en-us/library/7wd6ex19.aspx
http://msdn.microsoft.com/en-us/library/yx7xezcf.aspx
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XML

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
  <assemblyIdentity name="Ice" culture="neutral" publicKeyToken="cdd571ade22f2f16"/>
  <bindingRedirect oldVersion="3.4.0.0" newVersion="3.4.2.0"/>
  <bindingRedirect oldVersion="3.4.1.0" newVersion="3.4.2.0"/>
</dependentAssembly>

<dependentAssembly>
  <assemblyIdentity name="IceBox" culture="neutral" publicKeyToken="cdd571ade22f2f16"/>
  <bindingRedirect oldVersion="3.4.0.0" newVersion="3.4.2.0"/>
  <bindingRedirect oldVersion="3.4.1.0" newVersion="3.4.2.0"/>
</dependentAssembly>

</assemblyBinding>
</runtime>
</configuration>

This  file can be used for  (as ), to load a simple IceBox service built with Ice 3.4.0 or.config iceboxnet.exe iceboxnet.exe.config
3.4.1 with  3.4.2.iceboxnet

Note that  is the token corresponding to ZeroC's public key for signing the assemblies in binary distributions. If you builtcdd571ade22f2f16
Ice from sources, your assemblies were signed using the development key instead, which you can find in . Theconfig/IceDevKey.snk
token for the development key is .1f998c50fec78381

The advantage of installing the policy assemblies into the GAC is that they establish binary compatibility for all Ice applications, whereas
modifying a  file must be done for each application individually..config

On a development system, it is not necessary to remove your existing Ice installation prior to installing Ice 3.4.2 unless you intend to install
Ice 3.4.2 in the same directory as your existing installation. You may need to update your  setting and modify your Visual C++ directoryPATH
configurations to reflect the installation directory for Ice 3.4.2.

Upgrading from Ice 3.4.x with Binary Archives (Mac OS X, Solaris)

The  file included in each binary distribution archive describes how to configure your environment so that the embedded path namesREADME
in the Ice for C++ shared libraries are resolved correctly. For example, if you extracted the binary distribution for Ice 3.4.1 into 

, the  file instructs you to create the following symbolic link:/opt/Ice-3.4.1 README

/opt/Ice-3.4 -> /opt/Ice-3.4.1

To upgrade to Ice 3.4.2, you simply extract the binary distribution archive into  and reset the symbolic link to point to the/opt/Ice-3.4.2
new installation:

/opt/Ice-3.4 -> /opt/Ice-3.4.2

No additional steps are necessary for a Java application if its  refers to the JAR file via the symbolic link:CLASSPATH

export CLASSPATH=/opt/Ice-3.4/lib/Ice.jar

This also applies for Python and Ruby applications:

export PYTHONPATH=/opt/Ice-3.4/python
export RUBYLIB=/opt/Ice-3.4/ruby
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Upgrading from Ice 3.4.x with a Source Distribution (Linux, Mac OS X,
Solaris)

If you compiled an Ice 3.4.1 source distribution and installed it via , the default installation directory uses a version-specificmake install
name such as . Consequently, you can build and install the Ice 3.4.2 source distribution without affecting your existing Ice/opt/Ice-3.4.1
3.4.1 installation.

You may need to update your application's build settings to use the new installation directory for location include and library files. You may
also need to update your shared library search path.

The relevant environment variables for each language mapping are detailed below.

C++, Ruby, Python, PHP

export LD_LIBRARY_PATH=/opt/Ice-3.4.2/lib (32-bit Linux & 32-bit Solaris)
export LD_LIBRARY_PATH=/opt/Ice-3.4.2/lib64 (64-bit Linux)
export LD_LIBRARY_PATH_64=/opt/Ice-3.4.2/lib/amd64 (64-bit Solaris Intel)
export LD_LIBRARY_PATH_64=/opt/Ice-3.4.2/lib/sparcv9 (64-bit Solaris SPARC)
export DYLD_LIBRARY_PATH=/opt/Ice-3.4.2/lib (Mac OS X)

Python

export PYTHONPATH=/opt/Ice-3.4.2/python

Ruby

export RUBYLIB=/opt/Ice-3.4.2/ruby

Java

export CLASSPATH=/opt/Ice-3.4.2/lib/Ice.jar:=/opt/Ice-3.4.2/lib/Freeze.jar

Mono

export MONO_PATH=/opt/Ice-3.4.2/bin

Deprecated APIs in Ice 3.4.2

No APIs were deprecated in Ice 3.4.2.

Deprecated APIs in Ice 3.4.1

This section discusses APIs and components that are now deprecated. These APIs will be removed in a future Ice release, therefore we
encourage you to update your applications and eliminate the use of these APIs as soon as possible.

The following APIs were deprecated in Ice 3.4.1:

Ice.AsyncCallback
The methods in this class were moved into its base class, , therefore this class is no longer necessary. ApplicationsIce.Callback
that use the generic asynchronous callback facility should change their callbacks to inherit from .Ice.Callback
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Upgrading your Application from Ice 3.3
This page describes the issues you will need to consider when upgrading an application from Ice 3.3 to Ice 3.4.

On this page:

Backward compatibility of Ice versions
Source-code compatibility
Binary compatibility
On-the-wire compatibility
Database compatibility
Interface compatibility

IceGrid
IceStorm

Java language mapping changes in Ice 3.4
Metadata
Dictionaries
Request Contexts
Enumerations

Changes to the Java API for Freeze maps in Ice 3.4
General changes to Freeze maps in Java
Enhancements to Freeze maps in Java
Backward compatibility for Freeze maps in Java
Finalizers in Freeze

Freeze packaging changes in Ice 3.4
PHP changes in Ice 3.4

Static translation in PHP
Deploying a PHP application
Using communicators in PHP
Using registered communicators in PHP
PHP configuration
PHP namespaces
Run-time exceptions in PHP
Downcasting in PHP
Other API changes for PHP

Thread pool changes in Ice 3.4
IceSSL changes in Ice 3.4
Migrating IceStorm and IceGrid databases from Ice 3.3
Migrating Freeze databases from Ice 3.3
Removed APIs in Ice 3.4.0
Deprecated APIs in Ice 3.4.0

Backward compatibility of Ice versions

A discussion of backward compatibility in Ice involves many factors.

Source-code compatibility

Ice maintains source-code compatibility between a patch release (e.g., 3.4.2) and the most recent minor release (e.g., 3.4.0), but does not
guarantee source-code compatibility between minor releases (e.g., between 3.3 and 3.4).

The subsections below describe the significant API changes in this release that may impact source-code compatibility. Furthermore, the
subsections  and  summarize additional changes to Ice APIs that could affect yourRemoved APIs in Ice 3.4.0 Deprecated APIs in Ice 3.4.0
application.

Binary compatibility

As for source-code compatibility, Ice maintains backward binary compatibility between a patch release and the most recent minor release,
but does not guarantee binary compatibility between minor releases.

The requirements for upgrading depend on the language mapping used by your application:

For statically-typed languages (C++, Java, .NET), the application must be recompiled.
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For scripting languages that use static translation, your Slice files must be recompiled.

No action is necessary for a Python or Ruby script that loads its Slice files dynamically.

On-the-wire compatibility

Ice always maintains protocol ("on the wire") compatibility with prior releases.

Database compatibility

Upgrading to a new minor release of Ice often includes an upgrade to the supported version of Berkeley DB. In turn, this may require an
application to migrate its databases, either because the format of Berkeley DB's database files has changed, or due to a change in the
schema of the data stored in those databases.

For example, if your application uses Freeze, it may be necessary for you to migrate your databases even if your schema has not changed.

Certain Ice services also use Freeze in their implementation. If your application uses these services (IceGrid and IceStorm), it may be
necessary for you to migrate their databases as well.

Please refer to the relevant subsections below for migration instructions.

Interface compatibility

Although Ice always maintains compatibility at the protocol level, changing Slice definitions can also lead to incompatibilities. As a result, Ice
maintains interface compatibility between a patch release and the most recent minor release, but does not guarantee compatibility between
minor releases.

This issue is particularly relevant if your application uses Ice services such as IceGrid or IceStorm, as a change to an interface in one of
these services may adversely affect your application.

Interface changes in an Ice service can also impact compatibility with its administrative tools, which means it may not be possible to
administer an Ice 3.4.x service using a tool from a previous minor release (or vice-versa).

IceGrid

Starting with Ice 3.2.0, IceGrid registries and nodes are interface-compatible. For example, you can use an IceGrid node from Ice 3.2 with a
registry from Ice 3.4.

IceGrid registry replication is only supported between registries using Ice 3.3 or later.

An IceGrid node using Ice 3.3 or later is able to activate a server that uses Ice 3.2. The reverse is also true: an IceGrid node from Ice 3.2 is
able to activate a server built with Ice 3.3 or later, but only if the server's configuration properties do not rely on features added after Ice 3.2
(such as the ability to escape characters in property names and values).

IceStorm

Topic linking is supported between all IceStorm versions released after 3.0.0.

Java language mapping changes in Ice 3.4

The Java2 language mapping, which was deprecated in Ice 3.3, is no longer supported. The Slice compiler and Ice API now use the Java5
language mapping exclusively, therefore upgrading to Ice 3.4 may require modifications to your application's source code. The subsections
below discuss the language mapping features that are affected by this change and describe how to modify your application accordingly.

Metadata

The global metadata directives  and  are no longer supported and should be removed from your Slice files. Thejava:java2 java:java5
Slice compiler now emits a warning about these directives.

Support for the portable metadata syntax has also been removed. This syntax allowed Slice definitions to define custom type metadata that
the Slice compiler would translate to match the desired target mapping. For example:
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Slice

["java:type:{java.util.ArrayList}"] sequence<String> StringList;

The braces surrounding the custom type  directed the Slice compiler to use  injava.util.ArrayList java.util.ArrayList<String>
the Java5 mapping and  in the Java2 mapping.java.util.ArrayList

All uses of the portable metadata syntax must be changed to use the corresponding Java5 equivalent.

Dictionaries

Now that Slice dictionary types use the Java5 mapping, recompiling your Slice files and your application may cause the Java compiler to
emit "unchecked" warnings. This occurs when your code attempts to assign an untyped collection class such as  to ajava.util.Map
generic type such as . Consider the following example:java.util.Map<String, String>

Slice

dictionary<string, int> ValueMap;

interface Table
{
    void setValues(ValueMap m);
};

A Java2 application might have used these Slice definitions as shown below:

Java

java.util.Map values = new java.util.HashMap();
values.put(...);

TablePrx proxy = ...;
proxy.setValues(values); // Warning

The call to  is an example of an unchecked conversion. We recommend that you compile your application using the compilersetValues
option shown below:

javac -Xlint:unchecked ...

This option causes the compiler to generate descriptive warnings about occurrences of unchecked conversions to help you find and correct
the offending code.

Request Contexts

The Slice type for , , is defined as follows:request contexts Ice::Context

Slice

module Ice
{
    dictionary<string, string> Context;
};

As a dictionary, the  type is subject to the same issues regarding unchecked conversions described for . For example,Context Dictionaries
each proxy operation maps to two overloaded methods, one that omits the trailing  parameter and one that includes it:Context
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Java

interface TablePrx
{
    void setValues(java.util.Map<String, Integer> m);  // No context

    void setValues(java.util.Map<String, Integer> m,
                   java.util.Map<String, String> ctx);
}

If your proxy invocations make use of this parameter, you will need to change your code to use the generic type shown above in order to
eliminate unchecked conversion warnings.

Enumerations

The Java2 language mapping for a Slice enumeration generated a class whose API differed in several ways from the standard Java5 enum
type. Consider the following enumeration:

Slice

enum Color { red, green, blue };

The Java2 language mapping for  is shown below:Color

Java

public final class Color
{
    // Integer constants
    public static final int _red = 0;
    public static final int _green = 1;
    public static final int _blue = 2;

    // Enumerators
    public static final Color red = ...;
    public static final Color green = ...;
    public static final Color blue = ...;

    // Helpers
    public static Color convert(int val);
    public static Color convert(String val);
    public int value();

    ...
}

The first step in migrating to the Java5 mapping for enumerations is to modify all  statements that use an enumerator. Before Javaswitch
added native support for enumerations, the  statement could only use the integer value of the enumerator and therefore the Java2switch
mapping supplied integer constants for use in  statements. For example, here is a  statement that uses the Java2 mapping:case switch
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Java

Color col = ...;
switch(col.value())
{
case Color._red:
    ...
    break;
case Color._green:
    ...
    break;
case Color._blue:
    ...
    break;
}

The Java5 mapping eliminates the integer constants because Java5 allows enumerators to be used in  statements. The resulting codecase
becomes much easier to read and write:

Java

Color col = ...;
switch(col)
{
case red:
    ...
    break;
case green:
    ...
    break;
case blue:
    ...
    break;
}

The next step is to replace any uses of the  or  methods with their Java5 equivalents. The base class for all Java5value convert
enumerations ( ) supplies methods with similar functionality:java.lang.Enum

Java

static Color[] values()          // replaces convert(int)
static Color valueOf(String val) // replaces convert(String)
int ordinal()                    // replaces value()

For example, here is the Java5 code to convert an integer into its equivalent enumerator:

Java

Color r = Color.values()[0]; // red

Note however that the  method in the Java2 mapping returned null for an invalid argument, whereas the Java5 enumconvert(String)
method  raises  instead.valueOf(String) IllegalArgumentException

Refer to the  for more details on the mapping for enumerations.manual

Changes to the Java API for Freeze maps in Ice 3.4

The Java API for  has been revised to used Java5 generic types and enhanced to provide additional functionality. This sectionFreeze maps
describes these changes in detail and explains how to migrate your Freeze application to the API in Ice 3.4.
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General changes to Freeze maps in Java

The Freeze API is now entirely type-safe, which means compiling your application against Ice 3.4 is likely to generate unchecked conversion
warnings. The generated class for a Freeze map now implements the   interface, where  is the key typejava.util.SortedMap<K, V> K
and  is the value type. As a result, applications that relied on the untyped  API (where all keys and values were treated asV SortedMap
instances of ) will encounter compiler warnings in Ice 3.4.java.lang.Object

For example, an application might have iterated over the entries in a map as follows:

Java

// Old API
Object key = new Integer(5);
Object value = new Address(...);
myMap.put(key, value);
java.util.Iterator i = myMap.entrySet().iterator();
while (i.hasNext())
{
    java.util.Map.Entry e = (java.util.Map.Entry)i.next();
    Integer myKey = (Integer)e.getKey();
    Address myValue = (Address)e.getValue();
    ...
}

This code will continue to work, but the new API is both type-safe and self-documenting:

Java

// New API
int key = 5;
Address value = new Address(...);
myMap.put(key, value); // The key is autoboxed to Integer.
for (java.util.Map.Entry<Integer, Address> e : myMap.entrySet())
{
    Integer myKey = e.getKey();
    Address myValue = e.getValue();
    ...
}

Although migrating to the new API may require some effort, the benefits are worthwhile because your code will be easier to read and less
prone to defects. You can also take advantage of the "autoboxing" features in Java5 that automatically convert values of primitive types
(such as ) into their object equivalents (such as ).int Integer

Please refer to the  for complete details on the new API.manual

Enhancements to Freeze maps in Java

Java6 introduced the  interface, which extends  to add some useful new methods.java.util.NavigableMap java.util.SortedMap
Although the Freeze map API cannot implement  directly because Freeze must remain compatible with Java5,java.util.NavigableMap
we have added the  interface to provide much of the same functionality. A generated Freeze map class implementsFreeze.NavigableMap

, as do the sub map views returned by map methods such as . The  interface is described in the NavigableMap headMap NavigableMap
, and you can also refer to the Java6 API documentation.manual

Backward compatibility for Freeze maps in Java

The Freeze Map API related to indices underwent some significant changes in order to improve type safety and avoid unchecked conversion
warnings. These changes may cause compilation failures in a Freeze application.

In the previous API, index comparator objects were supplied to the Freeze map constructor in a map (in Java5 syntax, this comparators map
would have the type ) in which the index name was the key. As part of our effortsjava.util.Map<String, java.util.Comparator>
to improve type safety, we also wanted to use the fully-specified type for each index comparator (such as 

). However, given that each index could potentially use a different key type, it is not possible to retainjava.util.Comparator<Integer>
the previous API while remaining type-safe.
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Consequently, the index comparators are now supplied as data members of a static nested class of the Freeze map named 
. If your application supplied custom comparators for indices, you will need to revise your code to use IndexComparators
 instead. For example:IndexComparators

Java

// Old API
java.util.Map indexComparators = new java.util.HashMap();
indexComparators.put("index", new MyComparator());
MyMap map = new MyMap(..., indexComparators);

// New API
MyMap.IndexComparators indexComparators = new MyMap.IndexComparators();
indexComparators.valueComparator = new MyComparator();
MyMap map = new MyMap(..., indexComparators);

We also encourage you to modify the definition of your comparator classes to use the Java5 syntax, as shown in the example below:

Java

// Old comparator
class IntComparator implements java.util.Comparator
{
    public int compare(Object o1, Object o2)
    {
        return ((Integer)o1).compareTo(o2);
    }
}

// New comparator
class IntComparator implements java.util.Comparator<Integer>
{
    public int compare(Integer i1, Integer i2)
    {
        return i1.compareTo(i2);
    }
}

The second API change that might cause compilation failures is the removal of the following methods:

Java

java.util.SortedMap headMapForIndex(String name, Object key);
java.util.SortedMap tailMapForIndex(String name, Object key);
java.util.SortedMap subMapForIndex(String name, Object from, Object to);
java.util.SortedMap mapForIndex(String name);

Again, this API cannot be retained in a type-safe fashion, therefore  now generates equivalent (and type-safe) methods forslice2freezej
each index in the Freeze map class.

Please refer to the  for complete details on the new API.manual

Finalizers in Freeze

In previous releases, Freeze for Java used finalizers to close objects such as maps and connections that the application neglected to close.
Most of these finalizers have been removed in Ice 3.4, and the only remaining finalizers simply log warning messages to alert you to the fact
that connections and iterators are not being closed explicitly. Note that, given the uncertain nature of Java finalizers, it is quite likely that the
remaining finalizers will not be executed.

Freeze packaging changes in Ice 3.4
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All Freeze-related classes are now stored in a separate JAR file named . As a result, you may need to update your buildFreeze.jar
scripts, deployment configuration, and run-time environment to include this additional JAR file.

PHP changes in Ice 3.4

The Ice extension for PHP has undergone many changes in this release. The subsections below describe these changes in detail. Refer to
the  for more information about the language mapping.PHP Mapping

Static translation in PHP

In prior releases, Slice files were deployed with the application and loaded at Web server startup by the Ice extension. Before each page
request, the extension directed the PHP interpreter to parse the code that was generated from the Slice definitions.

In this release, Slice files must be translated using the new compiler . This change offers several advantages:slice2php

Applications may have more opportunities to improve performance through the use of opcode caching.

It is no longer necessary to restart the Web server when you make changes to your Slice definitions, which is especially useful
during development.

Errors in your Slice files can now be discovered in your development environment, rather than waiting until the Web server reports a
failure and then reviewing the server log to determine the problem.

The development process becomes simpler because you can easily examine the generated code if you have questions about the
API or language mapping rules.

PHP scripts can now use all of the Ice local exceptions. In prior releases, only a subset of the local exception types were available,
and all others were mapped to . See the section  below for moreIce_UnknownLocalException Run-time exceptions in PHP
information.

All of the Slice files for Ice and Ice services are translated during an Ice build and available for inclusion in your application. At a minimum,
you must include the file :Ice.php

PHP

require 'Ice.php';

Ice.php contains definitions for core Ice types and includes a minimal set of generated files. To use an Ice service such as ,IceStorm
include the appropriate generated file:

PHP

require 'Ice.php';
require 'IceStorm/IceStorm.php';

Deploying a PHP application

With the transition to static code generation, you no longer need to deploy Slice files with your application. Instead, you will need to deploy
the PHP code generated from your Slice definitions, along with , the generated code for the Ice core, and the generated code forIce.php
any Ice services your application might use.

Using communicators in PHP

In prior releases, each PHP page request could access a single Ice communicator via the  global variable. The configuration of this$ICE
communicator was derived from the profile that the script loaded via the  function. The communicator was created onIce_loadProfile
demand when  was first used and destroyed automatically at the end of the page request.$ICE

In this release, a PHP script must create its own communicator using an API that is similar to other Ice language mappings:
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PHP

function Ice_initialize()
function Ice_initialize($args)
function Ice_initialize($initData)
function Ice_initialize($args, $initData)

Ice_initialize creates a new communicator using the configuration provided in the optional arguments.  is an array of strings$args
representing command-line options, and  is an instance of .$initData Ice_InitializationData

An application that requires no configuration can initialize a communicator as follows:

PHP

$communicator = Ice_initialize();

More elaborate configuration scenarios are described in the section  below.PHP configuration

A script may optionally destroy its communicator:

PHP

$communicator->destroy();

At the completion of a page request, Ice by default automatically destroys any communicator that was not explicitly destroyed.

Using registered communicators in PHP

PHP applications may benefit from the ability to use a communicator instance in multiple page requests. Reusing a communicator allows the
application to minimize the overhead associated with the communicator lifecycle, including such activities as opening and closing
connections to Ice servers.

This release includes new APIs for registering a communicator in order to prevent Ice from destroying it automatically at the completion of a
page request. For example, a session-based application can create a communicator, establish a  session, and register theGlacier2
communicator. In subsequent page requests, the PHP session can retrieve its communicator instance and continue using the Glacier2
session.

The  provides more information on this feature, and a new sample program can be found in .manual Glacier2/hello

PHP configuration

Prior releases supported four INI settings in PHP's configuration file:

ice.config
ice.options
ice.profiles
ice.slice

The  directive is no longer supported since Slice definitions are now compiled statically. The remaining options are still supportedice.slice
but their semantics are slightly different. They no longer represent the configuration of a communicator; instead, they define property sets
that a script can retrieve and use to initialize a communicator.

The global INI directives  and  configure the default property set. The  directive can optionallyice.config ice.options ice.profiles
nominate a separate file that defines any number of named profiles, each of which configures a property set.

As before, the profiles use an INI file syntax:
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[Name1]
config=file1
options="--Ice.Trace.Network=2 ..."

[Name2]
config=file2
options="--Ice.Trace.Locator=1 ..."

A new directive, , overwrites the value of the  directive as a security measure. This directive has aice.hide_profiles ice.profiles
default value of 1, meaning it is enabled by default.

A script can obtain a property set using the new function . Called without an argument (or with an empty string), theIce_getProperties
function returns the default property set:

PHP

$props = Ice_getProperties();

Alternatively, you can pass the name of the desired profile:

PHP

$props = Ice_getProperties("Name1");

The returned object is an instance of , which supports the standard Ice API.Ice_Properties

For users migrating from an earlier release, you can replace a call to  as follows:Ice_loadProfile

PHP

// PHP - Old API
Ice_loadProfile('Name1');

// PHP - New API
$initData = new Ice_InitializationData;
$initData->properties = Ice_getProperties('Name1');
$ICE = Ice_initialize($initData);

(Note that it is not necessary to use the symbol  for your communicator. However, using this symbol may ease your migration to this$ICE
release.)

Ice_loadProfile also installed the PHP definitions corresponding to your Slice types. In this release you will need to add require
statements to include your generated code.

Finally, if you wish to manually configure a communicator, you can create a property set using :Ice_createProperties

PHP

function Ice_createProperties($args=null, $defaultProperties=null)

$args is an array of strings representing command-line options, and  is an instance of  that$defaultProperties Ice_Properties
supplies default values for properties.

As an example, an application can configure a communicator as shown below:
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PHP

$initData = new Ice_InitializationData;
$initData->properties = Ice_createProperties();
$initData->properties->setProperty("Ice.Trace.Network", "1");
...
$ICE = Ice_initialize($initData);

PHP namespaces

This release includes optional support for PHP namespaces, which was introduced in PHP 5.3. Support for PHP namespaces is disabled by
default; to enable it, you must build the Ice extension from source code with  (see  or USE_NAMESPACES=yes Make.rules

 in the  subdirectory). Note that the extension only supports one mapping style at a time; installing aMake.rules.mak php/config
namespace-enabled version of the extension requires all Ice applications on the target Web server to use namespaces.

With namespace support enabled, you must modify your script to include a different version of the core Ice types:

PHP

require 'Ice_ns.php'; // Namespace version of Ice.php

You must also recompile your Slice files using the  option to generate namespace-compatible code:-n

% slice2php -n MySliceFile.ice

This mapping translates Slice modules into PHP namespaces instead of using the "flattened" (underscore) naming scheme. For example, 
 becomes  in the namespace mapping. However, applications can still refer to global Ice functions byIce_Properties \Ice\Properties

their traditional names (such as ) or by their namespace equivalents ( ).Ice_initialize \Ice\initialize

Run-time exceptions in PHP

As mentioned earlier, prior releases of Ice for PHP only supported a limited subset of the standard . An occurrence of anrun-time exceptions
unsupported local exception was mapped to .Ice_UnknownLocalException

This release adds support for all local exceptions, which allows an application to more easily react to certain types of errors:

PHP

try
{
    $proxy->sayHello();
}
catch(Ice_ConnectionLostException $ex)
{
    // Handle connection loss
}
catch(Ice_LocalException $ex)
{
    // Handle other errors
}

This change represents a potential backward compatibility issue: applications that previously caught  mayIce_UnknownLocalException
need to be modified to catch the intended exception instead.

Downcasting in PHP

In prior releases, to downcast a proxy you had to invoke the  or  method on a proxy and supply aice_checkedCast ice_uncheckedCast
type ID:



Ice 3.4.2 Documentation

1733 Copyright © 2011, ZeroC, Inc.

PHP

$hello = $proxy->ice_checkedCast("::Demo::Hello");

This API is susceptible to run-time errors because no validation is performed on the type ID string. For example, renaming the Hello
interface to  requires that you not only change all occurrences of  to , but also fix any type IDGreeting Demo_Hello Demo_Greeting
strings that your code might have embedded. The PHP interpreter does not provide any assistance if you forget to make this change, and
you will only discover it when that particular line of code is executed and fails.

To improve this situation, a minimal class is now generated for each proxy type. The purpose of this class is to supply  and checkedCast
 static methods:uncheckedCast

PHP

class Demo_HelloPrx
{
    public static function checkedCast($proxy, $facetOrCtx=null, $ctx=null);

    public static function uncheckedCast($proxy, $facet=null);
}

Now your application can downcast a proxy as follows:

PHP

$hello = Demo_HelloPrx::checkedCast($proxy);

You can continue to use  and  but we recommend migrating your application to the new methods.ice_checkedCast ice_uncheckedCast

Other API changes for PHP

This section describes additional changes to the Ice API in this release:

The global variable  is no longer defined. An application must now initialize its own communicator as .$ICE described above

Removed the following communicator methods:

PHP

$ICE->setProperty()
$ICE->getProperty()

The equivalent methods are:

PHP

$communicator->getProperties()->setProperty()
$communicator->getProperties()->getProperty()

Removed the following global functions:

PHP

Ice_stringToIdentity()
Ice_identityToString()

The equivalent methods are:
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PHP

$communicator->stringToIdentity()
$communicator->identityToString()

These functions have also been removed:

PHP

Ice_loadProfile()
Ice_loadProfileWithArgs()
Ice_dumpProfile()

Refer to  for more information.PHP configuration

Thread pool changes in Ice 3.4

A  supports the ability to automatically grow and shrink as the demand for threads changes, within the limits set by the threadthread pool
pool's configuration. In prior releases, the rate at which a thread pool shrinks was not configurable, but Ice 3.4.0 introduces the 

 property to allow you to specify how long a thread pool thread must remain idle before it terminates to conserveThreadIdleTime
resources.

IceSSL changes in Ice 3.4

With the addition of the  in this release, the  structure has changed from a native classesConnectionInfo IceSSL::ConnectionInfo
type to a Slice class. This change has several implications for existing applications:

As a Slice class,  cannot provide the X509 certificate chain in its native form, therefore the chain isIceSSL::ConnectionInfo
provided as a sequence of strings representing the encoded form of each certificate. You can use language-specific facilities to
convert these strings back to certificate objects.

For your convenience, we have added a native subclass of  called IceSSL::ConnectionInfo
. This class provides the certificate chain as certificate objects.IceSSL::NativeConnectionInfo

The  interface now uses  instead of . If your applicationCertificateVerifier NativeConnectionInfo ConnectionInfo
configures a custom certificate verifier, you will need to modify your implementation accordingly.

In C++, also note that  is now managed by a smart pointer, therefore the signature of the certificateNativeConnectionInfo
verifier method becomes the following:

C++

virtual bool verify(const IceSSL::NativeConnectionInfoPtr&) = 0;

The  helper function has been removed because its functionality has been replaced by the getConnectionInfo
 operation. For example, in prior releases a C++ application would do the following:Connection::getInfo

C++

Ice::ConnectionPtr con = ...
IceSSL::ConnectionInfo info = IceSSL::getConnectionInfo(con);

Now the application should do this:

C++

Ice::ConnectionPtr con = ...
IceSSL::ConnectionInfoPtr info = IceSSL::ConnectionInfoPtr::dynamicCast(con->getInfo());
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Alternatively, the application can downcast to the native class:

C++

Ice::ConnectionPtr con = ...
IceSSL::NativeConnectionInfoPtr info =
    IceSSL::NativeConnectionInfoPtr::dynamicCast(con->getInfo());

Migrating IceStorm and IceGrid databases from Ice 3.3

No changes were made to the database schema for IceStorm or IceGrid in this release. However, you still need to update your databases as
described .below

Migrating Freeze databases from Ice 3.3

No changes were made that would affect the content of your  databases. However, we upgraded the version of Berkeley DB,Freeze
therefore when upgrading to Ice 3.4 you must also upgrade your database to the Berkeley DB 4.8 format. The only change that affects
Freeze is the format of Berkeley DB's log file.

The instructions below assume that the database environment to be upgraded resides in a directory named  in the current workingdb
directory. For a more detailed discussion of database migration, please refer to the .Berkeley DB Upgrade Process

To migrate your database:

Shut down the old version of the application.
Make a backup copy of the database environment:

> cp -r db backup.db      (Unix)
> xcopy /E db backup.db   (Windows)

Locate the correct version of the Berkeley DB recovery tool (usually named ). It is essential that you use the db_recover
 executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.3, use  fromdb_recover db_recover

Berkeley DB 4.6. You can verify the version of your  tool by running it with the  option:db_recover -V

> db_recover -V

Use the db_recover tool to run recovery on the database environment:

> db_recover -h db

Recompile and install the new version of the application.
Force a checkpoint using the  utility. Note that you must use the  utility from Berkeley DB 4.8db_checkpoint db_checkpoint
when performing this step.

> db_checkpoint -1 -h db

Restart the application.

Removed APIs in Ice 3.4.0

This section describes APIs that were deprecated in a previous release and have now been removed. Your application may no longer
compile successfully if it relies on one of these APIs.

The following APIs were removed in Ice 3.4.0:

Glacier2.AddUserToAllowCategories
Use  instead.Glacier2.Filter.Category.AcceptUser

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/index.html
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Glacier2.AllowCategories
Use  instead.Glacier2.Filter.Category.Accept

Ice.UseEventLog
Ice services (applications that use the C++ class ) always use the Windows event log by default.Ice::Service

Communicator::setDefaultContext
Communicator::getDefaultContext
ObjectPrx:ice_defaultContext
Use the communicator's  instead.implicit request context

nonmutating keyword
This keyword is no longer supported.

Freeze.UseNonmutating
Support for this property was removed along with the  keyword.nonmutating

Ice::NegativeSizeException
The run time now throws  or  instead.UnmarshalOutOfBoundsException MarshalException

slice2docbook
This utility is no longer included in Ice.

Ice::AMD_Array_Object_ice_invoke
A new overloading of  in the  class makes ice_response AMD_Object_ice_invoke AMD_Array_Object_ice_invoke
obsolete.

Java2 mapping
The Java2 mapping is no longer supported. Refer to  for more information.Java language mapping changes in Ice 3.4

Deprecated APIs in Ice 3.4.0

This section discusses APIs and components that are now deprecated. These APIs will be removed in a future Ice release, therefore we
encourage you to update your applications and eliminate the use of these APIs as soon as possible.

The following APIs were deprecated in Ice 3.4.0:

Asynchronous Method Invocation (AMI) interface
The AMI interface in Ice 3.3 and earlier is now deprecated for C++, Java, and C#.

Glacier2.AddSSLContext
Replaced by .Glacier2.AddConnectionContext

Standard platform methods should be used instead of the following:

Java

Ice.Object.ice_hash()         // Use hashCode
Ice.ObjectPrx.ice_getHash()   // Use hashCode
Ice.ObjectPrx.ice_toString()  // Use toString

In Java, use  and . In C#, use  and . In Ruby, use  instead of .hashCode toString GetHashCode ToString hash ice_getHash

Ice.Util.generateUUID()
In Java use . In C# use .java.util.UUID.randomUUID().toString() System.Guid.NewGuid.ToString()
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Upgrading your Application from Ice 3.2 or Earlier Releases
In addition to the information provided in , users who are upgrading from Ice 3.2 or earlier shouldUpgrading your Application from Ice 3.3
also review this page.

On this page:

Migrating IceStorm databases from Ice 3.2
Migrating IceGrid databases from Ice 3.2
Migrating Freeze databases from Ice 3.2
Removed APIs in Ice 3.3

Thread per connection
.NET metadata
C++
Java
.NET
Python
General
Ice.LoggerPlugin

Deprecated APIs in Ice 3.3
Sequences as dictionary keys
LocalObject
Ice.Trace.Location
Ice.Default.CollocationOptimization

 <Adapter> .RegisterProcess
Ice.ServerId

 and Glacier2.Admin IcePatch2.Admin

Migrating IceStorm databases from Ice 3.2

Ice 3.4 supports the migration of IceStorm databases from Ice 3.1 and from Ice 3.2. Migration from earlier Ice versions may work, but is not
officially supported. If you require assistance with such migration, please contact .support@zeroc.com

To migrate, first stop your IceStorm servers.

Next, copy the IceStorm database environment to a second location:

$ cp -r db recovered.db

Locate the correct version of the Berkeley DB recovery tool (usually named ). It is essential that you use the db_recover db_recover
executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.1, use  from Berkeley DB 4.3.29. Fordb_recover
Ice 3.2, use  from Berkeley DB 4.5. You can verify the version of your  tool by running it with the  option:db_recover db_recover -V

$ db_recover -V

Now run the utility on your copy of the database environment:

$ db_recover -h recovered.db

Change to the location where you will store the database environments for IceStorm 3.4:

$ cd <new-location>

Next, run the  utility. The first argument is the path to the old database environment. The second argument is the path toicestormmigrate
the new database environment.

In this example we'll create a new directory  in which to store the migrated database environment:db
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$ mkdir db
$ icestormmigrate <path-to-recovered.db> db

Upon completion, the  directory contains the migrated IceStorm databases.db

Migrating IceGrid databases from Ice 3.2

Ice 3.4 supports the migration of IceGrid databases from Ice 3.1 and from Ice 3.2. Migration from earlier Ice versions may work, but is not
officially supported. If you require assistance with such migration, please contact .support@zeroc.com

To migrate, first stop the IceGrid registry you wish to upgrade.

Next, copy the IceGrid database environment to a second location:

$ cp -r db recovered.db

Locate the correct version of the Berkeley DB recovery tool (usually named ). It is essential that you use the db_recover db_recover
executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.1, use  from Berkeley DB 4.3.29. Fordb_recover
Ice 3.2, use  from Berkeley DB 4.5. You can verify the version of your  tool by running it with the  option:db_recover db_recover -V

$ db_recover -V

Now run the utility on your copy of the database environment:

$ db_recover -h recovered.db

Change to the location where you will store the database environments for IceGrid 3.4:

$ cd <new-location>

Next, run the  utility located in the  directory of your Ice distribution (or in  if usingupgradeicegrid.py config /usr/share/Ice-3.4.1
an RPM installation). The first argument is the path to the old database environment. The second argument is the path to the new database
environment.

In this example we'll create a new directory  in which to store the migrated database environment:db

$ mkdir db
$ upgradeicegrid.py <path-to-recovered.db> db

Upon completion, the  directory contains the migrated IceGrid databases.db

By default, the migration utility assumes that the servers deployed with IceGrid also use Ice 3.4. If your servers still use an older Ice version,
you need to specify the  command-line option when running :--server-version upgradeicegrid.py

$ upgradeicegrid.py --server-version 3.2.1 <path-to-recovered.db> db

The migration utility will set the  attribute  to the specified version and the IceGrid registry will generate descriptorserver ice-version
configuration files compatible with the given version.

If you are upgrading the master IceGrid registry in a replicated environment and the slaves are still running, you should first restart the
master registry in read-only mode using the  option, for example:--readonly

$ icegridregistry --Ice.Config=config.master --readonly
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Next, you can connect to the master registry with  or the IceGrid administrative GUI to ensure that the database is correct. Ificegridadmin
everything looks fine, you can shutdown and restart the master registry without the  option.--readonly

Migrating Freeze databases from Ice 3.2

No changes were made that would affect the content of your  databases. However, we upgraded the version of Berkeley DB,Freeze
therefore when upgrading to Ice 3.4 you must also upgrade your database to the Berkeley DB 4.8 format. The only change that affects
Freeze is the format of Berkeley DB's log file.

The instructions below assume that the database environment to be upgraded resides in a directory named  in the current workingdb
directory. For a more detailed discussion of database migration, please refer to the .Berkeley DB Upgrade Process

To migrate your database:

Shut down the old version of the application.
Make a backup copy of the database environment:

> cp -r db backup.db      (Unix)
> xcopy /E db backup.db   (Windows)

Locate the correct version of the Berkeley DB recovery tool (usually named ). It is essential that you use the db_recover
 executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.1, use  fromdb_recover db_recover

Berkeley DB 4.3.29. For Ice 3.2, use  from Berkeley DB 4.5. You can verify the version of your  tool bydb_recover db_recover
running it with the  option:-V

> db_recover -V

Use the  tool to run recovery on the database environment:db_recover

> db_recover -h db

Recompile and install the new version of the application.
Force a checkpoint using the  utility. Note that you must use the  utility from Berkeley DB 4.8db_checkpoint db_checkpoint
when performing this step.

> db_checkpoint -1 -h db

Restart the application.

Removed APIs in Ice 3.3

This section describes APIs that were deprecated in a previous release and have been removed in Ice 3.3. Your application may no longer
compile successfully if it relies on one of these APIs.

Please refer to  for information on APIs that were removed in Ice 3.4.Removed APIs in Ice 3.4.0

Thread per connection

The primary purpose of this concurrency model was to serialize the requests received over a connection, either because the application
needed to ensure that requests are dispatched in the order they are received, or because the application did not want to implement the
synchronization that might be required when using the  concurrency model.thread pool

Another reason for using the thread-per-connection concurrency model is that it was required by the  plug-ins for Java and C#. ThisIceSSL
requirement has been eliminated.

The ability to serialize requests is now provided by the thread pool and enabled via a new configuration property:

.Serialize=1<threadpool>

Please refer to the  for more details on this feature.manual

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/index.html
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Aside from the potential semantic changes involved in migrating your application to the thread pool concurrency model, other artifacts of
thread-per-connection may be present in your application and must be removed:

The configuration properties  and Ice.ThreadPerConnection <proxy>.ThreadPerConnection

The proxy methods  and ice_threadPerConnection ice_isThreadPerConnection

.NET metadata

The metadata directive  is no longer valid. Use  instead.cs:collection ["clr:collection"]

C++

The following C++ methods have been removed:

Application::main(int, char*[], const char*, const Ice::LoggerPtr&) 

Use  instead.Application::main(int, char*[], const InitializationData&)

initializeWithLogger
initializeWithProperties
initializeWithPropertiesAndLogger 

Use  instead.initialize(int, char*[], const InitializationData&)

stringToIdentity
identityToString 

Use the equivalent  on .operations Communicator

Java

The following methods have been removed:

Application.main(String, String[], String, Logger) 

Use  instead.Application.main(String, String[], InitializationData)

initializeWithLogger
initializeWithProperties
initializeWithPropertiesAndLogger 

Use  instead.initialize(String[], InitializationData)

.NET

The following methods have been removed:

Application.main(string, string[], string, Logger) 

Use  instead.Application.main(string, string[], InitializationData)

initializeWithLogger
initializeWithProperties
initializeWithPropertiesAndLogger 

Use  instead.initialize(ref string[], InitializationData)

Python

The following methods have been removed:

initializeWithLogger
initializeWithProperties
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initializeWithPropertiesAndLogger 

Use  instead.initialize(args, initializationData)

stringToIdentity
identityToString 

Use the equivalent  on .operations Communicator

General

The following methods have been removed:

ice_hash
ice_communicator
ice_collocationOptimization
ice_connection 

These proxy methods were replaced by ones of the form , such as . ice_get... ice_getHash
 is now .ice_collocationOptimization ice_getCollocationOptimized

ice_newIdentity
ice_newContext
ice_newFacet
ice_newAdapterId
ice_newEndpoints 

These proxy methods were replaced by ones that do not use  in their names. For example,  was replacednew ice_newIdentity
by .ice_identity

Ice.LoggerPlugin

This property provided a way to install a custom logger implementation. It has been replaced by a more  for installinggeneralized facility
custom loggers.

Deprecated APIs in Ice 3.3

This section discusses APIs and components that are deprecated in Ice 3.3. These APIs will be removed in a future Ice release, therefore
we encourage you to update your applications and eliminate the use of these APIs as soon as possible.

Please refer to  for information on APIs that were deprecated in Ice 3.4.Deprecated APIs in Ice 3.4.0

Sequences as dictionary keys

The use of sequences, and structures containing sequences, as the key type of a Slice dictionary is now deprecated.

LocalObject

The mappings for the  type have changed in Java, .NET, and Python. The new mappings are shown below:LocalObject

Java java.lang.Object

.NET System.Object

Python object

The types  and  are deprecated.Ice.LocalObject Ice.LocalObjectImpl

Ice.Trace.Location

This property has been replaced by .Ice.Trace.Locator
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Ice.Default.CollocationOptimization

This property, as well as the corresponding proxy property, have been replaced by  and Ice.Default.CollocationOptimized <proxy>
, respectively..CollocationOptimized

<Adapter>.RegisterProcess

This property caused the Ice run time to register a proxy with the locator registry (e.g., ) that allowed the process to be shut downIceGrid
remotely. The new  has replaced this functionality.administrative facility

Ice.ServerId

As with , this property was used primarily for IceGrid integration and has been replaced by a similar<Adapter>.RegisterProcess
mechanism in the .administrative facility

Glacier2.Admin and IcePatch2.Admin

These are the names of administrative object adapters in  and , respectively. The functionality offered by these objectGlacier2 IcePatch2
adapters has been replaced by that of the , therefore these adapters (and their associated configuration properties) areadministrative facility
deprecated.
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Platform Notes for Ice 3.4.2
This page provides platform-specific notes for Ice 3.4.2.

On this page:

Supported platforms for Ice 3.4.2
Linux notes for Ice 3.4.2

Mono host names
IBM JDK jurisdiction policy files

Windows notes for Ice 3.4.2
IPv6 not supported in Java
Monotonic clock

Solaris notes for Ice 3.4.2
Ice properties test

Supported platforms for Ice 3.4.2

This release supports the operating systems, compilers, and run-time environments listed on the .ZeroC web site

Linux notes for Ice 3.4.2

Linux users should be aware of the following issues.

Mono host names

Mono requires that a system's host name be correctly configured and that it resolves to an IP address. Otherwise, Mono is unable to
determine the local IP addresses, which causes the creation of object adapters that listen on INADDR_ANY/0.0.0.0 to fail with an 

.Ice.DNSException

IBM JDK jurisdiction policy files

The IBM JDK ships with limited jurisdiction policy files for the cryptographic libraries. More information, including a link to download
unrestricted jurisdiction policy files, are available at the  site.DeveloperWorks

Once you have downloaded the policy files, unpack them into this directory:

/usr/lib/jvm-private/java-1_6_0-ibm/jce/vanilla

Windows notes for Ice 3.4.2

Windows users should be aware of the following issues.

IPv6 not supported in Java

IPv6 is not currently supported in Java on Windows due to a .JVM bug

Monotonic clock

Ice uses the  Windows API function to measure time with a monotonic clock. If you are experiencing timing orQueryPerformanceCounter
performance issues, there are two knowledgebase articles that may be relevant for your system:

http://support.microsoft.com/?id=896256
http://support.microsoft.com/?id=895980

Solaris notes for Ice 3.4.2

http://www.zeroc.com/platforms_3_4_2.html
http://www.ibm.com/developerworks/java/jdk/security/60/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4640544
http://support.microsoft.com/?id=896256
http://support.microsoft.com/?id=895980
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Solaris users should be aware of the following issues.

Ice properties test

The C++ test , which tests property files with UTF-8 filenames, requires:cpp/test/Ice/properties

the installation of the  packageSUNWeu8os
setting  to  in your environmentLC_ALL en_US.UTF-8
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Known Problems in Ice 3.4.2
This page describes the known problems Ice 3.4.2.

On this page:

 failure on SLES 11iceca
Socket issue in Android 2.2
SSL issues in Android

iceca failure on SLES 11

The Ice  ( ) script may fail to import OpenSSL-generated certificates into a Java keystore. This failure occurs whenCertificate Authority iceca
using the following command-line options:

iceca java --import ...

The import fails with an error similar to:

lengthTag=127, too big

The error is caused by an incompatibility between the JDK's keytool and the version of OpenSSL that is included with SLES11 (OpenSSL
0.9.8h). To work around this issue, you can install a newer version of OpenSSL. Note that it is not necessary to rebuild Ice with the new
OpenSSL version; the only requirement is that you have the new  executable in your  when running the command openssl PATH iceca

.java --import ...

Socket issue in Android 2.2

An Ice application that works correctly in Android 2.1 may fail in Android 2.2 with a socket exception:

java.net.SocketException: Bad address family

This exception is caused by Android bug . To work around it, add the following code to your application's initialization logic:9431

Java

if(android.os.Build.VERSION.SDK_INT == 8) // FROYO (8)
{
    java.lang.System.setProperty("java.net.preferIPv4Stack", "true");
    java.lang.System.setProperty("java.net.preferIPv6Addresses", "false");
}

The  statement ensures that the code is only executed when running on Android 2.2.if

SSL issues in Android

Ice for Android supports the use of SSL on Android 2.2 or later. In the sample programs, SSL is disabled when using Android 2.1 or earlier
due to .bug 4914

Note that there is an SSL incompatibility between an Android client and an Ice for C++ (OpenSSL) server that prevents a connection from
being established in certain situations. If the server is configured to request and validate the client's certificate, which occurs when the
server's  property is set to 1 or 2, Android raises an exception indicating a "failed handshake". The only knownIceSSL.VerifyPeer
solution at this time is to set  in the server, which allows the connection to succeed but has the disadvantage thatIceSSL.VerifyPeer=0
the client's certificate is no longer validated.

http://code.google.com/p/android/issues/detail?id=9431
http://code.google.com/p/android/issues/detail?id=4914
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Also note that SSL incurs significantly more overhead than TCP in Android. Connection establishment in particular is very costly.
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Using the Windows Binary Distribution
This page provides important information for users of the Ice binary distribution on Windows platforms.

On this page:

Overview of the Windows binary distribution
Setting up your Windows environment to use Ice

C++
.NET
.NET Compact Framework
Java
Android
Python
Ruby
PHP

 with .NET 4.0iceboxnet
Managed code in Ice for .NET
Using the sample programs on Windows
Configuration files for IceGrid and Glacier2 services
Starting the IceGrid Administrative Console on Windows
Ice Visual Studio Add-In installation notes
Ice installer registry key
Third-party packages for Windows

Overview of the Windows binary distribution

The Ice binary distribution for Windows provides all Ice run time services and development tools to build Ice applications on Windows:

in C++, using Visual Studio 2008 SP1, Visual Studio 2010 or C++Builder 2010
in .NET, using Visual Studio 2008 SP1 or Visual Studio 2010
in Java, using Java 5 or Java 6
in Android, using Android 2.1 or later
in Python, using Python 2.6.4
in Ruby, using Ruby 1.8.6
in PHP, using PHP 5.3.1

You only need the development environment for your target programming language to use this distribution. For example, if you want to build
Ice applications in Java, you need to install a JDK, but do not need to install Visual Studio or Python.

Setting up your Windows environment to use Ice

After installing Ice, read the relevant language-specific sections below to learn how to configure your environment and start programming
with Ice.

C++

To use Ice for C++ you need to add one or more of the Ice  directories to your . The changes you must make depend on yourbin PATH
compiler and architecture, as listed below:

Visual Studio 2008SP1, 32-bit 

> set PATH=<Ice installation root directory>\bin;%PATH%

Visual Studio 2008SP1, 64-bit 
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> set PATH=<Ice installation root directory>\bin;%PATH%
> set PATH=<Ice installation root directory>\bin\x64;%PATH%

The  directory must come first in your .x64 PATH

Visual Studio 2010, 32-bit 

> set PATH=<Ice installation root directory>\bin\vc100;%PATH%

Visual Studio 2010, 64-bit 

> set PATH=<Ice installation root directory>\bin\vc100;%PATH%
> set PATH=<Ice installation root directory>\bin\vc100\x64;%PATH%

The  directory must come first in your .x64 PATH

C++Builder 2010 

> set PATH=<Ice installation root directory>\bin;%PATH%
> set PATH=<Ice installation root directory>\bin\bcc10;%PATH%

The  directory must come first in your .bcc10 PATH

If you don't want to rely on the  environment variable to locate the Ice for C++ DLLs, you can also copy the DLLs into the samePATH
directory as your executable.

To compile Ice for C++ applications with Visual C++, you should use the .Ice Visual Studio Add-In

To compile with Visual C++ Express where the Ice Visual Studio Add-in is not available, you need to configure Visual Studio manually. This
involves adding the locations of the Ice header files, libraries, and executables to Visual Studio's configuration. Follow these steps:

In the IDE, choose  /  /  / Tools Options Projects and Solutions VC++ Directories
Select Include files
Add <Ice installation root directory>\include
Select  and add the appropriate library directory for your compiler:Library files

VS2008SP1, 32-bit <Ice installation root directory>\lib

VS2008SP1, 64-bit <Ice installation root directory>\lib\x64

VS2010, 32-bit <Ice installation root directory>\lib\vc100

VS2010, 64-bit <Ice installation root directory>\lib\vc100\x64

Select  and add the appropriate binary directory for your compiler:Executable files

VS2008SP1, 32-bit <Ice installation root directory>\bin

VS2008SP1, 64-bit <Ice installation root directory>\bin\x64

VS2010, 32-bit <Ice installation root directory>\bin\vc100

VS2010, 64-bit <Ice installation root directory>\bin\vc100\x64

.NET

Locating the .NET assemblies
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To use Ice for .NET, you can either copy the .NET assemblies to the directory of your executable or add the .NET assemblies to the Global
Assembly Cache (GAC).

Copying the Ice for .NET assemblies to the executable directory is the simplest solution. You can set up your Visual Studio projects to copy
the assemblies by setting the  property to . To access this property in the Solution Explorer, open the  folderCopy Local True References
of your project and click on the assembly to access its properties in the  panel.Properties

You can also add the Ice for .NET assemblies to the GAC. To do this, open Windows Explorer and navigate to the directory 
. Next, drag and drop (or copy and paste) the .NET assemblies from the C:\WINDOWS\assembly <Ice installation root

 directory into the right-hand pane to install them in the cache.directory>\bin

Alternatively, you can achieve the same result by using  from the command line:gacutil

> gacutil /i <library.dll>

The  tool is included with your Visual C# installation. For example, if you have installed Visual C# 9.0 in , thegacutil C:\Program Files
path to  isgacutil

C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\gacutil.exe

Once installed in the GAC, the assemblies will always be located correctly without having to set environment variables or copy them into the
same directory as an executable.

Line numbers for stack traces

If you want line numbers for stack traces, you must also install the PDB (.pdb) files in the GAC. Unfortunately, you cannot do this using
Explorer, so you have to do it from the command line. Open a command shell window and navigate to 

 (assuming  is your system root). Doing a directory listing there, you will find aC:\WINDOWS\assembly\GAC_MSIL\Ice C:\WINDOWS
directory named , for example:3.4.2.0__<UUID>

3.4.2.0__cdd571ade22f2f16

Change to that directory (making sure that you use the correct version number for this release of Ice). In this directory, you will see the 
 you installed into the GAC in the preceding step. Now copy the  file into this directory:Ice.dll Ice.pdb

> copy <\path\to\Ice.pdb> .

Using protocol compression

The Ice for .NET run time implements protocol compression by dynamically loading the native library  from a directory in your bzip2.dll
. Ice disables the protocol compression feature if it is unable to load the  library successfully.PATH bzip2

This DLL is included in your Ice distribution, therefore the Ice  directory must be added to your :bin PATH

> set PATH=<Ice installation root directory>\bin;%PATH%

On 64-bit Windows, use the following setting instead:

> set PATH=<Ice installation root directory>\bin\x64;%PATH%

If the wrong  is set, the Ice run time prints a warning to the console when it detects a  format mismatch during start-up.PATH bzip2.dll

.NET Compact Framework

The Ice assembly for the .NET Compact Framework is installed as . The <Ice installation root directory>\bin\cf\Ice.dll
 detects a Smart Device project and automatically configures it to use the .NET CF version of the Ice assembly.Visual Studio Add-in

Java



Ice 3.4.2 Documentation

1750 Copyright © 2011, ZeroC, Inc.

To use Ice for Java, you must add  to your , as shown below:Ice.jar CLASSPATH

> set CLASSPATH=<Ice installation root directory>\lib\Ice.jar;%CLASSPATH%

If you intend to use Freeze for Java, you must include  in your  along with :Freeze.jar CLASSPATH Ice.jar

> set CLASSPATH=<Ice installation root directory>\lib\Freeze.jar;%CLASSPATH%

Furthermore, to use a Freeze demo the JVM requires that the directory containing Berkeley DB's native libraries be included in 
, therefore you must add this directory to your :java.library.path PATH

> set PATH=<Ice installation root directory>\bin;%PATH%

For a 64-bit JVM, use the following setting instead:

> set PATH=<Ice installation root directory>\bin\x64;%PATH%

Ice for Java supports protocol compression using the  classes included with . Compression is automatically enabled if thesebzip2 ant
classes are present in your . You can either add  to your , or download only the bzip2 classes fromCLASSPATH ant.jar CLASSPATH

http://www.kohsuke.org/bzip2/

Note that these classes are a pure Java implementation of the bzip2 algorithm and therefore add significant latency to Ice requests.

Eclipse Development

ZeroC has created a  for Eclipse that automates the translation of your Slice files. If you use Eclipse, we stronglySlice2Java plug-in
recommend using this plug-in for your own development.

The Slice2Java plug-in is required if you intend to build any of the Android sample projects included in this distribution.

For installation instructions, please refer to the . The  provides more information about configuring the plug-in andZeroC web site manual
using it in your projects.

Android

Ice requires Android 2.1 or later. Aside from that, there are no other special requirements for using Ice in an Android application. We strongly
recommend installing our  to automate the compilation of your Slice definitions.Slice2Java plug-in for Eclipse

Python

To use Ice for Python, you must add the Ice  directory to your  and set  so that the Python interpreter is able to loadbin PATH PYTHONPATH
the
Ice extension. For a 32-bit Python installation, use these settings:

> set PATH=<Ice installation root directory>\bin;%PATH%
> set PYTHONPATH=<Ice installation root directory>\python

For a 64-bit Python installation, use these settings instead:

> set PATH=<Ice installation root directory>\bin\x64;%PATH%
> set PYTHONPATH=<Ice installation root directory>\python\x64

http://ant.apache.org
http://www.kohsuke.org/bzip2/
http://www.zeroc.com/eclipse.html
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Ruby

To use Ice for Ruby, you must add the Ice  directory to your :bin PATH

> set PATH=<Ice installation root directory>\bin;%PATH%

You must also set  so that the Ruby interpreter is able to load the Ice extension:RUBYLIB

> set RUBYLIB=<Ice installation root directory>\ruby;%RUBYLIB%

The Ruby installer includes versions of the OpenSSL DLLs that are not compatible with the ones supplied with Ice. If you intend to use SSL
in your Ice for Ruby applications, you will need to remove or rename the following files in the Ruby installation directory:

libeay32.dll
ssleay32.dll

If you used the default installation directory, these files are located in .C:\ruby\bin

Also be aware that the Ruby installer inserts  at the beginning of the system , therefore the DLLs listed above can alsoC:\ruby\bin PATH
have an adverse impact on other Ice language mappings that use OpenSSL, such as C++ and Python.

PHP

The binary distribution of PHP 5.3.6 for Windows is compiled with Visual Studio 2008 (Visual C++ 9) and therefore is not compatible with the
Apache binaries provided by the Apache Software Foundation, which are compiled with Visual C++ 6.

The Ice extension for PHP included in this installer is also compiled with VC9 for compatibility with the PHP binary distribution. To use this
extension, you will need a compatible PHP binary distribution as well as a compatible Web server. If you wish to use Apache, you can obtain
a VC9 build of Apache from alternate sources.

If you require a version of the Ice extension for a different environment, you will need to compile the extension from source. Download the
Ice source distribution and review the  file for details.php/INSTALL

The PHP documentation describes how to configure the Apache servers for PHP, and the PHP installer may have already performed the
necessary steps. We provide instructions below for configuring PHP to use the Ice extension. These instructions make several assumptions:

Apache 2.2 is installed and configured to load PHP
PHP is installed in C:\Program Files\PHP
Ice is installed in C:\Ice

If you have a different installation, you will need to make the appropriate changes as you follow the instructions.

1. Verify your PHP installation

With Apache running, verify that PHP has been loaded successfully by creating a file in Apache's document directory ( ) called htdocs
 that contains the following line:phpinfo.php

PHP

<?php phpInfo();?>

Open the file in your browser using a URL such as

http://127.0.0.1/phpinfo.php

If you have configured PHP correctly, you should see a long page of PHP configuration information. If you do not see this page, or an error
occurs, check Apache's error log as well as the Windows event log for more information. Also note that you may need to restart Apache if it
was running at the time you installed PHP.

2. Determine the location of your PHP configuration file

Review the settings on the browser page for an entry titled . It will have a value such asLoaded Configuration File

http://127.0.0.1/phpinfo.php
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C:\Program Files\PHP\php.ini

As an administrator, open this file in a text editor and append the following line:

extension = php_ice.dll

The file  contains the Ice extension for PHP.php_ice.dll

3. Install the Ice extension DLL

Look for the  setting in the browser page or in PHP's configuration file. It typically has the following value by default:extension_dir

extension_dir = "C:\Program Files\PHP\ext"

If instead the  setting contains a relative path, it it is resolved relative to the working directory of the Apache processextension_dir
(Apache's working directory is usually its installation directory).

Copy the DLL for the Ice extension to PHP's extension directory:

> copy C:\Ice\bin\php_ice.dll "C:\Program Files\PHP\ext"

4. Verify that Apache can load dependent libraries

Regardless of the location of PHP's extension directory, the Ice extension's dependent libraries must be located in Apache's executable
search path.

The Ice extension depends on the following libraries:

bzip2.dll
ice34.dll
iceutil34.dll
slice34.dll

All of these files can be found in the  subdirectory of your Ice installation (e.g., ). Apache must be able to locate these DLLsbin C:\Ice\bin
during startup, and several alternatives are available:

Add the Ice installation directory to the system . Using the  control panel, change the system  to include PATH System PATH
. Note that Windows must be restarted for this change to take effect.C:\Ice\bin

Copy the dependent libraries to Apache's installation directory.

Copy the dependent libraries to the Windows system directory ( ). We do not recommend this option.C:\WINDOWS\system32

If Apache cannot find or access a DLL, Apache startup may fail with an access violation, or the PHP module may ignore the Ice extension
and continue its initialization. Consequently, a successful Apache startup does not necessarily mean that the Ice extension has been loaded.
Unfortunately, the message reported by PHP in Apache's error log is not very helpful; the error might imply that it cannot find php_ice.dll
when in fact it was able to open  but a dependent DLL was missing or inaccessible.php_ice.dll

5. Review access rights

Review the access rights on PHP's extension directory, the Ice extension DLL, and its dependent libraries. When running as a Windows
service, Apache runs in the  account (also known as ). You can use the  utility in aLocal System NT Authority\SYSTEM cacls
command window to view and modify access rights. For example, run the following commands to review the current access rights of the Ice
extension:

> cd \Program Files\PHP\ext
> cacls php_ice.dll

6. Restart Apache

Restart Apache and verify that the PHP module and the Ice extension have been loaded successfully. After reloading the phpinfo.php
page in your browser, scan the entries for a section titled . The presence of this section indicates that the extension was loaded.ice

If Apache does not start, check the Windows Event Viewer as well as Apache's log files for more information. The most likely reasons for
Apache to fail at startup are missing DLLs (see step 4) or insufficient access rights (see step 5).
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7. Locate the Ice run time files

Your application will also need to include at least some of the Ice for PHP run-time source files (installed in ). To make theseC:\Ice\php
files available to your application, you can either modify PHP's include path or copy the necessary files to a directory that is already in the
interpreter's include path. You can determine the current include path by loading the  page in your browser and searching forphpinfo.php
an entry named .include_path

If you want to make the Ice run-time files available to all PHP applications on the host, you can modify the  setting in include_path
 to add the installation directory:php.ini

include_path = C:\Ice\php;...

Another option is to modify the include path from within your script prior to including any Ice run-time file:

PHP

ini_set('include_path', ini_get('include_path') . PATH_SEPARATOR . 'C:/Ice/php')
require 'Ice.php'; // Load the core Ice run time definitions.

iceboxnet with .NET 4.0

The  executable included in the Windows binary distribution was built with .NET 3.5 and requires extra configuration to loadiceboxnet.exe
IceBox services that rely on the .NET 4.0 run time.

The solution is to create a file named  in the same directory as :iceboxnet.exe.config iceboxnet.exe

XML

<?xml version="1.0"?>
<configuration>
 <startup>
   <supportedRuntime version="v4.0" />
 </startup>
</configuration>

With this configuration,  uses the .NET 4.0 run time and is able to load IceBox services built with .NET 4.0.iceboxnet

Managed code in Ice for .NET

The main Ice for .NET assembly ( ) included in the Windows binary distribution uses unmanaged code. If you require only managedIce.dll
code then you can download the Ice source distribution and build Ice for .NET in a purely managed version. Note that the managed version
of Ice for .NET omits support for protocol compression and for signal handling in the  class.Ice.Application

You can download the source distribution at the .ZeroC web site

Using the sample programs on Windows

During installation, sample programs for all supported programming languages are installed by default in a sub-folder of the  or Documents
 folder of the user who performed this installation. You'll find a shortcut to this directory in your Start menu. You can alsoMy Documents

download a  of these sample programs, and extract this archive in a folder of your choice.ZIP archive

The sample programs are in source form only. Please refer to the  file in the main demos folder for instructions on how to buildREADME.txt
and execute them.

Configuration files for IceGrid and Glacier2 services

The  subdirectory of your Ice installation includes sample configuration files for the Glacier2 router, IceGrid node, and IceGridconfig

http://www.zeroc.com/download.html
http://www.zeroc.com/download/Ice/3.4/Ice-3.4.2-demos.zip
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registry. These files provide a good starting point on which to base your own configurations, and they contain comments that describe the
settings in detail.

If you intend to edit one of the configuration files but you have installed your distribution into  or \Program Files \Program Files
 on Windows Vista or later, be aware that Windows makes it difficult to make permanent modifications to files in these directories. We(x86)

recommend copying the files to the location of your choice. For more information on this topic, refer to the  section of Virtualization New
.UAC Technologies for Windows Vista

The  provides more information on installing and running the IceGrid registry, IceGrid node, and Glacier2 router as WindowsIce manual
services.

Starting the IceGrid Administrative Console on Windows

You can launch the IceGrid Administrative Console using the shortcut that the Ice installer created in your Start menu as . TheIceGrid GUI
console is a Java program and requires JRE 5.0 or later.

Ice Visual Studio Add-In installation notes

The Ice binary distribution includes an add-in for Visual Studio that helps to create and manage projects with Slice files. The Ice Visual
 supports C++, .NET, and .NET Compact Framework projects.Studio Add-In

The add-in does not support Visual Studio Express editions because Microsoft does not permit add-ins to be written for
Express editions of Visual Studio.

The installer for the Ice binary distribution detects if Visual Studio 2008 or Visual Studio 2010 is installed on the target computer and
configures the corresponding Ice add-in for all users. If you install Visual Studio 2008 or Visual Studio 2010  installing Ice, you will haveafter
to re-run the Ice installer and choose  to install the add-in.Repair

On a machine with multiple users, be aware that the installers for Ice 3.4.0 and Ice 3.4.1 placed a file in the documents directory of the user
that executed the installer. For example, when using Visual Studio 2008 on Windows 7, this file is installed as

C:\Users\user\My Documents\Visual Studio 2008\Addins\Ice-VS2008.AddIn

This file is automatically removed if the same user executes the Ice 3.4.2 installer. However, if a different user installs Ice 3.4.2, the .AddIn
file will not be removed from the original user's documents directory and that user will continue to use the old version of the add-in. In order
for that user to use the add-in for Ice 3.4.2, the  file must be removed manually. After removing the file and starting Visual Studio for.AddIn
the first time, you may notice that the  menu option is not present and an error dialog appears when you close VisualIce Configuration
Studio. Restart Visual Studio once more to begin using the Ice 3.4.2 add-in.

Ice installer registry key

The Ice installer adds information to the Windows registry to indicate where it was installed. Developers can use this information to locate the
Ice files in their applications.

The registration key used by this installer is:

HKEY_LOCAL_MACHINE\Software\ZeroC\Ice 3.4.2

On 64-bit machines this key is added to the 64-bit registry, but not the 32-bit registry.

The install location is stored as a string value named .InstallDir

Third-party packages for Windows

The binary distribution for Windows includes the following third-party packages as separate binary libraries:

Berkeley DB 4.8.30 (C/C++ and Java run time)
Bzip2 1.0.6 (C run time)
Expat 2.0.1 (C run time)
OpenSSL 0.9.8r (C run time)

http://msdn.microsoft.com/en-us/library/bb756960.aspx
http://msdn.microsoft.com/en-us/library/bb756960.aspx


Ice 3.4.2 Documentation

1755 Copyright © 2011, ZeroC, Inc.

QtCore and QtSql 4.5.3 with SQLite driver built-in (C++ run time)
STLPort 4.6.3 (C++ run time)
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Using the Linux RPMs
This page provides important information for users of the Ice RPMs on Linux platforms. You can obtain these RPMs at the .ZeroC web site

On this page:

Overview of the Ice RPMs
Setting up your Linux environment to use Ice

C++
Java
Android
Python
Mono
Ruby
PHP

Using the sample programs on Linux
Startup scripts for IceGrid and Glacier2 services
Starting the IceGrid Administrative Console on Linux

Overview of the Ice RPMs

Ice for Linux is distributed in several RPM packages:

RPM Description

ice Slice files and related documentation

ice-c++-devel C++ header files, libraries, and Slice compilers

ice-java Java run time JAR files

ice-java-devel Slice compilers and Ant tasks for Java development

ice-libs C++ run-time libraries

ice-mono Mono run-time assemblies

ice-mono-devel Slice compiler and libraries for Mono development

ice-php PHP extension and run time files

ice-php-devel Slice compiler for PHP development

ice-python Python extension and run time files

ice-python-devel Slice compiler for Python development

ice-ruby Ruby extension and run time files

ice-ruby-devel Slice compiler for Ruby development

ice-servers Server executables and sample  scriptsinit.d

ice-sqldb Enables the use of SQL databases in IceGrid and IceStorm

ice-utils Utilities necessary for administering an Ice installation

The Mono RPMs are currently available only for SuSE Enterprise Linux Server.

ZeroC also supplies RPMs for the following third-party packages:

RPM Description

http://www.zeroc.com/download.html
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db48 Berkeley DB 4.8.30 C and C++ run time libraries

db48-devel C++ development files for Berkeley DB 4.8.30

db48-java Berkeley DB 4.8.30 Java run time

db48-utils Berkeley DB 4.8.30 command-line utilities

mcpp-devel MCPP C++ preprocessor library

The  and the  RPMs are only necessary for building Ice from source.db48-devel mcpp-devel

Setting up your Linux environment to use Ice

After installing Ice, read the relevant language-specific sections below to learn how to configure your environment and start programming
with Ice.

C++

No special compiler or linker options are required for an RPM installation of the Ice for C++ development kit ( ).ice-c++-devel

Java

To use Ice for Java, you must add  to your , as shown below:Ice.jar CLASSPATH

$ export CLASSPATH=/usr/share/java/Ice.jar:$CLASSPATH

If you intend to use Freeze for Java, you must include  in your  along with :Freeze.jar CLASSPATH Ice.jar

$ export CLASSPATH=/usr/share/java/Freeze.jar:$CLASSPATH

Note that Freeze requires Berkeley DB.  contains a manifest that automatically loads the Berkeley DB classes (Freeze.jar
), which means you do not need to include this file in your  when executing a Freeze application. However thedb-4.8.30.jar CLASSPATH

JVM does require that the directory containing Berkeley DB's native libraries be listed in , therefore you must add thisjava.library.path
directory to your . Assuming you are using the RPM installation of Berkeley DB, the bash command is shown below:LD_LIBRARY_PATH

$ export LD_LIBRARY_PATH=/usr/lib:$LD_LIBRARY_PATH

On an x86_64 system with a 64-bit JVM, the 64-bit Berkeley DB libraries are installed in , so use this setting instead:/usr/lib64

$ export LD_LIBRARY_PATH=/usr/lib64:$LD_LIBRARY_PATH

When building a Java application that uses Freeze, you will need to add the Berkeley DB JAR file to your :CLASSPATH

$ export CLASSPATH=/usr/share/java/db-4.8.30.jar:$CLASSPATH

Ice for Java supports protocol compression using the bzip2 classes included with ant. Compression is automatically enabled if these classes
are present in your . You can either add  to your , or download only the bzip2 classes fromCLASSPATH ant.jar CLASSPATH

http://www.kohsuke.org/bzip2/

Note that these classes are a pure Java implementation of the bzip2 algorithm and therefore add significant latency to Ice requests.

When using the Ice for Java SSL plugin (IceSSL), you may experience occasional hangs. The most likely reason is that your system's
entropy pool is empty. If you have sufficient system privileges, you can solve this issue by editing the file

<java.home>/jre/lib/security/java.security

http://www.kohsuke.org/bzip2/
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and changing it to use  instead of . If you do not have permission to modify the security file, you can also use/dev/urandom /dev/random
the
command-line option shown below:

$ java -Djava.security.egd=file:/dev/urandom MyClass ...

On Linux systems with IPv6 enabled, you may experience occasional hangs the first time an Ice object adapter is activated within a JVM. A
work-around is to disable IPv6 support by setting the Java property  to true. For example:java.net.preferIPv4Stack

$ java -Djava.net.preferIPv4Stack=true MyClass ...

For more information on this issue, refer to the relevant .Java bug

Eclipse Development

ZeroC has created a  for Eclipse that automates the translation of your Slice files. If you use Eclipse, we stronglySlice2Java plug-in
recommend using this plug-in for your own development.

The Slice2Java plug-in is required if you intend to build any of the Android projects included in the .sample programs

For installation instructions, please refer to the . The  provides more information about configuring the plug-in andZeroC web site manual
using it in your projects.

Android

Ice requires Android 2.1 or later. Aside from that, there are no other special requirements for using Ice in an Android application. We strongly
recommend installing our  to automate the compilation of your Slice definitions.Slice2Java plug-in for Eclipse

Python

The Ice for Python run-time RPM ( ) installs the Ice extension and its associated Python files into the ice-python site-packages
directory. The RPM also installs a  file that enables you to import the various Ice modules without requiring any additional configuration..pth

Mono

The RPM installation adds the .NET run-time libraries to the global assembly cache (GAC), so that no changes to your environment are
necessary to locate the assemblies.

The instructions for running the demos assume that you have configured your kernel to automatically execute the Mono interpreter. Visit the 
 for a description of how to configure your kernel to register Mono's .exe files as non-native binaries. If you don't want toMono Project

configure your kernel, you will need to run executables with . For example,mono

$ mono server.exe

Ruby

The Ice for Ruby run-time RPM ( ) installs the Ice extension and its associated Ruby files into the  directory. Noice-ruby site_ruby
additional configuration is necessary to use Ice in your Ruby programs.

PHP

The Ice extension for PHP is loaded automatically when the interpreter loads the contents of the file  (on Red Hat/etc/php.d/ice.ini
Enterprise Linux) or  (on SuSE Linux Enterprise Server). This file contains the line shown below:/etc/php5/conf.d/ice.ini

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6483406
http://www.zeroc.com/eclipse.html
http://www.mono-project.com/Guide:Running_Mono_Applications
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1.  

1.  

extension=IcePHP.so

You can modify this file to include additional .configuration directives

At run time, the PHP interpreter requires the Ice shared libraries.

You can verify that the Ice extension is installed properly by examining the output of the  command, or by calling the php -m phpinfo()
function from a script.

Your application will also need to include at least some of the Ice for PHP run-time source files (installed in  on RHEL and /usr/share/php
 on SLES11). This installation directory is included in PHP's default include path, which you can verify by executing the/usr/share/php5

following command:

% php -i | grep include_path

If the installation directory is listed, no further action is necessary to make the run-time source files available to your application. Otherwise,
you can modify the  setting in  to add the installation directory:include_path php.ini

include_path = /usr/share/php:...

Another option is to modify the include path from within your script prior to including any Ice run-time file:

PHP

ini_set('include_path', ini_get('include_path') . PATH_SEPARATOR . '/usr/share/php');
require 'Ice.php'; // Load the core Ice run time definitions.

SELinux Notes (for Red Hat Enterprise Linux users)

SELinux augments the traditional Unix permissions with a number of new features. In particular, SELinux can prevent the  daemonhttpd
from opening network connections and reading files without the proper SELinux types.

If you suspect that your PHP application does not work due to SELinux restrictions, we recommend that you first try it with SELinux disabled.
As root, run:

# setenforce 0

to disable SELinux until the next reboot of your computer.

If you want to run  with the Ice extension and SELinux enabled, you must do the following:httpd

Allow httpd to open network connections:

# setsebool httpd_can_network_connect=1

You can add the -P option to make this setting persistent across reboots.

Make sure any  file used by your PHP scripts can be read by . The enclosing directory also needs to be accessible. For.ice httpd
example:

# chcon -R -t httpd_sys_content_t /opt/MyApp/slice

For more information on SELinux in Red Hat Enterprise Linux, refer to this .Red Hat document

Using the sample programs on Linux

http://www.redhat.com/f/pdf/sec/WHP001USselinux.pdf
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Sample programs are provided in a separate archive, which can be downloaded from the .ZeroC web site

Please refer to the  file included in that package for more information.README.DEMOS

Startup scripts for IceGrid and Glacier2 services

The  RPM includes the following sample  scripts and associated configuration files:ice-servers /etc/init.d

/etc/init.d/icegridregistry and /etc/icegridregistry.conf
/etc/init.d/icegridnode and /etc/icegridnode.conf
/etc/init.d/glacier2router and /etc/glacier2router.conf

The installation of this RPM also creates a user account and group for running these services (account  and group ), and dataice ice
directories for  and  (  and ).icegridregistry icegridnode /var/lib/ice/icegrid/registry /var/lib/ice/icegrid/node1

By default, all these services are off at all runlevels. You need to manually switch on one or more runlevels, for example:

#
# On a Red Hat Enterprise Linux system, configure the icegridregistry
# to start at runlevel 3 and 5:
#
chkconfig --level 35 icegridregistry on

#
# On a SuSE Linux Enterprise Server system, configure the
# icegridregistry to start at runlevel 3 and 5:
#
chkconfig icegridregistry 35

Before doing so, please review the script itself and its associated configuration file.

Starting the IceGrid Administrative Console on Linux

A Java-based graphical tool for administering IceGrid applications is included in this distribution. The Java archive file is installed as

/usr/share/java/IceGridGUI.jar

With a suitable Java environment, you can execute the application using the following command:

$ icegridgui

or

$ java -jar IceGridGUI.jar

On SuSE Linux Enterprise Server when using the IBM JRE, the GUI might warn about not being able to create the system
preferences directory. To get rid of this warning, you can either run the program once as root or create the 

 directory (this directory should be world readable)./usr/lib/jre/.systemPrefs

http://www.zeroc.com/download/Ice/3.4/Ice-3.4.2-demos.tar.gz
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Using the Mac OS X Binary Distribution
This page provides important information for users of the Ice binary distribution for Mac OS X. You can obtain this distribution at the ZeroC

.web site

On this page:

Overview of the Mac OS X binary distribution
Setting up your Mac OS X environment to use Ice

General requirements
C++
Java
Android
Python

Starting the IceGrid Administrative Console on Mac OS X
Using the sample programs on Mac OS X
Third-party packages for Mac OS X

Overview of the Mac OS X binary distribution

The binary distribution of Ice for Mac OS X includes the following components:

The Ice run time, including executables for the Ice services, and Slice files.
Run time libraries for C++, Java, and Python. These libraries enable you to execute Ice applications.
Tools and libraries for developing Ice applications.

The binary distribution was compiled on Mac OS X 10.6 using the default C++ compiler, GCC 4.2.1. The binaries in this distribution are fat
binaries with support for both Intel 32-bit and Intel 64-bit architectures.

The Ice extension for Python included in this distribution requires Python 2.6.1, installed with Mac OS X 10.6.

Setting up your Mac OS X environment to use Ice

After installing Ice, read the relevant language-specific sections below to learn how to configure your environment and start programming
with Ice.

General requirements

In order to use Ice services and tools such as Slice translators, you need to add the location of the Ice binaries to your  as shown in thePATH
bash command below:

$ export PATH=<Ice installation directory>/bin:$PATH

The install name of Ice shared libraries in this distribution contain the  path. In order to run Ice services and tools,/opt/Ice-3.4/lib
you can do one of the following:

Create a symbolic link  that points to your Ice installation:/opt/Ice-3.4

# ln -s <Ice installation directory> /opt/Ice-@mmver@

Add the Ice  directory to your  environment variable:lib DYLD_LIBRARY_PATH

$ export DYLD_LIBRARY_PATH=<Ice installation directory>/lib:$DYLD_LIBRARY_PATH

If you run applications that load the IceSSL plug-in (such as the Ice demos) or the IceStorm service, you need to set the 
 environment variable as shown above.DYLD_LIBRARY_PATH

http://www.zeroc.com/download.html
http://www.zeroc.com/download.html
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C++

When compiling Ice for C++ programs, you must pass the Ice include directory to the compiler with the  option, and the Ice library-I
directory with the  option. Furthermore, a C++ program needs to link with at least  and , so a typical link command-L libIce libIceUtil
would look like this:

$ c++ -I <Ice installation directory>/include -o myprogram myprogram.o \
  -L<Ice installation directory>/lib -lIce -lIceUtil

Additional libraries are necessary if you are using an Ice service such as IceGrid or Glacier2.

To build fat binaries or binaries using an architecture that differs from the default architecture, you can specify the GCC  compiler flag.-arch
For example, use  to build Intel 32-bit and 64-bit fat binaries.-arch i386 -arch x86_64

Java

To use Ice for Java, you must add  to your , as shown below:Ice.jar CLASSPATH

$ export CLASSPATH=<Ice installation directory>/lib/Ice.jar:$CLASSPATH

If you intend to use Freeze for Java, you must include  in your  along with :Freeze.jar CLASSPATH Ice.jar

$ export CLASSPATH=<Ice installation directory>/lib/Freeze.jar:$CLASSPATH

Note that Freeze requires Berkeley DB. Freeze.jar contains a manifest that automatically loads the Berkeley DB classes ( ), whichdb.jar
means you do not need to include this file in your  when executing a Freeze application. However the JVM does require that theCLASSPATH
directory containing Berkeley DB's native libraries be listed in , therefore you must add this directory to your java.library.path

.DYLD_LIBRARY_PATH

When building a Java application that uses Freeze, you will need to add the Berkeley DB JAR file to your :CLASSPATH

$ export CLASSPATH=<Ice installation directory>/lib/db.jar:$CLASSPATH

Ice includes ant tasks for translating Slice to Java. The ant tasks allow  and  to be invoked from the ant buildslice2java slice2freezej
system. These tasks require one of the following:

Specify the location of the Ice installation containing the translators with the  property:ice.home

ant -Dice.home=/home/bill/Ice-3.4.2

Set the  environment variable to specify the location of the Ice installation containing the translators:ICE_HOME

$ export ICE_HOME=/home/bill/Ice-3.4.2

If neither  nor  is available, the ant tasks will simply invoke the translator without an absolute path, relying onice.home ICE_HOME
the translators being in a directory in your  for successful execution.PATH

Ice for Java supports protocol compression using the bzip2 classes included with ant. Compression is automatically enabled if these classes
are present in your . You can either add  to your , or download only the bzip2 classes from:CLASSPATH ant.jar CLASSPATH

http://www.kohsuke.org/bzip2/

Note that these classes are a pure Java implementation of the bzip2 algorithm and therefore add significant latency to Ice requests.

Eclipse Development

ZeroC has created a  for Eclipse that automates the translation of your Slice files. If you use Eclipse, we stronglySlice2Java plug-in

http://www.kohsuke.org/bzip2/
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recommend using this plug-in for your own development.

The Slice2Java plug-in is required if you intend to build any of the Android projects included in the .sample programs

For installation instructions, please refer to the . The  provides more information about configuring the plug-in andZeroC web site manual
using it in your projects.

Android

Ice requires Android 2.1 or later. Aside from that, there are no other special requirements for using Ice in an Android application. We strongly
recommend installing our  to automate the compilation of your Slice definitions.Slice2Java plug-in for Eclipse

Python

To use Ice for Python, the  environment variable must be updated so that the interpreter can load the Ice extension andPYTHONPATH
supporting Python files:

$ export PYTHONPATH=<Ice installation directory>/python:$PYTHONPATH

Starting the IceGrid Administrative Console on Mac OS X

A Java-based graphical tool for administering IceGrid applications is included in this distribution. The Java archive file is installed as

<Ice installation directory>/lib/IceGridGUI.jar

With a suitable Java environment, you can execute the application using the following command:

$ java -jar IceGridGUI.jar

Using the sample programs on Mac OS X

Sample programs are provided in a separate archive, which can be downloaded from the .ZeroC web site

Please refer to the  file included in that package for more information.README.DEMOS

Third-party packages for Mac OS X

The binary distribution for Mac OS X includes the following third-party packages as separate binary libraries:

Berkeley DB 4.8.30 (C/C++ and Java run time)
Expat 2.0.1 (C run time)

The IceGrid and IceStorm SQL database plug-ins depend on the Qt 4.6.2 framework, which is not included in this distribution. You can
download binaries for the Qt framework at the .Nokia web site

http://www.zeroc.com/eclipse.html
http://www.zeroc.com/download/Ice/3.4/Ice-3.4.2-demos.tar.gz
http://qt.nokia.com/downloads


Ice 3.4.2 Documentation

1764 Copyright © 2011, ZeroC, Inc.

Using the Solaris Binary Distributions
This page provides important information for users of the Ice binary distributions for Solaris. You can obtain these distributions at the ZeroC

.web site

On this page:

Overview of the Solaris binary distributions
Setting up your Solaris environment to use Ice

General requirements
C++
Java

Starting the IceGrid Administrative Console
Using the sample programs on Solaris
Python support on Solaris
Third-party packages for Solaris

Overview of the Solaris binary distributions

The binary distributions of Ice for Solaris 10 on SPARC and x86/x64 include the following components:

The Ice run time, including executables for the Ice services and Slice files.
Run-time libraries for C++ and Java. These libraries enable you to execute Ice applications.
Tools and libraries for developing Ice applications.

The distributions contain executables and libraries in both 32-bit and 64-bit format. The 32-bit executables are in the  directory and thebin
32-bit libraries are in the  directory. The 64-bit executables are located in  on SPARC and  on x64, and thelib bin/sparcv9 bin/amd64
64-bit libraries are in  on SPARC and  on x64.lib/sparcv9 lib/amd64

The C++ binaries were created with the following compilers:

on SPARC, with GCC for Sun Systems 4.3.2
on x86/x64, with GCC 3.4.3, included in the Solaris 10 x86 distribution

The following Solaris 10 binary packages are required to use these distributions:

bzip2 (Solaris package )SUNWbzip
libexpat (Solaris package )SUNWlexpt
openssl (Solaris packages  and )SUNWopenssl-libraries SUNWopenssl-commands

We also recommend that you install the  (Solaris packages  and ).Solaris 10 Encryption Kit SUNWcry SUNWcryr

Ice for Java requires J2SE 1.5.0 or later; Java binary packages can be obtained from .Oracle

Setting up your Solaris environment to use Ice

After installing Ice, read the relevant language-specific sections below to learn how to configure your environment and start programming
with Ice.

General requirements

In order to use Ice services and tools such as Slice translators, you need to add the location of the Ice binaries to your  as shown inPATH
the bash command below:

$ export PATH=<Ice installation directory>/bin:$PATH

To use the 64-bit version of these services and tools, add the appropriate architecture-specific subdirectory to , making sure it appearsPATH
before . For example, on SPARC:bin

http://www.zeroc.com/download.html
http://www.zeroc.com/download.html
http://www.opensparc.net/sunsource/cooltools/www/gcc/4.3.2/install.html
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_SMI-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=Sol10-GA-Encryption-G-F@CDS-CDS_SMI
http://www.oracle.com/technetwork/java/index.html
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$ export PATH=<Ice installation directory>/bin:$PATH
$ export PATH=<Ice installation directory>/bin/sparcv9:$PATH

And on x86:

$ export PATH=<Ice installation directory>/bin:$PATH
$ export PATH=<Ice installation directory>/bin/amd64:$PATH

Ice shared libraries and executables in this distribution contain  as the embedded runpath (the runpath for 64-bit/opt/Ice-3.4/lib
libraries and executables is  or ). In order to run Ice services and tools, you/opt/Ice-3.4/lib/sparcv9 /opt/Ice-3.4/lib/amd64
can do one of the following:

Create a symbolic link  that points to your Ice installation:/opt/Ice-3.4

$ ln -s <Ice installation directory> /opt/Ice-3.4

Add the Ice  directory to your  and  environment variables. For example, onlib LD_LIBRARY_PATH LD_LIBRARY_PATH_64
SPARC:

$ export LD_LIBRARY_PATH=<Ice installation directory>/lib:$LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH_64=<Ice installation directory>/lib/sparcv9:$LD_LIBRARY_PATH_64

And on x86:

$ export LD_LIBRARY_PATH=<Ice installation directory>/lib:$LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH_64=<Ice installation directory>/lib/amd64:$LD_LIBRARY_PATH_64

C++

When compiling Ice for C++ programs, you must pass the Ice include directory to the compiler with the  option, and the Ice library-I
directory with the  option. Furthermore, a C++ program needs to link with at least  and , so a typical link command-L libIce libIceUtil
would look like this:

$ CC -I <Ice installation directory>/include -o myprogram myprogram.o \
  -L<Ice installation directory>/lib -lIce -lIceUtil

Additional libraries are necessary if you are using an Ice service such as IceGrid or Glacier2.

Java

To use Ice for Java, you must add  to your , as shown below:Ice.jar CLASSPATH

$ export CLASSPATH=<Ice installation directory>/lib/Ice.jar:$CLASSPATH

If you intend to use Freeze for Java, you must include  in your  along with :Freeze.jar CLASSPATH Ice.jar

$ export CLASSPATH=<Ice installation directory>/lib/Freeze.jar:$CLASSPATH

Note that Freeze requires Berkeley DB. Freeze.jar contains a manifest that automatically loads the Berkeley DB classes ( ), whichdb.jar
means you do not need to include this file in your  when executing a Freeze application. However the JVM does require that theCLASSPATH
directory containing Berkeley DB's native libraries be listed in . Modifying your  (or java.library.path LD_LIBRARY_PATH

, if you use a 64-bit JVM) as described  satisfies this requirement.LD_LIBRARY_PATH_64 above
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When building a Java application that uses Freeze, you will need to add the Berkeley DB JAR file to your :CLASSPATH

$ export CLASSPATH=<Ice installation directory>/lib/db.jar:$CLASSPATH

Ice includes ant tasks for translating Slice to Java. The ant tasks allow  and  to be invoked from the ant buildslice2java slice2freezej
system. These tasks require one of the following:

Specify the location of the Ice installation containing the translators with the  property:ice.home

ant -Dice.home=/home/bill/Ice-3.4.2

Set the  environment variable to specify the location of the Ice installation containing the translators:ICE_HOME

$ export ICE_HOME=/home/bill/Ice-3.4.2

If neither  nor  is available, the ant tasks will simply invoke the translator without an absolute path, relying onice.home ICE_HOME
the translators being in a directory in your  for successful execution.PATH

Ice for Java supports protocol compression using the bzip2 classes included with ant. Compression is automatically enabled if these classes
are present in your . You can either add  to your , or download only the bzip2 classes from:CLASSPATH ant.jar CLASSPATH

http://www.kohsuke.org/bzip2/

Note that these classes are a pure Java implementation of the bzip2 algorithm and therefore add significant latency to Ice requests.

Starting the IceGrid Administrative Console

A Java-based graphical tool for administering IceGrid applications is included in these distributions. The Java archive file is installed as

<Ice installation directory>/lib/IceGridGUI.jar

With a suitable Java environment, you can execute the application using the following command:

$ java -jar IceGridGUI.jar

Using the sample programs on Solaris

Sample programs are provided in a separate archive, which can be downloaded from the .ZeroC web site

Please refer to the  file included in that archive for more information.README.DEMOS

Python support on Solaris

Ice for Python is fully supported on Solaris. However it is not included in this distribution because there is no suitable binary distribution for
Python itself available from Oracle or .Sunfreeware

If you want to use Ice for Python on Solaris, you can build a source distribution available at the .ZeroC web site

Third-party packages for Solaris

The binary distributions for Solaris include the following third-party packages as separate binary libraries:

Berkeley DB 4.8.30 (C/C++ and Java run time)
QtCore and QtSql 4.5.3 with SQLite and PostreSQL drivers built-in (C++ run time)

http://www.kohsuke.org/bzip2/
http://www.zeroc.com/download/Ice/3.4/Ice-3.4.2-demos.tar.gz
http://www.sunfreeware.com
http://www.zeroc.com/download.html
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The  and  libraries in the Solaris/SPARC distribution are only provided in 32 bits due to issues compiling QtQtCore QtSql
in 64 bits with GCC 4.3.2.
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