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lce Manual

Distributed Programming with Ice

The Internet Communications Engine (Ice) is a modern object-oriented toolkit that enables you to build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented middleware platform suitable for use in heterogeneous environments.

Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.

Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.

Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier.

) The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing commercial support.

Feedback about the Manual

We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at icebook@zeroc.com.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License

This manual is provided under one of two licenses, whichever you prefer:

® Creative Commons Attribution-No Derivative Works 3.0 Unported License.
This license does not permit you to make modifications.

® Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
This license permits you to make modifications. If you distribute this manual under this license, you must prominently include the
following text:

Copyright © 2011, ZeroC, Inc.


http://www.zeroc.com/forums
http://www.zeroc.com/support.html
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Ice Overview

The following topics provide a high-level overview of Ice:

® |ce Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.

® |ce Services briefly presents the object services provided by Ice.

® Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

® |ce Architecture
® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.
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Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology

Slice (Specification Language for Ice)
Language Mappings

Client and Server Structure

Overview of the Ice Protocol

See Also

® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.
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Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice do differ from the corresponding terms used by other middleware.)

On this page:

Clients and Servers

Ice Objects

Proxies

Stringified Proxies

Direct Proxies

Indirect Proxies

Direct Versus Indirect Binding
Fixed Proxies

Routed Proxies

Replication

Replica Groups

Servants

At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations

Batched Datagram Invocations
Run-Time Exceptions

User Exceptions

Properties

Clients and Servers

The terms client and server are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of
an application for the duration of a request:

® Clients are active entities. They issue requests for service to servers.
® Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure" servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a callback object to the server that is used by the server to notify the client when the operation is complete. In that case, the client
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer
systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:

® An Ice object is an entity in the local or a remote address space that can respond to client requests.

® Asingle Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.

® Each Ice object has one or more interfaces. An interface is a collection of named operations that are supported by an object. Clients
issue requests by invoking operations.

® An operation has zero or more parameters as well as a return value. Parameters and return values have a specific type. Parameters
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)

® An Ice object has a distinguished interface, known as its main interface. In addition, an Ice object can provide zero or more alternate
interfaces, known as facets. Clients can select among the facets of an object to choose the interface they want to work with.

® Each Ice object has a unique object identity. An object's identity is an identifying value that distinguishes the object from all other
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objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as UUIDs, only identities that do not clash with any
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of object life cycle.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the Ice object. A proxy is an artifact that is local to the client's
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

. Locates the Ice object

. Activates the Ice object's server if it is not running

. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

. Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

O WNE

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:
® Addressing information that allows the client-side run time to contact the correct server

® An object identity that identifies which particular object in the server is the target of a request
® An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

Si nmpl ePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying

that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely
specified by:

® a protocol identifier (such TCP/IP or UDP)
® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter
identifier. An object that is accessible using only its identity is called a well-known object. For example, the string:

Si npl ePrinter

is a valid proxy for a well-known object with the identity Si npl ePri nter.

An indirect proxy that includes an object adapter identifier has the stringified form

Si npl ePri nter @rint er Adapt er
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Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a location service. In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as ww. zer oc. com to look up a web page, the host name is first resolved to an IP address behind the scenes and,
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as binding. Not surprisingly, direct binding is used for
direct proxies, and indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow bidirectional communication, so a server can make callbacks to a client
without having to open a new connection.

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.
Routed proxies are useful for implementing services such as Glacier2, which enables clients to communicate with servers that are behind a
firewall.

Replication

In Ice, replication involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its initial connection attempt and tries all of them in the case of a failure. For example, consider this proxy:

SinplePrinter:tcp -h serverl -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity Si npl ePr i nt er is available using TCP at two addresses, one on the host ser ver 1 and
another on the host ser ver 2. The burden falls to users or system administrators to ensure that the servers are actually running on these
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as replica groups that
requires the use of a location service.

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as Pr i nt er Adapt er s can be used in a proxy as shown below:
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Si npl ePrinter @rinter Adapters

The replica group is treated by the location service as a "virtual object adapter." The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an Ice Object is a conceptual entity that has a type, identity, and addressing information. However, client requests
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a servant. A servant provides substance for (or
incarnates) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is
registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not idempotent can be used safely. An idempotent
operation is an operation that, if executed twice, has the same effect as if executed once. For example, x = 1; is an idempotent operation:
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand, x++; is not idempotent: if we
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less

robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke operations asynchronously, that is, the client uses a proxy as
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usual to invoke an operation but, in addition to passing the normal parameters, also passes a callback object and the client invocation
returns immediately. Once the operation completes, the client-side run time invokes a method on the callback object passed initially, passing
the results of the operation to the callback object (or, in case of failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
S0, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a get operation that returns data from an external, asynchronous data source and that blocks
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Another way to use asynchronous method dispatch is to complete an operation, so the results of the operation are returned to the client, but
to keep the execution thread of the operation beyond the duration of the operation invocation. This allows you to continue processing after
results have been returned to the client, for example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on operations that do not have a return value, do not have out-parameters, and do not throw user
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are initiated in the order in which the
invocations arrive at the server, this does not mean that they will be processed in that order — the vagaries of thread scheduling can result in
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.
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The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as IceStorm, and for fine-grained interfaces that offer set
operations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

® Individual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

® |ndividual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to accumulate a number of invocations in a buffer and then
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations
are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are pre-defined by the Ice run time and cover common error
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising user exceptions to clients. User exceptions can carry an arbitrary amount of
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name-value pairs, such as | ce. Def aul t . Pr ot ocol =t cp.
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.
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Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define the client-server contract in a way that is independent of a
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

® The Slice Language
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Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as language mappings. For
example, for the C++ mapping, a Slice sequence appears as an STL vector, whereas, for the Java mapping, a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of
the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objective-C, and, for the client side, PHP and Ruby.
See Also

C++ Mapping

Java Mapping

C# Mapping
Objective-C Mapping
Python Mapping
Ruby Mapping

PHP Mapping
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Client and Server Structure

Ice clients and servers have the logical internal structure:

Client Application Server Application
A
Y
Proxy Skeleton Object
Code lce API lce AP Adapter
Client lce Core m Server lce Core
Metwork

|:| lce API

|:| Generated Code

Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

23

® The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with

the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice APl is identical for clients and servers (although servers use a larger part of the API than clients).

The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:
® |t provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.
® |t provides marshaling and unmarshaling code. Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:
® The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.
® The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.
® The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about
the type, identity, and transport details of each of its objects and embeds the correct details when the server-side
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application code requests the creation of a proxy.
Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support

for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a
third process, IceGrid, is required to resolve proxies to transport endpoints.)

See Also

® Hello World Application
® |ceGrid
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Overview of the Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying transport. In addition, Ice also allows you to use SSL as a
transport, so all communication between client and server is encrypted.

The Ice protocol defines:

® anumber of message types, such as request and reply message types,

® a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,

® encoding rules that determine how each type of data is represented on the wire,

® a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to send a message to a callback object provided by the client, the

callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also

® The Ice Protocol
® |ceSSL
® Bidirectional Connections
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Ice Services

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

Freeze and FreezeScript
IceGrid Service

IceBox Server

IceStorm

IcePatch2

Glacier2

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it easy to store object state in a database: you define the state
stored by your objects in Slice, and the Freeze compiler generates code that stores and retrieves object state to and from a database.
Freeze uses Berkeley DB as its database.

Ice also offers a tool set collectively called FreezeScript that makes it easier to maintain databases and to migrate the contents of existing
databases to a new schema if the type definitions of objects change.

IceGrid Service

IceGrid is an implementation of an Ice location service that resolves the symbolic information in an indirect proxy to a protocol-address pair
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

® allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.

provides tools that make it easy to configure complex applications containing several servers.

supports replication and load-balancing.

automates the distribution and patching of server executables and dependent files.

provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IceBox Server

IceBox is a simple application server that can orchestrate the starting and stopping of a number of application components. Application
components can be deployed as a dynamic library instead of as a process. This reduces overall system load, for example, by allowing you to
run several application components in a single Java virtual machine instead of having multiple processes, each with its own virtual machine.

IlceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, lceStorm can be run as a federated service, that is, multiple instances of the
service can be run on different machines to spread the processing load over a number of CPUs.
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IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

lﬂl IcePatch2 supersedes IcePatch, which was a previous version of this service.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising
security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

lﬂ Glacier2 supersedes Glacier, which was a previous version of this service

See Also

IceGrid
Freeze
FreezeScript
Glacier2
IceBox
IceStorm
IcePatch2
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Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice currently offers both TCP/IP and UDP as transport protocols. Neither client nor server code are aware of the underlying
transport. (The desired transport can be chosen by a configuration parameter.)

Location and server transparency

The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via IceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security

Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice comes with built-in support for Berkeley DB, which is a
high-performance database.

Source code availability
The source code for Ice is available. While it is not necessary to have access to the source code to use the platform, it allows you to
see how things are implemented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment for distributed computing that is more complete than any
other platform we are aware of.

See Also

28

Ice Architecture
Ice Services
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Hello World Application

This section presents a very simple (but complete) client and server.
Writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and
give you a feel for what the development environment looks like; we will provide all the detail throughout the remainder of
this manual.

Topics

Writing a Slice Definition

Writing an Ice Application with C++

Writing an Ice Application with Java
Writing an Ice Application with C-Sharp
Writing an Ice Application with Visual Basic
Writing an Ice Application with Objective-C
Writing an Ice Application with Python
Writing an Ice Application with Ruby
Writing an Ice Application with PHP

Copyright © 2011, ZeroC, Inc.



Ice 3.4.2 Documentation

Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing the interfaces that are used by the application. For our
minimal printing application, we write the following Slice definition:

Slice

nmodul e Denp {
interface Printer {
void printString(string s);
b
b

We save this text in a file called Pri nter.ice.
Our Slice definitions consist of the module Deno containing a single interface called Pri nt er . For now, the interface is very simple and

provides only a single operation, called pri nt Stri ng. The pri nt St ri ng operation accepts a string as its sole input parameter; the text of
that string is what appears on the (possibly remote) printer.

See Also

® The Slice Language
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Writing an Ice Application with C++

This page shows how to create an Ice application with C++.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++

L]

°

Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ slice2cpp Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nter. h and Pri nt er. cpp.
® Printer.h
The Pri nt er . h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This
header file must be included in both the client and the server source code.
® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the

print St ring operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:
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C++
#i nclude <lce/lce. h>
#i nclude <Printer.h>
usi ng nanespace std;
usi ng namespace Denv;
class Printerl : public Printer {
public:
virtual void printString(const string& s, const Ice::Current&);
b
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{
cout << s << endl;
}
int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic = lce::initialize(argc, argv);
I ce:: Cbj ect AddapterPtr adapter =
i c->creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter"”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er->activate();
i c->wai t For Shut down() ;
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << msg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const |ce::Exception& e) {
cerr << e << endl;
status = 1,
}
}
return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include

Pri nt er. h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the
contents of the st d and Deno namespaces for brevity in the code that follows:

Copyright © 2011, ZeroC, Inc.



34

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denv;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++
nanespace Denpo {
class Printer : virtual public Ice:: Cbject {
public:
virtual void printString(const std::string& const lce::Current& = Ice::Current()) = O;
H
H

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual
print St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl : public Printer {
public:
virtual void printString(const string& s, const lce::Current&);

}

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

C++
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{

cout << s << endl;

}

Note that pri nt St ri ng has a second parameter of type | ce: : Current . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the | ce: : Curr ent parameter later.)

What follows is the server main program. Note the general structure of the code:
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C++

int
mai n(int argc, char* argv[])
{

int status = 0;

| ce:: Communi catorPtr ic;

try {

/1 Server inplenentation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << meg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
}
}

return status;

The body of mai n contains the declaration of two variables, st at us and i c. The st at us variable contains the exit status of the program
and the i ¢ variable, of type | ce: : Comruni cat or Pt r, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by two cat ch handlers. The first handler catches
all exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception
anywhere, the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The
second handler catches string constants; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply
throw a string literal with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then
returns failure to the operating system.

Following the t r y block, we see a bit of cleanup code that calls the dest r oy method on the communicator (provided that the communicator
was initialized). The cleanup call is outside the first t r y block for a reason: we must ensure that the Ice run time is finalized whether the
code terminates normally or terminates due to an exception.

'@ Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

C++

ic =lce::initialize(argc, argv);
I ce:: Cbject AdapterPtr adapter =
i c- >creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er - >acti vate();
i c->wai t For Shut down() ;

The code goes through the following steps:
1. We initialize the Ice run time by calling | ce: : i ni ti al i ze. (We pass ar gc and ar gv to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a smart pointer to an | ce: : Conmuni cat or object, which is the main object in the Ice
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run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce: : Appl i cat i on.) As far as actual
application code is concerned, the server contains only a few lines: six lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -0 server Printer.o Server.o -L$ICE_ HOVE/ lib -llce -llceltil

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail. The important point to note here is that the Ice run time is shipped in two libraries, | i bl ce and I i bl ceUti | .

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:
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C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denp;

int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic =lce::initialize(argc, argv);
I ce::CbjectPrx base = ic->stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base);
if (!printer)
throw "I nvalid proxy";

printer->printString("Hello World!l");
} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;
} catch (const char* nsg) {
cerr << nmsg << endl;
status = 1;
}
if (ic)
i c->destroy();
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1. As for the server, we initialize the Ice run time by calling I ce: :initiali ze.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Prx: : checkedCast . A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pr i nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp dient.cpp
$ c++ -o client Printer.o Cient.o -L$ICE_ HOW/ lib -llce -Illceltil

Running Client and Server in C++

To run client and server, we first start the server in a separate window:
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$ ./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce: : Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: |ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some platform-dependent environment variables. For example, under
Linux, you need to add the Ice library directory to your LD_LI BRARY_PATH. Please have a look at the demo applications that ship with Ice
for the details for your platform.

See Also

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The l ce: : Appl i cati on Class
The Current Object

IceGrid
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Writing an Ice Application with Java

This page shows how to create an Ice application with Java.
On this page:

Compiling a Slice Definition for Java

Writing and Compiling a Server in Java

°
L]
® Writing and Compiling a Client in Java
® Running Client and Server in Java

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to generate Java proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ nkdir generated
$ slice2java --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2j ava compiler produces a number of Java source files from this definition. The exact
contents of these files do not concern us for now — they contain the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Printerl.java:

Java

public class Printerl extends Deno._PrinterDi sp {
public void
printString(String s, lce.Current current)
{
System out. println(s);

}

The Printerl class inherits from a base class called _Pri nt er Di sp, which is generated by the sl i ce2j ava compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called Ser ver . j ava, shown in full here:
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Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0
I ce. Communi cator ic = null;
try {
ic = lce. Wil.initialize(args)
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

"default -p 10000");

Note the general structure of the code:
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Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {

/1 Server inplenentation here...

} catch (lce.Local Exception e) {
e.printStackTrace();
status = 1;

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

if (ic!=null) {

/1 Cean up

11

try {
ic.destroy();

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

}

System exit(status);

The body of mai n contains a t ry block in which we place all the server code, followed by two cat ch blocks. The first block catches all
exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception anywhere,
the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The second block
catches Except i on exceptions; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply throw an
exception with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then returns

failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Java

ic =lce.Wil.initialize(args);
I ce. Obj ect Adapter adapter =

i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”, "default -p 10000");
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;
The code goes through the following steps:
1. We initialize the Ice run time by calling I ce. Uti |l .initialize.(We pass ar gs to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the

adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
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object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nter" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ nkdir classes
$ javac -d classes -classpath classes: $I CE HOVE/ | i b/lce.jar \
Server.java Printerl.java generated/ Denpo/*.java

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Note that Ice for Java uses the ant build environment to control building of source code. (ant is similar to nake, but more flexible
for Java applications.) You can have a look at the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client in Java

The client code, in d i ent . j ava, looks very similar to the server. Here it is in full:
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public class dient {
public static void
mai n(String[] args)
{

int status = O;
I ce. Cormuni cator ic = null;
try {
ic =lce.Wil.initialize(args);
Ice. CbjectPrx base = ic.stringToProxy("SinplePrinter:default -p 10000");
Deno. PrinterPrx printer = Denp. PrinterPrxHel per.checkedCast ( base);
if (printer == null)
throw new Error("lInvalid proxy");

printer.printString("Hello World!l");
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e. get Message());
status = 1;

}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling I ce. Uti |l .initialize.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes: $ICE HOW/ lib/lce.jar \
Client.java Printerl.java generated/ Deno/*.java

Running Client and Server in Java

To run client and server, we first start the server in a separate window:
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$ java Server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ java Cient
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

| ce. Connect i onRef usedExcepti on
error =0
at |celnternal.Connect Request Handl er. get Connecti on( Connect Request Handl er . j ava: 240)
at |celnternal.Connect Request Handl er. sendRequest ( Connect Request Handl er . j ava: 138)
at Icelnternal.Qutgoing.invoke(Qutgoing.java: 66)
at lce._QObjectDel Mice_i sA(_ObjectDel Mjava: 30)
at |ce. Qbj ect PrxHel perBase. i ce_i sA( bj ect PrxHel per Base. j ava: 111)
at |ce. Obj ect PrxHel perBase. i ce_i SA(Obj ect PrxHel per Base. j ava: 77)
at Denp. Hel | oPr xHel per. checkedCast (Hel | oPr xHel per.j ava: 228)
at Cient.run(Cient.java: 65)
Caused by: java.net.Connect Exception: Connection refused

Note that, to successfully run client and server, your CLASSPATH must include the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH: ./ cl asses: $| CE_HOVE/ | i b/ | ce. j ar

Please have a look at the demo applications that ship with Ice for the details for your platform.

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The | ce. Appl i cati on Class
The Current Object

IceGrid
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Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.
On this page:

Compiling a Slice Definition for C#

Writing and Compiling a Server in C#

°
L]
® Writing and Compiling a Client in C#
® Running Client and Server in C#

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to generate C# proxies and skeletons. You can compile the
definition as follows:

$ nkdir generated
$ slice2cs --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in C#

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Server. cs:

C#

usi ng System

public class Printerl : Deno.PrinterDisp_
{
public override void printString(string s, Ice.Current current)
{
Consol e. WiteLine(s);
}

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver. cs and is shown in full here:
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C#

public class Server

{

public static void Main(string[] args)

{

int status = 0;
I ce. Communi cator ic = null;
try {
ic = lce.UWil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
Ice. Cbject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}

Envi ronnment . Exi t (st atus);

"default -p 10000");

Note the general structure of the code:
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C#
public class Server
{
public static void Main(string[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {
/1 Server inplenentation here...
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

The body of Mai n contains a t ry block in which we place all the server code, followed by a cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

C#

ic = lce. Uil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createObject Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000");
Ice. Object obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinmplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Uti |l .initial i ze. (We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni tial i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si nmpl ePri nt er Adapt er" (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
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instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:lce.dll /lib:% CE_HOVE% bin Server.cs generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set | CE_HOME to that

path.)

Writing and Compiling a Client in C#

The client code, in C i ent . cs, looks very similar to the server.

Here it is in full:

C#
usi ng System
usi ng Denvp;
public class dient
{
public static void Main(string[] args)
{
int status = 0;
| ce. Conmruni cator ic = null;
try {
ic = lce. UWil.initialize(ref args);
lce.ObjectPrx obj = ic.stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrxHel per.checkedCast (obj);
if (printer == null)
t hrow new ApplicationException("Invalid proxy");
printer.printString("Hello World!'");
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:
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. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

ing the client looks much the same as for the server:

$ csc /reference:lce.dll /lib:% CE_HOVE®%bin Cient.cs generated\Printer.cs

Run

To run

ning Client and Server in C#

client and server, we first start the server in a separate window:

$ server. exe

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Worl d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connect i onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory.checkRetryAfterException(Local Exception ex, Reference ref, Int32 cnt)

Note that, to successfully run client and server, the C# run time must be able to locate the | ce. dl | library. (Under Windows, one way to

ensure this is to copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates
libraries.)
See Also

® Client-Side Slice-to-C-Sharp Mapping

® Server-Side Slice-to-C-Sharp Mapping

® Thelce. Application Class

® The Current Object

® |ceGrid
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Writing an Ice Application with Visual Basic

This page shows how to create an Ice application with Visual Basic.
On this page:

Visual Basic Development Process

Compiling a Slice Definition for Visual Basic
Writing and Compiling a Server in Visual Basic
Writing and Compiling a Client in Visual Basic
Running Client and Server in Visual Basic

Visual Basic Development Process

As of version 3.3, Ice no longer includes a separate compiler to create Visual Basic source code from Slice definitions. Instead, you need to
use the Slice-to-C# compiler sl i ce2cs to create C# source code and compile the generated C# source code with a C# compiler into a DLL
that contains the compiled generated code for your Slice definitions. Your Visual Basic application then links with this DLL and the Ice for
.NETDLL (I ce. dl |).

This approach works not only with Visual Basic, but with any language that targets the .NET run time. However, ZeroC
does not provide support for languages other than C# and Visual Basic.

The following illustration demonstrates this development process:

i - ic Slice-to-C# rinter.cs ;
Printer.ice| | b » Frinter.c »|  C# Compiler
Compiler

e —

Slice Developer

Y

Client.vb .| Visual Basic N Client n Stub & Skeleton

] Compiler | Executabls | DLL

Client Developer

RPC

Server.vb C++ [ce Run-time Server Stub & Skeleton

Library | Executabls [ DLL
\_-_._r//-_'_‘-““

Developing a Visual Basic application with Ice.

Server Developer

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to generate proxies and skeletons. You can compile the
definition as follows:

> nkdi r generated
> slice2cs --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids