Network Working Group J. Vollbrecht
Request for Comments: 4137 Meetinghouse Data Communications

Category: Informational P. Bonen

Nokia

N. Petroni

University of Maryland

Y. Ohba

TARI

August 2005

State Machines for Extensible Authentication Protocol (EAP)
Peer and Authenticator

Status of This Memo

This memo provides information for the Internet communitygloes not specify an Internet standard of any
kind. Distritution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract

This document describes a set of state machines for Extensible Authentication Protocol (EAZAReer
stand-alone authenticator (non-pass-through), EAP backend authenticator (for use on Authentication,
Authorization, and Accounting (AAA) servers), and EAP full authenticator (for both local and pass-through).
This set of state machines showsvHeAP can be implemented to support deployment in either a
peer/authenticator or peer/authenticator/AAA Serveirenment. Thepeer and stand-alone authenticator
machines are illustrag d how the EAP protocol defined in RFC 3748 may be implemented. The backend
and full/pass-through authenticators illustrates EEAP/AAA protocol support defined in RFC 3579 may be
implemented. Wherthere are differences, RFC 3748 and RFC 3579 are authaxitati

The state machines are based on the EAP "Switch" model. This model incladissaed actions for the
interaction between the EAP Switch and EAP methadbrief description of the EAP "Switch" model is
given in the Introduction section.

The state machine and associated model are infmenaiy. Implementations may achie the same results
using different methods.

Vollbrecht, et al. Informational [Rge 1]

RFC 4137 EAP State Machines August 2005

Table of Contents

1. IntroductioniThe EAP SWItCh MOGEL.........co it e e e e e e e raa e 3
2. SpeCificationf REQUITEIMENTS.o ittt et e e et e e e e e b b e e e e e aab e e e e e anbre e e e annneas 4
3. NotationalConventions Used iN State DIAgIaIMSccoiuuiiiiiiiiiieee it e et e et e e et e e e s eessnreeeeeaaas 4

3.1, NOtAtIONABPECITICS ...eeiiiiiiiiiiei it e e e e s e 4.

3.2, StatVIaChing SYMDOISooiiiiiiiieii et e e e e e e b e e e e b e e e nees 6

3.3. DOCUMENAULNOIILYeeiiiiiitiiie ettt e e ettt e e e et e e e e bt e e e e e e nanneas A
4, PEEISIAIE MACKINEG .. .ooeiiiiii ettt e e e et e e e e e s ettt e e e e e e aabn s e e e e ee b e eeeeerabnaeeaenes 8

4.1. Interhice between Peer State Machine and LOWEr LAYlc..ooooiiiiiiiiiiiiiiiee e 9

4.2. Interfice between Peer State Machine and Methodsoouvviiiiiiiiiiiiiin e, 11

4.3. PeefState Maching LOCAIAFIADIESoiiiiiiiiiii e 12......

4.4, PeeState MaAChINg PrOCEAUIESouvuiiieiiieite ettt e e e e et s e e e e e et e e e e e s eaba e e e e e eesabaneeeseessans 13

4.5, PeeState MAChING STALEScouiiiiiiiiiiie ettt ettt e e e et e e e e e et e e e e e s ee b e eeeeessbaseeeeesraes 14
5. Stand-AloneAuthenticator State€ MaACKNINEccoiiiiiiiii i e e e e e e e e e e e e e e eeeeaaanes 16

5.1. Interhce between Stand-Alone Authenticator State Machine and Lower Layerccccceevviveeeennnns 17

5.2. Interhice between Stand-Alone Authenticator State Machine and Methodsccccceeeeeiiiiinnl. 19

5.3. Stand-Alonéuthenticator State Machine LOCallNabIEScccccccviiiiiiiiiiiiiieeeeeeeeieeeeeeeeee, 20...

5.4. EAPStand-Alone Authenticator ProCEAUIEScooiiiiiiiiiiiiieercrrs s e e e e e e e e e e e e e e e e e e eeaaeraens 21

5.5. EAPStand-Alone AUthentiCator STAEScuuuiiiiiiiiiiiie et e e e e e e e e e e e s eeranns 23
ST Y AN o S F= Tt =T o [0 I AN U [{ = o] £ [oF= L] TS PRTRRN 25

6.1. Interbice between Backend Authenticator State Machine and Lower Layerccccccovvveeeeiniineeeenns 27

6.2. Interhice between Backend Authenticator State Machingcccciiiiiiiiii, 28

6.3. Baclend Authenticator State Machine LOC&INMDIESooovvmmiiiiiiiiciiciiie e, 28...

6.4. EAPBackend AuthentiCator PrOCEAUIEScooiiiiiiiii ettt e e e e e e e e s 29

6.5. EAPBAackend AUThENtiCAtOr STAIESciiiiiiiiiiiiiiieeiie e e e e e e e e e e aab e e e e e eraaaans 29
A =7 N o w1 N T 1 g 1= g1 [oF= (o] TR 30

7.1. Interbce between Full Authenticator State Machine and Lower Layerscccccceevvieeeeenniieeeeeene 31

7.2. Interhice between Full Authenticator State Machine and Methodsccccce, 33

7.3. FullAuthenticator State Machine LoCahNabIeseuviiiiiiiiiiiiieeee 33....

7.4. EAPFUIl AUtheNtiCAtor PrOCEAUIESiiiiiiiiiiiieee ettt ettt e e et e e e e e et e e e e e e e esb e e eeseenees 34

7.5. EAPFUIl AUTNENTICAION STAESiiiiiiiiiieieeeeeee ettt e e ettt e e e e e et e s e e e e es b e e e e e e ssba e eeseennes 34
8. IMplementatioCONSIAEIALIONSuuiiiiiiiiii et e e e e s e b e e s nnees 36.........

L IR = Lo 1S 1 [T PRPRRPRY 36...........

8.2 Method/Method and Method/Lower-Layer INBEIEScoooiiiiiiieiiiiiieee e 36....

8.3 Peer State Machine Interoperability with Deployed Implementatios.............cccvveeiiiiiieeiiiiiiee e 36
9. SECUNEYCONSIAEIALIONSvveeieeiiiieee ettt ettt ettt e e e sttt e e e s st et e e e s bb e e e e e s aabe e e e e e sbbeeeeeaanrneeeeeans 3l
10. ACKNVIEAGEIMENTS ...tttk e e e et e e e ek b et e e s e st b e e e e e ann b et e e e e nbreeeeeannnes 38..........
O == (=Y =1 o o7 =T S POSRRPPN 38

11.2. NOIMANE REFEIENCES ..ovvviiei ettt ettt ettt e e e e et r e e e e e et e e e e e e esb e e e e e raabanaeess 38.........

11.2. INfOrmMatie REFEIENCEScvvviii ettt e e e e et e e e e e e et e e e e eeenbanns 38.........
Appendix. ASCIl Versions of State DIAGIamMSoiiuueiiieiiiiiieee ittt e e e s anneeees 39

A.1l. EAPPeer State Machine (FIQUIE 3) ..ottt 39

A.2. EAPStand-Alone Authenticator State Machine (FIQUIe 4)ooccvevieiiiiieeiiiee e 42

A.3. EAPBackend Authenticator State Machinge (Figure 5).........cooiiiiiiiiiiiiiie e 45

A.4. EAPFull Authenticator State Machine (FIgures 6 and 7)..........coooviieiiiiiiie e 48

Vollbrecht, et al. Informational [Rge 2]

RFC 4137 EAP State Machines August 2005

1. Introduction: The EAP Switch Model

This document offers a proposed state machine for RFCs [RFC3748] and [RFC3579]. There are state
machines for the pedghe stand-alone authenticatartackend authenticatoand a full/pass-through

authenticatar Accompanying each state machine diagram is a description of the variables, the functions, and
the states in the diagram. Wheaepossible, the same notation has been used in each of the state machines.

An EAP authentication consists of one or more EAP methods in sequence followed by an EAP Success or
EAP Failure sent from the authenticator to the p&ae EAP switches control negotiation of EAP methods
and sequences of methods.

Peer Peer | Authenticator Aut h
Met hod | Met hod
\ | /

\ | /
Peer | Aut h
EAP <Cmmmmm [---------- > EAP
Swi tch | Swi tch

Figure 1. EAP Switch Model

At both the peer and authenticatame or more EAP methodsgist. TheEAP switches select which
methods each is willing to use, and negotiate between themselves to pick a method or sequence of methods.

Note that the methods may alswéaate machines. The details of these are outside the scope of this paper.

/
| \ pass-through

Peer | Authenticator | Backend
| / Local |
| / Met hod |
Peer | Aut h | Backend
EAP -]|----- > EAP | --> EAP
Switch | Swi tch | / Server
|
|

Figure 2: EAP Pass-Through Model

The Full/Pass-Through state machine allows an NAS or edge device to pass EAP Response messages to a
backend server where the authentication method resides. This paper includes a state machine for the EAP

authenticator that supports both local and pass-through methods as well as a state machine for the backend
authenticator existing at the AAA servek simple stand-alone authenticator is also provided tes sho

basic, non-pass-through authenticatdehavior.

Vollbrecht, et al. Informational [Rge 3]

RFC 4137 EAP State Machines August 2005

This document describes a set of state machines that can manage EAP authentication from the peer to an
EAP method on the authenticator or from the peer through the authenticator pass-through method to the EAP
method on the backend EAP server.

Some environments where EAP is used, such asm3Fsupport peer-to-peer operation. That is, both
parties act as peers and authenticators at the same time,dmuvitaneous and independent EAP
corversations. lIrthis case, the implementation at each node has to perform demultiplexing of incoming
EAP paclets. EAPpackets with code set to Response areveteldl to the authenticator state machine, and
EAP packets with code set to Request, Success, or Failure aseatkld the peer state machine.

The state diagrams presented in this documer been coordinated with the diagrams in [1X-2004]. The
format of the diagrams is adapted from the format therein. The interface between the state machines defined
here and the IEEE 802.1X-2004 state machines is also explained in Appendix F of [1X-2004].

2. Specificationof Requirements

In this document, seral words are used to signify the requirements of the specification. These words are
often capitalized. Thedy words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in [RFC2119].

3. Notational Conventions Used in State Diagrams
3.1. Notational Specifics

The following state diagrams Vebeen completed based on thewsntions specified in [1X-2004], section
8.2.1. Thecomplete text is reproduced here:

State diagrams are used to represent the operation of the protocol by a number of cooperating state
machines, each comprising a group of connected, mutually escheties. Onlyone state of each
machine can be avé & any gven time.

Each state is represented in the state diagram as a rectangular box, divided jartstiyy a
horizontal line. The upper part contains the state identifigiten in uppercase letters. The lower
part contains gnprocedures that arexecuted upon entry to the state.

All permissible transitions between states are represented by arrows, the arrowhead denoting the
direction of the possible transition. Labels attached to arrows denote the condition(s) that must be
met in order for the transition to taklace. Allconditions are expressions thasleate to TRUE or
FALSE; if a condition eauates to TRUE, then the condition is met. The label UCT denotes an
unconditional transition (i.e., UCTwa#lys evaluates to TRIE). A transition that is global in nature

(i.e., a transition that occurs fromyaof the possible states if the condition attached to thevaso

met) is denoted by an open arrow; i.e., no specific state is identified as the origin of the transition.
When the condition associated with a global transition is met, it supersedes all other exit conditions
including UCT The special global condition BEGIN supersedes all other global conditions, and once
asserted it remains asserted until all state blocks &eeuted to the point that variable assignments
and other consequences of theieaition remain unchanged.

Vollbrecht, et al. Informational [Rge 4]

RFC 4137 EAP State Machines August 2005

On entry to a state, the procedures defined for the state (if anyeanteel exactly once, in the order
that the appear on the page. Each action is deemed to be atomicxéeutien of a procedure
completes before the next sequential procedure startedote. Noproceduresacute outside a
state block. The procedures in only one state blgegute at a time,\@n if the conditions for
execution of state blocks in different state machines are satisfied, and all procedureseguinge
state block completexecution before the transition to ankeeution of ary other state block occurs.
That is, the gecution of aly state block appears to be atomic with respect tosxtbeution of any

other state block, and the transition condition to that state from the previous state is TRUE when
execution commences. The order odeeution of state blocks in different state machines is undefined
except as constrained by their transition conditiohsariable that is set to a particular value in a
state block retains this value until a subsequent state blecltes a procedure that modifies the
value.

On completion of all the procedures within a state, all exit conditions for the state (including all
conditions associated with global transitions) aauated continuously until one of the conditions is
met. Thelabel ELSE denotes a transition that occurs if none of the other conditions for transitions
from the state are met (i.e., ELSE@ates to TRUE if all other possible exit conditions from the

state galuate to ALSE). Wheretwo or nore exit conditions with the samevékof precedence

become TRUE simultaneousthe choice as to which exit condition causes the state transition to take
place is arbitrary.

Where it is necessary to split a state machine description across more than one diagram, a transition
between tw dates that appear on different diagrams is represented by an exiteaven with

dashed lines, plus a reference to the diagram that contains the destination state. ,Sknsitesdly

arrows and a dashed state box are used on the destination diagram tleestnansition to the

destination state. In a state machine that has been split in thisnyajobal transitions that can

cause entry to states defined in one of the diagrams are deemed potential exit conditions for all the
states of the state machinegaelless of which diagram the state boxes appear in.

Should a conflict exist between the interpretation of a state diagram and either the corresponding
global transition tables or the textual description associated with the state machine, the state diagram
takes precedence. The interpretation of the special symbols and operators used in the state diagrams
is as defined in Section 3.2; these symbols and operators aslderin the notation of the C++
programming language, ISO/IEC 14882. If a boolean variable is described in this clause as being set,
it has or is assigned the value TRUE; if it is described as being reset pit tlaathe value FALSE.

In addition to the abe rotation, there are a couple of clarifications specific to this document. First, all
boolean variables are initialized to FALSE before the state mackenetion bgins. Secondhe following
notational shorthand is specific to this document:

<variable> = <expressionl> | <expression2> | ...
Execution of a statement of this form will result in <variable> having a value of exactly one of the
expressions. Thégic for which of those expressions geteaited is outside of the state machine

and could be environmental, configurable, or based on another state machine, such as that of the
method.

Vollbrecht, et al. Informational [Rge 5]

RFC 4137 EAP State Machines August 2005

3.2. StateMachine Symbols

0

Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of
actions within state boxes.

Used as a terminating delimiter for actions within stateebodfa date box contains multiple
actions, the order ofkecution follows the normal English language wentions for reading text.

Assignment action. The value of the expression to the right of the operator is assigned to the variable
to the left of the operatoif this operator is used to define multiple assignments (e.g., a = b = X), the
action causes the value of the expression following the right-most assignment operator to be assigned
to all the variables that appear to the left of the right-most assignment operator.

Logical NOT operator.
&&

Logical AND operator.

Logical OR operator.
if...then...

Conditional action. If the Boolean expression following the "Vidleates to TRUE, then the action
following the "then" is recuted.

{ statement 1, ... statement N }

Compound statement. Braces are used to group statements tha&catedetogether as if thavere
a dngle statement.

Inequality Evaluates to TRUE if the expression to the left of the operator is not equal in value to the
expression to the right.

Vollbrecht, et al. Informational [Rge 6]

RFC 4137 EAP State Machines August 2005

Equality Evaluates to TRUE if the expression to the left of the operator is equal in value to the
expression to the right.

>
Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater
than the value of the expression to the right.

<=
Less than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator is
either less than or equal to the value of the expression to the right.

++
Increment the preceding integer operator by 1.

+
Arithmetic addition operator.

&

Bitwise AND operator.
3.3. DocumentAuthority

Should a conflict exist between the interpretation of a state diagram and either the corresponding global
transition tables or the textual description associated with the state machine, the state diagram takes
precedence. Whemdscrepang occurs between grpart of this document (text or diagram) ang ahthe
related documents ([RFC3748], [RFC3579], etc.), the latter (the other document) is considered atgthoritati
and takes precedence.

Vollbrecht, et al. Informational [Rge 7]

RFC 4137 EAP State Machines August 2005

4. Peer State Machine

The following is a diagram of the EAP peer state machine. Also included is an explanation of theeprimiti
and procedures referenced in the diagram, as well as a clarification of notation.

eapRestart && portEnabled
INITIALIZE
selectedMethod = NONE
methodState = NONE
allowNotifications = TRUE
decision = FAIL
IportEnabled — DISABLED portEnabled —m| idlewhile = ClientTimeout
lastld = NONE
eapSuccess = FALSE
eapFail = FALSE
eapKeyData = NONE
eapKeyAvailable = FALSE
eapRestart = FALSE
I
UCT
hJ
- IDLE
I
eapReq ucT ucT
\ \
RECEIVED DISCARD SEND_RESPONSE
(rxReq, rxSuccess, rxFailure, reqld, reqMethod) = eapReq = FALSE lastld = reqld
parseEapReq(eapReqData) eapNoResp = TRUE lastRespData = eapRespData
eapReq = FALSE
f ? eapResp = TRUE
else) idlewhile = ClientTimeout
ignore
| A
rxReq && METHOD
(reqld != lastld) && ignore = m.check(eapRegData)
(reqMethod == if (lignore) {
selectedMethod) && (methodState, decision, allowNotifications) =
(methodState != DONE) m.process(eapRegData)
/* methodState is CONT, MAY_CONT, or DONE */ —else —
[* decisionis FAIL, COND_SUCC, or UNCOND_SUCC */
rxReq && eapRespData = m.buildResp(reqld)
(reqld != lastld) && if (m.isKeyAvailable()) L
(selectedMethod == NONE) && eapKeyData = m.getKey()
(reqMethod != IDENTITY) && }
(reqMethod != NOTIFICATION)
L
selectedMethod == reqMethod
rxReq && |
(reqld = lastld) && — GET_METHOD
(Se('ree%‘;de“t"he;h":d: IDQ\?T’\I'E\)()&& if (allowMethod(reqMethod)) {
selectedMethod = reqMethod
rxReq && methodState = INIT —else —]
(reqld = lastld) && — }else {
(reqMethod == NOTIFICATION) && eapRespData = buildNak(reqld)
allowNotifications }
rxReq &&
(reqld == lastld) IDENTITY
] » processldentity(eapReqData) —UCT—]
— (methodState !'= CONT) && eapRespData = buildldentity(reqld)
rxSuccess && ((rxFailure && decision = UNCOND_SUCC) ||
(reqld == lastld) && (rxSuccess && decision == FAIL)) &&
(decision 1= FAIL) (reqld == lastld) NOTIFICATION
| processNotify(eapRegData) ~UCT—
SUCCESS FAILURE eapRespData = buildNotify(reqld)
if (eapKeyData != NONE) eapFail = TRUE
eapKeyAvailable = TRUE A RETRANSMIT ucT
eapSuccess = TRUE altReject | eapRespData = lastRespData
(idleWhile == 0 &&
(altAccept && Qecision 1= FAIL) || decision = UNCOND_SUCC) ||
~ (idlewhile == 0 && (altAccept && (methodState == DONE) &&
decision == UNCOND_SUCC) methodState = CONT && (decision == FAIL)
decision == FAIL)
|

Figure 3: EAP Peer State Machine

Vollbrecht, et al. Informational [Rge 8]

RFC 4137 EAP State Machines August 2005

4.1. Interfacebetween Peer State Machine and Lower Layer
The lower layer presents messages to the EAP peer state machine by storing the packet in eapReqData and
setting the eapReq signal to UR. Notethat despite the name of the signal, the lower layer does not
actually inspect the contents of the EAP packet (it could be a Success or Failure message instead of a
Request).
When the EAP peer state machine has finished processing the message, it sets either eapResp or eapNoResp.
If it sets eapResp, the corresponding response packet is stored in eapRespData. The lower layer is
responsible for actually transmitting this message. When the EAP peer state machine authentication is
complete, it will set eapSuccess or eapFailure to indicate to the lower layer that the authentication has
succeeded or failed.

4.1.1. \ariables (Lower Layer to Peer)
eapReq (boolean)

Set to TRUE in lower layeFALSE in peer state machine. Indicates that a requessilalale in the
lower layer.

eapRegData (EAP packet)
Set in lower layer when eapReq is set tdJER Thecontents of theailable request.

portEnabled (boolean)
Indicates that the EAP peer state machine should be ready for communication. This is set to TRUE
when the EAP corersation is started by the lower layéf at any point the communication port or
session is notvailable, portEnabled is set to FALSE, and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may ne&gd be equal to the "link up” flag of the lower
layer.

idleWhile (integer)

Outside timer used to indicatevinonuch time remains before the peer will time out while waiting for
a valid request.

eapRestart (boolean)
Indicates that the lower layer woulddiko restart authentication.
altAccept (boolean)

Alternate indication of success, as described in [RFC3748].

Vollbrecht, et al. Informational [Rge 9]

RFC 4137 EAP State Machines August 2005

altReject (boolean)
Alternate indication of failure, as described in [RFC3748].
4.1.2. \ariables (peer to lower layer)
eapResp (boolean)
Set to TRUE in peer state machine, FALSE in lower laymdicates that a response is to be sent.
eapNoResp (boolean)

Set to TRUE in peer state machine, FALSE in lower lajdicates that the request has been
processed, but that there is no response to send.

eapSuccess (boolean)

Set to TRUE in peer state machine, FALSE in lower lajdicates that the peer has reached the
SUCCESS state.

eapFail (boolean)

Set to TRUE in peer state machine, FALSE in lower lajdicates that the peer has reached the
FAILURE state.

eapRespData (EAP packet)
Set in peer state machine when eapResp is setl& TRheEAP packet that is the response to send.
eapkeyData (EAP ley)
Set in peer state machine whaayikg material becomewailable. Setduring the METHOD state.
Note that this document does not define the structure of the type "&APWe expect that it will be
defined in [Keying].
eapkeyAvailable (boolean)

Set to TRUE in the SUCCESS stateéfjing material is @ailable. Theactual ley is gored in
eapkeyData.

4.1.3. Constants
ClientTimeout (integer)

Configurable amount of time to wait for a valid request before aborting, initialized by
implementation-specific means (e.g., a configuration setting).

Vollbrecht, et al. Informational [Rge 10]

RFC 4137 EAP State Machines August 2005

4.2. Interfacebetween Peer State Machine and Methods
IN: eapReqData (includes reqld)
OUT: ignore, eapRespData, allowNotifications, decision
IN/OUT: methodState, (method-specific state)
The following describes the interaction between the state machine and EAP methods.
If methodState==INITthe method starts by initializing its own method-specific state.
Next, the method must decide whether to process the packet or to discard it diléhdypacket appears to
have teen sent by someone other than the legitimate authenticator (for instance, if message integrity check
fails) and the method is capable of treating such situations as non-fatal, the method can set igltrésTR
this case, the method should not modify ather variables.
If the method decides to process the packet, itusstes dllows.
o It updates its own method-specific state.
o If the method has desd keying material it wants to export, it stores thegikg material to eap&yData.
o It creates a response packet (with the same identifier as the request) and stores it to eapRespData.
o It sets ignore=FALSE.

Next, the method must update methodState and decision according to the following rules.

methodState=CONTThe method alays continues at this point (and the
peer wants to continue it). The decision variablevwsyd set to FAIL.

methodState=MAY_CONTAt this point, the authenticator can decide
either to continue the method or to end theversation. Thelecision variable tells us what to do if
the cowersation ends. If the current situation does not satisfy thespeetrity polig (that is, if the
authenticator nw decides to allev access, the peer will not use it), set decisighiEF Otherwise,
set decision=COND_SUCC.

methodState=DONE: The methodvaecontinues at this point (or the
peer sees no point in continuing it).

If either (a) the authenticator has informed us that it will notediccess, or (b) we're not willing to

talk to this authenticator (e.g., our security pplgnot satisfied), set decisionAR.. (Note that this

state can occuwen if the method still has additional messages left, if continuing it cannot change the
peers decision to success).

If both (a) the server has informed us that it willallaccess, and the next packet will be EAP
Success, and (b) we're willing to use this access, set decision=UNCOND_SUCC.

Vollbrecht, et al. Informational [Rge 11]

RFC 4137 EAP State Machines August 2005
Otherwise, we do not kmowhat the serves' decision is, but are willing to use the access if the server
allows. Inthis case, set decision=COND_SUCC.

Finally, the method must set the allowNotificatiossiable. Ifthe nev methodState is either CONT or
MAY_CONT, and if the method specification does not forbid the use of Notification messages, set
allowNotifications=TRJE. Otherwiseset allowNotifications=FALSE.

4.3. Reer State Machine Local Variables

4.3.1. Long-erm (Maintained between Packets)

selectMethod (EAP type)

Set in GET_METHOD state. The method that the peerveslis airrently “in progress"
methodState (enumeration)

As described ahe.
lastld (integer)

0-255 or NONE. Setin SEND_RESPONSE state. The EAP identifier value of the last request.
lastRespData (EAP packet)

Set in SEND_RESPONSE state. The EAP packet last sent from the peer.
decision (enumeration)

As described ahe.

NOTE: EAP type can be normal type (0..253,255), or an extended type consisting of type 254, Vendor-Id,
and Vendor-Type.

4.3.2. Short-Term (Not Maintained between Packets)
rxReq (boolean)
Set in RECEIVED state. Indicates that the current vedgiacket is an EAP request.
rxSuccess (boolean)
Set in RECEIVED state. Indicates that the current vedgiacket is an EAP Success.
rxFailure (boolean)

Set in RECEIVED state. Indicates that the current vedgiacket is an EAP Failure.

Vollbrecht, et al. Informational [Rge 12]

RFC 4137 EAP State Machines August 2005

regld (integer)
Set in RECEIVED state. The identifier value associated with the current EAP request.
reqMethod (EAP type)
Set in RECEIVED state. The method type of the current EAP request.
ignore (boolean)
Set in METHOD state. Indicates whether the method has decided to drop the current packet.
4.4. Reer State Machine Procedures
NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAPThose inputs provided by the meth®diternal state remain implicit.
parseEapReq()
Determine the code, identifier value, and type of the current request. In the case of a parsing error
(e.g., the length field is longer than the reegipacket), rxReq, rxSuccess, and rxFailure will all be
set to ALSE. Thevaues of regld and regMethod may be undefined as a result. Returns three
booleans, one integaand one EAP type.

processNotify()

Process the contents of Notification Request (for instance, display it to the user or log it). The return
value is undefined.

buildNotify()

Create the appropriate notification response. Returns an EAP packet.
processldentity()

Process the contents of Identity Request. Return value is undefined.
buildldentity()

Create the appropriate identity response. Returns an EAP packet.
m.check()

Method-specific procedure to test for the validity of a message. Returns a boolean.

Vollbrecht, et al. Informational [Rge 13]

RFC 4137 EAP State Machines August 2005

m.process()

Method procedure to parse and process a request for that method. Returns a methodState
enumeration, a decision enumeration, and a boolean.

m.buildResp()
Method procedure to create a response message. Returns an EAP packet.
m.getkey()
Method procedure to obtairek material for use by EAP or lower layers. Returns an E&pP k
4.5. Reer State Machine States
DISABLED

This state is reached whesxeeservice from the lower layer is interrupted or ugilble. Immediate
transition to INITIALIZE occurs when the port becomes enabled.

INITIALIZE

Initializes variables when the state machine isvatetil.
IDLE

The state machine spends most of its time here, waiting for something to happen.
RECEIVED

This state is entered when an EAP packet isvegeiThepacket header is parsed here.
GET_METHOD

This state is entered when a request fovatygpe comes in. Either the correct method is started, or
a Nak response is built.

METHOD

The method processing happens here. The request from the authenticator is processed, and an
appropriate response packet is built.

SEND_RESPONSE

This state signals the lower layer that a response packet is ready to be sent.

Vollbrecht, et al. Informational [Rge 14]

RFC 4137 EAP State Machines August 2005

DISCARD

This state signals the lower layer that the request was discarded, and no response packet will be sent
at this time.

IDENTITY

Handles requests for Identity method and builds a response.
NOTIFICATION

Handles requests for Notification method and builds a response.
RETRANSMIT

Retransmits the previous response packet.
SUCCESS

A final state indicating success.
FAILURE

A final state indicating failure.

Vollbrecht, et al. Informational [Rge 15]

RFC 4137 EAP State Machines August 2005

5. Stand-AloneAuthenticator State Machine

The following is a diagram of the stand-alone EAP authenticator state machine. This diagram should be
used for those interested in a self-contained, or non-pass-through, autheniticdiioied is an explanation
of the primitives and procedures referenced in the diagram, as well as a clarification of notation.

eapRestart && portEnabled
INITIALIZE

currentld = NONE
eapSuccess = FALSE

DISABLED eapFail = FALSE [-
IportEnabled = portEnabled eapTimeout = FALSE ver
eapKeyData = NONE
eapKeyAvailable = FALSE
eapRestart = FALSE
o IDLE
retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)
retransWhile==0 eapResp UCT UCT
else A \i | ‘
RETRANSMIT RECEIVED DISCARD SEND_REQUEST
retransCount++ (rxResp,respld,respMethod)= eapResp = FALSE retransCount = 0
if (retransCount <= MaxRetrans) { parseEapResp(eapRespData) eapNoReq = TRUE lastReqgData = eapReqgData
eapReqData = lastReqData eapResp = FALSE
eapReq = TRUE eapReq = TRUE
}
——else T

rxResp && ianore
retransCount > MaxRetrans (respld == currentld) && 9 uer
(respMethod == currentMethod) ‘
INTEGRITY_CHECK METHOD_REQUEST
P ignore = currentld = nextld(currentld)
m.check(eapRespData) eapReqgData = m.buildReq(currentld)
‘ methodTimeout = m.getTimeout()
lignore *
+ else ucT
|
METHOD_RESPONSE PROPOSE_METHOD
m.process(eapRespData) currentMethod = Policy.getNextMethod()
if (m.isDone()) { m.init()
Policy.update(<...>) if (currentMethod==IDENTITY ||
eapKeyData = m.getKey() currentMethod==NOTIFICATION)
methodState = END methodState = CONTINUE
}else else
Resp && methodState = CONTINUE methodState = PROPOSED
(respld == currentld) &&
(respMethod==NAK || ‘ f
respMethod==EXPANDED_NAK) &&
(methodState == PROPOSED) methodState == END else
NAK SELECT_ACTION
m.reset() —UCT®| decision = Policy.getDecision() -
Policy.update(<...>) /* SUCCESS, FAILURE, or CONTINUE */
decision == FAILURE decision == SUCCESS
FAILURE SUCCESS
\ eapReqData = buildFailure(currentld) eapReqData = buildSuccess(currentld)
eapFail = TRUE if (eapKeyData != NONE)
TIMEOUT_FAILURE eapKeyAvailable = TRUE
eapTimeout = TRUE eapSuccess = TRUE

Figure 4: EAP Stand-Alone Authenticator State Machine

Vollbrecht, et al. Informational [Rge 16]

RFC 4137 EAP State Machines August 2005

5.1. Interfacebetween Stand-Alone Authenticator State Machine and Lower Layer

5.1.1.

The lower layer presents messages to the EAP authenticator state machine by storing the packet in
eapRespData and setting the eapResp signal to TRUE.

When the EAP authenticator state machine has finished processing the message, it sets one of the signals
eapReq, eapNoReq, eapSuccess, andadapfit sets eapReq, eapSuccess, or eapFail, the corresponding
request (or success/failure) packet is stored in eapReqData. The lower layer is responsible for actually
transmitting this message.

\ariables (Lower Layer to Stand-Alone Authenticator)

eapResp (boolean)

Set to TRUE in lower layeFALSE in authenticator state machine. Indicates that an EAP response is
available for processing.

eapRespData (EAP packet)
Set in lower layer when eapResp is set t&JER TheEAP packet to be processed.
portEnabled (boolean)
Indicates that the EAP authenticator state machine should be ready for communication. This is set to
TRUE when the EAP ceersation is started by the lower layéf at any point the communication
port or session is notvalable, portEnabled is set to FALSE, and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may ne&gd be equal to the "link up” flag of the lower
layer.
retransWhile (integer)
Outside timer used to indicateviabong the authenticator has waited for afealid) response.
eapRestart (boolean)
Indicates that the lower layer woulddiko restart authentication.
eapSRTT (integer)
Smoothed round-trip time. (See [RFC3748], Section 4.3.)
eapRTTVAR (integer)

Round-trip time wariation. (Se¢RFC3748], Section 4.3.)

Vollbrecht, et al. Informational [Rge 17]

RFC 4137 EAP State Machines August 2005

5.1.2. \ariables (Stand-Alone Authenticator To Lower Layer)
eapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpeicates that a meEAP request
is ready to be sent.

eapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpedicates the most recent
response has been processed, but there ismoeneest to send.

eapSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpdicates that the state machine
has reached the SUCCESS state.

eapFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower.ldpdicates that the state machine
has reached the FAILURE state.

eapTimeout (boolean)
Set to TRUE in the TIMEOUT _FAILURE state if the authenticator has reached its maximum number
of retransmissions without receiving a response.

eapRegData (EAP packet)

Set in authenticator state machine when eapReq, eapSuccess, or eapFail isl4Et tdHeRctual
EAP request to be sent (or success/failure).

eapkeyData (EAP ley)
Set in authenticator state machine wheyirig material becomewailable. Setduring the
METHOD state. Note that this document does not define the structure of the typeé¥F ARk
expect that it will be defined in [&/ing].

eapkeyAvailable (boolean)

Set to TRUE in the SUCCESS stateéfjing material is @ailable. Theactual ley is gored in
eapkeyData.

Vollbrecht, et al. Informational [Rge 18]

RFC 4137 EAP State Machines August 2005

5.1.3. Constants

MaxRetrans (integer)

Configurable maximum for momary retransmissions should be attempted before aborting.

5.2. Interfacebetween Stand-Alone Authenticator State Machine and Methods

IN: eapRespData, methodState

OUT: ignore, eapRegData

IN/OUT: currentld, (method-specific state), (policy)

The following describes the interaction between the state machine and EAP methods.

m.init (in: -, out: -)

When the method is first started, it must initialize its own method-specific state, possibly using some
information from Polig (e.g., identity).

m.buildReq (in: integewout: EAP packet)

Next, the method creates ammEAP Request packet, with thevgn identifier value, and updates its method-
specific state accordingly.

m.getTimeout (in: -, out: integer or NONE)

The method can also provide a hint for retransmission timeout with m.getTimeout.

m.