Writing DDD Themes

User’s Guide and Reference Manual
First Edition, for DDD Version 3.3.8
Last updated 2001-02-01

DataDisplayDebugger

Andreas Zeller

Writing DDD Themes
User's Guide and Reference Manual

Copyright(©) 2001 Universitat Passau
Lehrstuhl fir Software-Systeme
InnstralRe 33

D-94032 Passau

GERMANY

Distributed by

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307

USA

DDD and this manual are available via
theDDD www page

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License’ASeendix D
[Documentation License], page &br details.

Send questions, comments, suggestions, etdd@gnu.org .
Send bug reports toug-ddd@gnu.org

http://www.gnu.org/software/ddd/
mailto:ddd@gnu.org
mailto:bug-ddd@gnu.org

Short Contents

L] [T 1 = 1. .
1 Creating Displays « « v v vt v vt it it et s 3.
2 WrtiNg ThemMeS . o ot ot e e e e i e s it s s 5.
Appendix A DDDVSLFUNCHONS v v v v vttt it s e s s n e e nnnnnn s 9
Appendix B VSLLibrary.o e e 15
AppendixC VSLReference. v iiinn et terrttinnnnnnnnnnns 29
Appendix D GNU Free DocumentationLicense v oo v v v v v v e v v 41

Writing DDD Themes

Table of Contents

WBICOME . . ot e e e e 1.
1 Creating DisplaysS. oo e 3.
1.1 Handling BOXeS.c.viiiiiii i i 3.

1.2 BuildingBoxesfrombData..............ccoiiiiiiiiiii 3

2 Writing Themest e i e e s 5.
2.1 Example: Changing the Display Title Color.................. 5

2.2 TheGeneralScheme.......... i .. 5

2.3 Overridingvs. Replacing ... §

24 AComplexExample..........cooiiiiiii i

25 Future Work ... 7.

Appendix A DDDVSLFuUNCtionsciiiiiniiiinnnnn 9
Al Displaying FONtS. 9.

A.2 Displaying Colors ...t e 10

A.3 Displaying Shadows.ccciiiiii i 11

A.4 Displaying DataDisplays.ccoviiiiiiiii i 11

A5 Displaying SimpleValues. ..., 11

A.6 Displaying Pointers.o 12

A.7 Displaying References............ccciiiiii i, 12

A.8 Displaying Arraysovir i e 12

A.9 Displaying Structs.ovii e 13

A.10 Displaying LiStSo 13

A.11 Displaying SEQUENCES.vitt it 14

A.12 Displaying Multi-Line Textsccoiiii i, 14

A.13 Displaying Extra Properties............ccooviiiiiininns. 14
Appendix B VSL Library i 15
B.1 CONVeNtiONS.t 15

B.2 Space FUNCLONSouiiii e 15

B.2.1 EmptySpace.........coiiiiiiiiiiiiiii 15

B.2.2 BlackLines..........coiiiiiiii i 15

B.2.3 WhiteSpace.............oiiviiiiiiiiiii 16

B.2.4 Controlling Stretch. ... 16

B.2.5 BOXDIMENsions.............ccoviiiiiiiiniinnnn. 16

B.3 Composition FUNCtions. ... 17

B.3.1 Horizontal Composition........................... 17

B.3.2 Vertical Composition.ccoeviiiinnann. 17

B.3.3 Textual Composition..............ccovviviivnnnnn.. 17

B.3.4 Overlays. ... 18

B.4 Arithmetic Functions............... i 18

iv Writing DDD Themes

B.5 Comparison FUNCLONScvviiiii i 19
B.5.1 Maximum and Minimum Functions................ 19

B.6 Negation FUNCHIONS.t 19
B.7 Frame FunCtionS ... e 20
B.8 AlignmentFunctions..............ccoviiiiiii i 20
B.8.1 CenteringFunctions....................cccovve.... 20

B.8.2 Flushing Functions..................cooiiiin... 20

B.9 Emphasis FUNCtions. ... 21
B.10 Indentation FUNCLIONS. 21
B.11 String FUNCLIONS.ot e i 21
B.12 ListFUNCtionS. 22
B.12.1 Creating Lists. ... 22

B.12.2 LiStProperties.oiuiiiiiiiiinann. 22

B.12.3 Accessing ListElements........................ 22

B.12.4 Manipulating Lists.............ccooiiiiiiin, 23

B.125 Listsand StringS........c.ooviiiiiiiiiiiia. 23

B.13 Table FUNCLIONS.o 23
B.14 FONtFUNCLONS. ...ttt e 24
B.14.1 FONtBaSICS.covviiiiiiiiiiiiiiiaaaeeenn. 24

B.14.2 FontName Selection..............covvvvvvii... 24

B.14.3 FontDefaults.............ccoviiiiiiiiinnn... 25

B.14.4 FontSelection............ccoviiiiiiiiiinnn 25

B.15 Color FUNCHONS. ...t 25
B.16 ArCFUNCLIONS. ...t i 26
B.16.1 ArCBaSICS. ..ot 26

B.16.2 CustomArcFunctions................ccvviin. 26

B.17 Slope FUNCLIONS.ot 26
B.17.1 SlopeBasics..........ccoiiiiiiiiiiii 26

B.17.2 Arrow FUNcCtions.coovviiiiiiiiiiiiiiinn 27

B.17.3 Custom Slope Functions........................ 27
Appendix C VSLReference...........cciiiiiiiiiinnnnn. 29
Gl BOXBS .ttt 29
G2 LIStS. i 30
C.3 EXPresSSioNS.cviet ittt e 30
C.3.1 StringLiterals..........cccvviiiii i 30

C.3.2 NumberlLiterals.............ccoiiiii... 30

C.3.3 ListLiterals........cooiiiiiiii s 30

C.3.4 Conditionals........ooviiiiiiiiii e 30

C.3.5 BooleanOperators.........coovvviiiieeniinnnanns 31

C.3.6 LocalVariables..........ccooviiiiiiiiii, 31

C3.7 LetPatterns.........ccoiiiiiiiii i 32

C.4 Function Calls. ... 32
C.5 ConstantDefinitions. 32
C.6 Function Definitions. 32
C.6.1 FunctionParameters...........ccovviiviiieea.... 33
C.6.1.1 VSL Unused Parameters................ 33

C.6.2 FunctionPatterns............oouuiiiiinanennn.. 33

C.6.3 DeclaringFunctions................ccciieeea.. 34

C.6.4 Redefining Functions.ccoiiiiiinn.. 34

C.6.5 Replacing Functions.................c.ooivin... 34

C.6.6 Overriding Functions......................covue.. 35

C.7 InCludes. ... 35

C.8 OPeratOrS. . 35

C.O9 Syntax SUMMArY. ...ttt i 36
Appendix D GNU Free Documentation License............... 41
ADDENDUM: How to use this License for your documents....... 46

Vi

Writing DDD Themes

Welcome 1

Welcome

Welcome toWriting bbp Themek In this manual, we will sketch how data visualization in
DDD works. (DD, the Data Display Debugger, is a debugger front-end with data visualization. For
details, sesection “Summary of DDD” irDebugging with DDD.)

Writing DDD Themes

Chapter 1: Creating Displays 3

1 Creating Displays
We begin with a short discussion of hawp actually creates displays from data.

1.1 Handling Boxes

All data displayed in the@DD data window is maintained by the inferior debuggens, for in-
stance, providesdisplay list holding symbolic expressions to be evaluated and printed on standard
output at each program stop. TaeB commanddisplay tree " adds tree ’to the display list
and makes:DB print the value oftree ' as, say, tree = (Tree *)0x20e98 ', at each program
stop. ThiscDB output is processed hypD and displayed in the data window.

Each element of the display list, as transmitted by the inferior debugger, is readibyand
translated into dox Boxes are rectangular entities with a specific content that can be displayed in
the data window. We distinguisitomicboxes anccompositéboxes. An atomic box holds white
or black space, a line, or a string. Composite boxes are horizontal or vertical alignments of other
boxes. Each box has a size and an extent that determines how it fits into a larger surrounding space.

Through construction of larger and larger boxesp constructs a graph node from th®B
data structure in a similar way a typesetting system lig€ Builds words from letters and pages
from paragraphs.

Such constructions are easily expressed by means of functions mapping boxes onto boxes. These
display functiongan be specified by the user and interpreted by, using an applicative language
calledvsL for visual structure languagevsL functions can be specified by thabD user, leaving
much room for extensions and customization.véL display function putting a frame around its
argument looks like this:

/[Put a frame around TEXT
frame(text) = hrule()

| vrule() & text & vrule()

| hrule();

Here,hrule() andvrule() are primitive functions returning horizontal and vertical lines,
respectively. The& and ‘| ’ operators construct horizontal and vertical alignments from their
arguments.

vsL provides basic facilities like pattern matching and variable numbers of function arguments.
Thehalign() function, for instance, builds a horizontal alignment from an arbitrary number of
arguments, matched by three dots (*):
/I Horizontal alignment
halign(x) = x;
halign(x, ..) = x & halign(..);
Frequently needed functions likalign() are grouped into a standavdL library.

1.2 Building Boxes from Data

To visualize data structures, each atomic type and each type constructor from the programming
language is assignedval display function. Atomic values like numbers, characters, enumerations,
or character strings are displayed using string boxes holding their valuestHanction to display
them leaves them unchanged:

4 Writing DDD Themes

/I Atomic Values
simple_value(value) = value;

Composite values require more attention. An array, for instance, may be displayed using a
horizontal alignment:

/I Array
array(..) = frame(halign(..));

WhenabB sendsHpD the value of an array, thest. function ‘array() ' is invoked with array
elements as values. @DB array expression{l, 2, 3} ’is thus evaluated ivsL as
array(simple_value("1"), simple_value("2"), simple_value("3"))
which equals
"1t & 2" & "3
a composite box holding a horizontal alignment of three string boxes. The astualnction used
in DDD also puts delimiters between the elements and comes in a vertical variant as well.

Nested structures like multi-dimensional arrays are displayed by applyireyiing) func-
tion in a bottom-up fashion. Firsarray() is applied to the innermost structures; the resulting
boxes are then passed as arguments to anathey() invocation. ThespB output

{{'a", "B", "C), (D", EY F
representing a 2 * 3 array of character strings, is evaluatediiras
array(array("A", "B", "C"), array("A", "B", "C"))
resulting in a horizontal alignment of two more alignments representing the inner arrays.

Record structures are built in a similar manner, using a display funstioiet_member

rendering the record members. Names and values are separated by an equality sign:

/I Member of a record structure
struct_member (name, value) =
name & " = " & value;

The display functiorstruct renders the record itself, using thalign() function!
/I Record structure
struct(..) = frame(valign(..));
This is a simple example; the actualL function used irDD takes additional effort to align
the equality signs; also, it ensures that language-specific delimiters are used, that collapsed structs
are rendered properly, and so on.

L valign() is similar tohalign() , but builds a vertical alignment.

Chapter 2: Writing Themes 5

2 Writing Themes

The basic idea of ¢hemeis to customize one or more aspects of the visual appearance of data.
This is done bymodifyingspecificvsL definitions.

2.1 Example: Changing the Display Title Color

As a simple example, consider the following task: You want to display display titles in
blue instead of black. ThesL function which handles the colors of display titles is called
‘title_color ' (seeSection A.2 [Displaying Colors], page JLat is defined as

title_color(box) = color(box, "black");

All you'd have to do to change the color is to provide a new definition:
title_color(box) = color(box, "blue");

How do you do this? You createdata themeavhich modifies the definition.

Using your favourite text editor, you create a file named, shlye-title.vsl "in the
directory ~/.ddd/themes/ .
The file ‘blue-title.vsl " has the following content:

#pragma replace title_color
title_color(box) = color(box, "blue");

In DDD, select Data = Themes’. You will find ‘ blue-title.vsl "in a line on its own.
Set the checkbox next tblue-title.vsl "in order to activate it. Whoa! All display titles will
now appear in blue.

2.2 The General Scheme

The general scheme for writing a theme is:
e Find the appropriate VSL function.

Find out whichvsL functionfunction is responsible for a specific task. Sggpendix A [DDD
VSL Functions], page,9or details on thevsL functions used bypD.

e Replace it by your own definition.
Write a theme (a text file) with the following content:
#pragma replace function
function(args) = definition;
This will replace the existing definition dinction by your new definitiondefinition. It is
composed of two parts:
— The #pragma replace ' declaration removes the original definition fifnction. See
Section C.6.4 [VSL Redefining Functions], page ot details.

— The following line provides a newefinition for function.

Please note: If the functiofunction is marked asGlobal VSL Function ’, it must be
(re-)defined using-> ' instead of =’; SeeSection C.6 [VSL Function Definitions], page,32
for details. You may also want to considéipragma override ' instead; Se&ection 2.3
[Overriding vs. Replacing], page for details.

6 Writing DDD Themes

¢ Install the theme in a place whereD can find it.

For your personal use, this is normally the directorddd/themes/

Besides your personal directorypD also searches for themes in its theme directory, typically
‘/usr/local/share/ddd-3.3.8/themes/ "

The ppD ‘vslPath ' resource controls the actual path wherep looks for themes. See
section “VSL Resources” iDebugging with DDD, for details.

e InDDD, invoke Data = Themes’ to apply the theme.
You're done!

2.3 Overriding vs. Replacing

In certain cases, you may not want to replace the original definition by your own, but rather
extendthe original definition.

As an example, consider thedlue_box '’ function (seeSection A.4 [Displaying Data Dis-
plays], page 1) It is applied to every single value displayed. By default, it does nothing. So we
could write a theme that leaves a little white space around values:

#pragma replace value_box
value_box(box) -> whiteframe(box);

or another theme that changes the color to black on yellow:

#pragma replace value_box
value_box(box) -> color(box, "black", "yellow");

However, we cannot apply both themes at once (say, to create a green-on-yellow scheme). This
is because each of the two themes replaces the previous definition—the theme that comes last wins.
The solution to this problem is to set up the theme in such a way tlateénhdsthe original

definition rather than to replace it. To do s®L provides an alternative tétpragma replace
namely #pragma override ' (seeSection C.6.6 [VSL Overriding Functions], page)35

Like ‘#pragmareplace ', the ‘#pragma override ' declaration allows for a new defini-
tion of a function. In contrast to#pragma replace ', though, uses of the function prior to
‘#pragma override ' are not affected—they still refer to the old definition.

Here’s a better theme that changes the color to black on yellow. First, it makes the old defini-
tion of ‘value_box ' accessible asold_value _box '. Then, it provides a new definition for
‘value_box ’which refers to the old definition, saved iolt_value_box ’

#pragma override old_value_box
old_value_box(...) = value_box(...);

#pragma override value_box
value_box(value) -> color(old_value_box(value),
"black”, "yellow");

Why do we need a#pragma override ' for ‘old_value_box ’, too? Simple: to avoid
name clashes between multiple themesL has no scopes or name spaces for definitions, so we
must resort to this crude, but effective scheme.

Chapter 2: Writing Themes 7

2.4 A Complex Example

As a more complex example, we define a theme that highlights all null pointers. First, we need
a predicateis_null ’that tells us whether a pointer value is null:
/[True if S1 ends in S2
ends_in(sl, s2) =
let slc = chars(sl),
s2c = chars(s2) in suffix(s2c, slc);

/I True if null value

is_null(value) =
(ends_in(value, "0x0") or ends_in(value, "nil");
The ‘null_pointer " function tells us how we actually want to render null values:

/I Rendering of null values
null_pointer(value) -> color(value, "red");
Now we go and redefine th@ointer_value " function such thatnull_pointer "is ap-
plied only to null values:

#pragma override old_pointer_value
old_pointer_value(...) -> pointer_value(...);

#pragma override pointer_value

/I Ordinary pointers
pointer_value (value) ->
old_pointer_value(v)
where v = (if (is_null(value)) then
null_pointer(value)
else
value

fi);
All we need now is the same definition for dereferenced pointers (that is, overriding the
‘dereferenced_pointer_value " function), and here we go!

2.5 Future Work

With the information in this manual, you should be able to set up your own themes. If you miss
anything, please let us know: simply writeddd@gnu.org .

If there is sufficient interestppp’s data themes will be further extended. Among the most
wanted features is the ability to access and parse debuggee data fromwgithinnctions; this
would allow user-defined processing of debuggee data. Let us know if you're interested—and keep
in touch!

mailto:ddd@gnu.org

Writing DDD Themes

Appendix A: DDD VSL Functions 9

Appendix A DDD VSL Functions

This appendix describes havwoD invokesvsL functions to create data displays.

The functions in this section are predefined in the libralyd.vsl '. They can be used and
replaced byppD themes.

Please note: Functions marked @dbal VSL Function ' must be (re-)defined using> "’
instead of £’. SeeSection C.6 [VSL Function Definitions], page,3ar detalils.

A.1 Displaying Fonts

These are the functionpp uses for rendering boxes in different fonts:

small.rm (box) VSL Function
small_bf (box) VSL Function
smallit (box) VSL Function

small_bi (box)

Returnsbox in small roman / bold face / italic / bold italic font.

small_size ()

Default size for small fonts.

tiny _rm (box)
tiny _bf (box)
tiny _it (box)
tiny _bi (box)

Returnsbox in tiny roman / bold face / italic / bold italic font.

tiny _size ()

Default size for tiny fonts.

title _rm (box)
title _bf (box)
title _it (box)
title _bi (box)

Returnsbox (a display title) in roman / bold face / italic / bold italic font.

value_rm (box)

value_bf (box)
value.it (box)
value_bi (box)

VSL Function

VSL Function

VSL Function
VSL Function
VSL Function
VSL Function

VSL Function

VSL Function
VSL Function
VSL Function
VSL Function

VSL Function
VSL Function
VSL Function
VSL Function

Returnsbox (a display value) in roman / bold face / italic / bold italic font.

L ppp replaces this as set in theb font preferences. Useldd --fonts ' to see the actual definitions.
2 ppp replaces this as set in thep font preferences. Useltld --fonts ’ to see the actual definitions.

10 Writing DDD Themes

A.2 Displaying Colors

display_color (box)
Returnsbox in the color used for displays. Default definition is
display_color(box) = color(box, "black", "white");

title _color (box)
Returnsbox in the color used for display titles. Default definition is

title_color(box) = color(box, "black");

disabled.color (box)
Returnsbox in the color used for disabled displays. Default definition is

disabled_color(box) = color(box, "white", "grey50");

simple_color (box)
Returnsbox in the color used for simple values. Default definition is

simple_color(box) = color(box, "black");

text_color (box)
Returnsbox in the color used for multi-line texts. Default definition is

text_color(box) = color(box, "black");

pointer_color (box)
Returnsbox in the color used for pointers. Default definition is

pointer_color(box) = color(box, "blue4™;

struct_color (box)
Returnsbox in the color used for structs. Default definition is

struct_color(box) = color(box, "black");

list_color (box)
Returnsbox in the color used for lists. Default definition is

list_color(box) = color(box, "black");

array _color (box)
Returnsbox in the color used for arrays. Default definition is

array_color(box) = color(box, "blue4");

referencecolor (box)
Returnsbox in the color used for references. Default definition is

reference_color(box) = color(box, "blue4");

changedcolor (box)
Returnsbox in the color used for changed values. Default definition is

changed_color(box) = color(box, "black", "#ffffcc");

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

VSL Function

Appendix A: DDD VSL Functions 11

shadow.color (box) VSL Function
Returnsbox in the color used for display shadows. Default definition is

shadow_color(box) = color(box, "grey");

A.3 Displaying Shadows

shadow (box) VSL Function
Returnbox with a shadow around it.

A.4 Displaying Data Displays

DDD uses these functions to create data displays.

title (display_number, name) Global VSL Function

title (name) Global VSL Function
Returns a box for the display title. fisplay_number (a string) is given, this is prepended to
the title.

annotation (name) Global VSL Function

Returns a box for an edge annotation. This typically uses a tiny font.

disabled () Global VSL Function
Returns a box to be used as value for disabled displays.

none () Global VSL Function
Returns a box for “no value” (i.e. undefined values). Default: an empty string.

value_box (value) Global VSL Function
Returnsvalue in a display box. Default: leave unchanged.

display_box (title, value) Global VSL Function
display_box (value) Global VSL Function
Returns the entire display bostle comes frontitle() , value from value_box()

A.5 Displaying Simple Values
DDD uses these functions to display simple values.

simple_value (value) Global VSL Function
Returns a box for a simple non-numeric value (characters, strings, constants, ...). This is
typically aligned to the left.

numeric_value (value) Global VSL Function
Returns a box for a simple numeric value. This is typically aligned to the right.

collapsedsimple_value () Global VSL Function
Returns a box for a collapsed simple value.

12 Writing DDD Themes

A.6 Displaying Pointers

DDD uses these functions to display pointers.

pointer_value (value) Global VSL Function
Returns a box for a pointer value.

dereferencedpointer_value (value) Global VSL Function
Returns a box for a dereferenced pointer value.

collapsedpointer_value () Global VSL Function
Returns a box for a collapsed pointer.

A.7 Displaying References

DDD uses these functions to display references.

referencevalue (value) Global VSL Function
Returns a box for a reference value.

collapsedreferencevalue () Global VSL Function
Returns a box for a collapsed reference.

A.8 Displaying Arrays

DDD uses these functions to display arrays.

horizontal _array (values. . .) Global VSL Function
Returns a box for a horizontal array containingues.

vertical_array (values. . .) Global VSL Function
Returns a box for a vertical array containingues.

empty_array () Global VSL Function
Returns a box for an empty array.

collapsedarray () Global VSL Function
Returns a box for a collapsed array.

twodim_array (rows. ..) Global VSL Function
Returns a box for a two-dimensional array. Argument is a list of rows, suitable for use with
tab() ordtab()

twodim_array _elem (value) Global VSL Function
Returns a box for an element in a two-dimensional array.

Appendix A: DDD VSL Functions 13

A.9 Displaying Structs

A struct is a set of fame, value) pairs, and is also called “record” or “objecthnpD uses these
functions to display structs.

struct_value (members. . .) Global VSL Function
Returns a box for a struct containimgembers.

collapsedstruct_value () Global VSL Function
Returns a box for a collapsed struct.

empty_struct_value () Global VSL Function
Returns a box for an empty struct.

struct_member_.name (name) Global VSL Function
Returns a box for a member name.

struct_member (name, sep, value, name_width) Global VSL Function
Returns a box for a struct membename is the member name, typeset wiskruct_
member_name() , sep is the separator (as determined by the current programming lan-
guage),value is the typeset member value, angime_width is the maximum width of all
member names.

horizontal_unnamed.struct () Global VSL Function
vertical_unnamed.struct () Global VSL Function
Returns a box for a horizontal / vertical unnamed struct, where member names are suppressed.

struct_member (value) Global VSL Function
Returns a box for a struct member in a struct where member names are suppressed.

A.10 Displaying Lists

A list is a set of fame, value) pairs not defined by the specific programming languagen
uses this format to display variable lists.

list_value (members. . .) Global VSL Function
Returns a box for a list containingembers.

collapsedlist_value () Global VSL Function
Returns a box for a collapsed list.

empty_list_value () Global VSL Function
Returns a box for an empty list.

list_member_-name (name) Global VSL Function
Returns a box for a member name.

14 Writing DDD Themes

list_member (name, sep, value, name_width) Global VSL Function
Returns a box for a list membetame is the member name, typeset witst_member_
name() , sep is the separator (as determined by the current programming languagie),
is the typeset member value, amgne_width is the maximum width of all member names.

horizontal_unnamed.list () Global VSL Function
vertical_unnamed.list () Global VSL Function
Returns a box for a horizontal / vertical unnamed list, where member names are suppressed.

list_member (value) Global VSL Function
Returns a box for a list member in a list where member names are suppressed.

A.11 Displaying Sequences

Sequences are lists of arbitrary, unstructured values.

sequencevalue (values. . .) Global VSL Function
Returns a box for a list of values.

collapsedsequencevalue () Global VSL Function
Returns a box for a collapsed sequence.

A.12 Displaying Multi-Line Texts

DDD uses these functions to display multi-line texts, such as status displays.

text_value (lines. . .) Global VSL Function
Returns a box for a list of lines (typically in a vertical alignment).

collapsedtext_value () Global VSL Function
Returns a box for a collapsed text.

A.13 Displaying Extra Properties

DDD uses these functions to display additional properties.

repeatedvalue (value, n) Global VSL Function
Returns a box for &alue that is repeated times. Note:n is a number, not a string.

changedvalue (value) Global VSL Function
Returns a box for avalue that has changed since the last display. Typically, this invokes
changed_color(value) .

Appendix B: VSL Library 15

Appendix B VSL Library

This appendix describes thsL functions available in the standavdL library.

Unless otherwise stated, all following functions are definedid. sl
ForppD themes, std.vsl " need not be included explicitly.

B.1 Conventions

Throughout this document, we write= (al, a2) to refer to individual box sizesl stands for
the horizontal size of, anda2 stands for the vertical size af

B.2 Space Functions

B.2.1 Empty Space

fill () VSL Function
Returns an empty box of width 0 and height O which stretches in both horizontal and vertical
directions.

hfill () VSL Function

Returns a box of height O which stretches horizontally.

viill () VSL Function
Returns a box of width 0 which stretches vertically.

B.2.2 Black Lines

rule () VSL Function
Returns a black box of width 0 and height O which stretches in both horizontal and vertical
directions.

hrule ([thickness]) VSL Function
Returns a black box of width 0 and heighickness which stretches horizontallyhickness
defaults torulethickness() (typically 1 pixel).

vrule ([thickness]) VSL Function
Returns a black box of widtlhickness and height O which stretches verticallyhickness
defaults torulethickness() (typically 1 pixel).

rulethickness () VSL Function

Returns the default thickness for black rules (default: 1).

16 Writing DDD Themes

B.2.3 White Space

hwhite ([thickness]) VSL Function
Returns a black box of width 0 and heighickness which stretches horizontallyhickness
defaults towhitethickness() (typically 2 pixels).

vwhite ([thickness]) VSL Function
Returns a black box of widtlhickness and height O which stretches verticallyhickness
defaults towhitethickness() (typically 2 pixels).

whitethickness () VSL Function

Returns the default thickness for white rules (default: 2).

B.2.4 Controlling Stretch

hfix (a) VSL Function
Returns a box containing but not stretchable horizontally.

vfix (a) VSL Function
Returns a box containing but not stretchable vertically.

fix (a) VSL Function
Returns a box containing but not stretchable in either direction.

B.2.5 Box Dimensions

hspace (a) VSL Function
If a = (al, a2), create a square empty box with a sizeaf, @1).

vspace (a) VSL Function
If a=(al, a2), create a square empty box with a sizead, @2).

square (a) VSL Function
If a =(al, a2), create a square empty box with a size of madxg2).

box (n, m) VSL Function
Returns a box of sizen(m).

Appendix B: VSL Library 17

B.3 Composition Functions

B.3.1 Horizontal Composition

(&) (a, b) VSL Function

(&) (boxes. ..) VSL Function

halign (boxes. . .) VSL Function
Returns a horizontal alignment afandb; a is placed left ofb. Typically written in inline
form‘a &b’.

The alternative forms (available in function-call form only) return a horizontal left-to-right
alignment of their arguments.

hralign (boxes. . .) VSL Function
Returns a right-to-left alignment of its arguments.

B.3.2 Vertical Composition

(1) (ab) VSL Function

(1) (boxes...) VSL Function

valign (boxes. . .) VSL Function
Returns a vertical alignment afandb; a is placed abové. Typically written in inline form
‘al b

The alternative forms (available in function-call form only) return a vertical top-to-bottom
alignment of their arguments.

vralign (boxes. . .) VSL Function
Returns a bottom-to-top alignment of its arguments.

vlist (sep, boxes. . .) VSL Function
Returns a top-to-bottom alignment dxes, where any two boxes are separateddyy

B.3.3 Textual Composition

(~) (a b) VSL Function
(=) (boxes. ..) VSL Function
talign (boxes. ..) VSL Function

Returns a textual concatenationacndb. b is placed in the lower right unused corneraof
Typically written in inline form a ~ b’.

The alternative forms (available in function-call form only) return a textual concatenation of
their arguments.

tralign (boxes. . .) VSL Function
Returns a textual right-to-left concatenation of its arguments.

18 Writing DDD Themes

tlist (sep, boxes. . .) VSL Function
Returns a textual left-to-right alignment bbxes, where any two boxes are separateddyy

commalist (boxes. . .) VSL Function
Shorthand fortlist(", ", boxes...)

semicolonlist (boxes. . .) VSL Function
Shorthand fortlist("; ", boxes..) .

B.3.4 Overlays

(™) (a, b) VSL Function

(™) (boxes. . .) VSL Function
Returns an overlay of andb. a andb are placed in the same rectangular area, which is the
maximum size ok andb; first, a is drawn, therb. Typically written in inline forma ~ b’.

The second form (available in function-call form only) returns an overlay of its arguments.

B.4 Arithmetic Functions

(+) (a, b) VSL Function
(+) (boxes. . .) VSL Function
Returns the sum of andb. If a = (al, a2) andb = (b1, b2), thena + b = (al + a2, bl +
b2). Typically written in inline form a + b’.
The second form (available in function-call form only) returns the sum of its arguments.
The special form+a’ is equivalent to &'.

() (a, b) VSL Function
Returns the difference afandb. If a = (al, a2) andb = (bl, b2), thena - b = (al - a2, bl -
b2). Typically written in inline form a - b’.
The special form-a’ is equivalent to 0- a’.

(*) (a, b) VSL Function
(*) (boxes. . .) VSL Function
Returns the product af andb. If a = (al, a2) andb = (b1, b2), thena * b = (al * a2, bl *
b2). Typically written in inline form a * b’.
The second form (available in function-call form only) returns the product of its arguments.

(/) (a b) VSL Function
Returns the quotient af andb. If a = (al, a2) andb = (b1, b2), thena / b = (al / a2, bl /
b2). Typically written in inline forma/ b’.

(%) (a, b) VSL Function
Returns the remainder afandb. If a = (al, a2) andb = (b1, b2), thena % b = (al % a2,
bl % b2). Typically written in inline form a2 %b’.

Appendix B: VSL Library 19

B.5 Comparison Functions

(=) (a, b) VSL Function
Returns true @) if a = b, and false (©’), otherwise.a = b holds ifa andb have the same
size, the same structure, and the same content. Typically written in inline fofnb™.

(<>) (a b) VSL Function
Returns false Q') if a = b, and true (1'), otherwise.a = b holds if a andb have the same
size, the same structure, and the same content. Typically written in inline fofnb™,

(<) (a b) VSL Function
If a =(al, a2) andb = (b1, b2), then this function returns truel() if al < bl or a2 < b2
holds; false (0’), otherwise. Typically written in inline formd < b’.

(<=) (a b) VSL Function
If a=(al, a2) andb = (bl, b2), then this function returns truel(’) if al <= bl or a2 <= b2
holds; false (0’), otherwise. Typically written in inline formd <= b’.

(>) (a b) VSL Function
If a =(al, a2) andb = (bl, b2), then this function returns truel(’) if al > bl or a2 > b2
holds; false (0’), otherwise. Typically written in inline formd > b’.

(>=) (a b) VSL Function
If a=(al, a2) andb = (bl, b2), then this function returns truel() if al >=bl or a2 >= b2
holds; false (0’), otherwise. Typically written in inline formd >=b’.

B.5.1 Maximum and Minimum Functions

max (bl, b2, ...) VSL Function
Returns the maximum of its arguments; that is, the onetbinxits arguments for whicly >
bl, b > b2, ... holds.

min (b1, b2, ...) VSL Function
Returns the maximum of its arguments; that is, the onetbioxits arguments for whicl <
bl,b<b2, ... holds.

B.6 Negation Functions

(not) (a) VSL Function
Returns true ') if a is false, and false @), otherwise. Typically written in inline form
‘not a’.

SeeSection C.3.5 [VSL Boolean Operators], page fét and andor .

20 Writing DDD Themes

B.7 Frame Functions

ruleframe (a[, thickness]) VSL Function
Returnsa within a black rectangular frame of thicknegsickness. thickness defaults to
rulethickness() (typically 1 pixel).

whiteframe (a[, thickness]) VSL Function
Returnsa within a white rectangular frame of thicknedisickness. thickness defaults to
whitethickness() (typically 2 pixels).

frame (a) VSL Function
Returnsa within a rectangular frame. Equivalent taleframe(whiteframe(a)’.

doubleframe (a) VSL Function

Shortcut for frame(frame(a)) .

thickframe (a) VSL Function
Shortcut for fuleframe(frame(a)) .

B.8 Alignment Functions
B.8.1 Centering Functions

hcenter (a) VSL Function
Returns box centered horizontally within a (vertical) alignment.

Example: In 2 | hcenter(b)| ¢, bis centered relatively ta andc.

vcenter (a) VSL Function
Returns box centered vertically within a (horizontal) alignment.

Example: Ina & vcenter(b) & ¢’, b is centered relatively ta andc.

center (a) VSL Function
Returns box centered vertically and horizontally within an alignment.

Example: In 100 ~ center(b)’, b is centered within a square of size 100.

B.8.2 Flushing Functions

n_flush (box) VSL Function
sflush (box) VSL Function
w_flush (box) VSL Function
e_flush (box) VSL Function

Within an alignment, Flushes box to the center of a side.

Example: In 100~ s _flush(b)’, b is centered on the bottom side of a square of size
100.

Appendix B: VSL Library 21

nw_flush (box) VSL Function
sw_flush (box) VSL Function
ne_flush (box) VSL Function
seflush (box) VSL Function

Within an alignment, Flushes box to a corner.

Example: In 100~ se_flush(b)’, b is placed in the lower right corner of a square of
size 100.

B.9 Emphasis Functions

underline (a) VSL Function
Returnsa with a line underneath.

overline (a) VSL Function
Returnsa with a line above it.

crossline (a) VSL Function
Returnsa with a horizontal line across it.

doublestrike (a) VSL Function
Returnsa in “poor man’s bold”: it is drawn two times, displaced horizontally by one pixel.

B.10 Indentation Functions
indent (box) VSL Function

Return a box where white space of widitldentamount() is placed left ofbox.

indentamount () VSL Function
Indent amount to be usedindent() ; defaultsto®" ’ (two spaces).

B.11 String Functions

To retrieve the string from a composite box, sseéng()

string (box) VSL Function
Return the string (in left-to-right, top-to-bottom order) witltiox.

To convert numbers to strings, usem() :
num (al[,\ varbase]) VSL Function

For a square box = (al, al), returns a string containing a textual representatioml obase
must be between 2 and 16; it defaults 10*. Example:num(25) = "25")

dec (a) VSL Function
oct (a) VSL Function
bin (a) VSL Function
hex (a) VSL Function

Shortcut for hum(a, 10) ’, “num(a, 8) ’, ‘num(a, 2) ’, ‘num(a, 16) ’, respectively.

22 Writing DDD Themes

B.12 List Functions

The functions in this section require inclusion of the librdrst:vsl ",
For themes,list.vsl " need not be included explicitly.

B.12.1 Creating Lists

(1) (istl, list2, . ..) VSL Function
Return the concatenation of the given lists. Typically written in inline foffj::: [2]
2381 =11, 23]

append (list, elem) VSL Function
Returnslist with elem appended at the endppend([1, 2, 3], 4) =1, 2, 3, 4]

B.12.2 List Properties

isatom (x) VSL Function
Returns True (1) ik is an atom; False (0) if is a list.

islist (x) VSL Function
Returns True (1) ik is a list; False (0) ifk is an atom.

member (x, list) VSL Function
Returns True (1) ifk is an element ofist; False (0) if not:member(1, [1, 2, 3]) =
true

prefix (sublist, list) VSL Function

suffix (sublist, list) VSL Function

sublist (sublist, list) VSL Function
Returns True (1) ibublist is a prefix / suffix / sublist ofist; False (0) if not:prefix([1],
[1,2]) = true , suffix([3], [1, 2]) = false , sublist([2, 2], [1, 2,
2,3]) =true ,

length (Iist) VSL Functions
Returns the number of elementslist: length([1, 2, 3]) =3

B.12.3 Accessing List Elements

car (list) VSL Function

head (list) VSL Function
Returns the first element at: car([1, 2, 3]) =1

cdr (list) VSL Function

tail (list) VSL Function

Returnslist without its first elementcdr([1, 2, 3]) =2, 3]

Appendix B: VSL Library 23

elem (list, n) VSL Function
Returns thes-th element (starting with 0) dist: elem([4, 5, 6], 0) =4

pos (elem, list) VSL Function
Returns the position aflem in Iist (starting with 0):pos(4, [1, 2, 4]) =2

last (Iist) VSL Function
Returns the last element 6ift: last([4, 5, 6]) =6

B.12.4 Manipulating Lists

reverse (list) VSL Function
Returns a reverselist: reverse([3, 4, 5]) =[5, 4, 3]

delete (list, elem) VSL Function
Returnslist, with all elementslem removed:delete([4, 5, 5, 6], 5) = [4, 6]

select (list, elem) VSL Function
Returndlist, with the first elementlem removed:select([4, 5, 5, 6], 5) = [4,5,
6]

flat (list) VSL Function
Returns flattenedist: flat([[3, 4], [[5], [6]]]) =[3,4,5, 6]

sort (list) VSL Function
Returns sortenetist (according to box sizekort([7, 4, 9]) =[4,7,9]

B.12.5 Lists and Strings

chars (s) VSL Function

Returns a list of all characters in the baxchars("abc") =["a", "b", "c"]

list (Iist) VSL Function
Returns a string, pretty-printing that: list([4, 5, 6]) ="[4, 5, 6]"

B.13 Table Functions

The functions in this section require inclusion of the libragb'.vsl .
For themes,tab.vsl ' need not be included explicitly.

tab (table) VSL Function
Returntable (a list of lists) aligned in a tablé¢ab([[1, 2, 3], [4, 5, 6], [7, 8]])
=

3
6

~N AR
S RGEN

24 Writing DDD Themes

dtab (table) VSL Function
Like tab , but place delimiters (horizontal and vertical rules) around table elements.

tab_elem (x) VSL Function
Returns padded table elementits default definition is:
tab_elem([]) = tab_elem(0); /I empty table
tab_elem(x) = whiteframe(x); /I padding

B.14 Font Functions

The functions in this section require inclusion of the librdignts.vsl
For themes,fonts.vsl ' need not be included explicitly.

B.14.1 Font Basics

font (box, font) VSL Function
Returnsbox, with all strings set infont (a valid X11 font description)

B.14.2 Font Name Selection

weight_bold () VSL Function
weight.medium () VSL Function
Font weight specifier ifonthname() (see below).

slant_unslanted () VSL Function
slant_italic () VSL Function
Font slant Specifier ifontname() (see below).

family _times () VSL Function
family _courier () VSL Function
family _helvetica () VSL Function
family _new_century () VSL Function
family _typewriter () VSL Function

Font family specifier ifontname() (see below).

fontname ([weight, [slant, [family, [size]]]]) VSL Function
Returns a fontname, suitable for use wfibint()
e weight defaults tostdfontweight() (see below).
e slant defaults tostdfontslant() (see below).
e family defaults tostdfontfamily() (see below).

e size isS a pair pixels, points) wherepixels being zero means to ugeints instead and
vice versa. defaults tstdfontsize() (see below).

Appendix B: VSL Library 25

B.14.3 Font Defaults

stdfontweight () VSL Function
Default font weightweight_medium()

stdfontslant () VSL Function
Default font slantslant_unslanted()

stdfontfamily () VSL Function
Default font family:family_times()

DDD replaces this as set in tmeoD font preferences. Useldd --fonts ' to see the actual
definitions.

stdfontsize () VSL Function
Default font size(stdfontpixels(), stdfontpoints())

DDD replaces this as set in twD font preferences. Useldd --fonts ' to see the actual

definitions.

stdfontpixels () VSL Function
Default font size (in pixels): 0, meaning to usifontpoints() instead.

stdfontpoints () VSL Function

Default font size (in 1/10 points): 120.

B.14.4 Font Selection

rm (box [, family [, size]]) VSL Function

bf (box [, family [, size]]) VSL Function

it (box [, family [, size]]) VSL Function

bi (box [, family [, size]]) VSL Function
Returnsbox in roman / bold face / italic / bold italiccamily specifies one of the font families;
it defaults tostdfontfamily() (see above).size specifies a font size; it defaults to
stdfontsize() (see above).

B.15 Color Functions

The functions in this section require inclusion of the libragglors.vsl "
For themes,colors.vsl "need not be included explicitly.

color (box, foreground [, background]]) VSL Function
Returnsbox, where the foreground color will be drawn using fleeeground color. If back-
ground is specified as well, it will be used for drawing the background. Botbground and
background are strings specifying a valid X11 color.

26 Writing DDD Themes

B.16 Arc Functions

The functions in this section require inclusion of the libraaycs.vsl .

For themes,arcs.vsl * mustbe included explicitly, using a line
#include <arcs.vsl>

at the beginning of the theme.

B.16.1 Arc Basics

arc (start, length [, thickness]) VSL Function
Returns a stretchable box with an arclaigth, starting at angletart. start andlength must
be multiples of 90 (degrees). The angleait is specified clockwise relative to the 9 o’clock
position. thickness defaults toarcthickness() (see below).

arcthickness () VSL Function
Default width of arcs. Defaults taulethickness()

B.16.2 Custom Arc Functions

oval (box) VSL Function
Returns an oval containingox. Example:oval("33")

ellipse (box) VSL Function
ellipse () VSL Function
Returns an ellipse containirigx. Example:ellipse("START") . If box is omitted, the

ellipse is stretchable and expands to the available space.

circle (box) VSL Function
Returns a circle containingox. Example:circle(10)

B.17 Slope Functions

The functions in this section require inclusion of the librasippes.vsl

For themes,slopes.vsl ' mustbe included explicitly, using a line
#include <slopes.vsl>

at the beginning of the theme.

B.17.1 Slope Basics

rise ([thickness]) VSL Function
Create a stretchable box with a line from the lower left to the upper right cotiekness
defaults toslopethickness() (see below).

Appendix B: VSL Library 27

fall ([thickness]) VSL Function
Create a stretchable box with a line from the upper left to the lower right cotiekness
defaults toslopethickness() (see below).

slopethickness() VSL Function

Default thickness of slopes. Defaultsrtdethickness()

B.17.2 Arrow Functions

n_arrow () VSL Function
w_arrow () VSL Function
s.arrow () VSL Function
earrow () VSL Function

Returns a box with an arrow pointing to the upper, left, lower, or right side, respectively.

nw_arrow () VSL Function
ne_arrow () VSL Function
sw_arrow () VSL Function
searrow () VSL Function

Returns a box with an arrow pointing to the upper left, upper right, lower left, or lower right
side, respectively.

B.17.3 Custom Slope Functions

punchcard (box) VSL Function
Returns a punchcard containihgx.

rhomb (box) VSL Function
Returns a rhomb containingx.

octogon (box) VSL Function
Returns an octogon containibgx.

28

Writing DDD Themes

Appendix C: VSL Reference 29

Appendix C VSL Reference

This appendix describes thaL language.

C.1 Boxes

vSsL knows two data types. The most common data type idthe A box is a rectangular area
with a content asize and astretchability

Boxes are eitheatomicor composite A composite box is built from two or more other boxes.
These boxes can be aligned horizontally, vertically, or otherwise.

Boxes have a specific minimusize depending on their content. We say ‘minimum’ size here,
because some boxes atestchable—that is, they can fill up the available space.

If you have a vertical alignment of three box&sB, andC, like this:
AAAAAA
AAAAAA
B
B
CCcccc
CCcccc

andB is stretchable horizontally, tha® will fill up the available horizontal space:
AAAAAA
AAAAAA
BBBBBB
BBBBBB
Cccccce
CCcccc

If two or more boxes compete for the same space, the space will be distributed in proportion to
their stretchability.

An atomic stretchable box has a stretchability of 1. An alignment of multiple boxes stretchable in
the direction of the alignment boxes will have a stretchability which is the sum of all stretchabilities.

If you have a vertical alignment of three box&sB, C, D, andE, like this:
AAAAAA
AAAAAA
BC D
BC D
EEEEEE
EEEEEE

and B, C, and D are stretchable horizontally (with a stretchability of 1), then the horizontal

alignment of B and C will have a stretchability of 2. Thus, the alignment Bfand C gets two
thirds of the available spac®; gets the remaining third.

AAAAAA

AAAAAA

BBCCDD

BBCCDD

EEEEEE

EEEEEE

30 Writing DDD Themes

C.2 Lists

Besides boxesysL knowslists. A list is not a box—it has no size or stretchability. A list is a
simple means to structure data.

vsL lists are very much like lists in functional languages like Lisp or Scheme. They consist of a
head (typically a list element) and a tail (which is either a list remainder or the empty list).

C.3 Expressions

C.3.1 String Literals

The expression'text" ' returns a box containingext. text is parsed according to C syntax rules.

Multiple string expressions may follow each other to form a larger constant, astin‘Ctext1"
" text2" ' is equivalent to * text1 text

Strings are not stretchable.

C.3.2 Number Literals

Any constant integen evaluates to aumber—that is, a non-stretchable empty square box with
size (@, n).

C.3.3 List Literals

The expression[‘a, b,.] ' evaluates to dist containing the element, b, ‘[] 'is the
empty list.

The expression[‘head : tail] ' evaluates to a list whose first elementhsad and whose re-
mainder (typically a list) igail.

In most contexts, round parentheses can be used as alternatives to square bracket6a,Thus,
b) ' is a list with two elements, and) ’ is the empty list.

Within an expression, though, square parentheses must be used to create a list with one element.
In an expression, the forng 4) ' is not a list, but an alternative notation far

C.3.4 Conditionals

A box a = (al, a2) is calledtrue if al or a2 is non-zero. It is calledalseif both al or a2 are
zero.

The special form
if a then b else ¢ fi
returnsb if a is true, anct otherwise. Only one ab or ¢ is evaluated.
The special form
elsif a2 then b2 else c fi
is equivalent to
else if a2 then b2 else ¢ fi fi

Appendix C: VSL Reference 31

C.3.5 Boolean Operators

The special form

a and b
is equivalent to

if a then b else O fi
The special form

aor b
is equivalent to

if a then 1 else b fi
The special form

not a
is equivalent to

if a then O else 1 fi

Actually, ‘not " is realized as a function; Segection B.6 [Negation Functions], page, f6r
details.

C.3.6 Local Variables

You can introduce local variables usirigt’ " and ‘where
let vl = el in e
makesv1 available as replacement fef in the expressioe.

Example:
let pi = 3.1415 in 2 * pi = 6.2830
The special form
let vl =el, v2 = €2, .. In e
is equivalent to
let vl = el inlet v2 = €2 in let .. in e

As an alternative, you can also use thieere form:
e where vl = el

is equivalent to
let vl = el in e

Example:

("here lies" | name) where
name = ("one whose name" | "was writ in water")

The special form
e where vl = el, v2 = e2, ..
is equivalent to
let vl =el, v2 = €2, .. In e

32 Writing DDD Themes

C.3.7 Let Patterns

You can access the individual elements of a list or some composite box by giving an appropriate
pattern

let (left, right) = pair in expr

If pair has the value, say3, 4) , thenleft will be available as a replacement 8r and
right will be available as a replacement #iin expr.

A special pattern is available for accessing the head and the tail of a list:
let [head : tail] = list in expr
If expr hasthe value, safB, 4,5] ,thenhead will be 3, andtail willbe[4,5] inexpr.

C.4 Function Calls

A function call takes the form
name list

which invokes the (previously declared or defined) function with an argumdit.oNormally,
list is a list literal (se€section C.3.3 [VSL List Literals], page p@ritten with round brackets.

C.5 Constant Definitions

A vsL file consists of a list oflefinitions
A constant definition takes the form
name = expression;

Any later definitions can useame as a replacement f@xpression.

Example:
true = 1;
false = 0;

C.6 Function Definitions

In VSL, all functions either map kst to aboxor alist to alist. A function definition takes the
form

name list = expression,

wherelist is a list literal (seesection C.3.3 [VSL List Literals], page R0

The list literal is typically written in round parentheses, making the above form look like this:
name(paraml, param2, .) = expression;,

The ‘=’ is replaced by -> " if name is a global definition—that is,name can be called from
a library client such a®pp. A local definition (with ‘=") can be called only from othevsL
functions!

I The distinction into global and local definitions is useful when optimizing the library: local definitions
that are unused within the library can be removed, while global definitions cannot.

Appendix C: VSL Reference 33

C.6.1 Function Parameters

The parameter listist may contain names of formal parameters. Upon a function call, these are
bound to the actual arguments.

If the function
sum(a, b) = a + b;
is called as
sum(2. 3)
thena will be bound to2 andb will be bound to3, evaluating tcb.

C.6.1.1 VSL Unused Parameters

Unused parameters cause a warning, as in this example:
first_arg(a, dummy) = a; /[Warning

If a parameter has the namé,'it will not be bound to the actual argument (and can thus not be
used). Use ‘'’ as parameter name for unused arguments:

first_arg(a,) = a; /[No warning
_’'can be used multiple times in a parameter list.

C.6.2 Function Patterns

A VSL function may have multiple definitions, each with a spegifittern The first definition
whose pattermatcheghe actual argument is used.

What does ‘matching’ mean? Within a pattern,
e An ordinary formal parameter matches any single value

e A formal parameter whose name is ‘' or ends in .. ' matches a single value or a list or a
list remainder

e A constant matches exactly the same value
e A composite box or list matches a composite box or list if
— the composites have the same type
— the composites have the same number of elements
— the elements match each other.
Here are some examples. Them() function (seeSection B.11 [String Functions], page)21
can take either one or two arguments. The one-argument definition simply invokes the two-argument
definition:
num(a, base) = ..;
num(a) = num(a, 10);

Here’s another example: Tlgit function returns a string representation for a single number.
It has multiple definitions, all dependent on the actual argument:

digit(0) = "0";
digit(1) = "1%
digit(2) = "2
digit(3) = "3";

34

Writing DDD Themes

digit(4) = "4";
digit(5) = "b"
digit(6) = "6";
digit(7) = "7";
digit(8) = "8";
digit(9) = "9";
digit(10) = "a";
digit(11) = "b";
digit(12) = "c";
digit(13) = "d";
digit(14) = "e";
digit(15) = "f";

digit(_) = fail("invalid digit() argument");
Formal parameters ending in * ’ are useful for definin@liasesof functions. The definition
roman(..) = rm(..);

makesroman an alias offm—any parameters (regardless how many) passeahtan will be
passed tom.

Here’s an example of how formal parameters ending.in * can be used to realizeariadic
functions taking any number of arguments (sgection B.5.1 [Maximum and Minimum Functions],
page 19

max(a) = a;

max(a, b, .) = if a > b then max(a, .) else max(b, ..) fi
min(a) = a;

min(a, b, ..) = if a < b then min(a, ..) else min(b, ..) fi

C.6.3 Declaring Functions

If you want to use a function before it has been defined, just write down its signature without
specifying a body. Here’s an example:

num(a, base);
num(a) = num(a, 10);

Remember to give a definition later on, though.

/I declaration

C.6.4 Redefining Functions

You can redefine &sL function everafter its original definition. You can
replacethe original definition, thus making all previous definitions refer to your new definition;
overridethe original definition, thus making only later definitions refer to your new definition.

C.6.5 Replacing Functions

To remove an original definition, use
#pragma replace name
This removes all previous definitions adme. Be sure to provide your own definitions, though.

‘#pragma replace ’is typically used to change defaults:

Appendix C: VSL Reference 35

#include "fonts.vsl|" /I defines stdfontsize()

#pragma replace stdfontsize() // replace def
stdfontsize() = 20;

All existing function calls will now refer to the new definition.

C.6.6 Overriding Functions

To override an original definition, use
#pragma override name

This makes all later definitions use your new definitiomafne. Earlier definitions, however,
still refer to the old definition.

‘#pragma override ' is typically used if you want to redefine a function while still refering
to the old definition:

#include "fonts.vsl" /I defines stdfontsize()

/I Save old definition
old_stdfontsize() = stdfontsize();

#pragma override stdfontsize()

/I Refer to old definition
stdfontsize() = old_stdfontsize() * 2;

Since we used#pragma override ', we can useold_stdfontsize() to refer to the
original definition ofstdfontsize()

C.7 Includes

In avsL file, you can include at any part the contents of anothserfile, using one of the special
forms

#include " file"
#include < file>

The form <file>’ looks for VSL files in a number of standard directories; the fofmile" ’ first
looks in the directory where the current file resides.

Any included file is included only once.

In DDD, you can set these places using thslPath ' resource. Seeection “Customizing
Display Appearance” itbebugging with DDD, for details.

C.8 Operators

VSL comes with a number dhline operators,which can be used to compose boxes. With
raising precedence, these are:
or

and
= <>

36 Writing DDD Themes

<= < >= >

>—

I %
not
Except foror andand, these operators are mapped to function calls. Each invocation of an
operator @in the form ‘a @b’ gets translated to a call of the VSL function with the special name
‘(@)’. This vsL function can be defined just like any othest, function.

For instance, the expressiant b gets translated to a function cél)(a, b) ; a &b invokes
(&)(a, b)

* + o)

In the file ‘builtin.vsl ', you can actually find definitions of these functions:
(&)(.) = __op_halign(..);
(H)(.) = __op_plus(..);

The functions_op_halign and__op_plus are the names by which thé) "and ‘(+)
functions are implemented. In this document, though, we will not look further at these internals.

Here are the places where the operator functions are described:
For ‘=" and ‘<>’, SeeSection B.5 [Comparison Functions], page 19
For ‘<=’, *<’, ' >=' and *>’, SeeSection B.5 [Comparison Functions], page 19

For *:: ’, SeeSection B.12 [List Functions], page 22
For'| ", *~', ' ~', and ‘&, SeeSection B.3 [Composition Functions], page 17
For '+, *-","*' '/’ and ‘%, SeeSection B.4 [Arithmetic Functions], page .18

For ‘not ’, SeeSection B.6 [Negation Functions], page. 19

C.9 Syntax Summary

The following file summarizes the syntax of VSL files.
[*** VSL file ***/

file : item_list

item_list : [* empty */
| item_list item

item : function_declaration '}
function_definition '}
override_declaration
replace_declaration
include_declaration
line_declaration

error '}

Appendix C: VSL Reference

[*** functions ***/
function_declaration : function_header

function_header : function_identifier function_argument
| function_identifier

function_identifier : identifier

N
\

Il
I
~ —

V.

v
i,
-

N

A
I

R

;l’ !)1
INY :);
(] :)a
4 !)1
1%7 1)1

) 1)1

"0y’ 1)1
oot ,),

’not! 1)!

I e L e e L e L L L L e L L L

identifier : IDENTIFIER

function_definition : local_definition
| global_definition

local_definition : local_header function_body
local_header X function_header =’
global_definition ; global_header function_body
global_header : function_header '->’
function_body X box_expression_with_defs

[*** expressions ***/
[*** let, where ***/

box_expression_with_defs: box_expression_with_wheres

Writing DDD Themes

| ‘let’ var_definition in_box_expression

in_box_expression : 'in" box_expression_with_defs
| ', var_definition in_box_expression

box_expression_with_wheres: box_expression
| box_expression_with_where

box_expression_with_where: box_expression_with_wheres
'where’ var_definition
| box_expression_with_where

,” var_definition

var_definition : box_expression '=" box_expression

[*** basic expressions ***/

box_expression : (" box_expression_with_defs ')’
list_expression
const_expression
binary_expression
unary_expression
cond_expression
function_call
argument_or_function

list_expression : T T
| T box_expression_list ']’
| ()

| ‘(" multiple_box_expression_list)’

box_expression_list : box_expression_with_defs
| multiple_box_expression_list

multiple_box_expression_list: box_expression '’ box_expression
| box_expression ’,’ box_expression_list
| box_expression ..

const_expression : string_constant
| numeric_constant

string_constant : STRING
| string_constant STRING

numeric_constant : INTEGER

function_call : function_identifier function_argument

Appendix C: VSL Reference 39

unary_expression 'not’ box_expression

[*** operators ***/

binary_expression

cond_expression

else_expression

function_argument

argument_or_function

[*** directives ***/
override_declaration

override_list

'+ box_expression
-’ box_expression

box_expression =" box_expression

box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression
box_expression

'if' box_expression

'<>' box_expression
">’ box_expression
'>=" box_expression
'<’ box_expression
'<=" box_expression
‘&’ box_expression
| box_expression
N box_expression
'~" box_expression
'+’ box_expression
- box_expression
"' bhox_expression
'I' box_expression
"%’ box_expression
7" box_expression
'or’ box_expression
'and’ box_expression

'then’ box_expression_with_defs
else_expression

lfi'l

‘elsif’ box_expression
'then’ box_expression_with_defs
else_expression
‘else’ box_expression_with_defs

list_expression

(" box_expression_with_defs ')’

identifier

‘#pragma’ ’override’ override_list

override_identifier

override_list ’,

override_identifier

40

override_identifier
replace_declaration

replace_list

replace_identifier

include_declaration

line_declaration

Writing DDD Themes

function_identifier
‘#pragma’ ‘replace’ replace_list

replace_identifier
replace_list ', replace_identifier

function_identifier

‘#include’” ™ SIMPLE_STRING ™
‘#include’ '<’ SIMPLE_STRING >’

‘#line’ INTEGER
'#line’ INTEGER STRING

Appendix D: GNU Free Documentation License 41

Appendix D GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion

of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, whose contents can be viewed and

42

Writing DDD Themes

edited directly and straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the general

Appendix D: GNU Free Documentation License 43

network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one stating the title, year, au-
thors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

44

Writing DDD Themes

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from

any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a

Appendix D: GNU Free Documentation License 45

10.

single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an “aggregate”, and this License does not
apply to the other self-contained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

46 Writing DDD Themes

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled “GNU

Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts beingjst”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Index

and ... 31
annotation ... e
append ...
AL ot
arcs.Vsl
arcthickness ... i
array_color ...

(o7 1=
changed_colorol
changed_value
chars ...
Circle ...
collapsed_array ...

collapsed_list_value
collapsed_pointer_value
collapsed_reference_value
collapsed_sequence_value
collapsed_simple_value

47
collapsed_struct_value 13
collapsed_text value — 14
COlOr 25
colors.vsl 25
commalist 18
crossline ... 21
D
ddd.vsl o 9.
AeC o 21
delete ... 23
dereferenced_pointer_value 12
disabled ... 11
disabled_color ... 10
display_box 11
display_color ... 10
doubleframe 20
doublestrike ... 21
dtab ... 24
E
L= L1 27
e flush ... 20
elem .. 23
ellipse .. 26
BlSE 30
elsif 30
empty_array ... 12
empty list valuel 13
empty_struct value ... 13
F
fall 27
family_courier ... 24
family_helvetica l 24
family_new_century l 24
family_times ... 24
family_typewriter ... 24
i 30
fill 15
X 16
flat .. 23
font .o 24
fontname 24
fonts.vsl 24
frame 20
Functions,inVSL......................... 9,15

48

H

halign ... 17
hcenter 20
head ... 22
hex . 21
hfill 15
hfixX 16
horizontal_array ...l 12
horizontal_unnamed_list — 14
horizontal_unnamed_struct ~ 13
hralign ... 17
hrule ... 15
hspace ... 16
hwhite 16
I

) 30
indent ... 21
indentamount 21
ISATOM .o 22
SISt 22
I 25
L

last 23
length ... 22
= 31
Library, VSL. ... 15
License, Documentation..................... 41
St 23
list.vsl 22
list_color ... 10
list_ member ... 14
list member name 13
list value 13
M

= 19
MEMDET. ... e 22
MM e 19
N

N_AIMTOW oottt et e 27
n flush ... 20
NE_AITOW ...ttt 27
ne_flush 21
] T 11
MOl 31

Writing DDD Themes

NUM . e e e aeens 21
numeric_value e 11
NW_AITOW ettt it i e i e iie e 27
nw flush ... 21
@)

OCT 21
OCLOQON ottt 27
0] 31
oval .. 26
overline ... 21
P

pointer_color ... 10
pointer_value ... 12
POS . 23
PrefiX oo 22
punchcard i 27
R

reference_color ... 10
reference_value l 12
repeated valuel 14
FEVEISE ottt 23
rhomb ... 27
S 26
0 25
TUlE 15
ruleframe ... 20
rulethicknessl 15
S

S_AITOW ittt it e 27
s flush ..o 20
SE_AITOW .\ttt e ittt it 27
se flush ... 21
select ... 23
semicolonlist 18
sequence valueo, 14
Shadowoii 11
shadow _colorlL 11
simple_color 10
simple_value ... 11
slant_italic 24
slant_unslanted l 24
slopes.vsl .. 26
slopethickness ... 27

small_bf ... 9

Index

small_bi ... 9
small_it . 9
small_rm ... 9
small_size ... 9
SOOI 23
SQUAIE ottt et 16
stdvsl 15
stdfontfamily ... 25
stdfontpixels ... 25
stdfontpoints ... 25
stdfontsize ... 25
stdfontslant ... 25
stdfontweight 25
SHNG oo 21
struct_color ... 10
struct_member ... 13
struct_member_name 13
struct_value ... 13
sublist .. 22
SUffix oo 22
SW_AITOW ottt it it e e i eees 27
sw_flush ... 21
T

tab 23
tab.vsl 23
tab_elem ... 24
taill 22
talign ... 17
text_color ... 10
text value ... 14
then ..o 30
thickframe 20
tiny bf 9.
tiny_bi 0.
tiny it 9.
Ny rm e 9.
tiny Size .. 9
title 11
title_bf 9
title_bi 9
tittle_color ... 10

49
title_it 9
title rm 9
tist 18
tralign .. 17
twodim_array ... 12
twodim_array_eleml 12
U
underline 21
VvV
valign ... 17
value bf ... 9
value_bi ... 9
value box ... 11
value it ... 9
value_rm ... 9
VCENTEI e 20
vertical_array ... 12
vertical_unnamed_list 14
vertical unnamed_struct 13
VAl 15
VEIX 16
VISt 17
vralign 17
VIUIE 15
VS 29
VSLFuNctions...........cociiiiiiiiiinnn. 9,15
VSLLibrary ..o 15
VSPACE ..ttt e 16
VWHIte .o 16
W
W_AITOW .o 27
w_flush ... 20
weight bold 24
weight_medium ... 24
WRHEIe . 31
whiteframe ... 20
whitethickness ...l 16

50

Writing DDD Themes

	Welcome
	Creating Displays
	Handling Boxes
	Building Boxes from Data

	Writing Themes
	Example: Changing the Display Title Color
	The General Scheme
	Overriding vs. Replacing
	A Complex Example
	Future Work

	DDD VSL Functions
	Displaying Fonts
	Displaying Colors
	Displaying Shadows
	Displaying Data Displays
	Displaying Simple Values
	Displaying Pointers
	Displaying References
	Displaying Arrays
	Displaying Structs
	Displaying Lists
	Displaying Sequences
	Displaying Multi-Line Texts
	Displaying Extra Properties
	VSL Library
	Conventions
	Space Functions
	Empty Space
	Black Lines
	White Space
	Controlling Stretch
	Box Dimensions

	Composition Functions
	Horizontal Composition
	Vertical Composition
	Textual Composition
	Overlays

	Arithmetic Functions
	Comparison Functions
	Maximum and Minimum Functions

	Negation Functions
	Frame Functions
	Alignment Functions
	Centering Functions
	Flushing Functions

	Emphasis Functions
	Indentation Functions
	String Functions
	List Functions
	Creating Lists
	List Properties
	Accessing List Elements
	Manipulating Lists
	Lists and Strings

	Table Functions
	Font Functions
	Font Basics
	Font Name Selection
	Font Defaults
	Font Selection

	Color Functions
	Arc Functions
	Arc Basics
	Custom Arc Functions

	Slope Functions
	Slope Basics
	Arrow Functions
	Custom Slope Functions

	VSL Reference
	Boxes
	Lists
	Expressions
	String Literals
	Number Literals
	List Literals
	Conditionals
	Boolean Operators
	Local Variables
	Let Patterns

	Function Calls
	Constant Definitions
	Function Definitions
	Function Parameters
	VSL Unused Parameters

	Function Patterns
	Declaring Functions
	Redefining Functions
	Replacing Functions
	Overriding Functions

	Includes
	Operators
	Syntax Summary
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Index

