Helpo de LibreOfficeDev 25.8
Liveras la deprecon de havaĵo por specifita aŭ parta periodo per variable malkreska bilanca methodo.
VDB(Cost; Salvage; Life; Start; End [; Factor [; NoSwitch]])
Kosto estas la komenca kosto de havaĵo.
Savovaloro estas la valoro de la havaĵo je la fino de ĝia vivo.
Life is the depreciation duration of the asset.
S is the start of the depreciation. A must be entered in the same date unit as the duration.
Numero estas la valoro de la funkcio.
Factor (optional) is the depreciation factor. Factor = 2 is double rate depreciation.
NoSwitchis an optional parameter. NoSwitch = 0 (default) means a switch to linear depreciation. In NoSwitch = 1 no switch is made.
In the LibreOfficeDev Calc functions, parameters marked as "optional" can be left out only when no parameter follows. For example, in a function with four parameters, where the last two parameters are marked as "optional", you can leave out parameter 4 or parameters 3 and 4, but you cannot leave out parameter 3 alone.
Kiom estas la malkresa-bilanca duobla deprecado por periodo, se la komenca kosto estas 35000 valutaj unuoj kaj la valoro je la fino de deprecado estas 7500 valutaj unuoj, kajla depreca periodo estas 3 jaroj? Kalkulu la deprecadon de la 10a ĝis la 20a periodo.
=VDB(35000;7500;36;10;20;2) = 8603.80 currency units. The depreciation during the period between the 10th and the 20th period is 8,603.80 currency units.
Kalkulas la jaran interezan procenton kiu rezultas kiam oni aĉetas valorpaperon (aŭ alian eron) je donita investa valoro kaj vendas ĝin je donita repaga valoro. Interezon oni ne pagas.
INTRATE(Settlement; Maturity; Investment; Redemption [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security is sold.
Investment is the purchase price.
Redemption is the selling price.
A painting is bought on 1990-01-15 for 1 million and sold on 2002-05-05 for 2 million. The basis is daily balance calculation (basis = 3). What is the average annual level of interest?
=INTRATE("1990-01-15"; "2002-05-05"; 1000000; 2000000; 3) returns 8.12%.
Kalkulas la investan interezon kiu rezultas el la profito (rendimento) de investo.
RRI(P; PV; FV)
P is the number of periods needed for calculating the interest rate.
PV is the present (current) value. The cash value is the deposit of cash or the current cash value of an allowance in kind. As a deposit value a positive value must be entered; the deposit must not be 0 or <0.
FV determines what is desired as the cash value of the deposit.
Por kvar periodoj (jaroj) kaj nuna valoro 7500 valutaj unuoj, kalkulu la investan interezon se la futura valoro estu 10000 valutaj unuoj.
=RRI(4;7500;10000) = 7.46 %
La intereza elcento devas esti 7,46% por ke 7500 valutaj unuoj fariĝu 10000.
Kalkulas la periodan amortizadon por investo kun regulaj pagoj kaj konstanta intereza procento.
IPMT(Rate; Period; NPer; PV [; FV [; Type]])
Procento estas la perioda intereza procento.
Periodo estas la periodo, por kiu kalkuli la akumuliĝantan interezon. Periodo=NPER se oni kalkulas la akumuliĝantan interezon por la lasta periodo.
NPer is the total number of periods, during which annuity is paid.
NV estas la nuna monvaloro en sinsekvo de pagoj.
FV (malnepra) estas la dezirata valoro (futura valoro) je la fino de la periodoj.
Tipo estas la tipo de periodaj pagoj.
Kiom estas la intereza procento dum la kvina periodo (jaro) se la konstanta intereza procento estas 5% kaj la monvaloro estas 15000 valutaj unuoj? La perioda pago estas sepjara.
=IPMT(5%;5;7;15000) = -352.97 currency units. The compound interest during the fifth period (year) is 352.97 currency units.
Liveras la daton de la intereza dato antaŭ la pagodato. Formatas la rezulton kiel daton.
COUPPCD(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) what was the interest date prior to purchase?
=COUPPCD("2001-01-25"; "2001-11-15"; 2; 3) returns 2000-15-11.
Liveras la nombron da tagoj ek de la pagodato ĝis la sekva intereza dato.
COUPDAYSNC(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) how many days are there until the next interest payment?
=COUPDAYSNC("2001-01-25"; "2001-11-15"; 2; 3) returns 110.
Liveras la nombron da kuponoj (interezaj pagoj) inter la pagodato kaj la maturiĝa dato.
COUPNUM(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) how many interest dates are there?
=COUPNUM("2001-01-25"; "2001-11-15"; 2; 3) returns 2.
Liveras la daton de la unua interezpago post la pagodato. Formatas la rezulton kiel daton.
COUPNCD(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) when is the next interest date?
=COUPNCD("2001-01-25"; "2001-11-15"; 2; 3) returns 2001-05-15.
Liveras la nombron da tagoj en la aktuala intereza periodo en kiu la pagodato okazas.
COUPDAYS(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) how many days are there in the interest period in which the settlement date falls?
=COUPDAYS("2001-01-25"; "2001-11-15"; 2; 3) returns 182.5.
Liveras la nombron da tagoj ek de la unua pagodato ĝis la pagodato.
COUPDAYBS(Settlement; Maturity; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
P estas la nombro da interezaj pagoperiodoj en unu jaro.
A security is purchased on 2001-01-25; the date of maturity is 2001-11-15. Interest is paid half-yearly (frequency is 2). Using daily balance interest calculation (basis 3) how many days is this?
=COUPDAYBS("2001-01-25"; "2001-11-15"; 2; 3) returns 71.
Kalkulas la prezon por 100 valutaj unuoj da nominala valoro de valorpapero, se la unua elcento okazas neregule.
ODDFPRICE(Settlement; Maturity; Issue; FirstCoupon; Rate; Yield; Redemption; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
Issue is the date of issue of the security.
FirstCoupon is the first interest date of the security.
Rate is the annual rate of interest.
Yield is the annual yield of the security.
Redemption is the redemption value per 100 currency units of par value.
P estas la nombro da interezaj pagoperiodoj en unu jaro.
Kalkulas la prezon de valorpapero, se la unua interezodato okazas neregule.
ODDFYIELD(Settlement; Maturity; Issue; FirstCoupon; Rate; Price; Redemption; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
Issue is the date of issue of the security.
FirstCoupon is the first interest period of the security.
Rate is the annual rate of interest.
Price is the price of the security.
Redemption is the redemption value per 100 currency units of par value.
P estas la nombro da interezaj pagoperiodoj en unu jaro.
Kalkulas la prezon por 100 valutaj unuoj da nominala valoro de valorpapero, se la lasta interezo okazas neregule.
ODDLPRICE(Settlement; Maturity; LastInterest; Rate; Yield; Redemption; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
LastInterest is the last interest date of the security.
Rate is the annual rate of interest.
Yield is the annual yield of the security.
Redemption is the redemption value per 100 currency units of par value.
P estas la nombro da interezaj pagoperiodoj en unu jaro.
Pagodato: 1999 februaro 7, maturiĝodato: 1999 junio 15, dato de lasta interezo: 1998 oktobro 15. Interezo: 3,75 elcento, rendimento: 6,25 elcento, kvitiga valoro: 100 valutaj unuoj, ofteco de pagoj: duonjare = 2, bazo = 0
La prezon por 100 valutaj unuoj da nominala valoro de valorpapero, kiu havas neregulan lastan interezan daton, kalkulu jene:
=ODDLPRICE("1999-02-07";"1999-06-15";"1998-10-15"; 0.0375; 0.0405;100;2;0) returns 99.87829.
Kalkulas la rendimenton de valorpapero, se la lasta interezodato okazas neregule.
ODDLYIELD(Settlement; Maturity; LastInterest; Rate; Price; Redemption; Frequency [; Basis])
Settlement is the date of purchase of the security.
Maturity is the date on which the security matures (expires).
LastInterest is the last interest date of the security.
Rate is the annual rate of interest.
Price is the price of the security.
Redemption is the redemption value per 100 currency units of par value.
P estas la nombro da interezaj pagoperiodoj en unu jaro.
Pagodato: 1999 aprilo 20, maturiĝa dato: 1999 junio 15, lasta intereza dato: 1998 oktobro 15. Elcento: 3,75, prezo: 99,875 valutaj unuoj, repaga valoro: 100 valutaj unuoj, ofteco de pagoj: duonjare = 2, bazo: 0
La rendimenton de la valorpapero, kiu havas neregulan lastan interezan pagodaton, kalkulu jene:
=ODDLYIELD("1999-04-20";"1999-06-15"; "1998-10-15"; 0.0375; 99.875; 100;2;0) returns 0.044873 or 4.4873%.
Liveras la nombron da periodoj por investo bazita sur periodaj, konstantaj pagoj kaj sur konstanta intereza procento.
NPER(Rate; Pmt; PV [ ; [ FV ] [ ; Type ] ])
Procento estas la perioda intereza procento.
Pmt is the constant annuity paid in each period.
NV estas la nuna monvaloro en sinsekvo de pagoj.
FV (malnepra) estas la dezirata valoro (futura valoro) je la fino de la periodoj.
Type (optional) is the due date of the payment at the beginning or at the end of the period.
In the LibreOfficeDev Calc functions, parameters marked as "optional" can be left out only when no parameter follows. For example, in a function with four parameters, where the last two parameters are marked as "optional", you can leave out parameter 4 or parameters 3 and 4, but you cannot leave out parameter 3 alone.
Kiom da pagaj periodoj necesas por perioda interezo 6%, perioda pago 153,75 valutaj unuoj, kaj aktuala monvaloro 2600 valutaj unuoj.
=NPER(6%;153.75;2600) = -12,02. The payment period covers 12.02 periods.
Liveras la konstantan interezan procenton por ĉiu periodo de anuitato.
RATE(NPer; Pmt; PV [ ; [ FV ] [ ; [ Type ] [ ; Guess ] ] ])
NPer is the total number of periods, during which payments are made (payment period).
Pmt is the constant payment (annuity) paid during each period.
NV estas la nuna monvaloro en sinsekvo de pagoj.
FV (malnepra) estas la dezirata valoro (futura valoro) je la fino de la periodoj.
Type (optional) is the due date of the periodic payment, either at the beginning or at the end of a period.
Guess (optional) determines the estimated value of the interest with iterative calculation.
In the LibreOfficeDev Calc functions, parameters marked as "optional" can be left out only when no parameter follows. For example, in a function with four parameters, where the last two parameters are marked as "optional", you can leave out parameter 4 or parameters 3 and 4, but you cannot leave out parameter 3 alone.
Kiom estas la konstanta intereza procento por daŭro tri pagoperiodoj se oni regule pagas 10 valutajn unuojn kaj la nuna monvaloro estas 900 valutaj unuoj.
=RATE(3;-10;900) = -75.63% The interest rate is therefore 75.63%.
Liveras la futuran valoron de investo bazita sur periodaj konstantaj pagoj kaj konstanta procento (Futura Valoro).
FV(Rate; NPer; Pmt [ ; [ PV ] [ ; Type ] ])
Procento estas la perioda intereza procento.
NPer is the total number of periods (payment period).
Pmt is the annuity paid regularly per period.
PV (optional) is the (present) cash value of an investment.
Type (optional) defines whether the payment is due at the beginning or the end of a period.
In the LibreOfficeDev Calc functions, parameters marked as "optional" can be left out only when no parameter follows. For example, in a function with four parameters, where the last two parameters are marked as "optional", you can leave out parameter 4 or parameters 3 and 4, but you cannot leave out parameter 3 alone.
Kiom estas la valoro je la fino de investo se la intereza procento estas 4% kaj la pagoperiodo estas du jaroj, kun perioda pago 750 valutaj unuoj? La nuna valoro de la investo estas 2500 valutaj unuoj.
=FV(4%;2;750;2500) = -4234.00 currency units. The value at the end of the investment is 4234.00 currency units.
Kalkulas la akumulitan valoron de la komenca kapitalo por serio de periode variaj interezaj procentoj.
FVSCHEDULE(Principal; Schedule)
Principal is the starting capital.
Schedule is a series of interest rates, for example, as a range H3:H5 or as a (List) (see example).
Oni investis 1000 valutajn unuojn por tri jaroj. La procentoj estis 3%, 4% kaj 5% jare. Kiom estas la valoro post tri jaroj?
=FVSCHEDULE(1000;{0.03;0.04;0.05}) returns 1124.76.
Kalkulas la internan rendimenton por listo de pagoj kiuj okazas je malsamaj datoj. La kalkulo estas bazita sur 365 tagoj en unu jaro, malatentante superjarojn.
If the payments take place at regular intervals, use the IRR function.
XIRR(Values; Dates [; Guess])
Values and Dates refer to a series of payments and the series of associated date values. The first pair of dates defines the start of the payment plan. All other date values must be later, but need not be in any order. The series of values must contain at least one negative and one positive value (receipts and deposits).
Guess (optional) is a guess that can be input for the internal rate of return. The default is 10%.
Calculation of the internal rate of return for the following five payments (dates are in ISO 8601 format):
| A | B | C | |
|---|---|---|---|
| 1 | 2001-01-01 | -10000 | Received | 
| 2 | 2001-02-01 | 2000 | Deposited | 
| 3 | 2001-03-15 | 2500 | |
| 4 | 2001-05-12 | 5000 | |
| 5 | 2001-08-10 | 1000 | 
=XIRR(B1:B5; A1:A5; 0.1) returns 0.1828 or 18.28%.
Calculates the capital value (net present value) for a list of payments which take place on different dates. The calculation is based on a 365 days per year basis, ignoring leap years.
If the payments take place at regular intervals, use the NPV function.
XNPV(Rate; Values; Dates)
Rate is the internal rate of return for the payments.
Values and Dates refer to a series of payments and the series of associated date values. The first pair of dates defines the start of the payment plan. All other date values must be later, but need not be in any order. The series of values must contain at least one negative and one positive value (receipts and deposits)
Calculation of the net present value for the above-mentioned five payments for a national internal rate of return of 6%.
=XNPV(0.06;B1:B5;A1:A5) returns 323.02.